1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * V4L2 fwnode binding parsing library
4  *
5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
6  * formerly was located in v4l2-of.c.
7  *
8  * Copyright (c) 2016 Intel Corporation.
9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13  *
14  * Copyright (C) 2012 Renesas Electronics Corp.
15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16  */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30 
31 enum v4l2_fwnode_bus_type {
32 	V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 	V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 	V4L2_FWNODE_BUS_TYPE_CSI1,
35 	V4L2_FWNODE_BUS_TYPE_CCP2,
36 	V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 	V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 	V4L2_FWNODE_BUS_TYPE_BT656,
39 	NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41 
42 static const struct v4l2_fwnode_bus_conv {
43 	enum v4l2_fwnode_bus_type fwnode_bus_type;
44 	enum v4l2_mbus_type mbus_type;
45 	const char *name;
46 } buses[] = {
47 	{
48 		V4L2_FWNODE_BUS_TYPE_GUESS,
49 		V4L2_MBUS_UNKNOWN,
50 		"not specified",
51 	}, {
52 		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 		V4L2_MBUS_CSI2_CPHY,
54 		"MIPI CSI-2 C-PHY",
55 	}, {
56 		V4L2_FWNODE_BUS_TYPE_CSI1,
57 		V4L2_MBUS_CSI1,
58 		"MIPI CSI-1",
59 	}, {
60 		V4L2_FWNODE_BUS_TYPE_CCP2,
61 		V4L2_MBUS_CCP2,
62 		"compact camera port 2",
63 	}, {
64 		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 		V4L2_MBUS_CSI2_DPHY,
66 		"MIPI CSI-2 D-PHY",
67 	}, {
68 		V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 		V4L2_MBUS_PARALLEL,
70 		"parallel",
71 	}, {
72 		V4L2_FWNODE_BUS_TYPE_BT656,
73 		V4L2_MBUS_BT656,
74 		"Bt.656",
75 	}
76 };
77 
78 static const struct v4l2_fwnode_bus_conv *
79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 	unsigned int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(buses); i++)
84 		if (buses[i].fwnode_bus_type == type)
85 			return &buses[i];
86 
87 	return NULL;
88 }
89 
90 static enum v4l2_mbus_type
91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 	const struct v4l2_fwnode_bus_conv *conv =
94 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95 
96 	return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
97 }
98 
99 static const char *
100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 	const struct v4l2_fwnode_bus_conv *conv =
103 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104 
105 	return conv ? conv->name : "not found";
106 }
107 
108 static const struct v4l2_fwnode_bus_conv *
109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 	unsigned int i;
112 
113 	for (i = 0; i < ARRAY_SIZE(buses); i++)
114 		if (buses[i].mbus_type == type)
115 			return &buses[i];
116 
117 	return NULL;
118 }
119 
120 static const char *
121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 	const struct v4l2_fwnode_bus_conv *conv =
124 		get_v4l2_fwnode_bus_conv_by_mbus(type);
125 
126 	return conv ? conv->name : "not found";
127 }
128 
129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 					       struct v4l2_fwnode_endpoint *vep,
131 					       enum v4l2_mbus_type bus_type)
132 {
133 	struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 	bool have_clk_lane = false, have_data_lanes = false,
135 		have_lane_polarities = false;
136 	unsigned int flags = 0, lanes_used = 0;
137 	u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 	u32 clock_lane = 0;
139 	unsigned int num_data_lanes = 0;
140 	bool use_default_lane_mapping = false;
141 	unsigned int i;
142 	u32 v;
143 	int rval;
144 
145 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 	    bus_type == V4L2_MBUS_CSI2_CPHY) {
147 		use_default_lane_mapping = true;
148 
149 		num_data_lanes = min_t(u32, bus->num_data_lanes,
150 				       V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151 
152 		clock_lane = bus->clock_lane;
153 		if (clock_lane)
154 			use_default_lane_mapping = false;
155 
156 		for (i = 0; i < num_data_lanes; i++) {
157 			array[i] = bus->data_lanes[i];
158 			if (array[i])
159 				use_default_lane_mapping = false;
160 		}
161 
162 		if (use_default_lane_mapping)
163 			pr_debug("no lane mapping given, using defaults\n");
164 	}
165 
166 	rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 	if (rval > 0) {
168 		num_data_lanes =
169 			min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170 
171 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 					       num_data_lanes);
173 
174 		have_data_lanes = true;
175 		if (use_default_lane_mapping) {
176 			pr_debug("data-lanes property exists; disabling default mapping\n");
177 			use_default_lane_mapping = false;
178 		}
179 	}
180 
181 	for (i = 0; i < num_data_lanes; i++) {
