1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * V4L2 fwnode binding parsing library 4 * 5 * The origins of the V4L2 fwnode library are in V4L2 OF library that 6 * formerly was located in v4l2-of.c. 7 * 8 * Copyright (c) 2016 Intel Corporation. 9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com> 10 * 11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd. 12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com> 13 * 14 * Copyright (C) 2012 Renesas Electronics Corp. 15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 16 */ 17 #include <linux/acpi.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 27 #include <media/v4l2-async.h> 28 #include <media/v4l2-fwnode.h> 29 #include <media/v4l2-subdev.h> 30 31 enum v4l2_fwnode_bus_type { 32 V4L2_FWNODE_BUS_TYPE_GUESS = 0, 33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, 34 V4L2_FWNODE_BUS_TYPE_CSI1, 35 V4L2_FWNODE_BUS_TYPE_CCP2, 36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, 37 V4L2_FWNODE_BUS_TYPE_PARALLEL, 38 V4L2_FWNODE_BUS_TYPE_BT656, 39 NR_OF_V4L2_FWNODE_BUS_TYPE, 40 }; 41 42 static const struct v4l2_fwnode_bus_conv { 43 enum v4l2_fwnode_bus_type fwnode_bus_type; 44 enum v4l2_mbus_type mbus_type; 45 const char *name; 46 } buses[] = { 47 { 48 V4L2_FWNODE_BUS_TYPE_GUESS, 49 V4L2_MBUS_UNKNOWN, 50 "not specified", 51 }, { 52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, 53 V4L2_MBUS_CSI2_CPHY, 54 "MIPI CSI-2 C-PHY", 55 }, { 56 V4L2_FWNODE_BUS_TYPE_CSI1, 57 V4L2_MBUS_CSI1, 58 "MIPI CSI-1", 59 }, { 60 V4L2_FWNODE_BUS_TYPE_CCP2, 61 V4L2_MBUS_CCP2, 62 "compact camera port 2", 63 }, { 64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, 65 V4L2_MBUS_CSI2_DPHY, 66 "MIPI CSI-2 D-PHY", 67 }, { 68 V4L2_FWNODE_BUS_TYPE_PARALLEL, 69 V4L2_MBUS_PARALLEL, 70 "parallel", 71 }, { 72 V4L2_FWNODE_BUS_TYPE_BT656, 73 V4L2_MBUS_BT656, 74 "Bt.656", 75 } 76 }; 77 78 static const struct v4l2_fwnode_bus_conv * 79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type) 80 { 81 unsigned int i; 82 83 for (i = 0; i < ARRAY_SIZE(buses); i++) 84 if (buses[i].fwnode_bus_type == type) 85 return &buses[i]; 86 87 return NULL; 88 } 89 90 static enum v4l2_mbus_type 91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type) 92 { 93 const struct v4l2_fwnode_bus_conv *conv = 94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 95 96 return conv ? conv->mbus_type : V4L2_MBUS_INVALID; 97 } 98 99 static const char * 100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type) 101 { 102 const struct v4l2_fwnode_bus_conv *conv = 103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 104 105 return conv ? conv->name : "not found"; 106 } 107 108 static const struct v4l2_fwnode_bus_conv * 109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type) 110 { 111 unsigned int i; 112 113 for (i = 0; i < ARRAY_SIZE(buses); i++) 114 if (buses[i].mbus_type == type) 115 return &buses[i]; 116 117 return NULL; 118 } 119 120 static const char * 121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type) 122 { 123 const struct v4l2_fwnode_bus_conv *conv = 124 get_v4l2_fwnode_bus_conv_by_mbus(type); 125 126 return conv ? conv->name : "not found"; 127 } 128 129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, 130 struct v4l2_fwnode_endpoint *vep, 131 enum v4l2_mbus_type bus_type) 132 { 133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2; 134 bool have_clk_lane = false, have_data_lanes = false, 135 have_lane_polarities = false; 136 unsigned int flags = 0, lanes_used = 0; 137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES]; 138 u32 clock_lane = 0; 139 unsigned int num_data_lanes = 0; 140 bool use_default_lane_mapping = false; 141 unsigned int i; 142 u32 v; 143 int rval; 144 145 if (bus_type == V4L2_MBUS_CSI2_DPHY || 146 bus_type == V4L2_MBUS_CSI2_CPHY) { 147 use_default_lane_mapping = true; 148 149 num_data_lanes = min_t(u32, bus->num_data_lanes, 150 V4L2_FWNODE_CSI2_MAX_DATA_LANES); 151 152 clock_lane = bus->clock_lane; 153 if (clock_lane) 154 use_default_lane_mapping = false; 155 156 for (i = 0; i < num_data_lanes; i++) { 157 array[i] = bus->data_lanes[i]; 158 if (array[i]) 159 use_default_lane_mapping = false; 160 } 161 162 if (use_default_lane_mapping) 163 pr_debug("no lane mapping given, using defaults\n"); 164 } 165 166 rval = fwnode_property_count_u32(fwnode, "data-lanes"); 167 if (rval > 0) { 168 num_data_lanes = 169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval); 170 171 fwnode_property_read_u32_array(fwnode, "data-lanes", array, 172 num_data_lanes); 173 174 have_data_lanes = true; 175 if (use_default_lane_mapping) { 176 pr_debug("data-lanes property exists; disabling default mapping\n"); 177 use_default_lane_mapping = false; 178 } 179 } 180 181 for (i = 0; i < num_data_lanes; i++) { 182 if (lanes_used & BIT(array[i])) { 183 if (have_data_lanes || !use_default_lane_mapping) 184 pr_warn("duplicated lane %u in data-lanes, using defaults\n", 185 array[i]); 186 use_default_lane_mapping = true; 187 } 188 lanes_used |= BIT(array[i]); 189 190 if (have_data_lanes) 191 pr_debug("lane %u position %u\n", i, array[i]); 192 } 193 194 rval = fwnode_property_count_u32(fwnode, "lane-polarities"); 195 if (rval > 0) { 196 if (rval != 1 + num_data_lanes /* clock+data */) { 197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n", 198 1 + num_data_lanes, rval); 199 return -EINVAL; 200 } 201 202 have_lane_polarities = true; 203 } 204 205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 206 clock_lane = v; 207 pr_debug("clock lane position %u\n", v); 208 have_clk_lane = true; 209 } 210 211 if (have_clk_lane && lanes_used & BIT(clock_lane) && 212 !use_default_lane_mapping) { 213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n", 214 v); 215 use_default_lane_mapping = true; 216 } 217 218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) { 219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK; 220 pr_debug("non-continuous clock\n"); 221 } else { 222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK; 223 } 224 225 if (bus_type == V4L2_MBUS_CSI2_DPHY || 226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used || 227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) { 228 /* Only D-PHY has a clock lane. */ 229 unsigned int dfl_data_lane_index = 230 bus_type == V4L2_MBUS_CSI2_DPHY; 231 232 bus->flags = flags; 233 if (bus_type == V4L2_MBUS_UNKNOWN) 234 vep->bus_type = V4L2_MBUS_CSI2_DPHY; 235 bus->num_data_lanes = num_data_lanes; 236 237 if (use_default_lane_mapping) { 238 bus->clock_lane = 0; 239 for (i = 0; i < num_data_lanes; i++) 240 bus->data_lanes[i] = dfl_data_lane_index + i; 241 } else { 242 bus->clock_lane = clock_lane; 243 for (i = 0; i < num_data_lanes; i++) 244 bus->data_lanes[i] = array[i]; 245 } 246 247 if (have_lane_polarities) { 248 fwnode_property_read_u32_array(fwnode, 249 "lane-polarities", array, 250 1 + num_data_lanes); 251 252 for (i = 0; i < 1 + num_data_lanes; i++) { 253 bus->lane_polarities[i] = array[i]; 254 pr_debug("lane %u polarity %sinverted", 255 i, array[i] ? "" : "not "); 256 } 257 } else { 258 pr_debug("no lane polarities defined, assuming not inverted\n"); 259 } 260 } 261 262 return 0; 263 } 264 265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \ 266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \ 267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \ 268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \ 269 V4L2_MBUS_FIELD_EVEN_HIGH | \ 270 V4L2_MBUS_FIELD_EVEN_LOW) 271 272 static void 273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode, 274 struct v4l2_fwnode_endpoint *vep, 275 enum v4l2_mbus_type bus_type) 276 { 277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel; 278 unsigned int flags = 0; 279 u32 v; 280 281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656) 282 flags = bus->flags; 283 284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) { 285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH | 286 V4L2_MBUS_HSYNC_ACTIVE_LOW); 287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH : 288 V4L2_MBUS_HSYNC_ACTIVE_LOW; 289 pr_debug("hsync-active %s\n", v ? "high" : "low"); 290 } 291 292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) { 293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH | 294 V4L2_MBUS_VSYNC_ACTIVE_LOW); 295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH : 296 V4L2_MBUS_VSYNC_ACTIVE_LOW; 297 pr_debug("vsync-active %s\n", v ? "high" : "low"); 298 } 299 300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) { 301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH | 302 V4L2_MBUS_FIELD_EVEN_LOW); 303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH : 304 V4L2_MBUS_FIELD_EVEN_LOW; 305 pr_debug("field-even-active %s\n", v ? "high" : "low"); 306 } 307 308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) { 309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING | 310 V4L2_MBUS_PCLK_SAMPLE_FALLING); 311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING : 312 V4L2_MBUS_PCLK_SAMPLE_FALLING; 313 pr_debug("pclk-sample %s\n", v ? "high" : "low"); 314 } 315 316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) { 317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH | 318 V4L2_MBUS_DATA_ACTIVE_LOW); 319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH : 320 V4L2_MBUS_DATA_ACTIVE_LOW; 321 pr_debug("data-active %s\n", v ? "high" : "low"); 322 } 