xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-fwnode.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * V4L2 fwnode binding parsing library
4  *
5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
6  * formerly was located in v4l2-of.c.
7  *
8  * Copyright (c) 2016 Intel Corporation.
9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13  *
14  * Copyright (C) 2012 Renesas Electronics Corp.
15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16  */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30 
31 enum v4l2_fwnode_bus_type {
32 	V4L2_FWNODE_BUS_TYPE_GUESS = 0,
33 	V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
34 	V4L2_FWNODE_BUS_TYPE_CSI1,
35 	V4L2_FWNODE_BUS_TYPE_CCP2,
36 	V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
37 	V4L2_FWNODE_BUS_TYPE_PARALLEL,
38 	V4L2_FWNODE_BUS_TYPE_BT656,
39 	NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41 
42 static const struct v4l2_fwnode_bus_conv {
43 	enum v4l2_fwnode_bus_type fwnode_bus_type;
44 	enum v4l2_mbus_type mbus_type;
45 	const char *name;
46 } buses[] = {
47 	{
48 		V4L2_FWNODE_BUS_TYPE_GUESS,
49 		V4L2_MBUS_UNKNOWN,
50 		"not specified",
51 	}, {
52 		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
53 		V4L2_MBUS_CSI2_CPHY,
54 		"MIPI CSI-2 C-PHY",
55 	}, {
56 		V4L2_FWNODE_BUS_TYPE_CSI1,
57 		V4L2_MBUS_CSI1,
58 		"MIPI CSI-1",
59 	}, {
60 		V4L2_FWNODE_BUS_TYPE_CCP2,
61 		V4L2_MBUS_CCP2,
62 		"compact camera port 2",
63 	}, {
64 		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
65 		V4L2_MBUS_CSI2_DPHY,
66 		"MIPI CSI-2 D-PHY",
67 	}, {
68 		V4L2_FWNODE_BUS_TYPE_PARALLEL,
69 		V4L2_MBUS_PARALLEL,
70 		"parallel",
71 	}, {
72 		V4L2_FWNODE_BUS_TYPE_BT656,
73 		V4L2_MBUS_BT656,
74 		"Bt.656",
75 	}
76 };
77 
78 static const struct v4l2_fwnode_bus_conv *
79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
80 {
81 	unsigned int i;
82 
83 	for (i = 0; i < ARRAY_SIZE(buses); i++)
84 		if (buses[i].fwnode_bus_type == type)
85 			return &buses[i];
86 
87 	return NULL;
88 }
89 
90 static enum v4l2_mbus_type
91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
92 {
93 	const struct v4l2_fwnode_bus_conv *conv =
94 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
95 
96 	return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN;
97 }
98 
99 static const char *
100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
101 {
102 	const struct v4l2_fwnode_bus_conv *conv =
103 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
104 
105 	return conv ? conv->name : "not found";
106 }
107 
108 static const struct v4l2_fwnode_bus_conv *
109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
110 {
111 	unsigned int i;
112 
113 	for (i = 0; i < ARRAY_SIZE(buses); i++)
114 		if (buses[i].mbus_type == type)
115 			return &buses[i];
116 
117 	return NULL;
118 }
119 
120 static const char *
121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
122 {
123 	const struct v4l2_fwnode_bus_conv *conv =
124 		get_v4l2_fwnode_bus_conv_by_mbus(type);
125 
126 	return conv ? conv->name : "not found";
127 }
128 
129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
130 					       struct v4l2_fwnode_endpoint *vep,
131 					       enum v4l2_mbus_type bus_type)
132 {
133 	struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
134 	bool have_clk_lane = false, have_data_lanes = false,
135 		have_lane_polarities = false;
136 	unsigned int flags = 0, lanes_used = 0;
137 	u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
138 	u32 clock_lane = 0;
139 	unsigned int num_data_lanes = 0;
140 	bool use_default_lane_mapping = false;
141 	unsigned int i;
142 	u32 v;
143 	int rval;
144 
145 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
146 	    bus_type == V4L2_MBUS_CSI2_CPHY) {
147 		use_default_lane_mapping = true;
148 
149 		num_data_lanes = min_t(u32, bus->num_data_lanes,
150 				       V4L2_FWNODE_CSI2_MAX_DATA_LANES);
151 
152 		clock_lane = bus->clock_lane;
153 		if (clock_lane)
154 			use_default_lane_mapping = false;
155 
156 		for (i = 0; i < num_data_lanes; i++) {
157 			array[i] = bus->data_lanes[i];
158 			if (array[i])
159 				use_default_lane_mapping = false;
160 		}
161 
162 		if (use_default_lane_mapping)
163 			pr_debug("no lane mapping given, using defaults\n");
164 	}
165 
166 	rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0);