182 		if (lanes_used & BIT(array[i])) {
183 			if (have_data_lanes || !use_default_lane_mapping)
184 				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 					array[i]);
186 			use_default_lane_mapping = true;
187 		}
188 		lanes_used |= BIT(array[i]);
189 
190 		if (have_data_lanes)
191 			pr_debug("lane %u position %u\n", i, array[i]);
192 	}
193 
194 	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 	if (rval > 0) {
196 		if (rval != 1 + num_data_lanes /* clock+data */) {
197 			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 				1 + num_data_lanes, rval);
199 			return -EINVAL;
200 		}
201 
202 		have_lane_polarities = true;
203 	}
204 
205 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 		clock_lane = v;
207 		pr_debug("clock lane position %u\n", v);
208 		have_clk_lane = true;
209 	}
210 
211 	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 	    !use_default_lane_mapping) {
213 		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 			v);
215 		use_default_lane_mapping = true;
216 	}
217 
218 	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 		pr_debug("non-continuous clock\n");
221 	} else {
222 		flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 	}
224 
225 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 	    bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 	    have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 		/* Only D-PHY has a clock lane. */
229 		unsigned int dfl_data_lane_index =
230 			bus_type == V4L2_MBUS_CSI2_DPHY;
231 
232 		bus->flags = flags;
233 		if (bus_type == V4L2_MBUS_UNKNOWN)
234 			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 		bus->num_data_lanes = num_data_lanes;
236 
237 		if (use_default_lane_mapping) {
238 			bus->clock_lane = 0;
239 			for (i = 0; i < num_data_lanes; i++)
240 				bus->data_lanes[i] = dfl_data_lane_index + i;
241 		} else {
242 			bus->clock_lane = clock_lane;
243 			for (i = 0; i < num_data_lanes; i++)
244 				bus->data_lanes[i] = array[i];
245 		}
246 
247 		if (have_lane_polarities) {
248 			fwnode_property_read_u32_array(fwnode,
249 						       "lane-polarities", array,
250 						       1 + num_data_lanes);
251 
252 			for (i = 0; i < 1 + num_data_lanes; i++) {
253 				bus->lane_polarities[i] = array[i];
254 				pr_debug("lane %u polarity %sinverted",
255 					 i, array[i] ? "" : "not ");
256 			}
257 		} else {
258 			pr_debug("no lane polarities defined, assuming not inverted\n");
259 		}
260 	}
261 
262 	return 0;
263 }
264 
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
266 			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
267 			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
268 			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
269 			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
270 			     V4L2_MBUS_FIELD_EVEN_LOW)
271 
272 static void
273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 					struct v4l2_fwnode_endpoint *vep,
275 					enum v4l2_mbus_type bus_type)
276 {
277 	struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 	unsigned int flags = 0;
279 	u32 v;
280 
281 	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 		flags = bus->flags;
283 
284 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 		pr_debug("hsync-active %s\n", v ? "high" : "low");
290 	}
291 
292 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 		pr_debug("vsync-active %s\n", v ? "high" : "low");
298 	}
299 
300 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 			   V4L2_MBUS_FIELD_EVEN_LOW);
303 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 			V4L2_MBUS_FIELD_EVEN_LOW;
305 		pr_debug("field-even-active %s\n", v ? "high" : "low");
306 	}
307 
308 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 			   V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 			V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 		pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 	}
315 
316 	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 			   V4L2_MBUS_DATA_ACTIVE_LOW);
319 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 			V4L2_MBUS_DATA_ACTIVE_LOW;
321 		pr_debug("data-active %s\n", v ? "high" : "low");
322 	}
323 
324 	if (fwnode_property_present(fwnode, "slave-mode")) {
325 		pr_debug("slave mode\n");
326 		flags &= ~V4L2_MBUS_MASTER;
327 		flags |= V4L2_MBUS_SLAVE;
328 	} else {
329 		flags &= ~V4L2_MBUS_SLAVE;
330 		flags |= V4L2_MBUS_MASTER;
331 	}
332 
333 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 		bus->bus_width = v;
335 		pr_debug("bus-width %u\n", v);
336 	}
337 
338 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 		bus->data_shift = v;
340 		pr_debug("data-shift %u\n", v);
341 	}
342 
343 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 	}
