1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Memory-to-memory device framework for Video for Linux 2 and videobuf. 4 * 5 * Helper functions for devices that use videobuf buffers for both their 6 * source and destination. 7 * 8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 9 * Pawel Osciak, <pawel@osciak.com> 10 * Marek Szyprowski, <m.szyprowski@samsung.com> 11 */ 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 16 #include <media/media-device.h> 17 #include <media/videobuf2-v4l2.h> 18 #include <media/v4l2-mem2mem.h> 19 #include <media/v4l2-dev.h> 20 #include <media/v4l2-device.h> 21 #include <media/v4l2-fh.h> 22 #include <media/v4l2-event.h> 23 24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); 25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); 26 MODULE_LICENSE("GPL"); 27 28 static bool debug; 29 module_param(debug, bool, 0644); 30 31 #define dprintk(fmt, arg...) \ 32 do { \ 33 if (debug) \ 34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ 35 } while (0) 36 37 38 /* Instance is already queued on the job_queue */ 39 #define TRANS_QUEUED (1 << 0) 40 /* Instance is currently running in hardware */ 41 #define TRANS_RUNNING (1 << 1) 42 /* Instance is currently aborting */ 43 #define TRANS_ABORT (1 << 2) 44 45 46 /* Offset base for buffers on the destination queue - used to distinguish 47 * between source and destination buffers when mmapping - they receive the same 48 * offsets but for different queues */ 49 #define DST_QUEUE_OFF_BASE (1 << 30) 50 51 enum v4l2_m2m_entity_type { 52 MEM2MEM_ENT_TYPE_SOURCE, 53 MEM2MEM_ENT_TYPE_SINK, 54 MEM2MEM_ENT_TYPE_PROC 55 }; 56 57 static const char * const m2m_entity_name[] = { 58 "source", 59 "sink", 60 "proc" 61 }; 62 63 /** 64 * struct v4l2_m2m_dev - per-device context 65 * @source: &struct media_entity pointer with the source entity 66 * Used only when the M2M device is registered via 67 * v4l2_m2m_unregister_media_controller(). 68 * @source_pad: &struct media_pad with the source pad. 69 * Used only when the M2M device is registered via 70 * v4l2_m2m_unregister_media_controller(). 71 * @sink: &struct media_entity pointer with the sink entity 72 * Used only when the M2M device is registered via 73 * v4l2_m2m_unregister_media_controller(). 74 * @sink_pad: &struct media_pad with the sink pad. 75 * Used only when the M2M device is registered via 76 * v4l2_m2m_unregister_media_controller(). 77 * @proc: &struct media_entity pointer with the M2M device itself. 78 * @proc_pads: &struct media_pad with the @proc pads. 79 * Used only when the M2M device is registered via 80 * v4l2_m2m_unregister_media_controller(). 81 * @intf_devnode: &struct media_intf devnode pointer with the interface 82 * with controls the M2M device. 83 * @curr_ctx: currently running instance 84 * @job_queue: instances queued to run 85 * @job_spinlock: protects job_queue 86 * @job_work: worker to run queued jobs. 87 * @m2m_ops: driver callbacks 88 */ 89 struct v4l2_m2m_dev { 90 struct v4l2_m2m_ctx *curr_ctx; 91 #ifdef CONFIG_MEDIA_CONTROLLER 92 struct media_entity *source; 93 struct media_pad source_pad; 94 struct media_entity sink; 95 struct media_pad sink_pad; 96 struct media_entity proc; 97 struct media_pad proc_pads[2]; 98 struct media_intf_devnode *intf_devnode; 99 #endif 100 101 struct list_head job_queue; 102 spinlock_t job_spinlock; 103 struct work_struct job_work; 104 105 const struct v4l2_m2m_ops *m2m_ops; 106 }; 107 108 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, 109 enum v4l2_buf_type type) 110 { 111 if (V4L2_TYPE_IS_OUTPUT(type)) 112 return &m2m_ctx->out_q_ctx; 113 else 114 return &m2m_ctx->cap_q_ctx; 115 } 116 117 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, 118 enum v4l2_buf_type type) 119 { 120 struct v4l2_m2m_queue_ctx *q_ctx; 121 122 q_ctx = get_queue_ctx(m2m_ctx, type); 123 if (!q_ctx) 124 return NULL; 125 126 return &q_ctx->q; 127 } 128 EXPORT_SYMBOL(v4l2_m2m_get_vq); 129 130 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) 131 { 132 struct v4l2_m2m_buffer *b; 133 unsigned long flags; 134 135 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 136 137 if (list_empty(&q_ctx->rdy_queue)) { 138 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 139 return NULL; 140 } 141 142 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 143 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 144 return &b->vb; 145 } 146 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); 147 148 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) 149 { 150 struct v4l2_m2m_buffer *b; 151 unsigned long flags; 152 153 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 154 155 if (list_empty(&q_ctx->rdy_queue)) { 156 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 157 return NULL; 158 } 159 160 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 161 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 162 return &b->vb; 163 } 164 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); 165 166 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) 167 { 168 struct v4l2_m2m_buffer *b; 169 unsigned long flags; 170 171 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 172 if (list_empty(&q_ctx->rdy_queue)) { 173 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 174 return NULL; 175 } 176 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 177 list_del(&b->list); 178 q_ctx->num_rdy--; 179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 180 181 return &b->vb; 182 } 183 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); 184 185 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, 186 struct vb2_v4l2_buffer *vbuf) 187 { 188 struct v4l2_m2m_buffer *b; 189 unsigned long flags; 190 191 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 192 b = container_of(vbuf, struct v4l2_m2m_buffer, vb); 193 list_del(&b->list); 194 q_ctx->num_rdy--; 