1 /*
2  * Memory-to-memory device framework for Video for Linux 2 and videobuf.
3  *
4  * Helper functions for devices that use videobuf buffers for both their
5  * source and destination.
6  *
7  * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
8  * Pawel Osciak, <pawel@osciak.com>
9  * Marek Szyprowski, <m.szyprowski@samsung.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  */
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 
20 #include <media/media-device.h>
21 #include <media/videobuf2-v4l2.h>
22 #include <media/v4l2-mem2mem.h>
23 #include <media/v4l2-dev.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-fh.h>
26 #include <media/v4l2-event.h>
27 
28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
30 MODULE_LICENSE("GPL");
31 
32 static bool debug;
33 module_param(debug, bool, 0644);
34 
35 #define dprintk(fmt, arg...)						\
36 	do {								\
37 		if (debug)						\
38 			printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
39 	} while (0)
40 
41 
42 /* Instance is already queued on the job_queue */
43 #define TRANS_QUEUED		(1 << 0)
44 /* Instance is currently running in hardware */
45 #define TRANS_RUNNING		(1 << 1)
46 /* Instance is currently aborting */
47 #define TRANS_ABORT		(1 << 2)
48 
49 
50 /* Offset base for buffers on the destination queue - used to distinguish
51  * between source and destination buffers when mmapping - they receive the same
52  * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE	(1 << 30)
54 
55 enum v4l2_m2m_entity_type {
56 	MEM2MEM_ENT_TYPE_SOURCE,
57 	MEM2MEM_ENT_TYPE_SINK,
58 	MEM2MEM_ENT_TYPE_PROC
59 };
60 
61 static const char * const m2m_entity_name[] = {
62 	"source",
63 	"sink",
64 	"proc"
65 };
66 
67 /**
68  * struct v4l2_m2m_dev - per-device context
69  * @source:		&struct media_entity pointer with the source entity
70  *			Used only when the M2M device is registered via
71  *			v4l2_m2m_unregister_media_controller().
72  * @source_pad:		&struct media_pad with the source pad.
73  *			Used only when the M2M device is registered via
74  *			v4l2_m2m_unregister_media_controller().
75  * @sink:		&struct media_entity pointer with the sink entity
76  *			Used only when the M2M device is registered via
77  *			v4l2_m2m_unregister_media_controller().
78  * @sink_pad:		&struct media_pad with the sink pad.
79  *			Used only when the M2M device is registered via
80  *			v4l2_m2m_unregister_media_controller().
81  * @proc:		&struct media_entity pointer with the M2M device itself.
82  * @proc_pads:		&struct media_pad with the @proc pads.
83  *			Used only when the M2M device is registered via
84  *			v4l2_m2m_unregister_media_controller().
85  * @intf_devnode:	&struct media_intf devnode pointer with the interface
86  *			with controls the M2M device.
87  * @curr_ctx:		currently running instance
88  * @job_queue:		instances queued to run
89  * @job_spinlock:	protects job_queue
90  * @job_work:		worker to run queued jobs.