350 
351 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 			   V4L2_MBUS_DATA_ENABLE_LOW);
354 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 			V4L2_MBUS_DATA_ENABLE_LOW;
356 		pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 	}
358 
359 	switch (bus_type) {
360 	default:
361 		bus->flags = flags;
362 		if (flags & PARALLEL_MBUS_FLAGS)
363 			vep->bus_type = V4L2_MBUS_PARALLEL;
364 		else
365 			vep->bus_type = V4L2_MBUS_BT656;
366 		break;
367 	case V4L2_MBUS_PARALLEL:
368 		vep->bus_type = V4L2_MBUS_PARALLEL;
369 		bus->flags = flags;
370 		break;
371 	case V4L2_MBUS_BT656:
372 		vep->bus_type = V4L2_MBUS_BT656;
373 		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 		break;
375 	}
376 }
377 
378 static void
379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 				    struct v4l2_fwnode_endpoint *vep,
381 				    enum v4l2_mbus_type bus_type)
382 {
383 	struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 	u32 v;
385 
386 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 		bus->clock_inv = v;
388 		pr_debug("clock-inv %u\n", v);
389 	}
390 
391 	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 		bus->strobe = v;
393 		pr_debug("strobe %u\n", v);
394 	}
395 
396 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 		bus->data_lane = v;
398 		pr_debug("data-lanes %u\n", v);
399 	}
400 
401 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 		bus->clock_lane = v;
403 		pr_debug("clock-lanes %u\n", v);
404 	}
405 
406 	if (bus_type == V4L2_MBUS_CCP2)
407 		vep->bus_type = V4L2_MBUS_CCP2;
408 	else
409 		vep->bus_type = V4L2_MBUS_CSI1;
410 }
411 
412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 					struct v4l2_fwnode_endpoint *vep)
414 {
415 	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 	enum v4l2_mbus_type mbus_type;
417 	int rval;
418 
419 	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
420 
421 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
422 	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
423 		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
424 		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
425 		 vep->bus_type);
426 	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
427 	if (mbus_type == V4L2_MBUS_INVALID) {
428 		pr_debug("unsupported bus type %u\n", bus_type);
429 		return -EINVAL;
430 	}
431 
432 	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
433 		if (mbus_type != V4L2_MBUS_UNKNOWN &&
434 		    vep->bus_type != mbus_type) {
435 			pr_debug("expecting bus type %s\n",
436 				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
437 			return -ENXIO;
438 		}
439 	} else {
440 		vep->bus_type = mbus_type;
441 	}
442 
443 	switch (vep->bus_type) {
444 	case V4L2_MBUS_UNKNOWN:
445 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
446 							   V4L2_MBUS_UNKNOWN);
447 		if (rval)
448 			return rval;
449 
450 		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
451 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
452 								V4L2_MBUS_UNKNOWN);
453 
454 		pr_debug("assuming media bus type %s (%u)\n",
455 			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
456 			 vep->bus_type);
457 
458 		break;
459 	case V4L2_MBUS_CCP2:
460 	case V4L2_MBUS_CSI1:
461 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
462 
463 		break;
464 	case V4L2_MBUS_CSI2_DPHY:
465 	case V4L2_MBUS_CSI2_CPHY:
466 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
467 							   vep->bus_type);
468 		if (rval)
469 			return rval;
470 
471 		break;
472 	case V4L2_MBUS_PARALLEL:
473 	case V4L2_MBUS_BT656:
474 		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
475 							vep->bus_type);
476 
477 		break;
478 	default:
479 		pr_warn("unsupported bus type %u\n", mbus_type);
480 		return -EINVAL;
481 	}
482 
483 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
484 
485 	return 0;
486 }
487 
488 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
489 			       struct v4l2_fwnode_endpoint *vep)
490 {
491 	int ret;
492 
493 	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
494 
495 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
496 
497 	return ret;
498 }
499 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
500 
501 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
502 {
503 	if (IS_ERR_OR_NULL(vep))
504 		return;
505 
506 	kfree(vep->link_frequencies);
507 	vep->link_frequencies = NULL;
508 }
509 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
510 
511 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
512 				     struct v4l2_fwnode_endpoint *vep)
513 {
514 	int rval;
515 
516 	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
517 	if (rval < 0)
518 		return rval;
519 
