1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * V4L2 fwnode binding parsing library 4 * 5 * The origins of the V4L2 fwnode library are in V4L2 OF library that 6 * formerly was located in v4l2-of.c. 7 * 8 * Copyright (c) 2016 Intel Corporation. 9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com> 10 * 11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd. 12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com> 13 * 14 * Copyright (C) 2012 Renesas Electronics Corp. 15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 16 */ 17 #include <linux/acpi.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 27 #include <media/v4l2-async.h> 28 #include <media/v4l2-fwnode.h> 29 #include <media/v4l2-subdev.h> 30 31 #include "v4l2-subdev-priv.h" 32 33 static const struct v4l2_fwnode_bus_conv { 34 enum v4l2_fwnode_bus_type fwnode_bus_type; 35 enum v4l2_mbus_type mbus_type; 36 const char *name; 37 } buses[] = { 38 { 39 V4L2_FWNODE_BUS_TYPE_GUESS, 40 V4L2_MBUS_UNKNOWN, 41 "not specified", 42 }, { 43 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, 44 V4L2_MBUS_CSI2_CPHY, 45 "MIPI CSI-2 C-PHY", 46 }, { 47 V4L2_FWNODE_BUS_TYPE_CSI1, 48 V4L2_MBUS_CSI1, 49 "MIPI CSI-1", 50 }, { 51 V4L2_FWNODE_BUS_TYPE_CCP2, 52 V4L2_MBUS_CCP2, 53 "compact camera port 2", 54 }, { 55 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, 56 V4L2_MBUS_CSI2_DPHY, 57 "MIPI CSI-2 D-PHY", 58 }, { 59 V4L2_FWNODE_BUS_TYPE_PARALLEL, 60 V4L2_MBUS_PARALLEL, 61 "parallel", 62 }, { 63 V4L2_FWNODE_BUS_TYPE_BT656, 64 V4L2_MBUS_BT656, 65 "Bt.656", 66 }, { 67 V4L2_FWNODE_BUS_TYPE_DPI, 68 V4L2_MBUS_DPI, 69 "DPI", 70 } 71 }; 72 73 static const struct v4l2_fwnode_bus_conv * 74 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type) 75 { 76 unsigned int i; 77 78 for (i = 0; i < ARRAY_SIZE(buses); i++) 79 if (buses[i].fwnode_bus_type == type) 80 return &buses[i]; 81 82 return NULL; 83 } 84 85 static enum v4l2_mbus_type 86 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type) 87 { 88 const struct v4l2_fwnode_bus_conv *conv = 89 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 90 91 return conv ? conv->mbus_type : V4L2_MBUS_INVALID; 92 } 93 94 static const char * 95 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type) 96 { 97 const struct v4l2_fwnode_bus_conv *conv = 98 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 99 100 return conv ? conv->name : "not found"; 101 } 102 103 static const struct v4l2_fwnode_bus_conv * 104 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type) 105 { 106 unsigned int i; 107 108 for (i = 0; i < ARRAY_SIZE(buses); i++) 109 if (buses[i].mbus_type == type) 110 return &buses[i]; 111 112 return NULL; 113 } 114 115 static const char * 116 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type) 117 { 118 const struct v4l2_fwnode_bus_conv *conv = 119 get_v4l2_fwnode_bus_conv_by_mbus(type); 120 121 return conv ? conv->name : "not found"; 122 } 123 124 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, 125 struct v4l2_fwnode_endpoint *vep, 126 enum v4l2_mbus_type bus_type) 127 { 128 struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2; 129 bool have_clk_lane = false, have_data_lanes = false, 130 have_lane_polarities = false; 131 unsigned int flags = 0, lanes_used = 0; 132 u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES]; 133 u32 clock_lane = 0; 134 unsigned int num_data_lanes = 0; 135 bool use_default_lane_mapping = false; 136 unsigned int i; 137 u32 v; 138 int rval; 139 140 if (bus_type == V4L2_MBUS_CSI2_DPHY || 141 bus_type == V4L2_MBUS_CSI2_CPHY) { 142 use_default_lane_mapping = true; 143 144 num_data_lanes = min_t(u32, bus->num_data_lanes, 145 V4L2_MBUS_CSI2_MAX_DATA_LANES); 146 147 clock_lane = bus->clock_lane; 148 if (clock_lane) 149 use_default_lane_mapping = false; 150 151 for (i = 0; i < num_data_lanes; i++) { 152 array[i] = bus->data_lanes[i]; 153 if (array[i]) 154 use_default_lane_mapping = false; 155 } 156 157 if (use_default_lane_mapping) 158 pr_debug("no lane mapping given, using defaults\n"); 159 } 160 161 rval = fwnode_property_count_u32(fwnode, "data-lanes"); 162 if (rval > 0) { 163 num_data_lanes = 164 min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval); 165 166 fwnode_property_read_u32_array(fwnode, "data-lanes", array, 167 num_data_lanes); 168 169 have_data_lanes = true; 170 if (use_default_lane_mapping) { 171 pr_debug("data-lanes property exists; disabling default mapping\n"); 172 use_default_lane_mapping = false; 173 } 174 } 175 176 for (i = 0; i < num_data_lanes; i++) { 177 if (lanes_used & BIT(array[i])) { 178 if (have_data_lanes || !use_default_lane_mapping) 179 pr_warn("duplicated lane %u in data-lanes, using