167 	if (rval > 0) {
168 		num_data_lanes =
169 			min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
170 
171 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
172 					       num_data_lanes);
173 
174 		have_data_lanes = true;
175 		if (use_default_lane_mapping) {
176 			pr_debug("data-lanes property exists; disabling default mapping\n");
177 			use_default_lane_mapping = false;
178 		}
179 	}
180 
181 	for (i = 0; i < num_data_lanes; i++) {
182 		if (lanes_used & BIT(array[i])) {
183 			if (have_data_lanes || !use_default_lane_mapping)
184 				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
185 					array[i]);
186 			use_default_lane_mapping = true;
187 		}
188 		lanes_used |= BIT(array[i]);
189 
190 		if (have_data_lanes)
191 			pr_debug("lane %u position %u\n", i, array[i]);
192 	}
193 
194 	rval = fwnode_property_read_u32_array(fwnode, "lane-polarities", NULL,
195 					      0);
196 	if (rval > 0) {
197 		if (rval != 1 + num_data_lanes /* clock+data */) {
198 			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
199 				1 + num_data_lanes, rval);
200 			return -EINVAL;
201 		}
202 
203 		have_lane_polarities = true;
204 	}
205 
206 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
207 		clock_lane = v;
208 		pr_debug("clock lane position %u\n", v);
209 		have_clk_lane = true;
210 	}
211 
212 	if (lanes_used & BIT(clock_lane)) {
213 		if (have_clk_lane || !use_default_lane_mapping)
214 			pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
215 				v);
216 		use_default_lane_mapping = true;
217 	}
218 
219 	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
220 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
221 		pr_debug("non-continuous clock\n");
222 	} else {
223 		flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
224 	}
225 
226 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
227 	    bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used ||
228 	    have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) {
229 		/* Only D-PHY has a clock lane. */
230 		unsigned int dfl_data_lane_index =
231 			bus_type == V4L2_MBUS_CSI2_DPHY;
232 
233 		bus->flags = flags;
234 		if (bus_type == V4L2_MBUS_UNKNOWN)
235 			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
236 		bus->num_data_lanes = num_data_lanes;
237 
238 		if (use_default_lane_mapping) {
239 			bus->clock_lane = 0;
240 			for (i = 0; i < num_data_lanes; i++)
241 				bus->data_lanes[i] = dfl_data_lane_index + i;
242 		} else {
243 			bus->clock_lane = clock_lane;
244 			for (i = 0; i < num_data_lanes; i++)
245 				bus->data_lanes[i] = array[i];
246 		}
247 
248 		if (have_lane_polarities) {
249 			fwnode_property_read_u32_array(fwnode,
250 						       "lane-polarities", array,
251 						       1 + num_data_lanes);
252 
253 			for (i = 0; i < 1 + num_data_lanes; i++) {
254 				bus->lane_polarities[i] = array[i];
255 				pr_debug("lane %u polarity %sinverted",
256 					 i, array[i] ? "" : "not ");
257 			}
258 		} else {
259 			pr_debug("no lane polarities defined, assuming not inverted\n");
260 		}
261 	}
262 
263 	return 0;
264 }
265 
266 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
267 			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
268 			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
269 			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
270 			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
271 			     V4L2_MBUS_FIELD_EVEN_LOW)
272 
273 static void
274 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
275 					struct v4l2_fwnode_endpoint *vep,
276 					enum v4l2_mbus_type bus_type)
277 {
278 	struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
279 	unsigned int flags = 0;
280 	u32 v;
281 
282 	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
283 		flags = bus->flags;
284 
285 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
286 		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
287 			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
288 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
289 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
290 		pr_debug("hsync-active %s\n", v ? "high" : "low");
291 	}
292 
293 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
294 		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
295 			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