91  * @m2m_ops:		driver callbacks
92  */
93 struct v4l2_m2m_dev {
94 	struct v4l2_m2m_ctx	*curr_ctx;
95 #ifdef CONFIG_MEDIA_CONTROLLER
96 	struct media_entity	*source;
97 	struct media_pad	source_pad;
98 	struct media_entity	sink;
99 	struct media_pad	sink_pad;
100 	struct media_entity	proc;
101 	struct media_pad	proc_pads[2];
102 	struct media_intf_devnode *intf_devnode;
103 #endif
104 
105 	struct list_head	job_queue;
106 	spinlock_t		job_spinlock;
107 	struct work_struct	job_work;
108 
109 	const struct v4l2_m2m_ops *m2m_ops;
110 };
111 
112 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
113 						enum v4l2_buf_type type)
114 {
115 	if (V4L2_TYPE_IS_OUTPUT(type))
116 		return &m2m_ctx->out_q_ctx;
117 	else
118 		return &m2m_ctx->cap_q_ctx;
119 }
120 
121 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
122 				       enum v4l2_buf_type type)
123 {
124 	struct v4l2_m2m_queue_ctx *q_ctx;
125 
126 	q_ctx = get_queue_ctx(m2m_ctx, type);
127 	if (!q_ctx)
128 		return NULL;
129 
130 	return &q_ctx->q;
131 }
132 EXPORT_SYMBOL(v4l2_m2m_get_vq);
133 
134 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
135 {
136 	struct v4l2_m2m_buffer *b;
137 	unsigned long flags;
138 
139 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
140 
141 	if (list_empty(&q_ctx->rdy_queue)) {
142 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
143 		return NULL;
144 	}
145 
146 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
147 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
148 	return &b->vb;
149 }
150 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
151 
152 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
153 {
154 	struct v4l2_m2m_buffer *b;
155 	unsigned long flags;
156 
157 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
158 
159 	if (list_empty(&q_ctx->rdy_queue)) {
160 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
161 		return NULL;
162 	}
163 
164 	b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
165 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
166 	return &b->vb;
167 }
168 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
169 
170 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
171 {
172 	struct v4l2_m2m_buffer *b;
173 	unsigned long flags;
174 
175 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
176 	if (list_empty(&q_ctx->rdy_queue)) {
177 		spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
178 		return NULL;
179 	}
180 	b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
181 	list_del(&b->list);
182 	q_ctx->num_rdy--;
183 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
184 
185 	return &b->vb;
186 }
187 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
188 
189 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
190 				struct vb2_v4l2_buffer *vbuf)
191 {
192 	struct v4l2_m2m_buffer *b;
193 	unsigned long flags;
194 
195 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
196 	b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
197 	list_del(&b->list);
198 	q_ctx->num_rdy--;
199 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
200 }
201 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
202 
203 struct vb2_v4l2_buffer *
204 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
205 
206 {
207 	struct v4l2_m2m_buffer *b, *tmp;
208 	struct vb2_v4l2_buffer *ret = NULL;
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
212 	list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
213 		if (b->vb.vb2_buf.index == idx) {
214 			list_del(&b->list);
215 			q_ctx->num_rdy--;
216 			ret = &b->vb;
217 			break;
218 		}
219 	}
220 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
221 
222 	return ret;
223 }
224 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
225 
226 /*
227  * Scheduling handlers
228  */
229 
230 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
231 {
232 	unsigned long flags;
233 	void *ret = NULL;
234 
235 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
236 	if (m2m_dev->curr_ctx)
237 		ret = m2m_dev->curr_ctx->priv;
238 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
239 
240 	return ret;
241 }
242 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
243 
244 /**
245  * v4l2_m2m_try_run() - select next job to perform and run it if possible
246  * @m2m_dev: per-device context
247  *
248  * Get next transaction (if present) from the waiting jobs list and run it.
249  *
250  * Note that this function can run on a given v4l2_m2m_ctx context,
251  * but call .device_run for another context.
252  */
253 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
254 {
255 	unsigned long flags;
256 
257 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
258 	if (NULL != m2m_dev->curr_ctx) {
259 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
260 		dprintk("Another instance is running, won't run now\n");
261 		return;
262 	}
263 
264 	if (list_empty(&m2m_dev->job_queue)) {
265 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
266 		dprintk("No job pending\n");
267 		return;
268 	}
269 
270 	m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
271 				   struct v4l2_m2m_ctx, queue);
272 	m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
273 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 
275 	dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
276 	m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
277 }
278 
279 /*
280  * __v4l2_m2m_try_queue() - queue a job
281  * @m2m_dev: m2m device
282  * @m2m_ctx: m2m context
283  *
284  * Check if this context is ready to queue a job.
285  *
286  * This function can run in interrupt context.