defaults\n", 180 array[i]); 181 use_default_lane_mapping = true; 182 } 183 lanes_used |= BIT(array[i]); 184 185 if (have_data_lanes) 186 pr_debug("lane %u position %u\n", i, array[i]); 187 } 188 189 rval = fwnode_property_count_u32(fwnode, "lane-polarities"); 190 if (rval > 0) { 191 if (rval != 1 + num_data_lanes /* clock+data */) { 192 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n", 193 1 + num_data_lanes, rval); 194 return -EINVAL; 195 } 196 197 have_lane_polarities = true; 198 } 199 200 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 201 clock_lane = v; 202 pr_debug("clock lane position %u\n", v); 203 have_clk_lane = true; 204 } 205 206 if (have_clk_lane && lanes_used & BIT(clock_lane) && 207 !use_default_lane_mapping) { 208 pr_warn("duplicated lane %u in clock-lanes, using defaults\n", 209 v); 210 use_default_lane_mapping = true; 211 } 212 213 if (fwnode_property_present(fwnode, "clock-noncontinuous")) { 214 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK; 215 pr_debug("non-continuous clock\n"); 216 } 217 218 if (bus_type == V4L2_MBUS_CSI2_DPHY || 219 bus_type == V4L2_MBUS_CSI2_CPHY || 220 lanes_used || have_clk_lane || flags) { 221 /* Only D-PHY has a clock lane. */ 222 unsigned int dfl_data_lane_index = 223 bus_type == V4L2_MBUS_CSI2_DPHY; 224 225 bus->flags = flags; 226 if (bus_type == V4L2_MBUS_UNKNOWN) 227 vep->bus_type = V4L2_MBUS_CSI2_DPHY; 228 bus->num_data_lanes = num_data_lanes; 229 230 if (use_default_lane_mapping) { 231 bus->clock_lane = 0; 232 for (i = 0; i < num_data_lanes; i++) 233 bus->data_lanes[i] = dfl_data_lane_index + i; 234 } else { 235 bus->clock_lane = clock_lane; 236 for (i = 0; i < num_data_lanes; i++) 237 bus->data_lanes[i] = array[i]; 238 } 239 240 if (have_lane_polarities) { 241 fwnode_property_read_u32_array(fwnode, 242 "lane-polarities", array, 243 1 + num_data_lanes); 244 245 for (i = 0; i < 1 + num_data_lanes; i++) { 246 bus->lane_polarities[i] = array[i]; 247 pr_debug("lane %u polarity %sinverted", 248 i, array[i] ? "" : "not "); 249 } 250 } else { 251 pr_debug("no lane polarities defined, assuming not inverted\n"); 252 } 253 } 254 255 return 0; 256 } 257 258 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \ 259 V4L2_MBUS_HSYNC_ACTIVE_LOW | \ 260 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \ 261 V4L2_MBUS_VSYNC_ACTIVE_LOW | \ 262 V4L2_MBUS_FIELD_EVEN_HIGH | \ 263 V4L2_MBUS_FIELD_EVEN_LOW) 264 265 static void 266 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode, 267 struct v4l2_fwnode_endpoint *vep, 268 enum v4l2_mbus_type bus_type) 269 { 270 struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel; 271 unsigned int flags = 0; 272 u32 v; 273 274 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656) 275 flags = bus->flags; 276 277 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) { 278 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH | 279 V4L2_MBUS_HSYNC_ACTIVE_LOW); 280 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH : 281 V4L2_MBUS_HSYNC_ACTIVE_LOW; 282 pr_debug("hsync-active %s\n", v ? "high" : "low"); 283 } 284 285 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) { 286 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH | 287 V4L2_MBUS_VSYNC_ACTIVE_LOW); 288 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH : 289 V4L2_MBUS_VSYNC_ACTIVE_LOW; 290 pr_debug("vsync-active %s\n", v ? "high" : "low"); 291 } 292 293 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) { 294 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH | 295 V4L2_MBUS_FIELD_EVEN_LOW); 296 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH : 297 V4L2_MBUS_FIELD_EVEN_LOW; 298 pr_debug("field-even-active %s\n", v ? "high" : "low"); 299 } 300 301 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) { 302 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING | 303 V4L2_MBUS_PCLK_SAMPLE_FALLING | 304 V4L2_MBUS_PCLK_SAMPLE_DUALEDGE); 305 switch (v) { 306 case 0: 307 flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING; 308 pr_debug("pclk-sample low\n"); 309 break; 310 case 1: 311 flags |= V4L2_MBUS_PCLK_SAMPLE_RISING; 312 pr_debug("pclk-sample high\n"); 313 break; 314 case 2: 315 flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE; 316 pr_debug("pclk-sample dual edge\n"); 317 break; 318 default: 319 pr_warn("invalid argument for pclk-sample"); 320 break; 321 } 322 } 323 324 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) { 325 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH | 326 V4L2_MBUS_DATA_ACTIVE_LOW); 327 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH : 328 V4L2_MBUS_DATA_ACTIVE_LOW; 329 pr_debug("data-active %s\n", v ? "high" : "low"); 330 } 331 