xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-fwnode.c (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * V4L2 fwnode binding parsing library
4  *
5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
6  * formerly was located in v4l2-of.c.
7  *
8  * Copyright (c) 2016 Intel Corporation.
9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13  *
14  * Copyright (C) 2012 Renesas Electronics Corp.
15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16  */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30 
31 enum v4l2_fwnode_bus_type {
32 	V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 	V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 	V4L2_FWNODE_BUS_TYPE_CSI1,
35 	V4L2_FWNODE_BUS_TYPE_CCP2,
36 	V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 	V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 	V4L2_FWNODE_BUS_TYPE_BT656,
39 	NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41 
42 static const struct v4l2_fwnode_bus_conv {
43 	enum v4l2_fwnode_bus_type fwnode_bus_type;
44 	enum v4l2_mbus_type mbus_type;
45 	const char *name;
46 } buses[] = {
47 	{
48 		V4L2_FWNODE_BUS_TYPE_GUESS,
49 		V4L2_MBUS_UNKNOWN,
50 		"not specified",
51 	}, {
52 		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 		V4L2_MBUS_CSI2_CPHY,
54 		"MIPI CSI-2 C-PHY",
55 	}, {
56 		V4L2_FWNODE_BUS_TYPE_CSI1,
57 		V4L2_MBUS_CSI1,
58 		"MIPI CSI-1",
59 	}, {
60 		V4L2_FWNODE_BUS_TYPE_CCP2,
61 		V4L2_MBUS_CCP2,
62 		"compact camera port 2",
63 	}, {
64 		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 		V4L2_MBUS_CSI2_DPHY,
66 		"MIPI CSI-2 D-PHY",
67 	}, {
68 		V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 		V4L2_MBUS_PARALLEL,
70 		"parallel",
71 	}, {
72 		V4L2_FWNODE_BUS_TYPE_BT656,
73 		V4L2_MBUS_BT656,
74 		"Bt.656",
75 	}
76 };
77 
78 static const struct v4l2_fwnode_bus_conv *
79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 	unsigned int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(buses); i++)
84 		if (buses[i].fwnode_bus_type == type)
85 			return &buses[i];
86 
87 	return NULL;
88 }
89 
90 static enum v4l2_mbus_type
91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 	const struct v4l2_fwnode_bus_conv *conv =
94 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95 
96 	return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
97 }
98 
99 static const char *
100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 	const struct v4l2_fwnode_bus_conv *conv =
103 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104 
105 	return conv ? conv->name : "not found";
106 }
107 
108 static const struct v4l2_fwnode_bus_conv *
109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 	unsigned int i;
112 
113 	for (i = 0; i < ARRAY_SIZE(buses); i++)
114 		if (buses[i].mbus_type == type)
115 			return &buses[i];
116 
117 	return NULL;
118 }
119 
120 static const char *
121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 	const struct v4l2_fwnode_bus_conv *conv =
124 		get_v4l2_fwnode_bus_conv_by_mbus(type);
125 
126 	return conv ? conv->name : "not found";
127 }
128 
129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 					       struct v4l2_fwnode_endpoint *vep,
131 					       enum v4l2_mbus_type bus_type)
132 {
133 	struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 	bool have_clk_lane = false, have_data_lanes = false,
135 		have_lane_polarities = false;
136 	unsigned int flags = 0, lanes_used = 0;
137 	u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 	u32 clock_lane = 0;
139 	unsigned int num_data_lanes = 0;
140 	bool use_default_lane_mapping = false;
141 	unsigned int i;
142 	u32 v;
143 	int rval;
144 
145 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 	    bus_type == V4L2_MBUS_CSI2_CPHY) {
147 		use_default_lane_mapping = true;
148 
149 		num_data_lanes = min_t(u32, bus->num_data_lanes,
150 				       V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151 
152 		clock_lane = bus->clock_lane;
153 		if (clock_lane)
154 			use_default_lane_mapping = false;
155 
156 		for (i = 0; i < num_data_lanes; i++) {
157 			array[i] = bus->data_lanes[i];
158 			if (array[i])
159 				use_default_lane_mapping = false;
160 		}
161 
162 		if (use_default_lane_mapping)
163 			pr_debug("no lane mapping given, using defaults\n");
164 	}
165 
166 	rval = fwnode_property_count_u32(fwnode, "data-lanes");
167 	if (rval > 0) {
168 		num_data_lanes =
169 			min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170 
171 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 					       num_data_lanes);
173 
174 		have_data_lanes = true;
175 		if (use_default_lane_mapping) {
176 			pr_debug("data-lanes property exists; disabling default mapping\n");
177 			use_default_lane_mapping = false;
178 		}
179 	}
180 
181 	for (i = 0; i < num_data_lanes; i++) {
182 		if (lanes_used & BIT(array[i])) {
183 			if (have_data_lanes || !use_default_lane_mapping)
184 				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 					array[i]);
186 			use_default_lane_mapping = true;
187 		}
188 		lanes_used |= BIT(array[i]);
189 
190 		if (have_data_lanes)
191 			pr_debug("lane %u position %u\n", i, array[i]);
192 	}
193 
194 	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
195 	if (rval > 0) {
196 		if (rval != 1 + num_data_lanes /* clock+data */) {
197 			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