323 324 if (fwnode_property_present(fwnode, "slave-mode")) { 325 pr_debug("slave mode\n"); 326 flags &= ~V4L2_MBUS_MASTER; 327 flags |= V4L2_MBUS_SLAVE; 328 } else { 329 flags &= ~V4L2_MBUS_SLAVE; 330 flags |= V4L2_MBUS_MASTER; 331 } 332 333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) { 334 bus->bus_width = v; 335 pr_debug("bus-width %u\n", v); 336 } 337 338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) { 339 bus->data_shift = v; 340 pr_debug("data-shift %u\n", v); 341 } 342 343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) { 344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH | 345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW); 346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH : 347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW; 348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low"); 349 } 350 351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) { 352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH | 353 V4L2_MBUS_DATA_ENABLE_LOW); 354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH : 355 V4L2_MBUS_DATA_ENABLE_LOW; 356 pr_debug("data-enable-active %s\n", v ? "high" : "low"); 357 } 358 359 switch (bus_type) { 360 default: 361 bus->flags = flags; 362 if (flags & PARALLEL_MBUS_FLAGS) 363 vep->bus_type = V4L2_MBUS_PARALLEL; 364 else 365 vep->bus_type = V4L2_MBUS_BT656; 366 break; 367 case V4L2_MBUS_PARALLEL: 368 vep->bus_type = V4L2_MBUS_PARALLEL; 369 bus->flags = flags; 370 break; 371 case V4L2_MBUS_BT656: 372 vep->bus_type = V4L2_MBUS_BT656; 373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS; 374 break; 375 } 376 } 377 378 static void 379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, 380 struct v4l2_fwnode_endpoint *vep, 381 enum v4l2_mbus_type bus_type) 382 { 383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1; 384 u32 v; 385 386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) { 387 bus->clock_inv = v; 388 pr_debug("clock-inv %u\n", v); 389 } 390 391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) { 392 bus->strobe = v; 393 pr_debug("strobe %u\n", v); 394 } 395 396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) { 397 bus->data_lane = v; 398 pr_debug("data-lanes %u\n", v); 399 } 400 401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 402 bus->clock_lane = v; 403 pr_debug("clock-lanes %u\n", v); 404 } 405 406 if (bus_type == V4L2_MBUS_CCP2) 407 vep->bus_type = V4L2_MBUS_CCP2; 408 else 409 vep->bus_type = V4L2_MBUS_CSI1; 410 } 411 412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 413 struct v4l2_fwnode_endpoint *vep) 414 { 415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS; 416 enum v4l2_mbus_type mbus_type; 417 int rval; 418 419 pr_debug("===== begin parsing endpoint %pfw\n", fwnode); 420 421 fwnode_property_read_u32(fwnode, "bus-type", &bus_type); 422 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n", 423 v4l2_fwnode_bus_type_to_string(bus_type), bus_type, 424 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 425 vep->bus_type); 426 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type); 427 if (mbus_type == V4L2_MBUS_INVALID) { 428 pr_debug("unsupported bus type %u\n", bus_type); 429 return -EINVAL; 430 } 431 432 if (vep->bus_type != V4L2_MBUS_UNKNOWN) { 433 if (mbus_type != V4L2_MBUS_UNKNOWN && 434 vep->bus_type != mbus_type) { 435 pr_debug("expecting bus type %s\n", 436 v4l2_fwnode_mbus_type_to_string(vep->bus_type)); 437 return -ENXIO; 438 } 439 } else { 440 vep->bus_type = mbus_type; 441 } 442 443 switch (vep->bus_type) { 444 case V4L2_MBUS_UNKNOWN: 445 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 446 V4L2_MBUS_UNKNOWN); 447 if (rval) 448 return rval; 449 450 if (vep->bus_type == V4L2_MBUS_UNKNOWN) 451 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 452 V4L2_MBUS_UNKNOWN); 453 454 pr_debug("assuming media bus type %s (%u)\n", 455 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 456 vep->bus_type); 457 458 break; 459 case V4L2_MBUS_CCP2: 460 case V4L2_MBUS_CSI1: 461 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type); 462 463 break; 464 case V4L2_MBUS_CSI2_DPHY: 465 case V4L2_MBUS_CSI2_CPHY: 466 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 467 vep->bus_type); 468 if (rval) 469 return rval; 470 471 break; 472 case V4L2_MBUS_PARALLEL: 473 case V4L2_MBUS_BT656: 474 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 475 vep->bus_type); 476 477 break; 478 default: 479 pr_warn("unsupported bus type %u\n", mbus_type); 480 return -EINVAL; 481 } 482 483 fwnode_graph_parse_endpoint(fwnode, &vep->base); 484 485 return 0; 486 } 487 488 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 489 struct