520 	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
521 	if (rval > 0) {
522 		unsigned int i;
523 
524 		vep->link_frequencies =
525 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
526 				      GFP_KERNEL);
527 		if (!vep->link_frequencies)
528 			return -ENOMEM;
529 
530 		vep->nr_of_link_frequencies = rval;
531 
532 		rval = fwnode_property_read_u64_array(fwnode,
533 						      "link-frequencies",
534 						      vep->link_frequencies,
535 						      vep->nr_of_link_frequencies);
536 		if (rval < 0) {
537 			v4l2_fwnode_endpoint_free(vep);
538 			return rval;
539 		}
540 
541 		for (i = 0; i < vep->nr_of_link_frequencies; i++)
542 			pr_debug("link-frequencies %u value %llu\n", i,
543 				 vep->link_frequencies[i]);
544 	}
545 
546 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
547 
548 	return 0;
549 }
550 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
551 
552 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
553 			   struct v4l2_fwnode_link *link)
554 {
555 	struct fwnode_endpoint fwep;
556 
557 	memset(link, 0, sizeof(*link));
558 
559 	fwnode_graph_parse_endpoint(fwnode, &fwep);
560 	link->local_id = fwep.id;
561 	link->local_port = fwep.port;
562 	link->local_node = fwnode_graph_get_port_parent(fwnode);
563 
564 	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
565 	if (!fwnode) {
566 		fwnode_handle_put(fwnode);
567 		return -ENOLINK;
568 	}
569 
570 	fwnode_graph_parse_endpoint(fwnode, &fwep);
571 	link->remote_id = fwep.id;
572 	link->remote_port = fwep.port;
573 	link->remote_node = fwnode_graph_get_port_parent(fwnode);
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
578 
579 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
580 {
581 	fwnode_handle_put(link->local_node);
582 	fwnode_handle_put(link->remote_node);
583 }
584 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
585 
586 static const struct v4l2_fwnode_connector_conv {
587 	enum v4l2_connector_type type;
588 	const char *compatible;
589 } connectors[] = {
590 	{
591 		.type = V4L2_CONN_COMPOSITE,
592 		.compatible = "composite-video-connector",
593 	}, {
594 		.type = V4L2_CONN_SVIDEO,
595 		.compatible = "svideo-connector",
596 	},
597 };
598 
599 static enum v4l2_connector_type
600 v4l2_fwnode_string_to_connector_type(const char *con_str)
601 {
602 	unsigned int i;
603 
604 	for (i = 0; i < ARRAY_SIZE(connectors); i++)
605 		if (!strcmp(con_str, connectors[i].compatible))
606 			return connectors[i].type;
607 
608 	return V4L2_CONN_UNKNOWN;
609 }
610 
611 static void
612 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
613 				   struct v4l2_fwnode_connector *vc)
614 {
615 	u32 stds;
616 	int ret;
617 
618 	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
619 
620 	/* The property is optional. */
621 	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
622 }
623 
624 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
625 {
626 	struct v4l2_connector_link *link, *tmp;
627 
628 	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
629 		return;
630 
631 	list_for_each_entry_safe(link, tmp, &connector->links, head) {
632 		v4l2_fwnode_put_link(&link->fwnode_link);
633 		list_del(&link->head);
634 		kfree(link);
635 	}
636 
637 	kfree(connector->label);
638 	connector->label = NULL;
639 	connector->type = V4L2_CONN_UNKNOWN;
640 }
641 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
642 
643 static enum v4l2_connector_type
644 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
645 {
646 	const char *type_name;
647 	int err;
648 
649 	if (!fwnode)
650 		return V4L2_CONN_UNKNOWN;
651 
652 	/* The connector-type is stored within the compatible string. */
653 	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
654 	if (err)
655 		return V4L2_CONN_UNKNOWN;
656 
657 	return v4l2_fwnode_string_to_connector_type(type_name);
658 }
659 
660 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
661 				struct v4l2_fwnode_connector *connector)
662 {
663 	struct fwnode_handle *connector_node;
664 	enum v4l2_connector_type connector_type;
665 	const char *label;
666 	int err;
667 
668 	if (!fwnode)
669 		return -EINVAL;
670 
671 	memset(connector, 0, sizeof(*connector));
672 
673 	INIT_LIST_HEAD(&connector->links);
674 
675 	connector_node = fwnode_graph_get_port_parent(fwnode);
676 	connector_type = v4l2_fwnode_get_connector_type(connector_node);
677 	if (connector_type == V4L2_CONN_UNKNOWN) {
678 		fwnode_handle_put(connector_node);
679 		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
680 		connector_type = v4l2_fwnode_get_connector_type(connector_node);
681 	}
682 
683 	if (connector_type == V4L2_CONN_UNKNOWN) {
684 		pr_err("Unknown connector type\n");
685 		err = -ENOTCONN;
686 		goto out;
687 	}
688 
689 	connector->type = connector_type;