198 				1 + num_data_lanes, rval);
199 			return -EINVAL;
200 		}
201 
202 		have_lane_polarities = true;
203 	}
204 
205 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
206 		clock_lane = v;
207 		pr_debug("clock lane position %u\n", v);
208 		have_clk_lane = true;
209 	}
210 
211 	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
212 	    !use_default_lane_mapping) {
213 		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
214 			v);
215 		use_default_lane_mapping = true;
216 	}
217 
218 	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
219 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
220 		pr_debug("non-continuous clock\n");
221 	} else {
222 		flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
223 	}
224 
225 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
226 	    bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
227 	    have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
228 		/* Only D-PHY has a clock lane. */
229 		unsigned int dfl_data_lane_index =
230 			bus_type == V4L2_MBUS_CSI2_DPHY;
231 
232 		bus->flags = flags;
233 		if (bus_type == V4L2_MBUS_UNKNOWN)
234 			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
235 		bus->num_data_lanes = num_data_lanes;
236 
237 		if (use_default_lane_mapping) {
238 			bus->clock_lane = 0;
239 			for (i = 0; i < num_data_lanes; i++)
240 				bus->data_lanes[i] = dfl_data_lane_index + i;
241 		} else {
242 			bus->clock_lane = clock_lane;
243 			for (i = 0; i < num_data_lanes; i++)
244 				bus->data_lanes[i] = array[i];
245 		}
246 
247 		if (have_lane_polarities) {
248 			fwnode_property_read_u32_array(fwnode,
249 						       "lane-polarities", array,
250 						       1 + num_data_lanes);
251 
252 			for (i = 0; i < 1 + num_data_lanes; i++) {
253 				bus->lane_polarities[i] = array[i];
254 				pr_debug("lane %u polarity %sinverted",
255 					 i, array[i] ? "" : "not ");
256 			}
257 		} else {
258 			pr_debug("no lane polarities defined, assuming not inverted\n");
259 		}
260 	}
261 
262 	return 0;
263 }
264 
265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
266 			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
267 			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
268 			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
269 			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
270 			     V4L2_MBUS_FIELD_EVEN_LOW)
271 
272 static void
273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
274 					struct v4l2_fwnode_endpoint *vep,
275 					enum v4l2_mbus_type bus_type)
276 {
277 	struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
278 	unsigned int flags = 0;
279 	u32 v;
280 
281 	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
282 		flags = bus->flags;
283 
284 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
285 		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
286 			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
287 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
288 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
289 		pr_debug("hsync-active %s\n", v ? "high" : "low");
290 	}
291 
292 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
293 		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
294 			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
295 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
296 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
297 		pr_debug("vsync-active %s\n", v ? "high" : "low");
298 	}
299 
300 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
301 		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
302 			   V4L2_MBUS_FIELD_EVEN_LOW);
303 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
304 			V4L2_MBUS_FIELD_EVEN_LOW;
305 		pr_debug("field-even-active %s\n", v ? "high" : "low");
306 	}
307 
308 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
309 		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
310 			   V4L2_MBUS_PCLK_SAMPLE_FALLING);
311 		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
312 			V4L2_MBUS_PCLK_SAMPLE_FALLING;
313 		pr_debug("pclk-sample %s\n", v ? "high" : "low");
314 	}
315 
316 	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
317 		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
318 			   V4L2_MBUS_DATA_ACTIVE_LOW);
319 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
320 			V4L2_MBUS_DATA_ACTIVE_LOW;
321 		pr_debug("data-active %s\n", v ? "high" : "low");
322 	}
323 
324 	if (fwnode_property_present(fwnode, "slave-mode")) {
325 		pr_debug("slave mode\n");
326 		flags &= ~V4L2_MBUS_MASTER;
327 		flags |= V4L2_MBUS_SLAVE;
328 	} else {
329 		flags &= ~V4L2_MBUS_SLAVE;
330 		flags |= V4L2_MBUS_MASTER;
331 	}
332 
333 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
334 		bus->bus_width = v;
335 		pr_debug("bus-width %u\n", v);
336 	}
337 
338 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
339 		bus->data_shift = v;
340 		pr_debug("data-shift %u\n", v);
341 	}
342 
343 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
344 		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
345 			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
346 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
347 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
348 		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
349 	}
350 
351 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