287  */
288 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
289 				 struct v4l2_m2m_ctx *m2m_ctx)
290 {
291 	unsigned long flags_job, flags_out, flags_cap;
292 
293 	dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
294 
295 	if (!m2m_ctx->out_q_ctx.q.streaming
296 	    || !m2m_ctx->cap_q_ctx.q.streaming) {
297 		dprintk("Streaming needs to be on for both queues\n");
298 		return;
299 	}
300 
301 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
302 
303 	/* If the context is aborted then don't schedule it */
304 	if (m2m_ctx->job_flags & TRANS_ABORT) {
305 		dprintk("Aborted context\n");
306 		goto job_unlock;
307 	}
308 
309 	if (m2m_ctx->job_flags & TRANS_QUEUED) {
310 		dprintk("On job queue already\n");
311 		goto job_unlock;
312 	}
313 
314 	spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
315 	if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue)
316 	    && !m2m_ctx->out_q_ctx.buffered) {
317 		dprintk("No input buffers available\n");
318 		goto out_unlock;
319 	}
320 	spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
321 	if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue)
322 	    && !m2m_ctx->cap_q_ctx.buffered) {
323 		dprintk("No output buffers available\n");
324 		goto cap_unlock;
325 	}
326 	spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
327 	spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
328 
329 	if (m2m_dev->m2m_ops->job_ready
330 		&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
331 		dprintk("Driver not ready\n");
332 		goto job_unlock;
333 	}
334 
335 	list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
336 	m2m_ctx->job_flags |= TRANS_QUEUED;
337 
338 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
339 	return;
340 
341 cap_unlock:
342 	spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap);
343 out_unlock:
344 	spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out);
345 job_unlock:
346 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
347 }
348 
349 /**
350  * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
351  * @m2m_ctx: m2m context
352  *
353  * Check if this context is ready to queue a job. If suitable,
354  * run the next queued job on the mem2mem device.
355  *
356  * This function shouldn't run in interrupt context.
357  *
358  * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
359  * and then run another job for another context.
360  */
361 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
362 {
363 	struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
364 
365 	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
366 	v4l2_m2m_try_run(m2m_dev);
367 }
368 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
369 
370 /**
371  * v4l2_m2m_device_run_work() - run pending jobs for the context
372  * @work: Work structure used for scheduling the execution of this function.
373  */
374 static void v4l2_m2m_device_run_work(struct work_struct *work)
375 {
376 	struct v4l2_m2m_dev *m2m_dev =
377 		container_of(work, struct v4l2_m2m_dev, job_work);
378 
379 	v4l2_m2m_try_run(m2m_dev);
380 }
381 
382 /**
383  * v4l2_m2m_cancel_job() - cancel pending jobs for the context
384  * @m2m_ctx: m2m context with jobs to be canceled
385  *
386  * In case of streamoff or release called on any context,
387  * 1] If the context is currently running, then abort job will be called
388  * 2] If the context is queued, then the context will be removed from
389  *    the job_queue
390  */
391 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
392 {
393 	struct v4l2_m2m_dev *m2m_dev;
394 	unsigned long flags;
395 
396 	m2m_dev = m2m_ctx->m2m_dev;
397 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
398 
399 	m2m_ctx->job_flags |= TRANS_ABORT;
400 	if (m2m_ctx->job_flags & TRANS_RUNNING) {
401 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
402 		if (m2m_dev->m2m_ops->job_abort)
403 			m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
404 		dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
405 		wait_event(m2m_ctx->finished,
406 				!(m2m_ctx->job_flags & TRANS_RUNNING));
407 	} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
408 		list_del(&m2m_ctx->queue);
409 		m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
410 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
411 		dprintk("m2m_ctx: %p had been on queue and was removed\n",
412 			m2m_ctx);
413 	} else {
414 		/* Do nothing, was not on queue/running */
415 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
416 	}
417 }
418 
419 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
420 			 struct v4l2_m2m_ctx *m2m_ctx)
421 {
422 	unsigned long flags;
423 
424 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
425 	if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
426 		spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
427 		dprintk("Called by an instance not currently running\n");
428 		return;
429 	}
430 
431 	list_del(&m2m_dev->curr_ctx->queue);
432 	m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
433 	wake_up(&m2m_dev->curr_ctx->finished);
434 	m2m_dev->curr_ctx = NULL;
435 
436 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
437 
438 	/* This instance might have more buffers ready, but since we do not
439 	 * allow more than one job on the job_queue per instance, each has
440 	 * to be scheduled separately after the previous one finishes. */
441 	__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
442 
443 	/* We might be running in atomic context,
444 	 * but the job must be run in non-atomic context.