195 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 196 } 197 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); 198 199 struct vb2_v4l2_buffer * 200 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) 201 202 { 203 struct v4l2_m2m_buffer *b, *tmp; 204 struct vb2_v4l2_buffer *ret = NULL; 205 unsigned long flags; 206 207 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 208 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { 209 if (b->vb.vb2_buf.index == idx) { 210 list_del(&b->list); 211 q_ctx->num_rdy--; 212 ret = &b->vb; 213 break; 214 } 215 } 216 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 217 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); 221 222 /* 223 * Scheduling handlers 224 */ 225 226 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) 227 { 228 unsigned long flags; 229 void *ret = NULL; 230 231 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 232 if (m2m_dev->curr_ctx) 233 ret = m2m_dev->curr_ctx->priv; 234 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 235 236 return ret; 237 } 238 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); 239 240 /** 241 * v4l2_m2m_try_run() - select next job to perform and run it if possible 242 * @m2m_dev: per-device context 243 * 244 * Get next transaction (if present) from the waiting jobs list and run it. 245 * 246 * Note that this function can run on a given v4l2_m2m_ctx context, 247 * but call .device_run for another context. 248 */ 249 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) 250 { 251 unsigned long flags; 252 253 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 254 if (NULL != m2m_dev->curr_ctx) { 255 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 256 dprintk("Another instance is running, won't run now\n"); 257 return; 258 } 259 260 if (list_empty(&m2m_dev->job_queue)) { 261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 262 dprintk("No job pending\n"); 263 return; 264 } 265 266 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, 267 struct v4l2_m2m_ctx, queue); 268 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; 269 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 270 271 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); 272 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); 273 } 274 275 /* 276 * __v4l2_m2m_try_queue() - queue a job 277 * @m2m_dev: m2m device 278 * @m2m_ctx: m2m context 279 * 280 * Check if this context is ready to queue a job. 281 * 282 * This function can run in interrupt context. 283 */ 284 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, 285 struct v4l2_m2m_ctx *m2m_ctx) 286 { 287 unsigned long flags_job; 288 struct vb2_v4l2_buffer *dst, *src; 289 290 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); 291 292 if (!m2m_ctx->out_q_ctx.q.streaming 293 || !m2m_ctx->cap_q_ctx.q.streaming) { 294 dprintk("Streaming needs to be on for both queues\n"); 295 return; 296 } 297 298 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 299 300 /* If the context is aborted then don't schedule it */ 301 if (m2m_ctx->job_flags & TRANS_ABORT) { 302 dprintk("Aborted context\n"); 303 goto job_unlock; 304 } 305 306 if (m2m_ctx->job_flags & TRANS_QUEUED) { 307 dprintk("On job queue already\n"); 308 goto job_unlock; 309 } 310 311 src = v4l2_m2m_next_src_buf(m2m_ctx); 312 dst = v4l2_m2m_next_dst_buf(m2m_ctx); 313 if (!src && !m2m_ctx->out_q_ctx.buffered) { 314 dprintk("No input buffers available\n"); 315 goto job_unlock; 316 } 317 if (!dst && !m2m_ctx->cap_q_ctx.buffered) { 318 dprintk("No output buffers available\n"); 319 goto job_unlock; 320 } 321 322 m2m_ctx->new_frame = true; 323 324 if (src && dst && dst->is_held && 325 dst->vb2_buf.copied_timestamp && 326 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) { 327 dst->is_held = false; 328 v4l2_m2m_dst_buf_remove(m2m_ctx); 329 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE); 330 dst = v4l2_m2m_next_dst_buf(m2m_ctx); 331 332 if (!dst && !m2m_ctx->cap_q_ctx.buffered) { 333 dprintk("No output buffers available after returning held buffer\n"); 334 goto job_unlock; 335 } 336 } 337 338 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags & 339 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF)) 340 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp || 341 dst->vb2_buf.timestamp != src->vb2_buf.timestamp; 342 343 if (m2m_ctx->has_stopped) { 344 dprintk("Device has stopped\n"); 345 goto job_unlock; 346 } 347 348 if (m2m_dev->m2m_ops->job_ready 349 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { 350 dprintk("Driver not ready\n"); 351 goto job_unlock; 352 } 353 354 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); 355 m2m_ctx->job_flags |= TRANS_QUEUED; 356 357 job_unlock: 358 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 359 } 360 361 /** 362 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context 363 * @m2m_ctx: m2m context 364 * 365 * Check if this context is ready to queue a job. If suitable, 366 * run the next queued job on the mem2mem device. 367 * 368 * This function shouldn't run in interrupt context. 369 * 370 * Note that v4l2_m2m_try_schedule() can schedule one job for this context, 371 * and then run another job for another context. 372 */ 373 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) 374 { 375 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; 376 377 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 378 v4l2_m2m_try_run(m2m_dev); 379 } 380 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); 381 382 /** 383 * v4l2_m2m_device_run_work() - run pending jobs for the context 384 * @work: Work structure used for scheduling the execution of this function. 