352 		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
353 			   V4L2_MBUS_DATA_ENABLE_LOW);
354 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
355 			V4L2_MBUS_DATA_ENABLE_LOW;
356 		pr_debug("data-enable-active %s\n", v ? "high" : "low");
357 	}
358 
359 	switch (bus_type) {
360 	default:
361 		bus->flags = flags;
362 		if (flags & PARALLEL_MBUS_FLAGS)
363 			vep->bus_type = V4L2_MBUS_PARALLEL;
364 		else
365 			vep->bus_type = V4L2_MBUS_BT656;
366 		break;
367 	case V4L2_MBUS_PARALLEL:
368 		vep->bus_type = V4L2_MBUS_PARALLEL;
369 		bus->flags = flags;
370 		break;
371 	case V4L2_MBUS_BT656:
372 		vep->bus_type = V4L2_MBUS_BT656;
373 		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
374 		break;
375 	}
376 }
377 
378 static void
379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
380 				    struct v4l2_fwnode_endpoint *vep,
381 				    enum v4l2_mbus_type bus_type)
382 {
383 	struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
384 	u32 v;
385 
386 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
387 		bus->clock_inv = v;
388 		pr_debug("clock-inv %u\n", v);
389 	}
390 
391 	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
392 		bus->strobe = v;
393 		pr_debug("strobe %u\n", v);
394 	}
395 
396 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
397 		bus->data_lane = v;
398 		pr_debug("data-lanes %u\n", v);
399 	}
400 
401 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
402 		bus->clock_lane = v;
403 		pr_debug("clock-lanes %u\n", v);
404 	}
405 
406 	if (bus_type == V4L2_MBUS_CCP2)
407 		vep->bus_type = V4L2_MBUS_CCP2;
408 	else
409 		vep->bus_type = V4L2_MBUS_CSI1;
410 }
411 
412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
413 					struct v4l2_fwnode_endpoint *vep)
414 {
415 	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
416 	enum v4l2_mbus_type mbus_type;
417 	int rval;
418 
419 	if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
420 		/* Zero fields from bus union to until the end */
421 		memset(&vep->bus, 0,
422 		       sizeof(*vep) - offsetof(typeof(*vep), bus));
423 	}
424 
425 	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
426 
427 	/*
428 	 * Zero the fwnode graph endpoint memory in case we don't end up parsing
429 	 * the endpoint.
430 	 */
431 	memset(&vep->base, 0, sizeof(vep->base));
432 
433 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
434 	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
435 		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
436 		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
437 		 vep->bus_type);
438 	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
439 
440 	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
441 		if (mbus_type != V4L2_MBUS_UNKNOWN &&
442 		    vep->bus_type != mbus_type) {
443 			pr_debug("expecting bus type %s\n",
444 				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
445 			return -ENXIO;
446 		}
447 	} else {
448 		vep->bus_type = mbus_type;
449 	}
450 
451 	switch (vep->bus_type) {
452 	case V4L2_MBUS_UNKNOWN:
453 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 							   V4L2_MBUS_UNKNOWN);
455 		if (rval)
456 			return rval;
457 
458 		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
459 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
460 								V4L2_MBUS_UNKNOWN);
461 
462 		pr_debug("assuming media bus type %s (%u)\n",
463 			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
464 			 vep->bus_type);
465 
466 		break;
467 	case V4L2_MBUS_CCP2:
468 	case V4L2_MBUS_CSI1:
469 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
470 
471 		break;
472 	case V4L2_MBUS_CSI2_DPHY:
473 	case V4L2_MBUS_CSI2_CPHY:
474 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
475 							   vep->bus_type);
476 		if (rval)
477 			return rval;
478 
479 		break;
480 	case V4L2_MBUS_PARALLEL:
481 	case V4L2_MBUS_BT656:
482 		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
483 							vep->bus_type);
484 
485 		break;
486 	default:
487 		pr_warn("unsupported bus type %u\n", mbus_type);
488 		return -EINVAL;
489 	}
490 
491 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
492 
493 	return 0;
494 }
495 
496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
497 			       struct v4l2_fwnode_endpoint *vep)
498 {
499 	int ret;
500 
501 	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
502 
503 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
504 
505 	return ret;
506 }
507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
508 
509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
510 {
511 	if (IS_ERR_OR_NULL(vep))
512 		return;
513 
514 	kfree(vep->link_frequencies);
515 	vep->link_frequencies = NULL;
516 }
517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518 
519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520 				     struct v4l2_fwnode_endpoint *vep)
521 {
522 	int rval;
523 
524 	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525 	if (rval < 0)
526 		return rval;
527 
528 	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
529 	if (rval > 0) {
530 		unsigned int i;
531 
532 		vep->link_frequencies =
533 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
534 				      GFP_KERNEL);
535 		if (!vep->link_frequencies)
536 			return -ENOMEM;
537 
538 		vep->nr_of_link_frequencies = rval;
539 
540 		rval = fwnode_property_read_u64_array(fwnode,