445 	 */
446 	schedule_work(&m2m_dev->job_work);
447 }
448 EXPORT_SYMBOL(v4l2_m2m_job_finish);
449 
450 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
451 		     struct v4l2_requestbuffers *reqbufs)
452 {
453 	struct vb2_queue *vq;
454 	int ret;
455 
456 	vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
457 	ret = vb2_reqbufs(vq, reqbufs);
458 	/* If count == 0, then the owner has released all buffers and he
459 	   is no longer owner of the queue. Otherwise we have an owner. */
460 	if (ret == 0)
461 		vq->owner = reqbufs->count ? file->private_data : NULL;
462 
463 	return ret;
464 }
465 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
466 
467 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
468 		      struct v4l2_buffer *buf)
469 {
470 	struct vb2_queue *vq;
471 	int ret = 0;
472 	unsigned int i;
473 
474 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
475 	ret = vb2_querybuf(vq, buf);
476 
477 	/* Adjust MMAP memory offsets for the CAPTURE queue */
478 	if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) {
479 		if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
480 			for (i = 0; i < buf->length; ++i)
481 				buf->m.planes[i].m.mem_offset
482 					+= DST_QUEUE_OFF_BASE;
483 		} else {
484 			buf->m.offset += DST_QUEUE_OFF_BASE;
485 		}
486 	}
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
491 
492 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
493 		  struct v4l2_buffer *buf)
494 {
495 	struct video_device *vdev = video_devdata(file);
496 	struct vb2_queue *vq;
497 	int ret;
498 
499 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
500 	if (!V4L2_TYPE_IS_OUTPUT(vq->type) &&
501 	    (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
502 		dprintk("%s: requests cannot be used with capture buffers\n",
503 			__func__);
504 		return -EPERM;
505 	}
506 	ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
507 	if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
508 		v4l2_m2m_try_schedule(m2m_ctx);
509 
510 	return ret;
511 }
512 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
513 
514 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
515 		   struct v4l2_buffer *buf)
516 {
517 	struct vb2_queue *vq;
518 
519 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
520 	return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
521 }
522 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
523 
524 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
525 			 struct v4l2_buffer *buf)
526 {
527 	struct video_device *vdev = video_devdata(file);
528 	struct vb2_queue *vq;
529 
530 	vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
531 	return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
532 }
533 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
534 
535 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
536 			 struct v4l2_create_buffers *create)
537 {
538 	struct vb2_queue *vq;
539 
540 	vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
541 	return vb2_create_bufs(vq, create);
542 }
543 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
544 
545 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
546 		  struct v4l2_exportbuffer *eb)
547 {
548 	struct vb2_queue *vq;
549 
550 	vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
551 	return vb2_expbuf(vq, eb);
552 }
553 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
554 
555 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
556 		      enum v4l2_buf_type type)
557 {
558 	struct vb2_queue *vq;
559 	int ret;
560 
561 	vq = v4l2_m2m_get_vq(m2m_ctx, type);
562 	ret = vb2_streamon(vq, type);
563 	if (!ret)
564 		v4l2_m2m_try_schedule(m2m_ctx);
565 
566 	return ret;
567 }
568 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
569 
570 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
571 		       enum v4l2_buf_type type)
572 {
573 	struct v4l2_m2m_dev *m2m_dev;
574 	struct v4l2_m2m_queue_ctx *q_ctx;
575 	unsigned long flags_job, flags;
576 	int ret;
577 
578 	/* wait until the current context is dequeued from job_queue */
579 	v4l2_m2m_cancel_job(m2m_ctx);
580 
581 	q_ctx = get_queue_ctx(m2m_ctx, type);
582 	ret = vb2_streamoff(&q_ctx->q, type);
583 	if (ret)
584 		return ret;
585 
586 	m2m_dev = m2m_ctx->m2m_dev;
587 	spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
588 	/* We should not be scheduled anymore, since we're dropping a queue. */
589 	if (m2m_ctx->job_flags & TRANS_QUEUED)
590 		list_del(&m2m_ctx->queue);
591 	m2m_ctx->job_flags = 0;
592 
593 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
594 	/* Drop queue, since streamoff returns device to the same state as after
595 	 * calling reqbufs. */
596 	INIT_LIST_HEAD(&q_ctx->rdy_queue);
597 	q_ctx->num_rdy = 0;
598 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
599 
600 	if (m2m_dev->curr_ctx == m2m_ctx) {
601 		m2m_dev->curr_ctx = NULL;
602 		wake_up(&m2m_ctx->finished);
603 	}
604 	spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
605 
606 	return 0;
607 }
608 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
609 
610 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
611 			   struct poll_table_struct *wait)
612 {
613 	struct video_device *vfd = video_devdata(file);
614 	__poll_t req_events = poll_requested_events(wait);
615 	struct vb2_queue *src_q, *dst_q;
616 	struct vb2_buffer *src_vb = NULL, *dst_vb = NULL;
617 	__poll_t rc = 0;
618 	unsigned long flags;
619 
620 	src_q = v4l2_m2m_get_src_vq(m2m_ctx);
621 	dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
622 
623 	poll_wait(file, &src_q->done_wq, wait);
624 	poll_wait(file, &dst_q->done_wq, wait);
625 
626 	if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
627 		struct v4l2_fh *fh = file->private_data;
628 
629 		poll_wait(file, &fh->wait, wait);
630 		if (v4l2_event_pending(fh))
631 			rc = EPOLLPRI;
632 		if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM)))
633 			return rc;
634 	}
635 
636 	/*
637 	 * There has to be at least one buffer queued on each queued_list, which
638 	 * means either in driver already or waiting for driver to claim it
639 	 * and start processing.