385 */ 386 static void v4l2_m2m_device_run_work(struct work_struct *work) 387 { 388 struct v4l2_m2m_dev *m2m_dev = 389 container_of(work, struct v4l2_m2m_dev, job_work); 390 391 v4l2_m2m_try_run(m2m_dev); 392 } 393 394 /** 395 * v4l2_m2m_cancel_job() - cancel pending jobs for the context 396 * @m2m_ctx: m2m context with jobs to be canceled 397 * 398 * In case of streamoff or release called on any context, 399 * 1] If the context is currently running, then abort job will be called 400 * 2] If the context is queued, then the context will be removed from 401 * the job_queue 402 */ 403 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) 404 { 405 struct v4l2_m2m_dev *m2m_dev; 406 unsigned long flags; 407 408 m2m_dev = m2m_ctx->m2m_dev; 409 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 410 411 m2m_ctx->job_flags |= TRANS_ABORT; 412 if (m2m_ctx->job_flags & TRANS_RUNNING) { 413 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 414 if (m2m_dev->m2m_ops->job_abort) 415 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); 416 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); 417 wait_event(m2m_ctx->finished, 418 !(m2m_ctx->job_flags & TRANS_RUNNING)); 419 } else if (m2m_ctx->job_flags & TRANS_QUEUED) { 420 list_del(&m2m_ctx->queue); 421 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 422 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 423 dprintk("m2m_ctx: %p had been on queue and was removed\n", 424 m2m_ctx); 425 } else { 426 /* Do nothing, was not on queue/running */ 427 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 428 } 429 } 430 431 /* 432 * Schedule the next job, called from v4l2_m2m_job_finish() or 433 * v4l2_m2m_buf_done_and_job_finish(). 434 */ 435 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev, 436 struct v4l2_m2m_ctx *m2m_ctx) 437 { 438 /* 439 * This instance might have more buffers ready, but since we do not 440 * allow more than one job on the job_queue per instance, each has 441 * to be scheduled separately after the previous one finishes. 442 */ 443 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 444 445 /* 446 * We might be running in atomic context, 447 * but the job must be run in non-atomic context. 448 */ 449 schedule_work(&m2m_dev->job_work); 450 } 451 452 /* 453 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or 454 * v4l2_m2m_buf_done_and_job_finish(). 455 */ 456 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 457 struct v4l2_m2m_ctx *m2m_ctx) 458 { 459 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { 460 dprintk("Called by an instance not currently running\n"); 461 return false; 462 } 463 464 list_del(&m2m_dev->curr_ctx->queue); 465 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 466 wake_up(&m2m_dev->curr_ctx->finished); 467 m2m_dev->curr_ctx = NULL; 468 return true; 469 } 470 471 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 472 struct v4l2_m2m_ctx *m2m_ctx) 473 { 474 unsigned long flags; 475 bool schedule_next; 476 477 /* 478 * This function should not be used for drivers that support 479 * holding capture buffers. Those should use 480 * v4l2_m2m_buf_done_and_job_finish() instead. 481 */ 482 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags & 483 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF); 484 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 485 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); 486 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 487 488 if (schedule_next) 489 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); 490 } 491 EXPORT_SYMBOL(v4l2_m2m_job_finish); 492 493 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev, 494 struct v4l2_m2m_ctx *m2m_ctx, 495 enum vb2_buffer_state state) 496 { 497 struct vb2_v4l2_buffer *src_buf, *dst_buf; 498 bool schedule_next = false; 499 unsigned long flags; 500 501 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 502 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx); 503 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx); 504 505 if (WARN_ON(!src_buf || !dst_buf)) 506 goto unlock; 507 v4l2_m2m_buf_done(src_buf, state); 508 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; 509 if (!dst_buf->is_held) { 510 v4l2_m2m_dst_buf_remove(m2m_ctx); 511 v4l2_m2m_buf_done(dst_buf, state); 512 } 513 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx); 514 unlock: 515 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 516 517 if (schedule_next) 518 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx); 519 } 520 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish); 521 522 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 523 struct v4l2_requestbuffers *reqbufs) 524 { 525 struct vb2_queue *vq; 526 int ret; 527 528 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); 529 ret = vb2_reqbufs(vq, reqbufs); 530 /* If count == 0, then the owner has released all buffers and he 531 is no longer owner of the queue. Otherwise we have an owner. */ 532 if (ret == 0) 533 vq->owner = reqbufs->count ? file->private_data : NULL; 534 535 return ret; 536 } 537 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); 538 539 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 540 struct v4l2_buffer *buf) 541 { 542 struct vb2_queue *vq; 543 int ret = 0; 544 unsigned int i; 545 546 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 547 ret = vb2_querybuf(vq, buf); 548 549 /* Adjust MMAP memory offsets for the CAPTURE queue */ 550 if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) { 551 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { 552 for (i = 0; i < buf->length; ++i) 553 buf->m.planes[i].m.mem_offset 554 += DST_QUEUE_OFF_BASE; 555 } else { 556 buf->m.offset += DST_QUEUE_OFF_BASE; 557 } 558 } 559 560 return ret; 561 } 562 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); 563 564 /* 565 * This will add the LAST flag and mark the buffer management 566 * state as stopped. 