541 						      "link-frequencies",
542 						      vep->link_frequencies,
543 						      vep->nr_of_link_frequencies);
544 		if (rval < 0) {
545 			v4l2_fwnode_endpoint_free(vep);
546 			return rval;
547 		}
548 
549 		for (i = 0; i < vep->nr_of_link_frequencies; i++)
550 			pr_info("link-frequencies %u value %llu\n", i,
551 				vep->link_frequencies[i]);
552 	}
553 
554 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
559 
560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
561 			   struct v4l2_fwnode_link *link)
562 {
563 	struct fwnode_endpoint fwep;
564 
565 	memset(link, 0, sizeof(*link));
566 
567 	fwnode_graph_parse_endpoint(fwnode, &fwep);
568 	link->local_id = fwep.id;
569 	link->local_port = fwep.port;
570 	link->local_node = fwnode_graph_get_port_parent(fwnode);
571 
572 	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
573 	if (!fwnode) {
574 		fwnode_handle_put(fwnode);
575 		return -ENOLINK;
576 	}
577 
578 	fwnode_graph_parse_endpoint(fwnode, &fwep);
579 	link->remote_id = fwep.id;
580 	link->remote_port = fwep.port;
581 	link->remote_node = fwnode_graph_get_port_parent(fwnode);
582 
583 	return 0;
584 }
585 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
586 
587 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
588 {
589 	fwnode_handle_put(link->local_node);
590 	fwnode_handle_put(link->remote_node);
591 }
592 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
593 
594 static const struct v4l2_fwnode_connector_conv {
595 	enum v4l2_connector_type type;
596 	const char *compatible;
597 } connectors[] = {
598 	{
599 		.type = V4L2_CONN_COMPOSITE,
600 		.compatible = "composite-video-connector",
601 	}, {
602 		.type = V4L2_CONN_SVIDEO,
603 		.compatible = "svideo-connector",
604 	},
605 };
606 
607 static enum v4l2_connector_type
608 v4l2_fwnode_string_to_connector_type(const char *con_str)
609 {
610 	unsigned int i;
611 
612 	for (i = 0; i < ARRAY_SIZE(connectors); i++)
613 		if (!strcmp(con_str, connectors[i].compatible))
614 			return connectors[i].type;
615 
616 	return V4L2_CONN_UNKNOWN;
617 }
618 
619 static void
620 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
621 				   struct v4l2_fwnode_connector *vc)
622 {
623 	u32 stds;
624 	int ret;
625 
626 	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
627 
628 	/* The property is optional. */
629 	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
630 }
631 
632 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
633 {
634 	struct v4l2_connector_link *link, *tmp;
635 
636 	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
637 		return;
638 
639 	list_for_each_entry_safe(link, tmp, &connector->links, head) {
640 		v4l2_fwnode_put_link(&link->fwnode_link);
641 		list_del(&link->head);
642 		kfree(link);
643 	}
644 
645 	kfree(connector->label);
646 	connector->label = NULL;
647 	connector->type = V4L2_CONN_UNKNOWN;
648 }
649 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
650 
651 static enum v4l2_connector_type
652 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
653 {
654 	const char *type_name;
655 	int err;
656 
657 	if (!fwnode)
658 		return V4L2_CONN_UNKNOWN;
659 
660 	/* The connector-type is stored within the compatible string. */
661 	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
662 	if (err)
663 		return V4L2_CONN_UNKNOWN;
664 
665 	return v4l2_fwnode_string_to_connector_type(type_name);
666 }
667 
668 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
669 				struct v4l2_fwnode_connector *connector)
670 {
671 	struct fwnode_handle *connector_node;
672 	enum v4l2_connector_type connector_type;
673 	const char *label;
674 	int err;
675 
676 	if (!fwnode)
677 		return -EINVAL;
678 
679 	memset(connector, 0, sizeof(*connector));
680 
681 	INIT_LIST_HEAD(&connector->links);
682 
683 	connector_node = fwnode_graph_get_port_parent(fwnode);
684 	connector_type = v4l2_fwnode_get_connector_type(connector_node);
685 	if (connector_type == V4L2_CONN_UNKNOWN) {
686 		fwnode_handle_put(connector_node);
687 		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
688 		connector_type = v4l2_fwnode_get_connector_type(connector_node);
689 	}
690 
691 	if (connector_type == V4L2_CONN_UNKNOWN) {
692 		pr_err("Unknown connector type\n");
693 		err = -ENOTCONN;
694 		goto out;
695 	}
696 
697 	connector->type = connector_type;
698 	connector->name = fwnode_get_name(connector_node);
699 	err = fwnode_property_read_string(connector_node, "label", &label);
700 	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
701 
702 	/* Parse the connector specific properties. */
703 	switch (connector->type) {
704 	case V4L2_CONN_COMPOSITE:
705 	case V4L2_CONN_SVIDEO:
706 		v4l2_fwnode_connector_parse_analog(connector_node, connector);
707 		break;
708 	/* Avoid compiler warnings */
709 	case V4L2_CONN_UNKNOWN:
710 		break;
711 	}
712 
713 out:
714 	fwnode_handle_put(connector_node);
715 
716 	return err;
717 }
718 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
719 
720 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
721 				   struct v4l2_fwnode_connector *connector)
722 {
723 	struct fwnode_handle *connector_ep;
724 	struct v4l2_connector_link *link;
725 	int err;
726 
727 	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
728 		return -EINVAL;
729 
730 	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
731 	if (!connector_ep)
732 		return -ENOTCONN;