640 	 */
641 	if ((!src_q->streaming || src_q->error ||
642 	     list_empty(&src_q->queued_list)) &&
643 	    (!dst_q->streaming || dst_q->error ||
644 	     list_empty(&dst_q->queued_list))) {
645 		rc |= EPOLLERR;
646 		goto end;
647 	}
648 
649 	spin_lock_irqsave(&dst_q->done_lock, flags);
650 	if (list_empty(&dst_q->done_list)) {
651 		/*
652 		 * If the last buffer was dequeued from the capture queue,
653 		 * return immediately. DQBUF will return -EPIPE.
654 		 */
655 		if (dst_q->last_buffer_dequeued) {
656 			spin_unlock_irqrestore(&dst_q->done_lock, flags);
657 			return rc | EPOLLIN | EPOLLRDNORM;
658 		}
659 	}
660 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
661 
662 	spin_lock_irqsave(&src_q->done_lock, flags);
663 	if (!list_empty(&src_q->done_list))
664 		src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer,
665 						done_entry);
666 	if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE
667 			|| src_vb->state == VB2_BUF_STATE_ERROR))
668 		rc |= EPOLLOUT | EPOLLWRNORM;
669 	spin_unlock_irqrestore(&src_q->done_lock, flags);
670 
671 	spin_lock_irqsave(&dst_q->done_lock, flags);
672 	if (!list_empty(&dst_q->done_list))
673 		dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer,
674 						done_entry);
675 	if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE
676 			|| dst_vb->state == VB2_BUF_STATE_ERROR))
677 		rc |= EPOLLIN | EPOLLRDNORM;
678 	spin_unlock_irqrestore(&dst_q->done_lock, flags);
679 
680 end:
681 	return rc;
682 }
683 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
684 
685 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
686 			 struct vm_area_struct *vma)
687 {
688 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
689 	struct vb2_queue *vq;
690 
691 	if (offset < DST_QUEUE_OFF_BASE) {
692 		vq = v4l2_m2m_get_src_vq(m2m_ctx);
693 	} else {
694 		vq = v4l2_m2m_get_dst_vq(m2m_ctx);
695 		vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
696 	}
697 
698 	return vb2_mmap(vq, vma);
699 }
700 EXPORT_SYMBOL(v4l2_m2m_mmap);
701 
702 #if defined(CONFIG_MEDIA_CONTROLLER)
703 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
704 {
705 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
706 	media_devnode_remove(m2m_dev->intf_devnode);
707 
708 	media_entity_remove_links(m2m_dev->source);
709 	media_entity_remove_links(&m2m_dev->sink);
710 	media_entity_remove_links(&m2m_dev->proc);
711 	media_device_unregister_entity(m2m_dev->source);
712 	media_device_unregister_entity(&m2m_dev->sink);
713 	media_device_unregister_entity(&m2m_dev->proc);
714 	kfree(m2m_dev->source->name);
715 	kfree(m2m_dev->sink.name);
716 	kfree(m2m_dev->proc.name);
717 }
718 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
719 
720 static int v4l2_m2m_register_entity(struct media_device *mdev,
721 	struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
722 	struct video_device *vdev, int function)
723 {
724 	struct media_entity *entity;
725 	struct media_pad *pads;
726 	char *name;
727 	unsigned int len;
728 	int num_pads;
729 	int ret;
730 
731 	switch (type) {
732 	case MEM2MEM_ENT_TYPE_SOURCE:
733 		entity = m2m_dev->source;
734 		pads = &m2m_dev->source_pad;
735 		pads[0].flags = MEDIA_PAD_FL_SOURCE;
736 		num_pads = 1;
737 		break;
738 	case MEM2MEM_ENT_TYPE_SINK:
739 		entity = &m2m_dev->sink;
740 		pads = &m2m_dev->sink_pad;
741 		pads[0].flags = MEDIA_PAD_FL_SINK;
742 		num_pads = 1;
743 		break;
744 	case MEM2MEM_ENT_TYPE_PROC:
745 		entity = &m2m_dev->proc;
746 		pads = m2m_dev->proc_pads;
747 		pads[0].flags = MEDIA_PAD_FL_SINK;
748 		pads[1].flags = MEDIA_PAD_FL_SOURCE;
749 		num_pads = 2;
750 		break;
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
756 	if (type != MEM2MEM_ENT_TYPE_PROC) {
757 		entity->info.dev.major = VIDEO_MAJOR;
758 		entity->info.dev.minor = vdev->minor;
759 	}
760 	len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