567 * This is called when the last capture buffer must be flagged as LAST 568 * in draining mode from the encoder/decoder driver buf_queue() callback 569 * or from v4l2_update_last_buf_state() when a capture buffer is available. 570 */ 571 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx, 572 struct vb2_v4l2_buffer *vbuf) 573 { 574 vbuf->flags |= V4L2_BUF_FLAG_LAST; 575 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE); 576 577 v4l2_m2m_mark_stopped(m2m_ctx); 578 } 579 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done); 580 581 /* When stop command is issued, update buffer management state */ 582 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx) 583 { 584 struct vb2_v4l2_buffer *next_dst_buf; 585 586 if (m2m_ctx->is_draining) 587 return -EBUSY; 588 589 if (m2m_ctx->has_stopped) 590 return 0; 591 592 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx); 593 m2m_ctx->is_draining = true; 594 595 /* 596 * The processing of the last output buffer queued before 597 * the STOP command is expected to mark the buffer management 598 * state as stopped with v4l2_m2m_mark_stopped(). 599 */ 600 if (m2m_ctx->last_src_buf) 601 return 0; 602 603 /* 604 * In case the output queue is empty, try to mark the last capture 605 * buffer as LAST. 606 */ 607 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); 608 if (!next_dst_buf) { 609 /* 610 * Wait for the next queued one in encoder/decoder driver 611 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last() 612 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet 613 * streaming. 614 */ 615 m2m_ctx->next_buf_last = true; 616 return 0; 617 } 618 619 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf); 620 621 return 0; 622 } 623 624 /* 625 * Updates the encoding/decoding buffer management state, should 626 * be called from encoder/decoder drivers start_streaming() 627 */ 628 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, 629 struct vb2_queue *q) 630 { 631 /* If start streaming again, untag the last output buffer */ 632 if (V4L2_TYPE_IS_OUTPUT(q->type)) 633 m2m_ctx->last_src_buf = NULL; 634 } 635 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state); 636 637 /* 638 * Updates the encoding/decoding buffer management state, should 639 * be called from encoder/decoder driver stop_streaming() 640 */ 641 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx, 642 struct vb2_queue *q) 643 { 644 if (V4L2_TYPE_IS_OUTPUT(q->type)) { 645 /* 646 * If in draining state, either mark next dst buffer as 647 * done or flag next one to be marked as done either 648 * in encoder/decoder driver buf_queue() callback using 649 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf() 650 * if encoder/decoder is not yet streaming 651 */ 652 if (m2m_ctx->is_draining) { 653 struct vb2_v4l2_buffer *next_dst_buf; 654 655 m2m_ctx->last_src_buf = NULL; 656 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx); 657 if (!next_dst_buf) 658 m2m_ctx->next_buf_last = true; 659 else 660 v4l2_m2m_last_buffer_done(m2m_ctx, 661 next_dst_buf); 662 } 663 } else { 664 v4l2_m2m_clear_state(m2m_ctx); 665 } 666 } 667 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state); 668 669 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx, 670 struct vb2_queue *q) 671 { 672 struct vb2_buffer *vb; 673 struct vb2_v4l2_buffer *vbuf; 674 unsigned int i; 675 676 if (WARN_ON(q->is_output)) 677 return; 678 if (list_empty(&q->queued_list)) 679 return; 680 681 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry); 682 for (i = 0; i < vb->num_planes; i++) 683 vb2_set_plane_payload(vb, i, 0); 684 685 /* 686 * Since the buffer hasn't been queued to the ready queue, 687 * mark is active and owned before marking it LAST and DONE 688 */ 689 vb->state = VB2_BUF_STATE_ACTIVE; 690 atomic_inc(&q->owned_by_drv_count); 691 692 vbuf = to_vb2_v4l2_buffer(vb); 693 vbuf->field = V4L2_FIELD_NONE; 694 695 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf); 696 } 697 698 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 699 struct v4l2_buffer *buf) 700 { 701 struct video_device *vdev = video_devdata(file); 702 struct vb2_queue *vq; 703 int ret; 704 705 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 706 if (!V4L2_TYPE_IS_OUTPUT(vq->type) && 707 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { 708 dprintk("%s: requests cannot be used with capture buffers\n", 709 __func__); 710 return -EPERM; 711 } 712 713 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); 714 if (ret) 715 return ret; 716 717 /* 718 * If the capture queue is streaming, but streaming hasn't started 719 * on the device, but was asked to stop, mark the previously queued 720 * buffer as DONE with LAST flag since it won't be queued on the 721 * device. 722 */ 723 if (!V4L2_TYPE_IS_OUTPUT(vq->type) && 724 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) && 725 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx))) 726 v4l2_m2m_force_last_buf_done(m2m_ctx, vq); 727 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) 728 v4l2_m2m_try_schedule(m2m_ctx); 729 730 return 0; 731 } 732 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); 733 734 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 735 struct v4l2_buffer *buf) 736 { 737 struct vb2_queue *vq; 738 739 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 740 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); 741 } 742 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); 743 744 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 745 struct v4l2_buffer *buf) 746 { 747 struct video_device *vdev = video_devdata(file); 748 struct vb2_queue *vq; 749 750 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 751 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); 752 } 753 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); 754 755 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 756 struct v4l2_create_buffers *create) 757 { 758 struct vb2_queue *vq; 