332 if (fwnode_property_present(fwnode, "slave-mode")) { 333 pr_debug("slave mode\n"); 334 flags &= ~V4L2_MBUS_MASTER; 335 flags |= V4L2_MBUS_SLAVE; 336 } else { 337 flags &= ~V4L2_MBUS_SLAVE; 338 flags |= V4L2_MBUS_MASTER; 339 } 340 341 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) { 342 bus->bus_width = v; 343 pr_debug("bus-width %u\n", v); 344 } 345 346 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) { 347 bus->data_shift = v; 348 pr_debug("data-shift %u\n", v); 349 } 350 351 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) { 352 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH | 353 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW); 354 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH : 355 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW; 356 pr_debug("sync-on-green-active %s\n", v ? "high" : "low"); 357 } 358 359 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) { 360 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH | 361 V4L2_MBUS_DATA_ENABLE_LOW); 362 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH : 363 V4L2_MBUS_DATA_ENABLE_LOW; 364 pr_debug("data-enable-active %s\n", v ? "high" : "low"); 365 } 366 367 switch (bus_type) { 368 default: 369 bus->flags = flags; 370 if (flags & PARALLEL_MBUS_FLAGS) 371 vep->bus_type = V4L2_MBUS_PARALLEL; 372 else 373 vep->bus_type = V4L2_MBUS_BT656; 374 break; 375 case V4L2_MBUS_PARALLEL: 376 vep->bus_type = V4L2_MBUS_PARALLEL; 377 bus->flags = flags; 378 break; 379 case V4L2_MBUS_BT656: 380 vep->bus_type = V4L2_MBUS_BT656; 381 bus->flags = flags & ~PARALLEL_MBUS_FLAGS; 382 break; 383 } 384 } 385 386 static void 387 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, 388 struct v4l2_fwnode_endpoint *vep, 389 enum v4l2_mbus_type bus_type) 390 { 391 struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1; 392 u32 v; 393 394 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) { 395 bus->clock_inv = v; 396 pr_debug("clock-inv %u\n", v); 397 } 398 399 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) { 400 bus->strobe = v; 401 pr_debug("strobe %u\n", v); 402 } 403 404 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) { 405 bus->data_lane = v; 406 pr_debug("data-lanes %u\n", v); 407 } 408 409 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 410 bus->clock_lane = v; 411 pr_debug("clock-lanes %u\n", v); 412 } 413 414 if (bus_type == V4L2_MBUS_CCP2) 415 vep->bus_type = V4L2_MBUS_CCP2; 416 else 417 vep->bus_type = V4L2_MBUS_CSI1; 418 } 419 420 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 421 struct v4l2_fwnode_endpoint *vep) 422 { 423 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS; 424 enum v4l2_mbus_type mbus_type; 425 int rval; 426 427 pr_debug("===== begin parsing endpoint %pfw\n", fwnode); 428 429 fwnode_property_read_u32(fwnode, "bus-type", &bus_type); 430 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n", 431 v4l2_fwnode_bus_type_to_string(bus_type), bus_type, 432 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 433 vep->bus_type); 434 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type); 435 if (mbus_type == V4L2_MBUS_INVALID) { 436 pr_debug("unsupported bus type %u\n", bus_type); 437 return -EINVAL; 438 } 439 440 if (vep->bus_type != V4L2_MBUS_UNKNOWN) { 441 if (mbus_type != V4L2_MBUS_UNKNOWN && 442 vep->bus_type != mbus_type) { 443 pr_debug("expecting bus type %s\n", 444 v4l2_fwnode_mbus_type_to_string(vep->bus_type)); 445 return -ENXIO; 446 } 447 } else { 448 vep->bus_type = mbus_type; 449 } 450 451 switch (vep->bus_type) { 452 case V4L2_MBUS_UNKNOWN: 453 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 454 V4L2_MBUS_UNKNOWN); 455 if (rval) 456 return rval; 457 458 if (vep->bus_type == V4L2_MBUS_UNKNOWN) 459 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 460 V4L2_MBUS_UNKNOWN); 461 462 pr_debug("assuming media bus type %s (%u)\n", 463 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 464 vep->bus_type); 465 466 break; 467 case V4L2_MBUS_CCP2: 468 case V4L2_MBUS_CSI1: 469 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type); 470 471 break; 472 case V4L2_MBUS_CSI2_DPHY: 473 case V4L2_MBUS_CSI2_CPHY: 474 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 475 vep->bus_type); 476 if (rval) 477 return rval; 478 479 break; 480 case V4L2_MBUS_PARALLEL: 481 case V4L2_MBUS_BT656: 482 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 483 vep->bus_type); 484 485 break; 486 default: 487 pr_warn("unsupported bus type %u\n", mbus_type); 488 return -EINVAL; 489 } 490 491 fwnode_graph_parse_endpoint(fwnode, &vep->base); 492 493 return 0; 494 } 495 496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 497 