761 	name = kmalloc(len, GFP_KERNEL);
762 	if (!name)
763 		return -ENOMEM;
764 	snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
765 	entity->name = name;
766 	entity->function = function;
767 
768 	ret = media_entity_pads_init(entity, num_pads, pads);
769 	if (ret)
770 		return ret;
771 	ret = media_device_register_entity(mdev, entity);
772 	if (ret)
773 		return ret;
774 
775 	return 0;
776 }
777 
778 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
779 		struct video_device *vdev, int function)
780 {
781 	struct media_device *mdev = vdev->v4l2_dev->mdev;
782 	struct media_link *link;
783 	int ret;
784 
785 	if (!mdev)
786 		return 0;
787 
788 	/* A memory-to-memory device consists in two
789 	 * DMA engine and one video processing entities.
790 	 * The DMA engine entities are linked to a V4L interface
791 	 */
792 
793 	/* Create the three entities with their pads */
794 	m2m_dev->source = &vdev->entity;
795 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
796 			MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
797 	if (ret)
798 		return ret;
799 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
800 			MEM2MEM_ENT_TYPE_PROC, vdev, function);
801 	if (ret)
802 		goto err_rel_entity0;
803 	ret = v4l2_m2m_register_entity(mdev, m2m_dev,
804 			MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
805 	if (ret)
806 		goto err_rel_entity1;
807 
808 	/* Connect the three entities */
809 	ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1,
810 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
811 	if (ret)
812 		goto err_rel_entity2;
813 
814 	ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0,
815 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
816 	if (ret)
817 		goto err_rm_links0;
818 
819 	/* Create video interface */
820 	m2m_dev->intf_devnode = media_devnode_create(mdev,
821 			MEDIA_INTF_T_V4L_VIDEO, 0,
822 			VIDEO_MAJOR, vdev->minor);
823 	if (!m2m_dev->intf_devnode) {
824 		ret = -ENOMEM;
825 		goto err_rm_links1;
826 	}
827 
828 	/* Connect the two DMA engines to the interface */
829 	link = media_create_intf_link(m2m_dev->source,
830 			&m2m_dev->intf_devnode->intf,
831 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
832 	if (!link) {
833 		ret = -ENOMEM;
834 		goto err_rm_devnode;
835 	}
836 
837 	link = media_create_intf_link(&m2m_dev->sink,
838 			&m2m_dev->intf_devnode->intf,
839 			MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
840 	if (!link) {
841 		ret = -ENOMEM;
842 		goto err_rm_intf_link;
843 	}
844 	return 0;
845 
846 err_rm_intf_link:
847 	media_remove_intf_links(&m2m_dev->intf_devnode->intf);
848 err_rm_devnode:
849 	media_devnode_remove(m2m_dev->intf_devnode);
850 err_rm_links1:
851 	media_entity_remove_links(&m2m_dev->sink);
852 err_rm_links0:
853 	media_entity_remove_links(&m2m_dev->proc);
854 	media_entity_remove_links(m2m_dev->source);
855 err_rel_entity2:
856 	media_device_unregister_entity(&m2m_dev->proc);
857 	kfree(m2m_dev->proc.name);
858 err_rel_entity1:
859 	media_device_unregister_entity(&m2m_dev->sink);
860 	kfree(m2m_dev->sink.name);
861 err_rel_entity0:
862 	media_device_unregister_entity(m2m_dev->source);
863 	kfree(m2m_dev->source->name);
864 	return ret;
865 	return 0;
866 }
867 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
868 #endif
869 
870 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
871 {
872 	struct v4l2_m2m_dev *m2m_dev;
873 
874 	if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
875 		return ERR_PTR(-EINVAL);
876 
877 	m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
878 	if (!m2m_dev)
879 		return ERR_PTR(-ENOMEM);
880 
881 	m2m_dev->curr_ctx = NULL;
882 	m2m_dev->m2m_ops = m2m_ops;
883 	INIT_LIST_HEAD(&m2m_dev->job_queue);
884 	spin_lock_init(&m2m_dev->job_spinlock);
885 	INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
886 
887 	return m2m_dev;