296 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
297 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
298 		pr_debug("vsync-active %s\n", v ? "high" : "low");
299 	}
300 
301 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
302 		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
303 			   V4L2_MBUS_FIELD_EVEN_LOW);
304 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
305 			V4L2_MBUS_FIELD_EVEN_LOW;
306 		pr_debug("field-even-active %s\n", v ? "high" : "low");
307 	}
308 
309 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
310 		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
311 			   V4L2_MBUS_PCLK_SAMPLE_FALLING);
312 		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
313 			V4L2_MBUS_PCLK_SAMPLE_FALLING;
314 		pr_debug("pclk-sample %s\n", v ? "high" : "low");
315 	}
316 
317 	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
318 		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
319 			   V4L2_MBUS_DATA_ACTIVE_LOW);
320 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
321 			V4L2_MBUS_DATA_ACTIVE_LOW;
322 		pr_debug("data-active %s\n", v ? "high" : "low");
323 	}
324 
325 	if (fwnode_property_present(fwnode, "slave-mode")) {
326 		pr_debug("slave mode\n");
327 		flags &= ~V4L2_MBUS_MASTER;
328 		flags |= V4L2_MBUS_SLAVE;
329 	} else {
330 		flags &= ~V4L2_MBUS_SLAVE;
331 		flags |= V4L2_MBUS_MASTER;
332 	}
333 
334 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
335 		bus->bus_width = v;
336 		pr_debug("bus-width %u\n", v);
337 	}
338 
339 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
340 		bus->data_shift = v;
341 		pr_debug("data-shift %u\n", v);
342 	}
343 
344 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
345 		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
346 			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
347 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
348 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
349 		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
350 	}
351 
352 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
353 		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
354 			   V4L2_MBUS_DATA_ENABLE_LOW);
355 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
356 			V4L2_MBUS_DATA_ENABLE_LOW;
357 		pr_debug("data-enable-active %s\n", v ? "high" : "low");
358 	}
359 
360 	switch (bus_type) {
361 	default:
362 		bus->flags = flags;
363 		if (flags & PARALLEL_MBUS_FLAGS)
364 			vep->bus_type = V4L2_MBUS_PARALLEL;
365 		else
366 			vep->bus_type = V4L2_MBUS_BT656;
367 		break;
368 	case V4L2_MBUS_PARALLEL:
369 		vep->bus_type = V4L2_MBUS_PARALLEL;
370 		bus->flags = flags;
371 		break;
372 	case V4L2_MBUS_BT656:
373 		vep->bus_type = V4L2_MBUS_BT656;
374 		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
375 		break;
376 	}
377 }
378 
379 static void
380 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
381 				    struct v4l2_fwnode_endpoint *vep,
382 				    enum v4l2_mbus_type bus_type)
383 {
384 	struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
385 	u32 v;
386 
387 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
388 		bus->clock_inv = v;
389 		pr_debug("clock-inv %u\n", v);
390 	}
391 
392 	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
393 		bus->strobe = v;
394 		pr_debug("strobe %u\n", v);
395 	}
396 
397 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
398 		bus->data_lane = v;
399 		pr_debug("data-lanes %u\n", v);
400 	}
401 
402 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
403 		bus->clock_lane = v;
404 		pr_debug("clock-lanes %u\n", v);
405 	}
406 
407 	if (bus_type == V4L2_MBUS_CCP2)
408 		vep->bus_type = V4L2_MBUS_CCP2;
409 	else
410 		vep->bus_type = V4L2_MBUS_CSI1;
411 }
412 
413 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
414 					struct v4l2_fwnode_endpoint *vep)
415 {
416 	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
417 	enum v4l2_mbus_type mbus_type;
418 	int rval;
419 
420 	if (vep->bus_type == V4L2_MBUS_UNKNOWN) {
421 		/* Zero fields from bus union to until the end */
422 		memset(&vep->bus, 0,
423 		       sizeof(*vep) - offsetof(typeof(*vep), bus));
424 	}
425 
426 	pr_debug("===== begin V4L2 endpoint properties\n");
427 
428 	/*
429 	 * Zero the fwnode graph endpoint memory in case we don't end up parsing
430 	 * the endpoint.