733 
734 	link = kzalloc(sizeof(*link), GFP_KERNEL);
735 	if (!link) {
736 		err = -ENOMEM;
737 		goto err;
738 	}
739 
740 	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
741 	if (err)
742 		goto err;
743 
744 	fwnode_handle_put(connector_ep);
745 
746 	list_add(&link->head, &connector->links);
747 	connector->nr_of_links++;
748 
749 	return 0;
750 
751 err:
752 	kfree(link);
753 	fwnode_handle_put(connector_ep);
754 
755 	return err;
756 }
757 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
758 
759 static int
760 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
761 					  struct v4l2_async_notifier *notifier,
762 					  struct fwnode_handle *endpoint,
763 					  unsigned int asd_struct_size,
764 					  parse_endpoint_func parse_endpoint)
765 {
766 	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
767 	struct v4l2_async_subdev *asd;
768 	int ret;
769 
770 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
771 	if (!asd)
772 		return -ENOMEM;
773 
774 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
775 	asd->match.fwnode =
776 		fwnode_graph_get_remote_port_parent(endpoint);
777 	if (!asd->match.fwnode) {
778 		dev_dbg(dev, "no remote endpoint found\n");
779 		ret = -ENOTCONN;
780 		goto out_err;
781 	}
782 
783 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
784 	if (ret) {
785 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
786 			 ret);
787 		goto out_err;
788 	}
789 
790 	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
791 	if (ret == -ENOTCONN)
792 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
793 			vep.base.id);
794 	else if (ret < 0)
795 		dev_warn(dev,
796 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
797 			 vep.base.port, vep.base.id, ret);
798 	v4l2_fwnode_endpoint_free(&vep);
799 	if (ret < 0)
800 		goto out_err;
801 
802 	ret = v4l2_async_notifier_add_subdev(notifier, asd);
803 	if (ret < 0) {
804 		/* not an error if asd already exists */
805 		if (ret == -EEXIST)
806 			ret = 0;
807 		goto out_err;
808 	}
809 
810 	return 0;
811 
812 out_err:
813 	fwnode_handle_put(asd->match.fwnode);
814 	kfree(asd);
815 
816 	return ret == -ENOTCONN ? 0 : ret;
817 }
818 
819 static int
820 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
821 				      struct v4l2_async_notifier *notifier,
822 				      size_t asd_struct_size,
823 				      unsigned int port,
824 				      bool has_port,
825 				      parse_endpoint_func parse_endpoint)
826 {
827 	struct fwnode_handle *fwnode;
828 	int ret = 0;
829 
830 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
831 		return -EINVAL;
832 
833 	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
834 		struct fwnode_handle *dev_fwnode;
835 		bool is_available;
836 
837 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
838 		is_available = fwnode_device_is_available(dev_fwnode);
839 		fwnode_handle_put(dev_fwnode);
840 		if (!is_available)
841 			continue;
842 
843 		if (has_port) {
844 			struct fwnode_endpoint ep;
845 
846 			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
847 			if (ret)
848 				break;
849 
850 			if (ep.port != port)
851 				continue;
852 		}
853 
854 		ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
855 								notifier,
856 								fwnode,
857 								asd_struct_size,
858 								parse_endpoint);
859 		if (ret < 0)
860 			break;
861 	}
862 
863 	fwnode_handle_put(fwnode);
864 
865 	return ret;
866 }
867 
868 int
869 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
870 					   struct v4l2_async_notifier *notifier,
871 					   size_t asd_struct_size,
872 					   parse_endpoint_func parse_endpoint)
873 {
874 	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
875 						     asd_struct_size, 0,
876 						     false, parse_endpoint);
877 }
878 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
879 
880 int
881 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
882 						   struct v4l2_async_notifier *notifier,
883 						   size_t asd_struct_size,
884 						   unsigned int port,
885 						   parse_endpoint_func parse_endpoint)
886 {
887 	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
888 						     asd_struct_size,
889 						     port, true,
890 						     parse_endpoint);
891 }
892 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
893 
894 /*
895  * v4l2_fwnode_reference_parse - parse references for async sub-devices
896  * @dev: the device node the properties of which are parsed for references
897  * @notifier: the async notifier where the async subdevs will be added
898  * @prop: the name of the property
899  *
900  * Return: 0 on success
901  *	   -ENOENT if no entries were found
902  *	   -ENOMEM if memory allocation failed
903  *	   -EINVAL if property parsing failed
904  */
905 static int v4l2_fwnode_reference_parse(struct device *dev,
906 				       struct v4l2_async_notifier *notifier,
907 				       const char *prop)
908 {
909 	struct fwnode_reference_args args;
910 	unsigned int index;
911 	int ret;
912 
913 	for (index = 0;
914 	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
915 							prop, NULL, 0,
916 							index, &args));
917 	     index++)
918 		fwnode_handle_put(args.fwnode);
919 
920 	if (!index)
921 		return -ENOENT;
922 
923 	/*
924 	 * Note that right now both -ENODATA and -ENOENT may signal
925 	 * out-of-bounds access. Return the error in cases other than that.