888 }
889 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
890 
891 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
892 {
893 	kfree(m2m_dev);
894 }
895 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
896 
897 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
898 		void *drv_priv,
899 		int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
900 {
901 	struct v4l2_m2m_ctx *m2m_ctx;
902 	struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
903 	int ret;
904 
905 	m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
906 	if (!m2m_ctx)
907 		return ERR_PTR(-ENOMEM);
908 
909 	m2m_ctx->priv = drv_priv;
910 	m2m_ctx->m2m_dev = m2m_dev;
911 	init_waitqueue_head(&m2m_ctx->finished);
912 
913 	out_q_ctx = &m2m_ctx->out_q_ctx;
914 	cap_q_ctx = &m2m_ctx->cap_q_ctx;
915 
916 	INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
917 	INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
918 	spin_lock_init(&out_q_ctx->rdy_spinlock);
919 	spin_lock_init(&cap_q_ctx->rdy_spinlock);
920 
921 	INIT_LIST_HEAD(&m2m_ctx->queue);
922 
923 	ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
924 
925 	if (ret)
926 		goto err;
927 	/*
928 	 * Both queues should use same the mutex to lock the m2m context.
929 	 * This lock is used in some v4l2_m2m_* helpers.
930 	 */
931 	if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
932 		ret = -EINVAL;
933 		goto err;
934 	}
935 	m2m_ctx->q_lock = out_q_ctx->q.lock;
936 
937 	return m2m_ctx;
938 err:
939 	kfree(m2m_ctx);
940 	return ERR_PTR(ret);
941 }
942 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
943 
944 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
945 {
946 	/* wait until the current context is dequeued from job_queue */
947 	v4l2_m2m_cancel_job(m2m_ctx);
948 
949 	vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
950 	vb2_queue_release(&m2m_ctx->out_q_ctx.q);
951 
952 	kfree(m2m_ctx);
953 }
954 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
955 
956 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
957 		struct vb2_v4l2_buffer *vbuf)
958 {
959 	struct v4l2_m2m_buffer *b = container_of(vbuf,
960 				struct v4l2_m2m_buffer, vb);
961 	struct v4l2_m2m_queue_ctx *q_ctx;
962 	unsigned long flags;
963 
964 	q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
965 	if (!q_ctx)
966 		return;
967 
968 	spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
969 	list_add_tail(&b->list, &q_ctx->rdy_queue);
970 	q_ctx->num_rdy++;
971 	spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
972 }
973 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
974 
975 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
976 				struct vb2_v4l2_buffer *cap_vb,
977 				bool copy_frame_flags)
978 {
979 	u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
980 
981 	if (copy_frame_flags)
982 		mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
983 			V4L2_BUF_FLAG_BFRAME;
984 
985 	cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
986 
987 	if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
988 		cap_vb->timecode = out_vb->timecode;
989 	cap_vb->field = out_vb->field;
990 	cap_vb->flags &= ~mask;
991 	cap_vb->flags |= out_vb->flags & mask;
992 	cap_vb->vb2_buf.copied_timestamp = 1;
993 }
994 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
995 
996 void v4l2_m2m_request_queue(struct media_request *req)
997 {
998 	struct media_request_object *obj, *obj_safe;
999 	struct v4l2_m2m_ctx *m2m_ctx = NULL;
1000 
1001 	/*
1002 	 * Queue all objects. Note that buffer objects are at the end of the
1003 	 * objects list, after all other object types. Once buffer objects
1004 	 * are queued, the driver might delete them immediately (if the driver
1005 	 * processes the buffer at once), so we have to use
1006 	 * list_for_each_entry_safe() to handle the case where the object we
1007 	 * queue is deleted.