690 	connector->name = fwnode_get_name(connector_node);
691 	err = fwnode_property_read_string(connector_node, "label", &label);
692 	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
693 
694 	/* Parse the connector specific properties. */
695 	switch (connector->type) {
696 	case V4L2_CONN_COMPOSITE:
697 	case V4L2_CONN_SVIDEO:
698 		v4l2_fwnode_connector_parse_analog(connector_node, connector);
699 		break;
700 	/* Avoid compiler warnings */
701 	case V4L2_CONN_UNKNOWN:
702 		break;
703 	}
704 
705 out:
706 	fwnode_handle_put(connector_node);
707 
708 	return err;
709 }
710 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
711 
712 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
713 				   struct v4l2_fwnode_connector *connector)
714 {
715 	struct fwnode_handle *connector_ep;
716 	struct v4l2_connector_link *link;
717 	int err;
718 
719 	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
720 		return -EINVAL;
721 
722 	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
723 	if (!connector_ep)
724 		return -ENOTCONN;
725 
726 	link = kzalloc(sizeof(*link), GFP_KERNEL);
727 	if (!link) {
728 		err = -ENOMEM;
729 		goto err;
730 	}
731 
732 	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
733 	if (err)
734 		goto err;
735 
736 	fwnode_handle_put(connector_ep);
737 
738 	list_add(&link->head, &connector->links);
739 	connector->nr_of_links++;
740 
741 	return 0;
742 
743 err:
744 	kfree(link);
745 	fwnode_handle_put(connector_ep);
746 
747 	return err;
748 }
749 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
750 
751 int v4l2_fwnode_device_parse(struct device *dev,
752 			     struct v4l2_fwnode_device_properties *props)
753 {
754 	struct fwnode_handle *fwnode = dev_fwnode(dev);
755 	u32 val;
756 	int ret;
757 
758 	memset(props, 0, sizeof(*props));
759 
760 	props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
761 	ret = fwnode_property_read_u32(fwnode, "orientation", &val);
762 	if (!ret) {
763 		switch (val) {
764 		case V4L2_FWNODE_ORIENTATION_FRONT:
765 		case V4L2_FWNODE_ORIENTATION_BACK:
766 		case V4L2_FWNODE_ORIENTATION_EXTERNAL:
767 			break;
768 		default:
769 			dev_warn(dev, "Unsupported device orientation: %u\n", val);
770 			return -EINVAL;
771 		}
772 
773 		props->orientation = val;
774 		dev_dbg(dev, "device orientation: %u\n", val);
775 	}
776 
777 	props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
778 	ret = fwnode_property_read_u32(fwnode, "rotation", &val);
779 	if (!ret) {
780 		if (val >= 360) {
781 			dev_warn(dev, "Unsupported device rotation: %u\n", val);
782 			return -EINVAL;
783 		}
784 
785 		props->rotation = val;
786 		dev_dbg(dev, "device rotation: %u\n", val);
787 	}
788 
789 	return 0;
790 }
791 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
792 
793 static int
794 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
795 					  struct v4l2_async_notifier *notifier,
796 					  struct fwnode_handle *endpoint,
797 					  unsigned int asd_struct_size,
798 					  parse_endpoint_func parse_endpoint)
799 {
800 	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
801 	struct v4l2_async_subdev *asd;
802 	int ret;
803 
804 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
805 	if (!asd)
806 		return -ENOMEM;
807 
808 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
809 	asd->match.fwnode =
810 		fwnode_graph_get_remote_port_parent(endpoint);
811 	if (!asd->match.fwnode) {
812 		dev_dbg(dev, "no remote endpoint found\n");
813 		ret = -ENOTCONN;
814 		goto out_err;
815 	}
816 
817 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
818 	if (ret) {
819 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
820 			 ret);
821 		goto out_err;
822 	}
823 
824 	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
825 	if (ret == -ENOTCONN)
826 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
827 			vep.base.id);
828 	else if (ret < 0)
829 		dev_warn(dev,
830 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
831 			 vep.base.port, vep.base.id, ret);
832 	v4l2_fwnode_endpoint_free(&vep);
833 	if (ret < 0)
834 		goto out_err;
835 
836 	ret = v4l2_async_notifier_add_subdev(notifier, asd);
837 	if (ret < 0) {
838 		/* not an error if asd already exists */
839 		if (ret == -EEXIST)
840 			ret = 0;
841 		goto out_err;
842 	}
843 
844 	return 0;
845 
846 out_err:
847 	fwnode_handle_put(asd->match.fwnode);
848 	kfree(asd);
849 
850 	return ret == -ENOTCONN ? 0 : ret;
851 }
852 
853 static int
854 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
855 				      struct v4l2_async_notifier *notifier,
856 				      size_t asd_struct_size,
857 				      unsigned int port,
858 				      bool has_port,
859 				      parse_endpoint_func parse_endpoint)
860 {