926 	 */
927 	if (ret != -ENOENT && ret != -ENODATA)
928 		return ret;
929 
930 	for (index = 0;
931 	     !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
932 						 0, index, &args);
933 	     index++) {
934 		struct v4l2_async_subdev *asd;
935 
936 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
937 							    args.fwnode,
938 							    sizeof(*asd));
939 		fwnode_handle_put(args.fwnode);
940 		if (IS_ERR(asd)) {
941 			/* not an error if asd already exists */
942 			if (PTR_ERR(asd) == -EEXIST)
943 				continue;
944 
945 			return PTR_ERR(asd);
946 		}
947 	}
948 
949 	return 0;
950 }
951 
952 /*
953  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
954  *					arguments
955  * @fwnode: fwnode to read @prop from
956  * @notifier: notifier for @dev
957  * @prop: the name of the property
958  * @index: the index of the reference to get
959  * @props: the array of integer property names
960  * @nprops: the number of integer property names in @nprops
961  *
962  * First find an fwnode referred to by the reference at @index in @prop.
963  *
964  * Then under that fwnode, @nprops times, for each property in @props,
965  * iteratively follow child nodes starting from fwnode such that they have the
966  * property in @props array at the index of the child node distance from the
967  * root node and the value of that property matching with the integer argument
968  * of the reference, at the same index.
969  *
970  * The child fwnode reached at the end of the iteration is then returned to the
971  * caller.
972  *
973  * The core reason for this is that you cannot refer to just any node in ACPI.
974  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
975  * provide a list of (property name, property value) tuples where each tuple
976  * uniquely identifies a child node. The first tuple identifies a child directly
977  * underneath the device fwnode, the next tuple identifies a child node
978  * underneath the fwnode identified by the previous tuple, etc. until you
979  * reached the fwnode you need.
980  *
981  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
982  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
983  * Documentation/acpi/dsd instead and especially graph.txt,
984  * data-node-references.txt and leds.txt .
985  *
986  *	Scope (\_SB.PCI0.I2C2)
987  *	{
988  *		Device (CAM0)
989  *		{
990  *			Name (_DSD, Package () {
991  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
992  *				Package () {
993  *					Package () {
994  *						"compatible",
995  *						Package () { "nokia,smia" }
996  *					},
997  *				},
998  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
999  *				Package () {
1000  *					Package () { "port0", "PRT0" },
1001  *				}
1002  *			})
1003  *			Name (PRT0, Package() {
1004  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1005  *				Package () {
1006  *					Package () { "port", 0 },
1007  *				},
1008  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1009  *				Package () {
1010  *					Package () { "endpoint0", "EP00" },
1011  *				}
1012  *			})
1013  *			Name (EP00, Package() {
1014  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1015  *				Package () {
1016  *					Package () { "endpoint", 0 },
1017  *					Package () {
1018  *						"remote-endpoint",
1019  *						Package() {
1020  *							\_SB.PCI0.ISP, 4, 0
1021  *						}
1022  *					},
1023  *				}
1024  *			})
1025  *		}
1026  *	}
1027  *
1028  *	Scope (\_SB.PCI0)
1029  *	{
1030  *		Device (ISP)
1031  *		{
1032  *			Name (_DSD, Package () {
1033  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1034  *				Package () {
1035  *					Package () { "port4", "PRT4" },
1036  *				}
1037  *			})
1038  *
1039  *			Name (PRT4, Package() {
1040  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1041  *				Package () {
1042  *					Package () { "port", 4 },
1043  *				},
1044  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1045  *				Package () {
1046  *					Package () { "endpoint0", "EP40" },
1047  *				}
1048  *			})
1049  *
1050  *			Name (EP40, Package() {
1051  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1052  *				Package () {
1053  *					Package () { "endpoint", 0 },
1054  *					Package () {
1055  *						"remote-endpoint",
1056  *						Package () {
1057  *							\_SB.PCI0.I2C2.CAM0,
1058  *							0, 0
1059  *						}
1060  *					},
1061  *				}
1062  *			})
1063  *		}
1064  *	}
1065  *
1066  * From the EP40 node under ISP device, you could parse the graph remote
1067  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1068  *
1069  *  @fwnode: fwnode referring to EP40 under ISP.