1008 	 */
1009 	list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1010 		struct v4l2_m2m_ctx *m2m_ctx_obj;
1011 		struct vb2_buffer *vb;
1012 
1013 		if (!obj->ops->queue)
1014 			continue;
1015 
1016 		if (vb2_request_object_is_buffer(obj)) {
1017 			/* Sanity checks */
1018 			vb = container_of(obj, struct vb2_buffer, req_obj);
1019 			WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1020 			m2m_ctx_obj = container_of(vb->vb2_queue,
1021 						   struct v4l2_m2m_ctx,
1022 						   out_q_ctx.q);
1023 			WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1024 			m2m_ctx = m2m_ctx_obj;
1025 		}
1026 
1027 		/*
1028 		 * The buffer we queue here can in theory be immediately
1029 		 * unbound, hence the use of list_for_each_entry_safe()
1030 		 * above and why we call the queue op last.
1031 		 */
1032 		obj->ops->queue(obj);
1033 	}
1034 
1035 	WARN_ON(!m2m_ctx);
1036 
1037 	if (m2m_ctx)
1038 		v4l2_m2m_try_schedule(m2m_ctx);
1039 }
1040 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1041 
1042 /* Videobuf2 ioctl helpers */
1043 
1044 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1045 				struct v4l2_requestbuffers *rb)
1046 {
1047 	struct v4l2_fh *fh = file->private_data;
1048 
1049 	return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1050 }
1051 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1052 
1053 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1054 				struct v4l2_create_buffers *create)
1055 {
1056 	struct v4l2_fh *fh = file->private_data;
1057 
1058 	return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1059 }
1060 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1061 
1062 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1063 				struct v4l2_buffer *buf)
1064 {
1065 	struct v4l2_fh *fh = file->private_data;
1066 
1067 	return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1068 }
1069 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1070 
1071 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1072 				struct v4l2_buffer *buf)
1073 {
1074 	struct v4l2_fh *fh = file->private_data;
1075 
1076 	return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1077 }
1078 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1079 
1080 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1081 				struct v4l2_buffer *buf)
1082 {
1083 	struct v4l2_fh *fh = file->private_data;
1084 
1085 	return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1086 }
1087 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1088 
1089 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1090 			       struct v4l2_buffer *buf)
1091 {
1092 	struct v4l2_fh *fh = file->private_data;
1093 
1094 	return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1095 }
1096 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1097 
1098 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1099 				struct v4l2_exportbuffer *eb)
1100 {
1101 	struct v4l2_fh *fh = file->private_data;
1102 
1103 	return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1104 }
1105 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1106 
1107 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1108 				enum v4l2_buf_type type)
1109 {
1110 	struct v4l2_fh *fh = file->private_data;
1111 
1112 	return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1113 }
1114 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1115 
1116 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1117 				enum v4l2_buf_type type)
1118 {
1119 	struct v4l2_fh *fh = file->private_data;
1120 
1121 	return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1122 }
1123 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1124 
1125 /*
1126  * v4l2_file_operations helpers. It is assumed here same lock is used
1127  * for the output and the capture buffer queue.
1128  */
1129 
1130 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1131 {
1132 	struct v4l2_fh *fh = file->private_data;
1133 
1134 	return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1135 }
1136 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1137 
1138 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1139 {
1140 	struct v4l2_fh *fh = file->private_data;
1141 	struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1142 	__poll_t ret;
1143 
1144 	if (m2m_ctx->q_lock)
1145 		mutex_lock(m2m_ctx->q_lock);
1146 
1147 	ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1148 
1149 	if (m2m_ctx->q_lock)
1150 		mutex_unlock(m2m_ctx->q_lock);
1151 
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1155 
1156