861 	struct fwnode_handle *fwnode;
862 	int ret = 0;
863 
864 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
865 		return -EINVAL;
866 
867 	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
868 		struct fwnode_handle *dev_fwnode;
869 		bool is_available;
870 
871 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
872 		is_available = fwnode_device_is_available(dev_fwnode);
873 		fwnode_handle_put(dev_fwnode);
874 		if (!is_available)
875 			continue;
876 
877 		if (has_port) {
878 			struct fwnode_endpoint ep;
879 
880 			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
881 			if (ret)
882 				break;
883 
884 			if (ep.port != port)
885 				continue;
886 		}
887 
888 		ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
889 								notifier,
890 								fwnode,
891 								asd_struct_size,
892 								parse_endpoint);
893 		if (ret < 0)
894 			break;
895 	}
896 
897 	fwnode_handle_put(fwnode);
898 
899 	return ret;
900 }
901 
902 int
903 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
904 					   struct v4l2_async_notifier *notifier,
905 					   size_t asd_struct_size,
906 					   parse_endpoint_func parse_endpoint)
907 {
908 	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
909 						     asd_struct_size, 0,
910 						     false, parse_endpoint);
911 }
912 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
913 
914 /*
915  * v4l2_fwnode_reference_parse - parse references for async sub-devices
916  * @dev: the device node the properties of which are parsed for references
917  * @notifier: the async notifier where the async subdevs will be added
918  * @prop: the name of the property
919  *
920  * Return: 0 on success
921  *	   -ENOENT if no entries were found
922  *	   -ENOMEM if memory allocation failed
923  *	   -EINVAL if property parsing failed
924  */
925 static int v4l2_fwnode_reference_parse(struct device *dev,
926 				       struct v4l2_async_notifier *notifier,
927 				       const char *prop)
928 {
929 	struct fwnode_reference_args args;
930 	unsigned int index;
931 	int ret;
932 
933 	for (index = 0;
934 	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
935 							prop, NULL, 0,
936 							index, &args));
937 	     index++)
938 		fwnode_handle_put(args.fwnode);
939 
940 	if (!index)
941 		return -ENOENT;
942 
943 	/*
944 	 * Note that right now both -ENODATA and -ENOENT may signal
945 	 * out-of-bounds access. Return the error in cases other than that.
946 	 */
947 	if (ret != -ENOENT && ret != -ENODATA)
948 		return ret;
949 
950 	for (index = 0;
951 	     !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
952 						 0, index, &args);
953 	     index++) {
954 		struct v4l2_async_subdev *asd;
955 
956 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
957 							    args.fwnode,
958 							    sizeof(*asd));
959 		fwnode_handle_put(args.fwnode);
960 		if (IS_ERR(asd)) {
961 			/* not an error if asd already exists */
962 			if (PTR_ERR(asd) == -EEXIST)
963 				continue;
964 
965 			return PTR_ERR(asd);
966 		}
967 	}
968 
969 	return 0;
970 }
971 
972 /*
973  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
974  *					arguments
975  * @fwnode: fwnode to read @prop from
976  * @notifier: notifier for @dev
977  * @prop: the name of the property
978  * @index: the index of the reference to get
979  * @props: the array of integer property names
980  * @nprops: the number of integer property names in @nprops
981  *
982  * First find an fwnode referred to by the reference at @index in @prop.
983  *
984  * Then under that fwnode, @nprops times, for each property in @props,
985  * iteratively follow child nodes starting from fwnode such that they have the
986  * property in @props array at the index of the child node distance from the
987  * root node and the value of that property matching with the integer argument
988  * of the reference, at the same index.
989  *
990  * The child fwnode reached at the end of the iteration is then returned to the
991  * caller.
992  *
993  * The core reason for this is that you cannot refer to just any node in ACPI.
994  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
995  * provide a list of (property name, property value) tuples where each tuple
996  * uniquely identifies a child node. The first tuple identifies a child directly
997  * underneath the device fwnode, the next tuple identifies a child node
998  * underneath the fwnode identified by the previous tuple, etc. until you
999  * reached the fwnode you need.
1000  *
1001  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
1002  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
1003  * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
1004  * data-node-references.txt and leds.txt .