struct v4l2_fwnode_endpoint *vep) 498 { 499 int ret; 500 501 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep); 502 503 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse); 508 509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep) 510 { 511 if (IS_ERR_OR_NULL(vep)) 512 return; 513 514 kfree(vep->link_frequencies); 515 vep->link_frequencies = NULL; 516 } 517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free); 518 519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, 520 struct v4l2_fwnode_endpoint *vep) 521 { 522 int rval; 523 524 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep); 525 if (rval < 0) 526 return rval; 527 528 rval = fwnode_property_count_u64(fwnode, "link-frequencies"); 529 if (rval > 0) { 530 unsigned int i; 531 532 vep->link_frequencies = 533 kmalloc_array(rval, sizeof(*vep->link_frequencies), 534 GFP_KERNEL); 535 if (!vep->link_frequencies) 536 return -ENOMEM; 537 538 vep->nr_of_link_frequencies = rval; 539 540 rval = fwnode_property_read_u64_array(fwnode, 541 "link-frequencies", 542 vep->link_frequencies, 543 vep->nr_of_link_frequencies); 544 if (rval < 0) { 545 v4l2_fwnode_endpoint_free(vep); 546 return rval; 547 } 548 549 for (i = 0; i < vep->nr_of_link_frequencies; i++) 550 pr_debug("link-frequencies %u value %llu\n", i, 551 vep->link_frequencies[i]); 552 } 553 554 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 555 556 return 0; 557 } 558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse); 559 560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, 561 struct v4l2_fwnode_link *link) 562 { 563 struct fwnode_endpoint fwep; 564 565 memset(link, 0, sizeof(*link)); 566 567 fwnode_graph_parse_endpoint(fwnode, &fwep); 568 link->local_id = fwep.id; 569 link->local_port = fwep.port; 570 link->local_node = fwnode_graph_get_port_parent(fwnode); 571 572 fwnode = fwnode_graph_get_remote_endpoint(fwnode); 573 if (!fwnode) { 574 fwnode_handle_put(fwnode); 575 return -ENOLINK; 576 } 577 578 fwnode_graph_parse_endpoint(fwnode, &fwep); 579 link->remote_id = fwep.id; 580 link->remote_port = fwep.port; 581 link->remote_node = fwnode_graph_get_port_parent(fwnode); 582 583 return 0; 584 } 585 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link); 586 587 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link) 588 { 589 fwnode_handle_put(link->local_node); 590 fwnode_handle_put(link->remote_node); 591 } 592 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link); 593 594 static const struct v4l2_fwnode_connector_conv { 595 enum v4l2_connector_type type; 596 const char *compatible; 597 } connectors[] = { 598 { 599 .type = V4L2_CONN_COMPOSITE, 600 .compatible = "composite-video-connector", 601 }, { 602 .type = V4L2_CONN_SVIDEO, 603 .compatible = "svideo-connector", 604 }, 605 }; 606 607 static enum v4l2_connector_type 608 v4l2_fwnode_string_to_connector_type(const char *con_str) 609 { 610 unsigned int i; 611 612 for (i = 0; i < ARRAY_SIZE(connectors); i++) 613 if (!strcmp(con_str, connectors[i].compatible)) 614 return connectors[i].type; 615 616 return V4L2_CONN_UNKNOWN; 617 } 618 619 static void 620 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode, 621 struct v4l2_fwnode_connector *vc) 622 { 623 u32 stds; 624 int ret; 625 626 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds); 627 628 /* The property is optional. */ 629 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds; 630 } 631 632 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector) 633 { 634 struct v4l2_connector_link *link, *tmp; 635 636 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN) 637 return; 638 639 list_for_each_entry_safe(link, tmp, &connector->links, head) { 640 v4l2_fwnode_put_link(&link->fwnode_link); 641 list_del(&link->head); 642 kfree(link); 643 } 644 645 kfree(connector->label); 646 connector->label = NULL; 647 connector->type = V4L2_CONN_UNKNOWN; 648 } 649 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free); 650 651 static enum v4l2_connector_type 652 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode) 653 { 654 const char *type_name; 655 int err; 656 657 if (!fwnode) 658 return V4L2_CONN_UNKNOWN; 659 660 /* The connector-type is stored within the compatible string. */ 661 err = fwnode_property_read_string(fwnode, "compatible", &type_name); 662 if (err) 663 return V4L2_CONN_UNKNOWN; 664 665 return v4l2_fwnode_string_to_connector_type(type_name); 666 } 667 668 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, 669 struct v4l2_fwnode_connector *connector) 670 { 671 struct fwnode_handle *connector_node; 672 enum v4l2_connector_type connector_type; 673 const char *label; 674 int err; 675 676 if (!fwnode) 677 