759 760 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); 761 return vb2_create_bufs(vq, create); 762 } 763 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); 764 765 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 766 struct v4l2_exportbuffer *eb) 767 { 768 struct vb2_queue *vq; 769 770 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); 771 return vb2_expbuf(vq, eb); 772 } 773 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); 774 775 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 776 enum v4l2_buf_type type) 777 { 778 struct vb2_queue *vq; 779 int ret; 780 781 vq = v4l2_m2m_get_vq(m2m_ctx, type); 782 ret = vb2_streamon(vq, type); 783 if (!ret) 784 v4l2_m2m_try_schedule(m2m_ctx); 785 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); 789 790 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 791 enum v4l2_buf_type type) 792 { 793 struct v4l2_m2m_dev *m2m_dev; 794 struct v4l2_m2m_queue_ctx *q_ctx; 795 unsigned long flags_job, flags; 796 int ret; 797 798 /* wait until the current context is dequeued from job_queue */ 799 v4l2_m2m_cancel_job(m2m_ctx); 800 801 q_ctx = get_queue_ctx(m2m_ctx, type); 802 ret = vb2_streamoff(&q_ctx->q, type); 803 if (ret) 804 return ret; 805 806 m2m_dev = m2m_ctx->m2m_dev; 807 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 808 /* We should not be scheduled anymore, since we're dropping a queue. */ 809 if (m2m_ctx->job_flags & TRANS_QUEUED) 810 list_del(&m2m_ctx->queue); 811 m2m_ctx->job_flags = 0; 812 813 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 814 /* Drop queue, since streamoff returns device to the same state as after 815 * calling reqbufs. */ 816 INIT_LIST_HEAD(&q_ctx->rdy_queue); 817 q_ctx->num_rdy = 0; 818 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 819 820 if (m2m_dev->curr_ctx == m2m_ctx) { 821 m2m_dev->curr_ctx = NULL; 822 wake_up(&m2m_ctx->finished); 823 } 824 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 825 826 return 0; 827 } 828 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); 829 830 static __poll_t v4l2_m2m_poll_for_data(struct file *file, 831 struct v4l2_m2m_ctx *m2m_ctx, 832 struct poll_table_struct *wait) 833 { 834 struct vb2_queue *src_q, *dst_q; 835 struct vb2_buffer *src_vb = NULL, *dst_vb = NULL; 836 __poll_t rc = 0; 837 unsigned long flags; 838 839 src_q = v4l2_m2m_get_src_vq(m2m_ctx); 840 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 841 842 poll_wait(file, &src_q->done_wq, wait); 843 poll_wait(file, &dst_q->done_wq, wait); 844 845 /* 846 * There has to be at least one buffer queued on each queued_list, which 847 * means either in driver already or waiting for driver to claim it 848 * and start processing. 849 */ 850 if ((!src_q->streaming || src_q->error || 851 list_empty(&src_q->queued_list)) && 852 (!dst_q->streaming || dst_q->error || 853 list_empty(&dst_q->queued_list))) 854 return EPOLLERR; 855 856 spin_lock_irqsave(&dst_q->done_lock, flags); 857 if (list_empty(&dst_q->done_list)) { 858 /* 859 * If the last buffer was dequeued from the capture queue, 860 * return immediately. DQBUF will return -EPIPE. 861 */ 862 if (dst_q->last_buffer_dequeued) { 863 spin_unlock_irqrestore(&dst_q->done_lock, flags); 864 return EPOLLIN | EPOLLRDNORM; 865 } 866 } 867 spin_unlock_irqrestore(&dst_q->done_lock, flags); 868 869 spin_lock_irqsave(&src_q->done_lock, flags); 870 if (!list_empty(&src_q->done_list)) 871 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer, 872 done_entry); 873 if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE 874 || src_vb->state == VB2_BUF_STATE_ERROR)) 875 rc |= EPOLLOUT | EPOLLWRNORM; 876 spin_unlock_irqrestore(&src_q->done_lock, flags); 877 878 spin_lock_irqsave(&dst_q->done_lock, flags); 879 if (!list_empty(&dst_q->done_list)) 880 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer, 881 done_entry); 882 if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE 883 || dst_vb->state == VB2_BUF_STATE_ERROR)) 884 rc |= EPOLLIN | EPOLLRDNORM; 885 spin_unlock_irqrestore(&dst_q->done_lock, flags); 886 887 return rc; 888 } 889 890 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 891 struct poll_table_struct *wait) 892 { 893 struct video_device *vfd = video_devdata(file); 894 __poll_t req_events = poll_requested_events(wait); 895 __poll_t rc = 0; 896 897 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)) 898 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait); 899 900 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { 901 struct v4l2_fh *fh = file->private_data; 902 903 poll_wait(file, &fh->wait, wait); 904 if (v4l2_event_pending(fh)) 905 rc |= EPOLLPRI; 906 } 907 908 return rc; 909 } 910 EXPORT_SYMBOL_GPL(v4l2_m2m_poll); 911 912 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 913 struct vm_area_struct *vma) 914 { 915 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 916 struct vb2_queue *vq; 917 918 if (offset < DST_QUEUE_OFF_BASE) { 919 vq = v4l2_m2m_get_src_vq(m2m_ctx); 920 } else { 921 vq = v4l2_m2m_get_dst_vq(m2m_ctx); 922 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 923 } 924 925 return vb2_mmap(vq, vma); 926 } 927 EXPORT_SYMBOL(v4l2_m2m_mmap); 928 929 #if defined(CONFIG_MEDIA_CONTROLLER) 930 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) 931 { 932 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 933 media_devnode_remove(m2m_dev->intf_devnode); 934 935 media_entity_remove_links(m2m_dev->source); 936 media_entity_remove_links(&m2m_dev->sink); 937 media_entity_remove_links(&m2m_dev->proc); 938 media_device_unregister_entity(m2m_dev->source); 939 media_device_unregister_entity(&m2m_dev->sink); 940 media_device_unregister_entity(&m2m_dev->proc); 941 kfree(m2m_dev->source->name); 942 kfree(m2m_dev->sink.name); 943 kfree(m2m_dev->proc.name); 944 } 945 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); 946 947 