431 	 */
432 	memset(&vep->base, 0, sizeof(vep->base));
433 
434 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
435 	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
436 		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
437 		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
438 		 vep->bus_type);
439 	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
440 
441 	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
442 		if (mbus_type != V4L2_MBUS_UNKNOWN &&
443 		    vep->bus_type != mbus_type) {
444 			pr_debug("expecting bus type %s\n",
445 				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
446 			return -ENXIO;
447 		}
448 	} else {
449 		vep->bus_type = mbus_type;
450 	}
451 
452 	switch (vep->bus_type) {
453 	case V4L2_MBUS_UNKNOWN:
454 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
455 							   V4L2_MBUS_UNKNOWN);
456 		if (rval)
457 			return rval;
458 
459 		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
460 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
461 								V4L2_MBUS_UNKNOWN);
462 
463 		pr_debug("assuming media bus type %s (%u)\n",
464 			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
465 			 vep->bus_type);
466 
467 		break;
468 	case V4L2_MBUS_CCP2:
469 	case V4L2_MBUS_CSI1:
470 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
471 
472 		break;
473 	case V4L2_MBUS_CSI2_DPHY:
474 	case V4L2_MBUS_CSI2_CPHY:
475 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
476 							   vep->bus_type);
477 		if (rval)
478 			return rval;
479 
480 		break;
481 	case V4L2_MBUS_PARALLEL:
482 	case V4L2_MBUS_BT656:
483 		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
484 							vep->bus_type);
485 
486 		break;
487 	default:
488 		pr_warn("unsupported bus type %u\n", mbus_type);
489 		return -EINVAL;
490 	}
491 
492 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
493 
494 	return 0;
495 }
496 
497 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
498 			       struct v4l2_fwnode_endpoint *vep)
499 {
500 	int ret;
501 
502 	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
503 
504 	pr_debug("===== end V4L2 endpoint properties\n");
505 
506 	return ret;
507 }
508 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
509 
510 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
511 {
512 	if (IS_ERR_OR_NULL(vep))
513 		return;
514 
515 	kfree(vep->link_frequencies);
516 }
517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
518 
519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
520 				     struct v4l2_fwnode_endpoint *vep)
521 {
522 	int rval;
523 
524 	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
525 	if (rval < 0)
526 		return rval;
527 
528 	rval = fwnode_property_read_u64_array(fwnode, "link-frequencies",
529 					      NULL, 0);
530 	if (rval > 0) {
531 		unsigned int i;
532 
533 		vep->link_frequencies =
534 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
535 				      GFP_KERNEL);
536 		if (!vep->link_frequencies)
537 			return -ENOMEM;
538 
539 		vep->nr_of_link_frequencies = rval;
540 
541 		rval = fwnode_property_read_u64_array(fwnode,
542 						      "link-frequencies",
543 						      vep->link_frequencies,
544 						      vep->nr_of_link_frequencies);
545 		if (rval < 0) {
546 			v4l2_fwnode_endpoint_free(vep);
547 			return rval;
548 		}
549 
550 		for (i = 0; i < vep->nr_of_link_frequencies; i++)
551 			pr_info("link-frequencies %u value %llu\n", i,
552 				vep->link_frequencies[i]);
553 	}
554 
555 	pr_debug("===== end V4L2 endpoint properties\n");
556 
557 	return 0;
558 }
559 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
560 
561 int v4l2_fwnode_parse_link(struct fwnode_handle *__fwnode,
562 			   struct v4l2_fwnode_link *link)
563 {
564 	const char *port_prop = is_of_node(__fwnode) ? "reg" : "port";
565 	struct fwnode_handle *fwnode;
566 
567 	memset(link, 0, sizeof(*link));
568 
569 	fwnode = fwnode_get_parent(__fwnode);
570 	fwnode_property_read_u32(fwnode, port_prop, &link->local_port);
571 	fwnode = fwnode_get_next_parent(fwnode);
572 	if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
573 		fwnode = fwnode_get_next_parent(fwnode);
574 	link->local_node = fwnode;
575 
576 	fwnode = fwnode_graph_get_remote_endpoint(__fwnode);
577 	if (!fwnode) {
578 		fwnode_handle_put(fwnode);
579 		return -ENOLINK;
580 	}
581 
582 	fwnode = fwnode_get_parent(fwnode);
583 	fwnode_property_read_u32(fwnode, port_prop, &link->remote_port);
584 	fwnode = fwnode_get_next_parent(fwnode);
585 	if (is_of_node(fwnode) && of_node_name_eq(to_of_node(fwnode), "ports"))
586 		fwnode = fwnode_get_next_parent(fwnode);
587 	link->remote_node = fwnode;
588 
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
592 
593 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
594 {
595 	fwnode_handle_put(link->local_node);
596 	fwnode_handle_put(link->remote_node);
597 }
598 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