return -EINVAL; 678 679 memset(connector, 0, sizeof(*connector)); 680 681 INIT_LIST_HEAD(&connector->links); 682 683 connector_node = fwnode_graph_get_port_parent(fwnode); 684 connector_type = v4l2_fwnode_get_connector_type(connector_node); 685 if (connector_type == V4L2_CONN_UNKNOWN) { 686 fwnode_handle_put(connector_node); 687 connector_node = fwnode_graph_get_remote_port_parent(fwnode); 688 connector_type = v4l2_fwnode_get_connector_type(connector_node); 689 } 690 691 if (connector_type == V4L2_CONN_UNKNOWN) { 692 pr_err("Unknown connector type\n"); 693 err = -ENOTCONN; 694 goto out; 695 } 696 697 connector->type = connector_type; 698 connector->name = fwnode_get_name(connector_node); 699 err = fwnode_property_read_string(connector_node, "label", &label); 700 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL); 701 702 /* Parse the connector specific properties. */ 703 switch (connector->type) { 704 case V4L2_CONN_COMPOSITE: 705 case V4L2_CONN_SVIDEO: 706 v4l2_fwnode_connector_parse_analog(connector_node, connector); 707 break; 708 /* Avoid compiler warnings */ 709 case V4L2_CONN_UNKNOWN: 710 break; 711 } 712 713 out: 714 fwnode_handle_put(connector_node); 715 716 return err; 717 } 718 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse); 719 720 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, 721 struct v4l2_fwnode_connector *connector) 722 { 723 struct fwnode_handle *connector_ep; 724 struct v4l2_connector_link *link; 725 int err; 726 727 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN) 728 return -EINVAL; 729 730 connector_ep = fwnode_graph_get_remote_endpoint(fwnode); 731 if (!connector_ep) 732 return -ENOTCONN; 733 734 link = kzalloc(sizeof(*link), GFP_KERNEL); 735 if (!link) { 736 err = -ENOMEM; 737 goto err; 738 } 739 740 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link); 741 if (err) 742 goto err; 743 744 fwnode_handle_put(connector_ep); 745 746 list_add(&link->head, &connector->links); 747 connector->nr_of_links++; 748 749 return 0; 750 751 err: 752 kfree(link); 753 fwnode_handle_put(connector_ep); 754 755 return err; 756 } 757 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link); 758 759 int v4l2_fwnode_device_parse(struct device *dev, 760 struct v4l2_fwnode_device_properties *props) 761 { 762 struct fwnode_handle *fwnode = dev_fwnode(dev); 763 u32 val; 764 int ret; 765 766 memset(props, 0, sizeof(*props)); 767 768 props->orientation = V4L2_FWNODE_PROPERTY_UNSET; 769 ret = fwnode_property_read_u32(fwnode, "orientation", &val); 770 if (!ret) { 771 switch (val) { 772 case V4L2_FWNODE_ORIENTATION_FRONT: 773 case V4L2_FWNODE_ORIENTATION_BACK: 774 case V4L2_FWNODE_ORIENTATION_EXTERNAL: 775 break; 776 default: 777 dev_warn(dev, "Unsupported device orientation: %u\n", val); 778 return -EINVAL; 779 } 780 781 props->orientation = val; 782 dev_dbg(dev, "device orientation: %u\n", val); 783 } 784 785 props->rotation = V4L2_FWNODE_PROPERTY_UNSET; 786 ret = fwnode_property_read_u32(fwnode, "rotation", &val); 787 if (!ret) { 788 if (val >= 360) { 789 dev_warn(dev, "Unsupported device rotation: %u\n", val); 790 return -EINVAL; 791 } 792 793 props->rotation = val; 794 dev_dbg(dev, "device rotation: %u\n", val); 795 } 796 797 return 0; 798 } 799 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse); 800 801 static int 802 v4l2_async_nf_fwnode_parse_endpoint(struct device *dev, 803 struct v4l2_async_notifier *notifier, 804 struct fwnode_handle *endpoint, 805 unsigned int asd_struct_size, 806 parse_endpoint_func parse_endpoint) 807 { 808 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 }; 809 struct v4l2_async_subdev *asd; 810 int ret; 811 812 asd = kzalloc(asd_struct_size, GFP_KERNEL); 813 if (!asd) 814 return -ENOMEM; 815 816 asd->match_type = V4L2_ASYNC_MATCH_FWNODE; 817 asd->match.fwnode = 818 fwnode_graph_get_remote_port_parent(endpoint); 819 if (!asd->match.fwnode) { 820 dev_dbg(dev, "no remote endpoint found\n"); 821 ret = -ENOTCONN; 822 goto out_err; 823 } 824 825 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep); 826 if (ret) { 827 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n", 828 ret); 829 goto out_err; 830 } 831 832 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0; 833 if (ret == -ENOTCONN) 834 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port, 835 vep.base.id); 836 else if (ret < 0) 837 dev_warn(dev, 838 "driver could not parse port@%u/endpoint@%u (%d)\n", 839 vep.base.port, vep.base.id, ret); 840 v4l2_fwnode_endpoint_free(&vep); 841 if (ret < 0) 842 goto out_err; 843 844 ret = __v4l2_async_nf_add_subdev(notifier, asd); 845 if (ret < 0) { 846 /* not an error if asd already exists */ 847 if (ret == -EEXIST) 848 ret = 0; 849 goto out_err; 850 } 851 852 return 0; 853 854 out_err: 855 fwnode_handle_put(asd->match.fwnode); 856 kfree(asd); 857 858 return ret == -ENOTCONN ? 