static int v4l2_m2m_register_entity(struct media_device *mdev, 948 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, 949 struct video_device *vdev, int function) 950 { 951 struct media_entity *entity; 952 struct media_pad *pads; 953 char *name; 954 unsigned int len; 955 int num_pads; 956 int ret; 957 958 switch (type) { 959 case MEM2MEM_ENT_TYPE_SOURCE: 960 entity = m2m_dev->source; 961 pads = &m2m_dev->source_pad; 962 pads[0].flags = MEDIA_PAD_FL_SOURCE; 963 num_pads = 1; 964 break; 965 case MEM2MEM_ENT_TYPE_SINK: 966 entity = &m2m_dev->sink; 967 pads = &m2m_dev->sink_pad; 968 pads[0].flags = MEDIA_PAD_FL_SINK; 969 num_pads = 1; 970 break; 971 case MEM2MEM_ENT_TYPE_PROC: 972 entity = &m2m_dev->proc; 973 pads = m2m_dev->proc_pads; 974 pads[0].flags = MEDIA_PAD_FL_SINK; 975 pads[1].flags = MEDIA_PAD_FL_SOURCE; 976 num_pads = 2; 977 break; 978 default: 979 return -EINVAL; 980 } 981 982 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 983 if (type != MEM2MEM_ENT_TYPE_PROC) { 984 entity->info.dev.major = VIDEO_MAJOR; 985 entity->info.dev.minor = vdev->minor; 986 } 987 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); 988 name = kmalloc(len, GFP_KERNEL); 989 if (!name) 990 return -ENOMEM; 991 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); 992 entity->name = name; 993 entity->function = function; 994 995 ret = media_entity_pads_init(entity, num_pads, pads); 996 if (ret) 997 return ret; 998 ret = media_device_register_entity(mdev, entity); 999 if (ret) 1000 return ret; 1001 1002 return 0; 1003 } 1004 1005 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, 1006 struct video_device *vdev, int function) 1007 { 1008 struct media_device *mdev = vdev->v4l2_dev->mdev; 1009 struct media_link *link; 1010 int ret; 1011 1012 if (!mdev) 1013 return 0; 1014 1015 /* A memory-to-memory device consists in two 1016 * DMA engine and one video processing entities. 1017 * The DMA engine entities are linked to a V4L interface 1018 */ 1019 1020 /* Create the three entities with their pads */ 1021 m2m_dev->source = &vdev->entity; 1022 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1023 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); 1024 if (ret) 1025 return ret; 1026 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1027 MEM2MEM_ENT_TYPE_PROC, vdev, function); 1028 if (ret) 1029 goto err_rel_entity0; 1030 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 1031 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); 1032 if (ret) 1033 goto err_rel_entity1; 1034 1035 /* Connect the three entities */ 1036 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0, 1037 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1038 if (ret) 1039 goto err_rel_entity2; 1040 1041 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0, 1042 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1043 if (ret) 1044 goto err_rm_links0; 1045 1046 /* Create video interface */ 1047 m2m_dev->intf_devnode = media_devnode_create(mdev, 1048 MEDIA_INTF_T_V4L_VIDEO, 0, 1049 VIDEO_MAJOR, vdev->minor); 1050 if (!m2m_dev->intf_devnode) { 1051 ret = -ENOMEM; 1052 goto err_rm_links1; 1053 } 1054 1055 /* Connect the two DMA engines to the interface */ 1056 link = media_create_intf_link(m2m_dev->source, 1057 &m2m_dev->intf_devnode->intf, 1058 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1059 if (!link) { 1060 ret = -ENOMEM; 1061 goto err_rm_devnode; 1062 } 1063 1064 link = media_create_intf_link(&m2m_dev->sink, 1065 &m2m_dev->intf_devnode->intf, 1066 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 1067 if (!link) { 1068 ret = -ENOMEM; 1069 goto err_rm_intf_link; 1070 } 1071 return 0; 1072 1073 err_rm_intf_link: 1074 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 1075 err_rm_devnode: 1076 media_devnode_remove(m2m_dev->intf_devnode); 1077 err_rm_links1: 1078 media_entity_remove_links(&m2m_dev->sink); 1079 err_rm_links0: 1080 media_entity_remove_links(&m2m_dev->proc); 1081 media_entity_remove_links(m2m_dev->source); 1082 err_rel_entity2: 1083 media_device_unregister_entity(&m2m_dev->proc); 1084 kfree(m2m_dev->proc.name); 1085 err_rel_entity1: 1086 media_device_unregister_entity(&m2m_dev->sink); 1087 kfree(m2m_dev->sink.name); 1088 err_rel_entity0: 1089 media_device_unregister_entity(m2m_dev->source); 1090 kfree(m2m_dev->source->name); 1091 return ret; 1092 return 0; 1093 } 1094 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); 1095 #endif 1096 1097 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) 1098 { 1099 struct v4l2_m2m_dev *m2m_dev; 1100 1101 if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) 1102 return ERR_PTR(-EINVAL); 1103 1104 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); 1105 if (!m2m_dev) 1106 return ERR_PTR(-ENOMEM); 1107 1108 m2m_dev->curr_ctx = NULL; 1109 m2m_dev->m2m_ops = m2m_ops; 1110 INIT_LIST_HEAD(&m2m_dev->job_queue); 1111 spin_lock_init(&m2m_dev->job_spinlock); 1112 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work); 1113 1114 return m2m_dev; 1115 } 1116 EXPORT_SYMBOL_GPL(v4l2_m2m_init); 1117 1118 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) 1119 { 1120 kfree(m2m_dev); 1121 } 1122 EXPORT_SYMBOL_GPL(v4l2_m2m_release); 1123 1124 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, 1125 void *drv_priv, 1126 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) 1127 { 1128 struct v4l2_m2m_ctx *m2m_ctx; 1129 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; 1130 int ret; 1131 1132 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); 1133 if (!m2m_ctx) 1134 return ERR_PTR(-ENOMEM); 1135 1136 m2m_ctx->priv = drv_priv; 1137 m2m_ctx->m2m_dev = m2m_dev; 1138 init_waitqueue_head(&m2m_ctx->finished); 1139 1140 out_q_ctx = &m2m_ctx->out_q_ctx; 1141 cap_q_ctx = &m2m_ctx->cap_q_ctx; 1142 1143 INIT_LIST_HEAD(&out_q_ctx->rdy_queue); 1144 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); 1145 spin_lock_init(&out_q_ctx->rdy_spinlock); 1146 spin_lock_init(&cap_q_ctx->rdy_spinlock); 1147 1148 INIT_LIST_HEAD(&m2m_ctx->queue); 1149 1150 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); 1151 1152 if (ret) 1153 goto err; 1154 /* 1155 * Both queues should use same the mutex to lock the m2m context. 