v4l2_fwnode_endpoint *vep) 490 { 491 int ret; 492 493 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep); 494 495 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 496 497 return ret; 498 } 499 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse); 500 501 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep) 502 { 503 if (IS_ERR_OR_NULL(vep)) 504 return; 505 506 kfree(vep->link_frequencies); 507 vep->link_frequencies = NULL; 508 } 509 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free); 510 511 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, 512 struct v4l2_fwnode_endpoint *vep) 513 { 514 int rval; 515 516 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep); 517 if (rval < 0) 518 return rval; 519 520 rval = fwnode_property_count_u64(fwnode, "link-frequencies"); 521 if (rval > 0) { 522 unsigned int i; 523 524 vep->link_frequencies = 525 kmalloc_array(rval, sizeof(*vep->link_frequencies), 526 GFP_KERNEL); 527 if (!vep->link_frequencies) 528 return -ENOMEM; 529 530 vep->nr_of_link_frequencies = rval; 531 532 rval = fwnode_property_read_u64_array(fwnode, 533 "link-frequencies", 534 vep->link_frequencies, 535 vep->nr_of_link_frequencies); 536 if (rval < 0) { 537 v4l2_fwnode_endpoint_free(vep); 538 return rval; 539 } 540 541 for (i = 0; i < vep->nr_of_link_frequencies; i++) 542 pr_debug("link-frequencies %u value %llu\n", i, 543 vep->link_frequencies[i]); 544 } 545 546 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 547 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse); 551 552 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, 553 struct v4l2_fwnode_link *link) 554 { 555 struct fwnode_endpoint fwep; 556 557 memset(link, 0, sizeof(*link)); 558 559 fwnode_graph_parse_endpoint(fwnode, &fwep); 560 link->local_id = fwep.id; 561 link->local_port = fwep.port; 562 link->local_node = fwnode_graph_get_port_parent(fwnode); 563 564 fwnode = fwnode_graph_get_remote_endpoint(fwnode); 565 if (!fwnode) { 566 fwnode_handle_put(fwnode); 567 return -ENOLINK; 568 } 569 570 fwnode_graph_parse_endpoint(fwnode, &fwep); 571 link->remote_id = fwep.id; 572 link->remote_port = fwep.port; 573 link->remote_node = fwnode_graph_get_port_parent(fwnode); 574 575 return 0; 576 } 577 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link); 578 579 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link) 580 { 581 fwnode_handle_put(link->local_node); 582 fwnode_handle_put(link->remote_node); 583 } 584 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link); 585 586 static const struct v4l2_fwnode_connector_conv { 587 enum v4l2_connector_type type; 588 const char *compatible; 589 } connectors[] = { 590 { 591 .type = V4L2_CONN_COMPOSITE, 592 .compatible = "composite-video-connector", 593 }, { 594 .type = V4L2_CONN_SVIDEO, 595 .compatible = "svideo-connector", 596 }, 597 }; 598 599 static enum v4l2_connector_type 600 v4l2_fwnode_string_to_connector_type(const char *con_str) 601 { 602 unsigned int i; 603 604 for (i = 0; i < ARRAY_SIZE(connectors); i++) 605 if (!strcmp(con_str, connectors[i].compatible)) 606 return connectors[i].type; 607 608 return V4L2_CONN_UNKNOWN; 609 } 610 611 static void 612 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode, 613 struct v4l2_fwnode_connector *vc) 614 { 615 u32 stds; 616 int ret; 617 618 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds); 619 620 /* The property is optional. */ 621 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds; 622 } 623 624 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector) 625 { 626 struct v4l2_connector_link *link, *tmp; 627 628 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN) 629 return; 630 631 list_for_each_entry_safe(link, tmp, &connector->links, head) { 632 v4l2_fwnode_put_link(&link->fwnode_link); 633 list_del(&link->head); 634 kfree(link); 635 } 636 637 kfree(connector->label); 638 connector->label = NULL; 639 connector->type = V4L2_CONN_UNKNOWN; 640 } 641 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free); 642 643 static enum v4l2_connector_type 644 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode) 645 { 646 const char *type_name; 647 int err; 648 649 if (!fwnode) 650 return V4L2_CONN_UNKNOWN; 651 652 /* The connector-type is stored within the compatible string. */ 653 err = fwnode_property_read_string(fwnode, "compatible", &type_name); 654 if (err) 655 return V4L2_CONN_UNKNOWN; 656 657 return v4l2_fwnode_string_to_connector_type(type_name); 658 } 659 660 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, 661 struct v4l2_fwnode_connector *connector) 662 { 663 struct fwnode_handle *connector_node; 664 enum v4l2_connector_type connector_type; 665 const char *label; 666 int err; 667 668 if (!fwnode) 669 return -EINVAL; 670 671 memset(connector, 0, sizeof(*connector)); 672 673 INIT_LIST_HEAD(&connector->links); 674 675 connector_node = fwnode_graph_get_port_parent(fwnode); 676 connector_type = v4l2_fwnode_get_connector_type(connector_node); 677 if (connector_type == V4L2_CONN_UNKNOWN) { 678 fwnode_handle_put(connector_node); 679 connector_node = fwnode_graph_get_remote_port_parent(fwnode); 680 connector_type = v4l2_fwnode_get_connector_type(connector_node); 681 } 682 683 if (connector_type == V4L2_CONN_UNKNOWN) { 684 pr_err("Unknown connector type\n"); 685 err = -ENOTCONN; 686 goto out; 687 } 688 689 connector->type = connector_type; 690 connector->name = fwnode_get_name(connector_node); 691 err = fwnode_property_read_string(connector_node, "label", &label); 692 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL); 693 694 /* Parse the connector specific properties. */ 695 switch (connector->type) { 696 case V4L2_CONN_COMPOSITE: 697 case V4L2_CONN_SVIDEO: 698 v4l2_fwnode_connector_parse_analog(connector_node, connector); 699 break; 700 /* Avoid compiler warnings */ 701 case V4L2_CONN_UNKNOWN: 702 break; 703 } 704 705 out: 706 fwnode_handle_put(connector_node); 707 708 return err; 709 } 710 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse); 711 712 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, 713 struct v4l2_fwnode_connector *connector) 714 { 715 struct fwnode_handle *connector_ep; 716 struct v4l2_connector_link *link; 717 int err; 718 719 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN) 720 return -EINVAL; 721 722 connector_ep = fwnode_graph_get_remote_endpoint(fwnode); 723 if (!connector_ep) 724 return -ENOTCONN; 725 726 link = kzalloc(sizeof(*link), GFP_KERNEL); 727 if (!link) { 728 err = -ENOMEM; 729 goto err; 730 } 731 732 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link); 733 if (err) 734 goto err; 735 736 fwnode_handle_put(connector_ep); 737 738 list_add(&link->head, &connector->links); 739 connector->nr_of_links++; 740 741 return 0; 742 743 err: 744 kfree(link); 745 fwnode_handle_put(connector_ep); 746 747 return err; 748 } 749 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link); 750 751 int v4l2_fwnode_device_parse(struct device *dev, 752 struct v4l2_fwnode_device_properties *props) 753 { 754 struct fwnode_handle *fwnode = dev_fwnode(dev); 755 u32 val; 756 int ret; 757 758 memset(props, 0, sizeof(*props)); 759 760 props->orientation = V4L2_FWNODE_PROPERTY_UNSET; 761 ret = fwnode_property_read_u32(fwnode, "orientation", &val); 762 if (!ret) { 763 switch (val) { 764 case V4L2_FWNODE_ORIENTATION_FRONT: 765 case V4L2_FWNODE_ORIENTATION_BACK: 766 case V4L2_FWNODE_ORIENTATION_EXTERNAL: 767 break; 768 default: 769 dev_warn(dev, "Unsupported device orientation: %u\n", val); 770 return -EINVAL; 771 } 772 773 props->orientation = val; 774 dev_dbg(dev, "device orientation: %u\n", val); 775 } 776 777 props->rotation = V4L2_FWNODE_PROPERTY_UNSET; 778 ret = fwnode_property_read_u32(fwnode, "rotation", &val); 779 if (!ret) { 780 if (val >= 360) { 781 dev_warn(dev, "Unsupported device rotation: %u\n", val); 782 return -EINVAL; 783 } 784 785 props->rotation = val; 786 dev_dbg(dev, "device rotation: %u\n", val); 787 } 788 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse); 792 793 static int 794 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev, 795 struct v4l2_async_notifier *notifier, 796 struct fwnode_handle *endpoint, 797 unsigned int asd_struct_size, 798 parse_endpoint_func parse_endpoint) 799 { 800 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 }; 801 struct v4l2_async_subdev *asd; 802 int ret; 803 804 asd = kzalloc(asd_struct_size, GFP_KERNEL); 805 if (!asd) 806 return -ENOMEM; 807 808 asd->match_type = V4L2_ASYNC_MATCH_FWNODE; 809 asd->match.fwnode = 810 fwnode_graph_get_remote_port_parent(endpoint); 811 if (!asd->match.fwnode) { 812 dev_dbg(dev, "no remote endpoint found\n"); 813 ret = -ENOTCONN; 814 goto out_err; 815 } 816 817 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep); 818 if (ret) { 819 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n", 820 ret); 821 goto out_err; 822 } 823 824 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0; 825 if (ret == -ENOTCONN) 826 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port, 827 vep.base.id); 828 else if (ret < 0) 829 dev_warn(dev, 830 "driver could not parse port@%u/endpoint@%u (%d)\n", 831 vep.base.port, vep.base.id, ret); 832 v4l2_fwnode_endpoint_free(&vep); 833 if (ret < 0) 834 goto out_err; 835 836 ret = v4l2_async_notifier_add_subdev(notifier, asd); 837 if (ret < 0) { 838 /* not an error if asd already exists */ 839 if (ret == -EEXIST) 840 ret = 0; 841 goto out_err; 842 } 843 844 return 0; 845 846 out_err: 847 fwnode_handle_put(asd->match.fwnode); 848 kfree(asd); 849 850 return ret == -ENOTCONN ? 