0 : ret; 859 } 860 861 int 862 v4l2_async_nf_parse_fwnode_endpoints(struct device *dev, 863 struct v4l2_async_notifier *notifier, 864 size_t asd_struct_size, 865 parse_endpoint_func parse_endpoint) 866 { 867 struct fwnode_handle *fwnode; 868 int ret = 0; 869 870 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev))) 871 return -EINVAL; 872 873 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) { 874 struct fwnode_handle *dev_fwnode; 875 bool is_available; 876 877 dev_fwnode = fwnode_graph_get_port_parent(fwnode); 878 is_available = fwnode_device_is_available(dev_fwnode); 879 fwnode_handle_put(dev_fwnode); 880 if (!is_available) 881 continue; 882 883 884 ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier, 885 fwnode, 886 asd_struct_size, 887 parse_endpoint); 888 if (ret < 0) 889 break; 890 } 891 892 fwnode_handle_put(fwnode); 893 894 return ret; 895 } 896 EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints); 897 898 /* 899 * v4l2_fwnode_reference_parse - parse references for async sub-devices 900 * @dev: the device node the properties of which are parsed for references 901 * @notifier: the async notifier where the async subdevs will be added 902 * @prop: the name of the property 903 * 904 * Return: 0 on success 905 * -ENOENT if no entries were found 906 * -ENOMEM if memory allocation failed 907 * -EINVAL if property parsing failed 908 */ 909 static int v4l2_fwnode_reference_parse(struct device *dev, 910 struct v4l2_async_notifier *notifier, 911 const char *prop) 912 { 913 struct fwnode_reference_args args; 914 unsigned int index; 915 int ret; 916 917 for (index = 0; 918 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop, 919 NULL, 0, index, &args)); 920 index++) { 921 struct v4l2_async_subdev *asd; 922 923 asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode, 924 struct v4l2_async_subdev); 925 fwnode_handle_put(args.fwnode); 926 if (IS_ERR(asd)) { 927 /* not an error if asd already exists */ 928 if (PTR_ERR(asd) == -EEXIST) 929 continue; 930 931 return PTR_ERR(asd); 932 } 933 } 934 935 /* -ENOENT here means successful parsing */ 936 if (ret != -ENOENT) 937 return ret; 938 939 /* Return -ENOENT if no references were found */ 940 return index ? 0 : -ENOENT; 941 } 942 943 /* 944 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer 945 * arguments 946 * @fwnode: fwnode to read @prop from 947 * @notifier: notifier for @dev 948 * @prop: the name of the property 949 * @index: the index of the reference to get 950 * @props: the array of integer property names 951 * @nprops: the number of integer property names in @nprops 952 * 953 * First find an fwnode referred to by the reference at @index in @prop. 954 * 955 * Then under that fwnode, @nprops times, for each property in @props, 956 * iteratively follow child nodes starting from fwnode such that they have the 957 * property in @props array at the index of the child node distance from the 958 * root node and the value of that property matching with the integer argument 959 * of the reference, at the same index. 960 * 961 * The child fwnode reached at the end of the iteration is then returned to the 962 * caller. 963 * 964 * The core reason for this is that you cannot refer to just any node in ACPI. 965 * So to refer to an endpoint (easy in DT) you need to refer to a device, then 966 * provide a list of (property name, property value) tuples where each tuple 967 * uniquely identifies a child node. The first tuple identifies a child directly 968 * underneath the device fwnode, the next tuple identifies a child node 969 * underneath the fwnode identified by the previous tuple, etc. until you 970 * reached the fwnode you need. 971 * 972 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A 973 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under 974 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt, 975 * data-node-references.txt and leds.txt . 