1005  *
1006  *	Scope (\_SB.PCI0.I2C2)
1007  *	{
1008  *		Device (CAM0)
1009  *		{
1010  *			Name (_DSD, Package () {
1011  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1012  *				Package () {
1013  *					Package () {
1014  *						"compatible",
1015  *						Package () { "nokia,smia" }
1016  *					},
1017  *				},
1018  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1019  *				Package () {
1020  *					Package () { "port0", "PRT0" },
1021  *				}
1022  *			})
1023  *			Name (PRT0, Package() {
1024  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1025  *				Package () {
1026  *					Package () { "port", 0 },
1027  *				},
1028  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1029  *				Package () {
1030  *					Package () { "endpoint0", "EP00" },
1031  *				}
1032  *			})
1033  *			Name (EP00, Package() {
1034  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1035  *				Package () {
1036  *					Package () { "endpoint", 0 },
1037  *					Package () {
1038  *						"remote-endpoint",
1039  *						Package() {
1040  *							\_SB.PCI0.ISP, 4, 0
1041  *						}
1042  *					},
1043  *				}
1044  *			})
1045  *		}
1046  *	}
1047  *
1048  *	Scope (\_SB.PCI0)
1049  *	{
1050  *		Device (ISP)
1051  *		{
1052  *			Name (_DSD, Package () {
1053  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1054  *				Package () {
1055  *					Package () { "port4", "PRT4" },
1056  *				}
1057  *			})
1058  *
1059  *			Name (PRT4, Package() {
1060  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1061  *				Package () {
1062  *					Package () { "port", 4 },
1063  *				},
1064  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1065  *				Package () {
1066  *					Package () { "endpoint0", "EP40" },
1067  *				}
1068  *			})
1069  *
1070  *			Name (EP40, Package() {
1071  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1072  *				Package () {
1073  *					Package () { "endpoint", 0 },
1074  *					Package () {
1075  *						"remote-endpoint",
1076  *						Package () {
1077  *							\_SB.PCI0.I2C2.CAM0,
1078  *							0, 0
1079  *						}
1080  *					},
1081  *				}
1082  *			})
1083  *		}
1084  *	}
1085  *
1086  * From the EP40 node under ISP device, you could parse the graph remote
1087  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1088  *
1089  *  @fwnode: fwnode referring to EP40 under ISP.
1090  *  @prop: "remote-endpoint"
1091  *  @index: 0
1092  *  @props: "port", "endpoint"
1093  *  @nprops: 2
1094  *
1095  * And you'd get back fwnode referring to EP00 under CAM0.
1096  *
1097  * The same works the other way around: if you use EP00 under CAM0 as the
1098  * fwnode, you'll get fwnode referring to EP40 under ISP.
1099  *
1100  * The same example in DT syntax would look like this:
1101  *
1102  * cam: cam0 {
1103  *	compatible = "nokia,smia";
1104  *
1105  *	port {
1106  *		port = <0>;
1107  *		endpoint {
1108  *			endpoint = <0>;
1109  *			remote-endpoint = <&isp 4 0>;
1110  *		};
1111  *	};
1112  * };
1113  *
1114  * isp: isp {
1115  *	ports {
1116  *		port@4 {
1117  *			port = <4>;
1118  *			endpoint {
1119  *				endpoint = <0>;
1120  *				remote-endpoint = <&cam 0 0>;
1121  *			};
1122  *		};
1123  *	};
1124  * };
1125  *
1126  * Return: 0 on success
1127  *	   -ENOENT if no entries (or the property itself) were found
1128  *	   -EINVAL if property parsing otherwise failed
1129  *	   -ENOMEM if memory allocation failed
1130  */
1131 static struct fwnode_handle *
1132 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1133 				   const char *prop,
1134 				   unsigned int index,
1135 				   const char * const *props,
1136 				   unsigned int nprops)
1137 {
1138 	struct fwnode_reference_args fwnode_args;
1139 	u64 *args = fwnode_args.args;
1140 	struct fwnode_handle *child;
1141 	int ret;
1142 
1143 	/*
1144 	 * Obtain remote fwnode as well as the integer arguments.
1145 	 *
1146 	 * Note that right now both -ENODATA and -ENOENT may signal
1147 	 * out-of-bounds access. Return -ENOENT in that case.
1148 	 */
1149 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1150 						 index, &fwnode_args);
1151 	if (ret)
1152 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1153 
1154 	/*
1155 	 * Find a node in the tree under the referred fwnode corresponding to
1156 	 * the integer arguments.
1157 	 */
1158 	fwnode = fwnode_args.fwnode;
1159 	while (nprops--) {
1160 		u32 val;
1161 
1162 		/* Loop over all child nodes under fwnode. */
1163 		fwnode_for_each_child_node(fwnode, child) {
1164 			if (fwnode_property_read_u32(child, *props, &val))
1165 				continue;
1166 
1167 			/* Found property, see if its value matches. */
1168 			if (val == *args)
1169 				break;
1170 		}
1171 
1172 		fwnode_handle_put(fwnode);
1173 
1174 		/* No property found; return an error here. */
1175 		if (!child) {
1176 			fwnode = ERR_PTR(-ENOENT);
1177 			break;
1178 		}
1179 
1180 		props++;
1181 		args++;
1182 		fwnode = child;
1183 	}
1184 
1185 	return fwnode;
1186 }
1187 
1188 struct v4l2_fwnode_int_props {
1189 	const char *name;
1190 	const char * const *props;
1191 	unsigned int nprops;
1192 };
1193 
1194 /*
1195  * v4l2_fwnode_reference_parse_int_props - parse references for async
1196  *					   sub-devices
1197  * @dev: struct device pointer
1198  * @notifier: notifier for @dev
1199  * @prop: the name of the property
1200  * @props: the array of integer property names
1201  * @nprops: the number of integer properties
1202  *
1203  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1204  * property @prop with integer arguments with child nodes matching in properties
1205  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1206  * accordingly.