1156 * This lock is used in some v4l2_m2m_* helpers. 1157 */ 1158 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) { 1159 ret = -EINVAL; 1160 goto err; 1161 } 1162 m2m_ctx->q_lock = out_q_ctx->q.lock; 1163 1164 return m2m_ctx; 1165 err: 1166 kfree(m2m_ctx); 1167 return ERR_PTR(ret); 1168 } 1169 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); 1170 1171 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) 1172 { 1173 /* wait until the current context is dequeued from job_queue */ 1174 v4l2_m2m_cancel_job(m2m_ctx); 1175 1176 vb2_queue_release(&m2m_ctx->cap_q_ctx.q); 1177 vb2_queue_release(&m2m_ctx->out_q_ctx.q); 1178 1179 kfree(m2m_ctx); 1180 } 1181 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); 1182 1183 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, 1184 struct vb2_v4l2_buffer *vbuf) 1185 { 1186 struct v4l2_m2m_buffer *b = container_of(vbuf, 1187 struct v4l2_m2m_buffer, vb); 1188 struct v4l2_m2m_queue_ctx *q_ctx; 1189 unsigned long flags; 1190 1191 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); 1192 if (!q_ctx) 1193 return; 1194 1195 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 1196 list_add_tail(&b->list, &q_ctx->rdy_queue); 1197 q_ctx->num_rdy++; 1198 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 1199 } 1200 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); 1201 1202 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb, 1203 struct vb2_v4l2_buffer *cap_vb, 1204 bool copy_frame_flags) 1205 { 1206 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK; 1207 1208 if (copy_frame_flags) 1209 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | 1210 V4L2_BUF_FLAG_BFRAME; 1211 1212 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp; 1213 1214 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE) 1215 cap_vb->timecode = out_vb->timecode; 1216 cap_vb->field = out_vb->field; 1217 cap_vb->flags &= ~mask; 1218 cap_vb->flags |= out_vb->flags & mask; 1219 cap_vb->vb2_buf.copied_timestamp = 1; 1220 } 1221 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata); 1222 1223 void v4l2_m2m_request_queue(struct media_request *req) 1224 { 1225 struct media_request_object *obj, *obj_safe; 1226 struct v4l2_m2m_ctx *m2m_ctx = NULL; 1227 1228 /* 1229 * Queue all objects. Note that buffer objects are at the end of the 1230 * objects list, after all other object types. Once buffer objects 1231 * are queued, the driver might delete them immediately (if the driver 1232 * processes the buffer at once), so we have to use 1233 * list_for_each_entry_safe() to handle the case where the object we 1234 * queue is deleted. 1235 */ 1236 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { 1237 struct v4l2_m2m_ctx *m2m_ctx_obj; 1238 struct vb2_buffer *vb; 1239 1240 if (!obj->ops->queue) 1241 continue; 1242 1243 if (vb2_request_object_is_buffer(obj)) { 1244 /* Sanity checks */ 1245 vb = container_of(obj, struct vb2_buffer, req_obj); 1246 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); 1247 m2m_ctx_obj = container_of(vb->vb2_queue, 1248 struct v4l2_m2m_ctx, 1249 out_q_ctx.q); 1250 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); 1251 m2m_ctx = m2m_ctx_obj; 1252 } 1253 1254 /* 1255 * The buffer we queue here can in theory be immediately 1256 * unbound, hence the use of list_for_each_entry_safe() 1257 * above and why we call the queue op last. 1258 */ 1259 obj->ops->queue(obj); 1260 } 1261 1262 WARN_ON(!m2m_ctx); 1263 1264 if (m2m_ctx) 1265 v4l2_m2m_try_schedule(m2m_ctx); 1266 } 1267 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue); 1268 1269 /* Videobuf2 ioctl helpers */ 1270 1271 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, 1272 struct v4l2_requestbuffers *rb) 1273 { 1274 struct v4l2_fh *fh = file->private_data; 1275 1276 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); 1277 } 1278 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); 1279 1280 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, 1281 struct v4l2_create_buffers *create) 1282 { 1283 struct v4l2_fh *fh = file->private_data; 1284 1285 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); 1286 } 1287 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); 1288 1289 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, 1290 struct v4l2_buffer *buf) 1291 { 1292 struct v4l2_fh *fh = file->private_data; 1293 1294 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); 1295 } 1296 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); 1297 1298 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, 1299 struct v4l2_buffer *buf) 1300 { 1301 struct v4l2_fh *fh = file->private_data; 1302 1303 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); 1304 } 1305 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); 1306 1307 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, 1308 struct v4l2_buffer *buf) 1309 { 1310 struct v4l2_fh *fh = file->private_data; 1311 1312 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); 1313 } 1314 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); 1315 1316 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, 1317 struct v4l2_buffer *buf) 1318 { 1319 struct v4l2_fh *fh = file->private_data; 1320 1321 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); 1322 } 1323 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); 1324 1325 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, 1326 struct v4l2_exportbuffer *eb) 1327 { 1328 struct v4l2_fh *fh = file->private_data; 1329 1330 