599 
600 static int
601 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev,
602 					  struct v4l2_async_notifier *notifier,
603 					  struct fwnode_handle *endpoint,
604 					  unsigned int asd_struct_size,
605 					  parse_endpoint_func parse_endpoint)
606 {
607 	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
608 	struct v4l2_async_subdev *asd;
609 	int ret;
610 
611 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
612 	if (!asd)
613 		return -ENOMEM;
614 
615 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
616 	asd->match.fwnode =
617 		fwnode_graph_get_remote_port_parent(endpoint);
618 	if (!asd->match.fwnode) {
619 		dev_dbg(dev, "no remote endpoint found\n");
620 		ret = -ENOTCONN;
621 		goto out_err;
622 	}
623 
624 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
625 	if (ret) {
626 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
627 			 ret);
628 		goto out_err;
629 	}
630 
631 	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
632 	if (ret == -ENOTCONN)
633 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
634 			vep.base.id);
635 	else if (ret < 0)
636 		dev_warn(dev,
637 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
638 			 vep.base.port, vep.base.id, ret);
639 	v4l2_fwnode_endpoint_free(&vep);
640 	if (ret < 0)
641 		goto out_err;
642 
643 	ret = v4l2_async_notifier_add_subdev(notifier, asd);
644 	if (ret < 0) {
645 		/* not an error if asd already exists */
646 		if (ret == -EEXIST)
647 			ret = 0;
648 		goto out_err;
649 	}
650 
651 	return 0;
652 
653 out_err:
654 	fwnode_handle_put(asd->match.fwnode);
655 	kfree(asd);
656 
657 	return ret == -ENOTCONN ? 0 : ret;
658 }
659 
660 static int
661 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev,
662 				      struct v4l2_async_notifier *notifier,
663 				      size_t asd_struct_size,
664 				      unsigned int port,
665 				      bool has_port,
666 				      parse_endpoint_func parse_endpoint)
667 {
668 	struct fwnode_handle *fwnode;
669 	int ret = 0;
670 
671 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
672 		return -EINVAL;
673 
674 	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
675 		struct fwnode_handle *dev_fwnode;
676 		bool is_available;
677 
678 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
679 		is_available = fwnode_device_is_available(dev_fwnode);
680 		fwnode_handle_put(dev_fwnode);
681 		if (!is_available)
682 			continue;
683 
684 		if (has_port) {
685 			struct fwnode_endpoint ep;
686 
687 			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
688 			if (ret)
689 				break;
690 
691 			if (ep.port != port)
692 				continue;
693 		}
694 
695 		ret = v4l2_async_notifier_fwnode_parse_endpoint(dev,
696 								notifier,
697 								fwnode,
698 								asd_struct_size,
699 								parse_endpoint);
700 		if (ret < 0)
701 			break;
702 	}
703 
704 	fwnode_handle_put(fwnode);
705 
706 	return ret;
707 }
708 
709 int
710 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev,
711 					   struct v4l2_async_notifier *notifier,
712 					   size_t asd_struct_size,
713 					   parse_endpoint_func parse_endpoint)
714 {
715 	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
716 						     asd_struct_size, 0,
717 						     false, parse_endpoint);
718 }
719 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
720 
721 int
722 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev,
723 						   struct v4l2_async_notifier *notifier,
724 						   size_t asd_struct_size,
725 						   unsigned int port,
726 						   parse_endpoint_func parse_endpoint)
727 {
728 	return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier,
729 						     asd_struct_size,
730 						     port, true,
731 						     parse_endpoint);
732 }
733 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
734 
735 /*
736  * v4l2_fwnode_reference_parse - parse references for async sub-devices
737  * @dev: the device node the properties of which are parsed for references
738  * @notifier: the async notifier where the async subdevs will be added
739  * @prop: the name of the property
740  *
741  * Return: 0 on success
742  *	   -ENOENT if no entries were found
743  *	   -ENOMEM if memory allocation failed
744  *	   -EINVAL if property parsing failed
745  */
746 static int v4l2_fwnode_reference_parse(struct device *dev,
747 				       struct v4l2_async_notifier *notifier,
748 				       const char *prop)
749 {
750 	struct fwnode_reference_args args;
751 	unsigned int index;
752 	int ret;
753 
754 	for (index = 0;
755 	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev),
756 							prop, NULL, 0,
757 							index, &args));
758 	     index++)
759 		fwnode_handle_put(args.fwnode);
760 
761 	if (!index)
762 		return -ENOENT;
763 
764 	/*
765 	 * Note that right now both -ENODATA and -ENOENT may signal
766 	 * out-of-bounds access. Return the error in cases other than that.