976 * 977 * Scope (\_SB.PCI0.I2C2) 978 * { 979 * Device (CAM0) 980 * { 981 * Name (_DSD, Package () { 982 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 983 * Package () { 984 * Package () { 985 * "compatible", 986 * Package () { "nokia,smia" } 987 * }, 988 * }, 989 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 990 * Package () { 991 * Package () { "port0", "PRT0" }, 992 * } 993 * }) 994 * Name (PRT0, Package() { 995 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 996 * Package () { 997 * Package () { "port", 0 }, 998 * }, 999 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1000 * Package () { 1001 * Package () { "endpoint0", "EP00" }, 1002 * } 1003 * }) 1004 * Name (EP00, Package() { 1005 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1006 * Package () { 1007 * Package () { "endpoint", 0 }, 1008 * Package () { 1009 * "remote-endpoint", 1010 * Package() { 1011 * \_SB.PCI0.ISP, 4, 0 1012 * } 1013 * }, 1014 * } 1015 * }) 1016 * } 1017 * } 1018 * 1019 * Scope (\_SB.PCI0) 1020 * { 1021 * Device (ISP) 1022 * { 1023 * Name (_DSD, Package () { 1024 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1025 * Package () { 1026 * Package () { "port4", "PRT4" }, 1027 * } 1028 * }) 1029 * 1030 * Name (PRT4, Package() { 1031 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1032 * Package () { 1033 * Package () { "port", 4 }, 1034 * }, 1035 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1036 * Package () { 1037 * Package () { "endpoint0", "EP40" }, 1038 * } 1039 * }) 1040 * 1041 * Name (EP40, Package() { 1042 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1043 * Package () { 1044 * Package () { "endpoint", 0 }, 1045 * Package () { 1046 * "remote-endpoint", 1047 * Package () { 1048 * \_SB.PCI0.I2C2.CAM0, 1049 * 0, 0 1050 * } 1051 * }, 1052 * } 1053 * }) 1054 * } 1055 * } 1056 * 1057 * From the EP40 node under ISP device, you could parse the graph remote 1058 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments: 1059 * 1060 * @fwnode: fwnode referring to EP40 under ISP. 1061 * @prop: "remote-endpoint" 1062 * @index: 0 1063 * @props: "port", "endpoint" 1064 * @nprops: 2 1065 * 1066 * And you'd get back fwnode referring to EP00 under CAM0. 1067 * 1068 * The same works the other way around: if you use EP00 under CAM0 as the 1069 * fwnode, you'll get fwnode referring to EP40 under ISP. 1070 * 1071 * The same example in DT syntax would look like this: 1072 * 1073 * cam: cam0 { 1074 * compatible = "nokia,smia"; 1075 * 1076 * port { 1077 * port = <0>; 1078 * endpoint { 1079 * endpoint = <0>; 1080 * remote-endpoint = <&isp 4 0>; 1081 * }; 1082 * }; 1083 * }; 1084 * 1085 * isp: isp { 1086 * ports { 1087 * port@4 { 1088 * port = <4>; 1089 * endpoint { 1090 * endpoint = <0>; 1091 * remote-endpoint = <&cam 0 0>; 1092 * }; 1093 * }; 1094 * }; 1095 * }; 1096 * 1097 * Return: 0 on success 1098 * -ENOENT if no entries (or the property itself) were found 1099 * -EINVAL if property parsing otherwise failed 1100 * -ENOMEM if memory allocation failed 1101 */ 1102 static struct fwnode_handle * 1103 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode, 1104 const char *prop, 1105 unsigned int index, 1106 const char * const *props, 1107 unsigned int nprops) 1108 { 1109 struct fwnode_reference_args fwnode_args; 1110 u64 *args = fwnode_args.args; 1111 struct fwnode_handle *child; 1112 int ret; 1113 1114 /* 1115 * Obtain remote fwnode as well as the integer arguments. 1116 * 1117 * Note that right now both -ENODATA and -ENOENT may signal 1118 * out-of-bounds access. Return -ENOENT in that case. 1119 */ 1120 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops, 1121 index, &fwnode_args); 1122 if (ret) 1123 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret); 1124 1125 /* 1126 * Find a node in the tree under the referred fwnode corresponding to 1127 * the integer arguments. 1128 */ 1129 fwnode = fwnode_args.fwnode; 1130 while (nprops--) { 1131 u32 val; 1132 1133 /* Loop over all child nodes under fwnode. */ 1134 fwnode_for_each_child_node(fwnode, child) { 1135 if (fwnode_property_read_u32(child, *props, &val)) 1136 continue; 1137 1138 /* Found property, see if its value matches. */ 1139 if (val == *args) 1140 break; 1141 } 1142 1143 fwnode_handle_put(fwnode); 1144 1145 /* No property found; return an error here. */ 1146 if (!child) { 1147 fwnode = ERR_PTR(-ENOENT); 1148 break; 1149 } 1150 1151 props++; 1152 args++; 1153 fwnode = child; 1154 } 1155 1156 return fwnode; 1157 } 1158 1159 struct v4l2_fwnode_int_props { 1160 const char *name; 1161 const char * const *props; 1162 unsigned int nprops; 1163 }; 1164 1165 /* 1166 * v4l2_fwnode_reference_parse_int_props - parse references for async 1167 * sub-devices 1168 * @dev: struct device pointer 1169 * @notifier: notifier for @dev 1170 * @prop: the name of the property 1171 * @props: the array of integer property names 1172 * @nprops: the number of integer properties 1173 * 1174 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in 1175 * property @prop with integer arguments with child nodes matching in properties 1176 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier 1177 * accordingly. 