1207  *
1208  * While it is technically possible to use this function on DT, it is only
1209  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1210  * on ACPI the references are limited to devices.
1211  *
1212  * Return: 0 on success
1213  *	   -ENOENT if no entries (or the property itself) were found
1214  *	   -EINVAL if property parsing otherwisefailed
1215  *	   -ENOMEM if memory allocation failed
1216  */
1217 static int
1218 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1219 				      struct v4l2_async_notifier *notifier,
1220 				      const struct v4l2_fwnode_int_props *p)
1221 {
1222 	struct fwnode_handle *fwnode;
1223 	unsigned int index;
1224 	int ret;
1225 	const char *prop = p->name;
1226 	const char * const *props = p->props;
1227 	unsigned int nprops = p->nprops;
1228 
1229 	index = 0;
1230 	do {
1231 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1232 							    prop, index,
1233 							    props, nprops);
1234 		if (IS_ERR(fwnode)) {
1235 			/*
1236 			 * Note that right now both -ENODATA and -ENOENT may
1237 			 * signal out-of-bounds access. Return the error in
1238 			 * cases other than that.
1239 			 */
1240 			if (PTR_ERR(fwnode) != -ENOENT &&
1241 			    PTR_ERR(fwnode) != -ENODATA)
1242 				return PTR_ERR(fwnode);
1243 			break;
1244 		}
1245 		fwnode_handle_put(fwnode);
1246 		index++;
1247 	} while (1);
1248 
1249 	for (index = 0;
1250 	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1251 								  prop, index,
1252 								  props,
1253 								  nprops)));
1254 	     index++) {
1255 		struct v4l2_async_subdev *asd;
1256 
1257 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1258 							    sizeof(*asd));
1259 		fwnode_handle_put(fwnode);
1260 		if (IS_ERR(asd)) {
1261 			ret = PTR_ERR(asd);
1262 			/* not an error if asd already exists */
1263 			if (ret == -EEXIST)
1264 				continue;
1265 
1266 			return PTR_ERR(asd);
1267 		}
1268 	}
1269 
1270 	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1271 }
1272 
1273 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1274 						   struct v4l2_async_notifier *notifier)
1275 {
1276 	static const char * const led_props[] = { "led" };
1277 	static const struct v4l2_fwnode_int_props props[] = {
1278 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1279 		{ "lens-focus", NULL, 0 },
1280 	};
1281 	unsigned int i;
1282 
1283 	for (i = 0; i < ARRAY_SIZE(props); i++) {
1284 		int ret;
1285 
1286 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1287 			ret = v4l2_fwnode_reference_parse_int_props(dev,
1288 								    notifier,
1289 								    &props[i]);
1290 		else
1291 			ret = v4l2_fwnode_reference_parse(dev, notifier,
1292 							  props[i].name);
1293 		if (ret && ret != -ENOENT) {
1294 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1295 				 props[i].name, ret);
1296 			return ret;
1297 		}
1298 	}
1299 
1300 	return 0;
1301 }
1302 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1303 
1304 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1305 {
1306 	struct v4l2_async_notifier *notifier;
1307 	int ret;
1308 
1309 	if (WARN_ON(!sd->dev))
1310 		return -ENODEV;
1311 
1312 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1313 	if (!notifier)
1314 		return -ENOMEM;
1315 
1316 	v4l2_async_notifier_init(notifier);
1317 
1318 	ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1319 							     notifier);
1320 	if (ret < 0)
1321 		goto out_cleanup;
1322 
1323 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1324 	if (ret < 0)
1325 		goto out_cleanup;
1326 
1327 	ret = v4l2_async_register_subdev(sd);
1328 	if (ret < 0)
1329 		goto out_unregister;
1330 
1331 	sd->subdev_notifier = notifier;
1332 
1333 	return 0;
1334 
1335 out_unregister:
1336 	v4l2_async_notifier_unregister(notifier);
1337 
1338 out_cleanup:
1339 	v4l2_async_notifier_cleanup(notifier);
1340 	kfree(notifier);
1341 
1342 	return ret;
1343 }
1344 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1345 
1346 MODULE_LICENSE("GPL");
1347 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1348 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1349 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1350