767 	 */
768 	if (ret != -ENOENT && ret != -ENODATA)
769 		return ret;
770 
771 	for (index = 0;
772 	     !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL,
773 						 0, index, &args);
774 	     index++) {
775 		struct v4l2_async_subdev *asd;
776 
777 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier,
778 							    args.fwnode,
779 							    sizeof(*asd));
780 		if (IS_ERR(asd)) {
781 			ret = PTR_ERR(asd);
782 			/* not an error if asd already exists */
783 			if (ret == -EEXIST) {
784 				fwnode_handle_put(args.fwnode);
785 				continue;
786 			}
787 
788 			goto error;
789 		}
790 	}
791 
792 	return 0;
793 
794 error:
795 	fwnode_handle_put(args.fwnode);
796 	return ret;
797 }
798 
799 /*
800  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
801  *					arguments
802  * @fwnode: fwnode to read @prop from
803  * @notifier: notifier for @dev
804  * @prop: the name of the property
805  * @index: the index of the reference to get
806  * @props: the array of integer property names
807  * @nprops: the number of integer property names in @nprops
808  *
809  * First find an fwnode referred to by the reference at @index in @prop.
810  *
811  * Then under that fwnode, @nprops times, for each property in @props,
812  * iteratively follow child nodes starting from fwnode such that they have the
813  * property in @props array at the index of the child node distance from the
814  * root node and the value of that property matching with the integer argument
815  * of the reference, at the same index.
816  *
817  * The child fwnode reached at the end of the iteration is then returned to the
818  * caller.
819  *
820  * The core reason for this is that you cannot refer to just any node in ACPI.
821  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
822  * provide a list of (property name, property value) tuples where each tuple
823  * uniquely identifies a child node. The first tuple identifies a child directly
824  * underneath the device fwnode, the next tuple identifies a child node
825  * underneath the fwnode identified by the previous tuple, etc. until you
826  * reached the fwnode you need.
827  *
828  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
829  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
830  * Documentation/acpi/dsd instead and especially graph.txt,
831  * data-node-references.txt and leds.txt .
832  *
833  *	Scope (\_SB.PCI0.I2C2)
834  *	{
835  *		Device (CAM0)
836  *		{
837  *			Name (_DSD, Package () {
838  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
839  *				Package () {
840  *					Package () {
841  *						"compatible",
842  *						Package () { "nokia,smia" }
843  *					},
844  *				},
845  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
846  *				Package () {
847  *					Package () { "port0", "PRT0" },
848  *				}
849  *			})
850  *			Name (PRT0, Package() {
851  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
852  *				Package () {
853  *					Package () { "port", 0 },
854  *				},
855  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
856  *				Package () {
857  *					Package () { "endpoint0", "EP00" },
858  *				}
859  *			})
860  *			Name (EP00, Package() {
861  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
862  *				Package () {
863  *					Package () { "endpoint", 0 },
864  *					Package () {
865  *						"remote-endpoint",
866  *						Package() {
867  *							\_SB.PCI0.ISP, 4, 0
868  *						}
869  *					},
870  *				}
871  *			})
872  *		}
873  *	}
874  *
875  *	Scope (\_SB.PCI0)
876  *	{
877  *		Device (ISP)
878  *		{
879  *			Name (_DSD, Package () {
880  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
881  *				Package () {
882  *					Package () { "port4", "PRT4" },
883  *				}
884  *			})
885  *
886  *			Name (PRT4, Package() {
887  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
888  *				Package () {
889  *					Package () { "port", 4 },
890  *				},
891  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
892  *				Package () {
893  *					Package () { "endpoint0", "EP40" },
894  *				}
895  *			})
896  *
897  *			Name (EP40, Package() {
898  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
899  *				Package () {
900  *					Package () { "endpoint", 0 },
901  *					Package () {
902  *						"remote-endpoint",
903  *						Package () {
904  *							\_SB.PCI0.I2C2.CAM0,
905  *							0, 0
906  *						}
907  *					},
908  *				}
909  *			})
910  *		}
911  *	}
912  *
913  * From the EP40 node under ISP device, you could parse the graph remote
914  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
915  *
916  *  @fwnode: fwnode referring to EP40 under ISP.
917  *  @prop: "remote-endpoint"
918  *  @index: 0
919  *  @props: "port", "endpoint"
920  *  @nprops: 2
921  *
922  * And you'd get back fwnode referring to EP00 under CAM0.
923  *
924  * The same works the other way around: if you use EP00 under CAM0 as the
925  * fwnode, you'll get fwnode referring to EP40 under ISP.