1070  *  @prop: "remote-endpoint"
1071  *  @index: 0
1072  *  @props: "port", "endpoint"
1073  *  @nprops: 2
1074  *
1075  * And you'd get back fwnode referring to EP00 under CAM0.
1076  *
1077  * The same works the other way around: if you use EP00 under CAM0 as the
1078  * fwnode, you'll get fwnode referring to EP40 under ISP.
1079  *
1080  * The same example in DT syntax would look like this:
1081  *
1082  * cam: cam0 {
1083  *	compatible = "nokia,smia";
1084  *
1085  *	port {
1086  *		port = <0>;
1087  *		endpoint {
1088  *			endpoint = <0>;
1089  *			remote-endpoint = <&isp 4 0>;
1090  *		};
1091  *	};
1092  * };
1093  *
1094  * isp: isp {
1095  *	ports {
1096  *		port@4 {
1097  *			port = <4>;
1098  *			endpoint {
1099  *				endpoint = <0>;
1100  *				remote-endpoint = <&cam 0 0>;
1101  *			};
1102  *		};
1103  *	};
1104  * };
1105  *
1106  * Return: 0 on success
1107  *	   -ENOENT if no entries (or the property itself) were found
1108  *	   -EINVAL if property parsing otherwise failed
1109  *	   -ENOMEM if memory allocation failed
1110  */
1111 static struct fwnode_handle *
1112 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1113 				   const char *prop,
1114 				   unsigned int index,
1115 				   const char * const *props,
1116 				   unsigned int nprops)
1117 {
1118 	struct fwnode_reference_args fwnode_args;
1119 	u64 *args = fwnode_args.args;
1120 	struct fwnode_handle *child;
1121 	int ret;
1122 
1123 	/*
1124 	 * Obtain remote fwnode as well as the integer arguments.
1125 	 *
1126 	 * Note that right now both -ENODATA and -ENOENT may signal
1127 	 * out-of-bounds access. Return -ENOENT in that case.
1128 	 */
1129 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1130 						 index, &fwnode_args);
1131 	if (ret)
1132 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1133 
1134 	/*
1135 	 * Find a node in the tree under the referred fwnode corresponding to
1136 	 * the integer arguments.
1137 	 */
1138 	fwnode = fwnode_args.fwnode;
1139 	while (nprops--) {
1140 		u32 val;
1141 
1142 		/* Loop over all child nodes under fwnode. */
1143 		fwnode_for_each_child_node(fwnode, child) {
1144 			if (fwnode_property_read_u32(child, *props, &val))
1145 				continue;
1146 
1147 			/* Found property, see if its value matches. */
1148 			if (val == *args)
1149 				break;
1150 		}
1151 
1152 		fwnode_handle_put(fwnode);
1153 
1154 		/* No property found; return an error here. */
1155 		if (!child) {
1156 			fwnode = ERR_PTR(-ENOENT);
1157 			break;
1158 		}
1159 
1160 		props++;
1161 		args++;
1162 		fwnode = child;
1163 	}
1164 
1165 	return fwnode;
1166 }
1167 
1168 struct v4l2_fwnode_int_props {
1169 	const char *name;
1170 	const char * const *props;
1171 	unsigned int nprops;
1172 };
1173 
1174 /*
1175  * v4l2_fwnode_reference_parse_int_props - parse references for async
1176  *					   sub-devices
1177  * @dev: struct device pointer
1178  * @notifier: notifier for @dev
1179  * @prop: the name of the property
1180  * @props: the array of integer property names
1181  * @nprops: the number of integer properties
1182  *
1183  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1184  * property @prop with integer arguments with child nodes matching in properties
1185  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1186  * accordingly.
1187  *
1188  * While it is technically possible to use this function on DT, it is only
1189  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1190  * on ACPI the references are limited to devices.
1191  *
1192  * Return: 0 on success
1193  *	   -ENOENT if no entries (or the property itself) were found
1194  *	   -EINVAL if property parsing otherwisefailed
1195  *	   -ENOMEM if memory allocation failed
1196  */
1197 static int
1198 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1199 				      struct v4l2_async_notifier *notifier,
1200 				      const struct v4l2_fwnode_int_props *p)
1201 {
1202 	struct fwnode_handle *fwnode;
1203 	unsigned int index;
1204 	int ret;
1205 	const char *prop = p->name;
1206 	const char * const *props = p->props;
1207 	unsigned int nprops = p->nprops;
1208 
1209 	index = 0;
1210 	do {
1211 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1212 							    prop, index,
1213 							    props, nprops);
1214 		if (IS_ERR(fwnode)) {
1215 			/*
1216 			 * Note that right now both -ENODATA and -ENOENT may
1217 			 * signal out-of-bounds access. Return the error in
1218 			 * cases other than that.