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); 1331 } 1332 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); 1333 1334 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, 1335 enum v4l2_buf_type type) 1336 { 1337 struct v4l2_fh *fh = file->private_data; 1338 1339 return v4l2_m2m_streamon(file, fh->m2m_ctx, type); 1340 } 1341 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); 1342 1343 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, 1344 enum v4l2_buf_type type) 1345 { 1346 struct v4l2_fh *fh = file->private_data; 1347 1348 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); 1349 } 1350 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); 1351 1352 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh, 1353 struct v4l2_encoder_cmd *ec) 1354 { 1355 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) 1356 return -EINVAL; 1357 1358 ec->flags = 0; 1359 return 0; 1360 } 1361 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd); 1362 1363 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh, 1364 struct v4l2_decoder_cmd *dc) 1365 { 1366 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) 1367 return -EINVAL; 1368 1369 dc->flags = 0; 1370 1371 if (dc->cmd == V4L2_DEC_CMD_STOP) { 1372 dc->stop.pts = 0; 1373 } else if (dc->cmd == V4L2_DEC_CMD_START) { 1374 dc->start.speed = 0; 1375 dc->start.format = V4L2_DEC_START_FMT_NONE; 1376 } 1377 return 0; 1378 } 1379 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd); 1380 1381 /* 1382 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START 1383 * Should be called from the encoder driver encoder_cmd() callback 1384 */ 1385 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 1386 struct v4l2_encoder_cmd *ec) 1387 { 1388 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START) 1389 return -EINVAL; 1390 1391 if (ec->cmd == V4L2_ENC_CMD_STOP) 1392 return v4l2_update_last_buf_state(m2m_ctx); 1393 1394 if (m2m_ctx->is_draining) 1395 return -EBUSY; 1396 1397 if (m2m_ctx->has_stopped) 1398 m2m_ctx->has_stopped = false; 1399 1400 return 0; 1401 } 1402 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd); 1403 1404 /* 1405 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START 1406 * Should be called from the decoder driver decoder_cmd() callback 1407 */ 1408 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 1409 struct v4l2_decoder_cmd *dc) 1410 { 1411 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START) 1412 return -EINVAL; 1413 1414 if (dc->cmd == V4L2_DEC_CMD_STOP) 1415 return v4l2_update_last_buf_state(m2m_ctx); 1416 1417 if (m2m_ctx->is_draining) 1418 return -EBUSY; 1419 1420 if (m2m_ctx->has_stopped) 1421 m2m_ctx->has_stopped = false; 1422 1423 return 0; 1424 } 1425 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd); 1426 1427 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv, 1428 struct v4l2_encoder_cmd *ec) 1429 { 1430 struct v4l2_fh *fh = file->private_data; 1431 1432 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec); 1433 } 1434 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd); 1435 1436 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv, 1437 struct v4l2_decoder_cmd *dc) 1438 { 1439 struct v4l2_fh *fh = file->private_data; 1440 1441 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc); 1442 } 1443 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd); 1444 1445 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh, 1446 struct v4l2_decoder_cmd *dc) 1447 { 1448 if (dc->cmd != V4L2_DEC_CMD_FLUSH) 1449 return -EINVAL; 1450 1451 dc->flags = 0; 1452 1453 return 0; 1454 } 1455 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd); 1456 1457 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv, 1458 struct v4l2_decoder_cmd *dc) 1459 { 1460 struct v4l2_fh *fh = file->private_data; 1461 struct vb2_v4l2_buffer *out_vb, *cap_vb; 1462 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev; 1463 unsigned long flags; 1464 int ret; 1465 1466 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc); 1467 if (ret < 0) 1468 return ret; 1469 1470 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 1471 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx); 1472 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx); 1473 1474 /* 1475 * If there is an out buffer pending, then clear any HOLD flag. 1476 * 1477 * By clearing this flag we ensure that when this output 1478 * buffer is processed any held capture buffer will be released. 1479 */ 1480 if (out_vb) { 1481 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF; 1482 } else if (cap_vb && cap_vb->is_held) { 1483 /* 1484 * If there were no output buffers, but there is a 1485 * capture buffer that is held, then release that 1486 * buffer. 1487 */ 1488 cap_vb->is_held = false; 1489 v4l2_m2m_dst_buf_remove(fh->m2m_ctx); 1490 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE); 1491 } 1492 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 1493 1494 return 0; 1495 } 1496 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd); 1497 1498 /* 1499 * v4l2_file_operations helpers. It is assumed here same lock is used 1500 * for the output and the capture buffer queue. 1501 */ 1502 1503 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) 1504 { 1505 struct v4l2_fh *fh = file->private_data; 1506 1507 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); 1508 } 1509 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); 1510 1511 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) 1512 { 1513 struct v4l2_fh *fh = file->private_data; 1514 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; 1515 __poll_t ret; 1516 1517 if (m2m_ctx->q_lock) 1518 mutex_lock(m2m_ctx->q_lock); 1519 1520 ret = v4l2_m2m_poll(file, m2m_ctx, wait); 1521 1522 if (m2m_ctx->q_lock) 1523 mutex_unlock(m2m_ctx->q_lock); 1524 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll); 1528 1529