926  *
927  * The same example in DT syntax would look like this:
928  *
929  * cam: cam0 {
930  *	compatible = "nokia,smia";
931  *
932  *	port {
933  *		port = <0>;
934  *		endpoint {
935  *			endpoint = <0>;
936  *			remote-endpoint = <&isp 4 0>;
937  *		};
938  *	};
939  * };
940  *
941  * isp: isp {
942  *	ports {
943  *		port@4 {
944  *			port = <4>;
945  *			endpoint {
946  *				endpoint = <0>;
947  *				remote-endpoint = <&cam 0 0>;
948  *			};
949  *		};
950  *	};
951  * };
952  *
953  * Return: 0 on success
954  *	   -ENOENT if no entries (or the property itself) were found
955  *	   -EINVAL if property parsing otherwise failed
956  *	   -ENOMEM if memory allocation failed
957  */
958 static struct fwnode_handle *
959 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
960 				   const char *prop,
961 				   unsigned int index,
962 				   const char * const *props,
963 				   unsigned int nprops)
964 {
965 	struct fwnode_reference_args fwnode_args;
966 	u64 *args = fwnode_args.args;
967 	struct fwnode_handle *child;
968 	int ret;
969 
970 	/*
971 	 * Obtain remote fwnode as well as the integer arguments.
972 	 *
973 	 * Note that right now both -ENODATA and -ENOENT may signal
974 	 * out-of-bounds access. Return -ENOENT in that case.
975 	 */
976 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
977 						 index, &fwnode_args);
978 	if (ret)
979 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
980 
981 	/*
982 	 * Find a node in the tree under the referred fwnode corresponding to
983 	 * the integer arguments.
984 	 */
985 	fwnode = fwnode_args.fwnode;
986 	while (nprops--) {
987 		u32 val;
988 
989 		/* Loop over all child nodes under fwnode. */
990 		fwnode_for_each_child_node(fwnode, child) {
991 			if (fwnode_property_read_u32(child, *props, &val))
992 				continue;
993 
994 			/* Found property, see if its value matches. */
995 			if (val == *args)
996 				break;
997 		}
998 
999 		fwnode_handle_put(fwnode);
1000 
1001 		/* No property found; return an error here. */
1002 		if (!child) {
1003 			fwnode = ERR_PTR(-ENOENT);
1004 			break;
1005 		}
1006 
1007 		props++;
1008 		args++;
1009 		fwnode = child;
1010 	}
1011 
1012 	return fwnode;
1013 }
1014 
1015 struct v4l2_fwnode_int_props {
1016 	const char *name;
1017 	const char * const *props;
1018 	unsigned int nprops;
1019 };
1020 
1021 /*
1022  * v4l2_fwnode_reference_parse_int_props - parse references for async
1023  *					   sub-devices
1024  * @dev: struct device pointer
1025  * @notifier: notifier for @dev
1026  * @prop: the name of the property
1027  * @props: the array of integer property names
1028  * @nprops: the number of integer properties
1029  *
1030  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1031  * property @prop with integer arguments with child nodes matching in properties
1032  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1033  * accordingly.
1034  *
1035  * While it is technically possible to use this function on DT, it is only
1036  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1037  * on ACPI the references are limited to devices.
1038  *
1039  * Return: 0 on success
1040  *	   -ENOENT if no entries (or the property itself) were found
1041  *	   -EINVAL if property parsing otherwisefailed
1042  *	   -ENOMEM if memory allocation failed
1043  */
1044 static int
1045 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1046 				      struct v4l2_async_notifier *notifier,
1047 				      const struct v4l2_fwnode_int_props *p)
1048 {
1049 	struct fwnode_handle *fwnode;
1050 	unsigned int index;
1051 	int ret;
1052 	const char *prop = p->name;
1053 	const char * const *props = p->props;
1054 	unsigned int nprops = p->nprops;
1055 
1056 	index = 0;
1057 	do {
1058 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1059 							    prop, index,
1060 							    props, nprops);
1061 		if (IS_ERR(fwnode)) {
1062 			/*
1063 			 * Note that right now both -ENODATA and -ENOENT may
1064 			 * signal out-of-bounds access. Return the error in
1065 			 * cases other than that.