1219 			 */
1220 			if (PTR_ERR(fwnode) != -ENOENT &&
1221 			    PTR_ERR(fwnode) != -ENODATA)
1222 				return PTR_ERR(fwnode);
1223 			break;
1224 		}
1225 		fwnode_handle_put(fwnode);
1226 		index++;
1227 	} while (1);
1228 
1229 	for (index = 0;
1230 	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1231 								  prop, index,
1232 								  props,
1233 								  nprops)));
1234 	     index++) {
1235 		struct v4l2_async_subdev *asd;
1236 
1237 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1238 							    sizeof(*asd));
1239 		fwnode_handle_put(fwnode);
1240 		if (IS_ERR(asd)) {
1241 			ret = PTR_ERR(asd);
1242 			/* not an error if asd already exists */
1243 			if (ret == -EEXIST)
1244 				continue;
1245 
1246 			return PTR_ERR(asd);
1247 		}
1248 	}
1249 
1250 	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1251 }
1252 
1253 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1254 						   struct v4l2_async_notifier *notifier)
1255 {
1256 	static const char * const led_props[] = { "led" };
1257 	static const struct v4l2_fwnode_int_props props[] = {
1258 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1259 		{ "lens-focus", NULL, 0 },
1260 	};
1261 	unsigned int i;
1262 
1263 	for (i = 0; i < ARRAY_SIZE(props); i++) {
1264 		int ret;
1265 
1266 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1267 			ret = v4l2_fwnode_reference_parse_int_props(dev,
1268 								    notifier,
1269 								    &props[i]);
1270 		else
1271 			ret = v4l2_fwnode_reference_parse(dev, notifier,
1272 							  props[i].name);
1273 		if (ret && ret != -ENOENT) {
1274 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1275 				 props[i].name, ret);
1276 			return ret;
1277 		}
1278 	}
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1283 
1284 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1285 {
1286 	struct v4l2_async_notifier *notifier;
1287 	int ret;
1288 
1289 	if (WARN_ON(!sd->dev))
1290 		return -ENODEV;
1291 
1292 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1293 	if (!notifier)
1294 		return -ENOMEM;
1295 
1296 	v4l2_async_notifier_init(notifier);
1297 
1298 	ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1299 							     notifier);
1300 	if (ret < 0)
1301 		goto out_cleanup;
1302 
1303 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1304 	if (ret < 0)
1305 		goto out_cleanup;
1306 
1307 	ret = v4l2_async_register_subdev(sd);
1308 	if (ret < 0)
1309 		goto out_unregister;
1310 
1311 	sd->subdev_notifier = notifier;
1312 
1313 	return 0;
1314 
1315 out_unregister:
1316 	v4l2_async_notifier_unregister(notifier);
1317 
1318 out_cleanup:
1319 	v4l2_async_notifier_cleanup(notifier);
1320 	kfree(notifier);
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1325 
1326 int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd,
1327 				      size_t asd_struct_size,
1328 				      unsigned int *ports,
1329 				      unsigned int num_ports,
1330 				      parse_endpoint_func parse_endpoint)
1331 {
1332 	struct v4l2_async_notifier *notifier;
1333 	struct device *dev = sd->dev;
1334 	struct fwnode_handle *fwnode;
1335 	int ret;
1336 
1337 	if (WARN_ON(!dev))
1338 		return -ENODEV;
1339 
1340 	fwnode = dev_fwnode(dev);
1341 	if (!fwnode_device_is_available(fwnode))
1342 		return -ENODEV;
1343 
1344 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1345 	if (!notifier)
1346 		return -ENOMEM;
1347 
1348 	v4l2_async_notifier_init(notifier);
1349 
1350 	if (!ports) {
1351 		ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier,
1352 								 asd_struct_size,
1353 								 parse_endpoint);
1354 		if (ret < 0)
1355 			goto out_cleanup;
1356 	} else {
1357 		unsigned int i;
1358 
1359 		for (i = 0; i < num_ports; i++) {
1360 			ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint);
1361 			if (ret < 0)
1362 				goto out_cleanup;
1363 		}
1364 	}
1365 
1366 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1367 	if (ret < 0)
1368 		goto out_cleanup;
1369 
1370 	ret = v4l2_async_register_subdev(sd);
1371 	if (ret < 0)
1372 		goto out_unregister;
1373 
1374 	sd->subdev_notifier = notifier;
1375 
1376 	return 0;
1377 
1378 out_unregister:
1379 	v4l2_async_notifier_unregister(notifier);
1380 out_cleanup:
1381 	v4l2_async_notifier_cleanup(notifier);
1382 	kfree(notifier);
1383 
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev);
1387 
1388 MODULE_LICENSE("GPL");
1389 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1390 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1391 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1392