0 : ret; 851 } 852 853 static int 854 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev, 855 struct v4l2_async_notifier *notifier, 856 size_t asd_struct_size, 857 unsigned int port, 858 bool has_port, 859 parse_endpoint_func parse_endpoint) 860 { 861 struct fwnode_handle *fwnode; 862 int ret = 0; 863 864 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev))) 865 return -EINVAL; 866 867 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) { 868 struct fwnode_handle *dev_fwnode; 869 bool is_available; 870 871 dev_fwnode = fwnode_graph_get_port_parent(fwnode); 872 is_available = fwnode_device_is_available(dev_fwnode); 873 fwnode_handle_put(dev_fwnode); 874 if (!is_available) 875 continue; 876 877 if (has_port) { 878 struct fwnode_endpoint ep; 879 880 ret = fwnode_graph_parse_endpoint(fwnode, &ep); 881 if (ret) 882 break; 883 884 if (ep.port != port) 885 continue; 886 } 887 888 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev, 889 notifier, 890 fwnode, 891 asd_struct_size, 892 parse_endpoint); 893 if (ret < 0) 894 break; 895 } 896 897 fwnode_handle_put(fwnode); 898 899 return ret; 900 } 901 902 int 903 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev, 904 struct v4l2_async_notifier *notifier, 905 size_t asd_struct_size, 906 parse_endpoint_func parse_endpoint) 907 { 908 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier, 909 asd_struct_size, 0, 910 false, parse_endpoint); 911 } 912 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints); 913 914 /* 915 * v4l2_fwnode_reference_parse - parse references for async sub-devices 916 * @dev: the device node the properties of which are parsed for references 917 * @notifier: the async notifier where the async subdevs will be added 918 * @prop: the name of the property 919 * 920 * Return: 0 on success 921 * -ENOENT if no entries were found 922 * -ENOMEM if memory allocation failed 923 * -EINVAL if property parsing failed 924 */ 925 static int v4l2_fwnode_reference_parse(struct device *dev, 926 struct v4l2_async_notifier *notifier, 927 const char *prop) 928 { 929 struct fwnode_reference_args args; 930 unsigned int index; 931 int ret; 932 933 for (index = 0; 934 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), 935 prop, NULL, 0, 936 index, &args)); 937 index++) 938 fwnode_handle_put(args.fwnode); 939 940 if (!index) 941 return -ENOENT; 942 943 /* 944 * Note that right now both -ENODATA and -ENOENT may signal 945 * out-of-bounds access. Return the error in cases other than that. 946 */ 947 if (ret != -ENOENT && ret != -ENODATA) 948 return ret; 949 950 for (index = 0; 951 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL, 952 0, index, &args); 953 index++) { 954 struct v4l2_async_subdev *asd; 955 956 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, 957 args.fwnode, 958 sizeof(*asd)); 959 fwnode_handle_put(args.fwnode); 960 if (IS_ERR(asd)) { 961 /* not an error if asd already exists */ 962 if (PTR_ERR(asd) == -EEXIST) 963 continue; 964 965 return PTR_ERR(asd); 966 } 967 } 968 969 return 0; 970 } 971 972 /* 973 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer 974 * arguments 975 * @fwnode: fwnode to read @prop from 976 * @notifier: notifier for @dev 977 * @prop: the name of the property 978 * @index: the index of the reference to get 979 * @props: the array of integer property names 980 * @nprops: the number of integer property names in @nprops 981 * 982 * First find an fwnode referred to by the reference at @index in @prop. 983 * 984 * Then under that fwnode, @nprops times, for each property in @props, 985 * iteratively follow child nodes starting from fwnode such that they have the 986 * property in @props array at the index of the child node distance from the 987 * root node and the value of that property matching with the integer argument 988 * of the reference, at the same index. 989 * 990 * The child fwnode reached at the end of the iteration is then returned to the 991 * caller. 992 * 993 * The core reason for this is that you cannot refer to just any node in ACPI. 994 * So to refer to an endpoint (easy in DT) you need to refer to a device, then 995 * provide a list of (property name, property value) tuples where each tuple 996 * uniquely identifies a child node. The first tuple identifies a child directly 997 * underneath the device fwnode, the next tuple identifies a child node 998 * underneath the fwnode identified by the previous tuple, etc. until you 999 * reached the fwnode you need. 1000 * 1001 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A 1002 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under 1003 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt, 1004 * data-node-references.txt and leds.txt . 