1066 			 */
1067 			if (PTR_ERR(fwnode) != -ENOENT &&
1068 			    PTR_ERR(fwnode) != -ENODATA)
1069 				return PTR_ERR(fwnode);
1070 			break;
1071 		}
1072 		fwnode_handle_put(fwnode);
1073 		index++;
1074 	} while (1);
1075 
1076 	for (index = 0;
1077 	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1078 								  prop, index,
1079 								  props,
1080 								  nprops)));
1081 	     index++) {
1082 		struct v4l2_async_subdev *asd;
1083 
1084 		asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode,
1085 							    sizeof(*asd));
1086 		if (IS_ERR(asd)) {
1087 			ret = PTR_ERR(asd);
1088 			/* not an error if asd already exists */
1089 			if (ret == -EEXIST) {
1090 				fwnode_handle_put(fwnode);
1091 				continue;
1092 			}
1093 
1094 			goto error;
1095 		}
1096 	}
1097 
1098 	return PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1099 
1100 error:
1101 	fwnode_handle_put(fwnode);
1102 	return ret;
1103 }
1104 
1105 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev,
1106 						   struct v4l2_async_notifier *notifier)
1107 {
1108 	static const char * const led_props[] = { "led" };
1109 	static const struct v4l2_fwnode_int_props props[] = {
1110 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1111 		{ "lens-focus", NULL, 0 },
1112 	};
1113 	unsigned int i;
1114 
1115 	for (i = 0; i < ARRAY_SIZE(props); i++) {
1116 		int ret;
1117 
1118 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1119 			ret = v4l2_fwnode_reference_parse_int_props(dev,
1120 								    notifier,
1121 								    &props[i]);
1122 		else
1123 			ret = v4l2_fwnode_reference_parse(dev, notifier,
1124 							  props[i].name);
1125 		if (ret && ret != -ENOENT) {
1126 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1127 				 props[i].name, ret);
1128 			return ret;
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
1135 
1136 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
1137 {
1138 	struct v4l2_async_notifier *notifier;
1139 	int ret;
1140 
1141 	if (WARN_ON(!sd->dev))
1142 		return -ENODEV;
1143 
1144 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1145 	if (!notifier)
1146 		return -ENOMEM;
1147 
1148 	v4l2_async_notifier_init(notifier);
1149 
1150 	ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
1151 							     notifier);
1152 	if (ret < 0)
1153 		goto out_cleanup;
1154 
1155 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1156 	if (ret < 0)
1157 		goto out_cleanup;
1158 
1159 	ret = v4l2_async_register_subdev(sd);
1160 	if (ret < 0)
1161 		goto out_unregister;
1162 
1163 	sd->subdev_notifier = notifier;
1164 
1165 	return 0;
1166 
1167 out_unregister:
1168 	v4l2_async_notifier_unregister(notifier);
1169 
1170 out_cleanup:
1171 	v4l2_async_notifier_cleanup(notifier);
1172 	kfree(notifier);
1173 
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
1177 
1178 int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd,
1179 				      size_t asd_struct_size,
1180 				      unsigned int *ports,
1181 				      unsigned int num_ports,
1182 				      parse_endpoint_func parse_endpoint)
1183 {
1184 	struct v4l2_async_notifier *notifier;
1185 	struct device *dev = sd->dev;
1186 	struct fwnode_handle *fwnode;
1187 	int ret;
1188 
1189 	if (WARN_ON(!dev))
1190 		return -ENODEV;
1191 
1192 	fwnode = dev_fwnode(dev);
1193 	if (!fwnode_device_is_available(fwnode))
1194 		return -ENODEV;
1195 
1196 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1197 	if (!notifier)
1198 		return -ENOMEM;
1199 
1200 	v4l2_async_notifier_init(notifier);
1201 
1202 	if (!ports) {
1203 		ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier,
1204 								 asd_struct_size,
1205 								 parse_endpoint);
1206 		if (ret < 0)
1207 			goto out_cleanup;
1208 	} else {
1209 		unsigned int i;
1210 
1211 		for (i = 0; i < num_ports; i++) {
1212 			ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint);
1213 			if (ret < 0)
1214 				goto out_cleanup;
1215 		}
1216 	}
1217 
1218 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
1219 	if (ret < 0)
1220 		goto out_cleanup;
1221 
1222 	ret = v4l2_async_register_subdev(sd);
1223 	if (ret < 0)
1224 		goto out_unregister;
1225 
1226 	sd->subdev_notifier = notifier;
1227 
1228 	return 0;
1229 
1230 out_unregister:
1231 	v4l2_async_notifier_unregister(notifier);
1232 out_cleanup:
1233 	v4l2_async_notifier_cleanup(notifier);
1234 	kfree(notifier);
1235 
1236 	return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev);
1239 
1240 MODULE_LICENSE("GPL");
1241 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1242 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1243 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1244