1178 * 1179 * While it is technically possible to use this function on DT, it is only 1180 * meaningful on ACPI. On Device tree you can refer to any node in the tree but 1181 * on ACPI the references are limited to devices. 1182 * 1183 * Return: 0 on success 1184 * -ENOENT if no entries (or the property itself) were found 1185 * -EINVAL if property parsing otherwisefailed 1186 * -ENOMEM if memory allocation failed 1187 */ 1188 static int 1189 v4l2_fwnode_reference_parse_int_props(struct device *dev, 1190 struct v4l2_async_notifier *notifier, 1191 const struct v4l2_fwnode_int_props *p) 1192 { 1193 struct fwnode_handle *fwnode; 1194 unsigned int index; 1195 int ret; 1196 const char *prop = p->name; 1197 const char * const *props = p->props; 1198 unsigned int nprops = p->nprops; 1199 1200 index = 0; 1201 do { 1202 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1203 prop, index, 1204 props, nprops); 1205 if (IS_ERR(fwnode)) { 1206 /* 1207 * Note that right now both -ENODATA and -ENOENT may 1208 * signal out-of-bounds access. Return the error in 1209 * cases other than that. 1210 */ 1211 if (PTR_ERR(fwnode) != -ENOENT && 1212 PTR_ERR(fwnode) != -ENODATA) 1213 return PTR_ERR(fwnode); 1214 break; 1215 } 1216 fwnode_handle_put(fwnode); 1217 index++; 1218 } while (1); 1219 1220 for (index = 0; 1221 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1222 prop, index, 1223 props, 1224 nprops))); 1225 index++) { 1226 struct v4l2_async_subdev *asd; 1227 1228 asd = v4l2_async_nf_add_fwnode(notifier, fwnode, 1229 struct v4l2_async_subdev); 1230 fwnode_handle_put(fwnode); 1231 if (IS_ERR(asd)) { 1232 ret = PTR_ERR(asd); 1233 /* not an error if asd already exists */ 1234 if (ret == -EEXIST) 1235 continue; 1236 1237 return PTR_ERR(asd); 1238 } 1239 } 1240 1241 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode); 1242 } 1243 1244 /** 1245 * v4l2_async_nf_parse_fwnode_sensor - parse common references on 1246 * sensors for async sub-devices 1247 * @dev: the device node the properties of which are parsed for references 1248 * @notifier: the async notifier where the async subdevs will be added 1249 * 1250 * Parse common sensor properties for remote devices related to the 1251 * sensor and set up async sub-devices for them. 1252 * 1253 * Any notifier populated using this function must be released with a call to 1254 * v4l2_async_nf_release() after it has been unregistered and the async 1255 * sub-devices are no longer in use, even in the case the function returned an 1256 * error. 1257 * 1258 * Return: 0 on success 1259 * -ENOMEM if memory allocation failed 1260 * -EINVAL if property parsing failed 1261 */ 1262 static int 1263 v4l2_async_nf_parse_fwnode_sensor(struct device *dev, 1264 struct v4l2_async_notifier *notifier) 1265 { 1266 static const char * const led_props[] = { "led" }; 1267 static const struct v4l2_fwnode_int_props props[] = { 1268 { "flash-leds", led_props, ARRAY_SIZE(led_props) }, 1269 { "lens-focus", NULL, 0 }, 1270 }; 1271 unsigned int i; 1272 1273 for (i = 0; i < ARRAY_SIZE(props); i++) { 1274 int ret; 1275 1276 if (props[i].props && is_acpi_node(dev_fwnode(dev))) 1277 ret = v4l2_fwnode_reference_parse_int_props(dev, 1278 notifier, 1279 &props[i]); 1280 else 1281 ret = v4l2_fwnode_reference_parse(dev, notifier, 1282 props[i].name); 1283 if (ret && ret != -ENOENT) { 1284 dev_warn(dev, "parsing property \"%s\" failed (%d)\n", 1285 props[i].name, ret); 1286 return ret; 1287 } 1288 } 1289 1290 return 0; 1291 } 1292 1293 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd) 1294 { 1295 struct v4l2_async_notifier *notifier; 1296 int ret; 1297 1298 if (WARN_ON(!sd->dev)) 1299 return -ENODEV; 1300 1301 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL); 1302 if (!notifier) 1303 return -ENOMEM; 1304 1305 v4l2_async_nf_init(notifier); 1306 1307 ret = v4l2_subdev_get_privacy_led(sd); 1308 if (ret < 0) 1309 goto out_cleanup; 1310 1311 ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier); 1312 if (ret < 0) 1313 goto out_cleanup; 1314 1315 ret = v4l2_async_subdev_nf_register(sd, notifier); 1316 if (ret < 0) 1317 goto out_cleanup; 1318 1319 ret = v4l2_async_register_subdev(sd); 1320 if (ret < 0) 1321 goto out_unregister; 1322 1323 sd->subdev_notifier = notifier; 1324 1325 return 0; 1326 1327 out_unregister: 1328 v4l2_async_nf_unregister(notifier); 1329 1330 out_cleanup: 1331 v4l2_subdev_put_privacy_led(sd); 1332 v4l2_async_nf_cleanup(notifier); 1333 kfree(notifier); 1334 1335 return ret; 1336 } 1337 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor); 1338 1339 MODULE_LICENSE("GPL"); 1340 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); 1341 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>"); 1342 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1343