1005 * 1006 * Scope (\_SB.PCI0.I2C2) 1007 * { 1008 * Device (CAM0) 1009 * { 1010 * Name (_DSD, Package () { 1011 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1012 * Package () { 1013 * Package () { 1014 * "compatible", 1015 * Package () { "nokia,smia" } 1016 * }, 1017 * }, 1018 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1019 * Package () { 1020 * Package () { "port0", "PRT0" }, 1021 * } 1022 * }) 1023 * Name (PRT0, Package() { 1024 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1025 * Package () { 1026 * Package () { "port", 0 }, 1027 * }, 1028 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1029 * Package () { 1030 * Package () { "endpoint0", "EP00" }, 1031 * } 1032 * }) 1033 * Name (EP00, Package() { 1034 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1035 * Package () { 1036 * Package () { "endpoint", 0 }, 1037 * Package () { 1038 * "remote-endpoint", 1039 * Package() { 1040 * \_SB.PCI0.ISP, 4, 0 1041 * } 1042 * }, 1043 * } 1044 * }) 1045 * } 1046 * } 1047 * 1048 * Scope (\_SB.PCI0) 1049 * { 1050 * Device (ISP) 1051 * { 1052 * Name (_DSD, Package () { 1053 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1054 * Package () { 1055 * Package () { "port4", "PRT4" }, 1056 * } 1057 * }) 1058 * 1059 * Name (PRT4, Package() { 1060 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1061 * Package () { 1062 * Package () { "port", 4 }, 1063 * }, 1064 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1065 * Package () { 1066 * Package () { "endpoint0", "EP40" }, 1067 * } 1068 * }) 1069 * 1070 * Name (EP40, Package() { 1071 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1072 * Package () { 1073 * Package () { "endpoint", 0 }, 1074 * Package () { 1075 * "remote-endpoint", 1076 * Package () { 1077 * \_SB.PCI0.I2C2.CAM0, 1078 * 0, 0 1079 * } 1080 * }, 1081 * } 1082 * }) 1083 * } 1084 * } 1085 * 1086 * From the EP40 node under ISP device, you could parse the graph remote 1087 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments: 1088 * 1089 * @fwnode: fwnode referring to EP40 under ISP. 1090 * @prop: "remote-endpoint" 1091 * @index: 0 1092 * @props: "port", "endpoint" 1093 * @nprops: 2 1094 * 1095 * And you'd get back fwnode referring to EP00 under CAM0. 1096 * 1097 * The same works the other way around: if you use EP00 under CAM0 as the 1098 * fwnode, you'll get fwnode referring to EP40 under ISP. 1099 * 1100 * The same example in DT syntax would look like this: 1101 * 1102 * cam: cam0 { 1103 * compatible = "nokia,smia"; 1104 * 1105 * port { 1106 * port = <0>; 1107 * endpoint { 1108 * endpoint = <0>; 1109 * remote-endpoint = <&isp 4 0>; 1110 * }; 1111 * }; 1112 * }; 1113 * 1114 * isp: isp { 1115 * ports { 1116 * port@4 { 1117 * port = <4>; 1118 * endpoint { 1119 * endpoint = <0>; 1120 * remote-endpoint = <&cam 0 0>; 1121 * }; 1122 * }; 1123 * }; 1124 * }; 1125 * 1126 * Return: 0 on success 1127 * -ENOENT if no entries (or the property itself) were found 1128 * -EINVAL if property parsing otherwise failed 1129 * -ENOMEM if memory allocation failed 1130 */ 1131 static struct fwnode_handle * 1132 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode, 1133 const char *prop, 1134 unsigned int index, 1135 const char * const *props, 1136 unsigned int nprops) 1137 { 1138 struct fwnode_reference_args fwnode_args; 1139 u64 *args = fwnode_args.args; 1140 struct fwnode_handle *child; 1141 int ret; 1142 1143 /* 1144 * Obtain remote fwnode as well as the integer arguments. 1145 * 1146 * Note that right now both -ENODATA and -ENOENT may signal 1147 * out-of-bounds access. Return -ENOENT in that case. 1148 */ 1149 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops, 1150 index, &fwnode_args); 1151 if (ret) 1152 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret); 1153 1154 /* 1155 * Find a node in the tree under the referred fwnode corresponding to 1156 * the integer arguments. 1157 */ 1158 fwnode = fwnode_args.fwnode; 1159 while (nprops--) { 1160 u32 val; 1161 1162 /* Loop over all child nodes under fwnode. */ 1163 fwnode_for_each_child_node(fwnode, child) { 1164 if (fwnode_property_read_u32(child, *props, &val)) 1165 continue; 1166 1167 /* Found property, see if its value matches. */ 1168 if (val == *args) 1169 break; 1170 } 1171 1172 fwnode_handle_put(fwnode); 1173 1174 /* No property found; return an error here. */ 1175 if (!child) { 1176 fwnode = ERR_PTR(-ENOENT); 1177 break; 1178 } 1179 1180 props++; 1181 args++; 1182 fwnode = child; 1183 } 1184 1185 return fwnode; 1186 } 1187 1188 struct v4l2_fwnode_int_props { 1189 const char *name; 1190 const char * const *props; 1191 unsigned int nprops; 1192 }; 1193 1194 /* 1195 * v4l2_fwnode_reference_parse_int_props - parse references for async 1196 * sub-devices 1197 * @dev: struct device pointer 1198 * @notifier: notifier for @dev 1199 * @prop: the name of the property 1200 * @props: the array of integer property names 1201 * @nprops: the number of integer properties 1202 * 1203 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in 1204 * property @prop with integer arguments with child nodes matching in properties 1205 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier 1206 * accordingly. 1207 * 1208 * While it is technically possible to use this function on DT, it is only 1209 * meaningful on ACPI. On Device tree you can refer to any node in the tree but 1210 * on ACPI the references are limited to devices. 1211 * 1212 * Return: 0 on success 1213 * -ENOENT if no entries (or the property itself) were found 1214 * -EINVAL if property parsing otherwisefailed 1215 * -ENOMEM if memory allocation failed 1216 */ 1217 static int 1218 v4l2_fwnode_reference_parse_int_props(struct device *dev, 1219 struct v4l2_async_notifier *notifier, 1220 const struct v4l2_fwnode_int_props *p) 1221 { 1222 struct fwnode_handle *fwnode; 1223 unsigned int index; 1224 int ret; 1225 const char *prop = p->name; 1226 const char * const *props = p->props; 1227 unsigned int nprops = p->nprops; 1228 1229 index = 0; 1230 do { 1231 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1232 prop, index, 1233 props, nprops); 1234 if (IS_ERR(fwnode)) { 1235 /* 1236 * Note that right now both -ENODATA and -ENOENT may 1237 * signal out-of-bounds access. Return the error in 1238 * cases other than that. 1239 */ 1240 if (PTR_ERR(fwnode) != -ENOENT && 1241 PTR_ERR(fwnode) != -ENODATA) 1242 return PTR_ERR(fwnode); 1243 break; 1244 } 1245 fwnode_handle_put(fwnode); 1246 index++; 1247 } while (1); 1248 1249 for (index = 0; 1250 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1251 prop, index, 1252 props, 1253 nprops))); 1254 index++) { 1255 struct v4l2_async_subdev *asd; 1256 1257 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode, 1258 sizeof(*asd)); 1259 fwnode_handle_put(fwnode); 1260 if (IS_ERR(asd)) { 1261 ret = PTR_ERR(asd); 1262 /* not an error if asd already exists */ 1263 if (ret == -EEXIST) 1264 continue; 1265 1266 return PTR_ERR(asd); 1267 } 1268 } 1269 1270 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode); 1271 } 1272 1273 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev, 1274 struct v4l2_async_notifier *notifier) 1275 { 1276 static const char * const led_props[] = { "led" }; 1277 static const struct v4l2_fwnode_int_props props[] = { 1278 { "flash-leds", led_props, ARRAY_SIZE(led_props) }, 1279 { "lens-focus", NULL, 0 }, 1280 }; 1281 unsigned int i; 1282 1283 for (i = 0; i < ARRAY_SIZE(props); i++) { 1284 int ret; 1285 1286 if (props[i].props && is_acpi_node(dev_fwnode(dev))) 1287 ret = v4l2_fwnode_reference_parse_int_props(dev, 1288 notifier, 1289 &props[i]); 1290 else 1291 ret = v4l2_fwnode_reference_parse(dev, notifier, 1292 props[i].name); 1293 if (ret && ret != -ENOENT) { 1294 dev_warn(dev, "parsing property \"%s\" failed (%d)\n", 1295 props[i].name, ret); 1296 return ret; 1297 } 1298 } 1299 1300 return 0; 1301 } 1302 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common); 1303 1304 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd) 1305 { 1306 struct v4l2_async_notifier *notifier; 1307 int ret; 1308 1309 if (WARN_ON(!sd->dev)) 1310 return -ENODEV; 1311 1312 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL); 1313 if (!notifier) 1314 return -ENOMEM; 1315 1316 v4l2_async_notifier_init(notifier); 1317 1318 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev, 1319 notifier); 1320 if (ret < 0) 1321 goto out_cleanup; 1322 1323 ret = v4l2_async_subdev_notifier_register(sd, notifier); 1324 if (ret < 0) 1325 goto out_cleanup; 1326 1327 ret = v4l2_async_register_subdev(sd); 1328 if (ret < 0) 1329 goto out_unregister; 1330 1331 sd->subdev_notifier = notifier; 1332 1333 return 0; 1334 1335 out_unregister: 1336 v4l2_async_notifier_unregister(notifier); 1337 1338 out_cleanup: 1339 v4l2_async_notifier_cleanup(notifier); 1340 kfree(notifier); 1341 1342 return ret; 1343 } 1344 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common); 1345 1346 MODULE_LICENSE("GPL"); 1347 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); 1348 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>"); 1349 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1350