1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * V4L2 fwnode binding parsing library 4 * 5 * The origins of the V4L2 fwnode library are in V4L2 OF library that 6 * formerly was located in v4l2-of.c. 7 * 8 * Copyright (c) 2016 Intel Corporation. 9 * Author: Sakari Ailus <sakari.ailus@linux.intel.com> 10 * 11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd. 12 * Author: Sylwester Nawrocki <s.nawrocki@samsung.com> 13 * 14 * Copyright (C) 2012 Renesas Electronics Corp. 15 * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de> 16 */ 17 #include <linux/acpi.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/property.h> 23 #include <linux/slab.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 27 #include <media/v4l2-async.h> 28 #include <media/v4l2-fwnode.h> 29 #include <media/v4l2-subdev.h> 30 31 enum v4l2_fwnode_bus_type { 32 V4L2_FWNODE_BUS_TYPE_GUESS = 0, 33 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, 34 V4L2_FWNODE_BUS_TYPE_CSI1, 35 V4L2_FWNODE_BUS_TYPE_CCP2, 36 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, 37 V4L2_FWNODE_BUS_TYPE_PARALLEL, 38 V4L2_FWNODE_BUS_TYPE_BT656, 39 NR_OF_V4L2_FWNODE_BUS_TYPE, 40 }; 41 42 static const struct v4l2_fwnode_bus_conv { 43 enum v4l2_fwnode_bus_type fwnode_bus_type; 44 enum v4l2_mbus_type mbus_type; 45 const char *name; 46 } buses[] = { 47 { 48 V4L2_FWNODE_BUS_TYPE_GUESS, 49 V4L2_MBUS_UNKNOWN, 50 "not specified", 51 }, { 52 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY, 53 V4L2_MBUS_CSI2_CPHY, 54 "MIPI CSI-2 C-PHY", 55 }, { 56 V4L2_FWNODE_BUS_TYPE_CSI1, 57 V4L2_MBUS_CSI1, 58 "MIPI CSI-1", 59 }, { 60 V4L2_FWNODE_BUS_TYPE_CCP2, 61 V4L2_MBUS_CCP2, 62 "compact camera port 2", 63 }, { 64 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY, 65 V4L2_MBUS_CSI2_DPHY, 66 "MIPI CSI-2 D-PHY", 67 }, { 68 V4L2_FWNODE_BUS_TYPE_PARALLEL, 69 V4L2_MBUS_PARALLEL, 70 "parallel", 71 }, { 72 V4L2_FWNODE_BUS_TYPE_BT656, 73 V4L2_MBUS_BT656, 74 "Bt.656", 75 } 76 }; 77 78 static const struct v4l2_fwnode_bus_conv * 79 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type) 80 { 81 unsigned int i; 82 83 for (i = 0; i < ARRAY_SIZE(buses); i++) 84 if (buses[i].fwnode_bus_type == type) 85 return &buses[i]; 86 87 return NULL; 88 } 89 90 static enum v4l2_mbus_type 91 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type) 92 { 93 const struct v4l2_fwnode_bus_conv *conv = 94 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 95 96 return conv ? conv->mbus_type : V4L2_MBUS_UNKNOWN; 97 } 98 99 static const char * 100 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type) 101 { 102 const struct v4l2_fwnode_bus_conv *conv = 103 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type); 104 105 return conv ? conv->name : "not found"; 106 } 107 108 static const struct v4l2_fwnode_bus_conv * 109 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type) 110 { 111 unsigned int i; 112 113 for (i = 0; i < ARRAY_SIZE(buses); i++) 114 if (buses[i].mbus_type == type) 115 return &buses[i]; 116 117 return NULL; 118 } 119 120 static const char * 121 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type) 122 { 123 const struct v4l2_fwnode_bus_conv *conv = 124 get_v4l2_fwnode_bus_conv_by_mbus(type); 125 126 return conv ? conv->name : "not found"; 127 } 128 129 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode, 130 struct v4l2_fwnode_endpoint *vep, 131 enum v4l2_mbus_type bus_type) 132 { 133 struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2; 134 bool have_clk_lane = false, have_data_lanes = false, 135 have_lane_polarities = false; 136 unsigned int flags = 0, lanes_used = 0; 137 u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES]; 138 u32 clock_lane = 0; 139 unsigned int num_data_lanes = 0; 140 bool use_default_lane_mapping = false; 141 unsigned int i; 142 u32 v; 143 int rval; 144 145 if (bus_type == V4L2_MBUS_CSI2_DPHY || 146 bus_type == V4L2_MBUS_CSI2_CPHY) { 147 use_default_lane_mapping = true; 148 149 num_data_lanes = min_t(u32, bus->num_data_lanes, 150 V4L2_FWNODE_CSI2_MAX_DATA_LANES); 151 152 clock_lane = bus->clock_lane; 153 if (clock_lane) 154 use_default_lane_mapping = false; 155 156 for (i = 0; i < num_data_lanes; i++) { 157 array[i] = bus->data_lanes[i]; 158 if (array[i]) 159 use_default_lane_mapping = false; 160 } 161 162 if (use_default_lane_mapping) 163 pr_debug("no lane mapping given, using defaults\n"); 164 } 165 166 rval = fwnode_property_count_u32(fwnode, "data-lanes"); 167 if (rval > 0) { 168 num_data_lanes = 169 min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval); 170 171 fwnode_property_read_u32_array(fwnode, "data-lanes", array, 172 num_data_lanes); 173 174 have_data_lanes = true; 175 if (use_default_lane_mapping) { 176 pr_debug("data-lanes property exists; disabling default mapping\n"); 177 use_default_lane_mapping = false; 178 } 179 } 180 181 for (i = 0; i < num_data_lanes; i++) { 182 if (lanes_used & BIT(array[i])) { 183 if (have_data_lanes || !use_default_lane_mapping) 184 pr_warn("duplicated lane %u in data-lanes, using defaults\n", 185 array[i]); 186 use_default_lane_mapping = true; 187 } 188 lanes_used |= BIT(array[i]); 189 190 if (have_data_lanes) 191 pr_debug("lane %u position %u\n", i, array[i]); 192 } 193 194 rval = fwnode_property_count_u32(fwnode, "lane-polarities"); 195 if (rval > 0) { 196 if (rval != 1 + num_data_lanes /* clock+data */) { 197 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n", 198 1 + num_data_lanes, rval); 199 return -EINVAL; 200 } 201 202 have_lane_polarities = true; 203 } 204 205 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 206 clock_lane = v; 207 pr_debug("clock lane position %u\n", v); 208 have_clk_lane = true; 209 } 210 211 if (have_clk_lane && lanes_used & BIT(clock_lane) && 212 !use_default_lane_mapping) { 213 pr_warn("duplicated lane %u in clock-lanes, using defaults\n", 214 v); 215 use_default_lane_mapping = true; 216 } 217 218 if (fwnode_property_present(fwnode, "clock-noncontinuous")) { 219 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK; 220 pr_debug("non-continuous clock\n"); 221 } else { 222 flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK; 223 } 224 225 if (bus_type == V4L2_MBUS_CSI2_DPHY || 226 bus_type == V4L2_MBUS_CSI2_CPHY || lanes_used || 227 have_clk_lane || (flags & ~V4L2_MBUS_CSI2_CONTINUOUS_CLOCK)) { 228 /* Only D-PHY has a clock lane. */ 229 unsigned int dfl_data_lane_index = 230 bus_type == V4L2_MBUS_CSI2_DPHY; 231 232 bus->flags = flags; 233 if (bus_type == V4L2_MBUS_UNKNOWN) 234 vep->bus_type = V4L2_MBUS_CSI2_DPHY; 235 bus->num_data_lanes = num_data_lanes; 236 237 if (use_default_lane_mapping) { 238 bus->clock_lane = 0; 239 for (i = 0; i < num_data_lanes; i++) 240 bus->data_lanes[i] = dfl_data_lane_index + i; 241 } else { 242 bus->clock_lane = clock_lane; 243 for (i = 0; i < num_data_lanes; i++) 244 bus->data_lanes[i] = array[i]; 245 } 246 247 if (have_lane_polarities) { 248 fwnode_property_read_u32_array(fwnode, 249 "lane-polarities", array, 250 1 + num_data_lanes); 251 252 for (i = 0; i < 1 + num_data_lanes; i++) { 253 bus->lane_polarities[i] = array[i]; 254 pr_debug("lane %u polarity %sinverted", 255 i, array[i] ? "" : "not "); 256 } 257 } else { 258 pr_debug("no lane polarities defined, assuming not inverted\n"); 259 } 260 } 261 262 return 0; 263 } 264 265 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \ 266 V4L2_MBUS_HSYNC_ACTIVE_LOW | \ 267 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \ 268 V4L2_MBUS_VSYNC_ACTIVE_LOW | \ 269 V4L2_MBUS_FIELD_EVEN_HIGH | \ 270 V4L2_MBUS_FIELD_EVEN_LOW) 271 272 static void 273 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode, 274 struct v4l2_fwnode_endpoint *vep, 275 enum v4l2_mbus_type bus_type) 276 { 277 struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel; 278 unsigned int flags = 0; 279 u32 v; 280 281 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656) 282 flags = bus->flags; 283 284 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) { 285 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH | 286 V4L2_MBUS_HSYNC_ACTIVE_LOW); 287 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH : 288 V4L2_MBUS_HSYNC_ACTIVE_LOW; 289 pr_debug("hsync-active %s\n", v ? "high" : "low"); 290 } 291 292 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) { 293 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH | 294 V4L2_MBUS_VSYNC_ACTIVE_LOW); 295 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH : 296 V4L2_MBUS_VSYNC_ACTIVE_LOW; 297 pr_debug("vsync-active %s\n", v ? "high" : "low"); 298 } 299 300 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) { 301 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH | 302 V4L2_MBUS_FIELD_EVEN_LOW); 303 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH : 304 V4L2_MBUS_FIELD_EVEN_LOW; 305 pr_debug("field-even-active %s\n", v ? "high" : "low"); 306 } 307 308 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) { 309 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING | 310 V4L2_MBUS_PCLK_SAMPLE_FALLING); 311 flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING : 312 V4L2_MBUS_PCLK_SAMPLE_FALLING; 313 pr_debug("pclk-sample %s\n", v ? "high" : "low"); 314 } 315 316 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) { 317 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH | 318 V4L2_MBUS_DATA_ACTIVE_LOW); 319 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH : 320 V4L2_MBUS_DATA_ACTIVE_LOW; 321 pr_debug("data-active %s\n", v ? "high" : "low"); 322 } 323 324 if (fwnode_property_present(fwnode, "slave-mode")) { 325 pr_debug("slave mode\n"); 326 flags &= ~V4L2_MBUS_MASTER; 327 flags |= V4L2_MBUS_SLAVE; 328 } else { 329 flags &= ~V4L2_MBUS_SLAVE; 330 flags |= V4L2_MBUS_MASTER; 331 } 332 333 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) { 334 bus->bus_width = v; 335 pr_debug("bus-width %u\n", v); 336 } 337 338 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) { 339 bus->data_shift = v; 340 pr_debug("data-shift %u\n", v); 341 } 342 343 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) { 344 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH | 345 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW); 346 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH : 347 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW; 348 pr_debug("sync-on-green-active %s\n", v ? "high" : "low"); 349 } 350 351 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) { 352 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH | 353 V4L2_MBUS_DATA_ENABLE_LOW); 354 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH : 355 V4L2_MBUS_DATA_ENABLE_LOW; 356 pr_debug("data-enable-active %s\n", v ? "high" : "low"); 357 } 358 359 switch (bus_type) { 360 default: 361 bus->flags = flags; 362 if (flags & PARALLEL_MBUS_FLAGS) 363 vep->bus_type = V4L2_MBUS_PARALLEL; 364 else 365 vep->bus_type = V4L2_MBUS_BT656; 366 break; 367 case V4L2_MBUS_PARALLEL: 368 vep->bus_type = V4L2_MBUS_PARALLEL; 369 bus->flags = flags; 370 break; 371 case V4L2_MBUS_BT656: 372 vep->bus_type = V4L2_MBUS_BT656; 373 bus->flags = flags & ~PARALLEL_MBUS_FLAGS; 374 break; 375 } 376 } 377 378 static void 379 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode, 380 struct v4l2_fwnode_endpoint *vep, 381 enum v4l2_mbus_type bus_type) 382 { 383 struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1; 384 u32 v; 385 386 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) { 387 bus->clock_inv = v; 388 pr_debug("clock-inv %u\n", v); 389 } 390 391 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) { 392 bus->strobe = v; 393 pr_debug("strobe %u\n", v); 394 } 395 396 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) { 397 bus->data_lane = v; 398 pr_debug("data-lanes %u\n", v); 399 } 400 401 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) { 402 bus->clock_lane = v; 403 pr_debug("clock-lanes %u\n", v); 404 } 405 406 if (bus_type == V4L2_MBUS_CCP2) 407 vep->bus_type = V4L2_MBUS_CCP2; 408 else 409 vep->bus_type = V4L2_MBUS_CSI1; 410 } 411 412 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 413 struct v4l2_fwnode_endpoint *vep) 414 { 415 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS; 416 enum v4l2_mbus_type mbus_type; 417 int rval; 418 419 if (vep->bus_type == V4L2_MBUS_UNKNOWN) { 420 /* Zero fields from bus union to until the end */ 421 memset(&vep->bus, 0, 422 sizeof(*vep) - offsetof(typeof(*vep), bus)); 423 } 424 425 pr_debug("===== begin parsing endpoint %pfw\n", fwnode); 426 427 /* 428 * Zero the fwnode graph endpoint memory in case we don't end up parsing 429 * the endpoint. 430 */ 431 memset(&vep->base, 0, sizeof(vep->base)); 432 433 fwnode_property_read_u32(fwnode, "bus-type", &bus_type); 434 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n", 435 v4l2_fwnode_bus_type_to_string(bus_type), bus_type, 436 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 437 vep->bus_type); 438 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type); 439 440 if (vep->bus_type != V4L2_MBUS_UNKNOWN) { 441 if (mbus_type != V4L2_MBUS_UNKNOWN && 442 vep->bus_type != mbus_type) { 443 pr_debug("expecting bus type %s\n", 444 v4l2_fwnode_mbus_type_to_string(vep->bus_type)); 445 return -ENXIO; 446 } 447 } else { 448 vep->bus_type = mbus_type; 449 } 450 451 switch (vep->bus_type) { 452 case V4L2_MBUS_UNKNOWN: 453 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 454 V4L2_MBUS_UNKNOWN); 455 if (rval) 456 return rval; 457 458 if (vep->bus_type == V4L2_MBUS_UNKNOWN) 459 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 460 V4L2_MBUS_UNKNOWN); 461 462 pr_debug("assuming media bus type %s (%u)\n", 463 v4l2_fwnode_mbus_type_to_string(vep->bus_type), 464 vep->bus_type); 465 466 break; 467 case V4L2_MBUS_CCP2: 468 case V4L2_MBUS_CSI1: 469 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type); 470 471 break; 472 case V4L2_MBUS_CSI2_DPHY: 473 case V4L2_MBUS_CSI2_CPHY: 474 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep, 475 vep->bus_type); 476 if (rval) 477 return rval; 478 479 break; 480 case V4L2_MBUS_PARALLEL: 481 case V4L2_MBUS_BT656: 482 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep, 483 vep->bus_type); 484 485 break; 486 default: 487 pr_warn("unsupported bus type %u\n", mbus_type); 488 return -EINVAL; 489 } 490 491 fwnode_graph_parse_endpoint(fwnode, &vep->base); 492 493 return 0; 494 } 495 496 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode, 497 struct v4l2_fwnode_endpoint *vep) 498 { 499 int ret; 500 501 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep); 502 503 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 504 505 return ret; 506 } 507 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse); 508 509 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep) 510 { 511 if (IS_ERR_OR_NULL(vep)) 512 return; 513 514 kfree(vep->link_frequencies); 515 vep->link_frequencies = NULL; 516 } 517 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free); 518 519 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode, 520 struct v4l2_fwnode_endpoint *vep) 521 { 522 int rval; 523 524 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep); 525 if (rval < 0) 526 return rval; 527 528 rval = fwnode_property_count_u64(fwnode, "link-frequencies"); 529 if (rval > 0) { 530 unsigned int i; 531 532 vep->link_frequencies = 533 kmalloc_array(rval, sizeof(*vep->link_frequencies), 534 GFP_KERNEL); 535 if (!vep->link_frequencies) 536 return -ENOMEM; 537 538 vep->nr_of_link_frequencies = rval; 539 540 rval = fwnode_property_read_u64_array(fwnode, 541 "link-frequencies", 542 vep->link_frequencies, 543 vep->nr_of_link_frequencies); 544 if (rval < 0) { 545 v4l2_fwnode_endpoint_free(vep); 546 return rval; 547 } 548 549 for (i = 0; i < vep->nr_of_link_frequencies; i++) 550 pr_info("link-frequencies %u value %llu\n", i, 551 vep->link_frequencies[i]); 552 } 553 554 pr_debug("===== end parsing endpoint %pfw\n", fwnode); 555 556 return 0; 557 } 558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse); 559 560 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode, 561 struct v4l2_fwnode_link *link) 562 { 563 struct fwnode_endpoint fwep; 564 565 memset(link, 0, sizeof(*link)); 566 567 fwnode_graph_parse_endpoint(fwnode, &fwep); 568 link->local_id = fwep.id; 569 link->local_port = fwep.port; 570 link->local_node = fwnode_graph_get_port_parent(fwnode); 571 572 fwnode = fwnode_graph_get_remote_endpoint(fwnode); 573 if (!fwnode) { 574 fwnode_handle_put(fwnode); 575 return -ENOLINK; 576 } 577 578 fwnode_graph_parse_endpoint(fwnode, &fwep); 579 link->remote_id = fwep.id; 580 link->remote_port = fwep.port; 581 link->remote_node = fwnode_graph_get_port_parent(fwnode); 582 583 return 0; 584 } 585 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link); 586 587 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link) 588 { 589 fwnode_handle_put(link->local_node); 590 fwnode_handle_put(link->remote_node); 591 } 592 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link); 593 594 static const struct v4l2_fwnode_connector_conv { 595 enum v4l2_connector_type type; 596 const char *compatible; 597 } connectors[] = { 598 { 599 .type = V4L2_CONN_COMPOSITE, 600 .compatible = "composite-video-connector", 601 }, { 602 .type = V4L2_CONN_SVIDEO, 603 .compatible = "svideo-connector", 604 }, 605 }; 606 607 static enum v4l2_connector_type 608 v4l2_fwnode_string_to_connector_type(const char *con_str) 609 { 610 unsigned int i; 611 612 for (i = 0; i < ARRAY_SIZE(connectors); i++) 613 if (!strcmp(con_str, connectors[i].compatible)) 614 return connectors[i].type; 615 616 return V4L2_CONN_UNKNOWN; 617 } 618 619 static void 620 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode, 621 struct v4l2_fwnode_connector *vc) 622 { 623 u32 stds; 624 int ret; 625 626 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds); 627 628 /* The property is optional. */ 629 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds; 630 } 631 632 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector) 633 { 634 struct v4l2_connector_link *link, *tmp; 635 636 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN) 637 return; 638 639 list_for_each_entry_safe(link, tmp, &connector->links, head) { 640 v4l2_fwnode_put_link(&link->fwnode_link); 641 list_del(&link->head); 642 kfree(link); 643 } 644 645 kfree(connector->label); 646 connector->label = NULL; 647 connector->type = V4L2_CONN_UNKNOWN; 648 } 649 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free); 650 651 static enum v4l2_connector_type 652 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode) 653 { 654 const char *type_name; 655 int err; 656 657 if (!fwnode) 658 return V4L2_CONN_UNKNOWN; 659 660 /* The connector-type is stored within the compatible string. */ 661 err = fwnode_property_read_string(fwnode, "compatible", &type_name); 662 if (err) 663 return V4L2_CONN_UNKNOWN; 664 665 return v4l2_fwnode_string_to_connector_type(type_name); 666 } 667 668 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode, 669 struct v4l2_fwnode_connector *connector) 670 { 671 struct fwnode_handle *connector_node; 672 enum v4l2_connector_type connector_type; 673 const char *label; 674 int err; 675 676 if (!fwnode) 677 return -EINVAL; 678 679 memset(connector, 0, sizeof(*connector)); 680 681 INIT_LIST_HEAD(&connector->links); 682 683 connector_node = fwnode_graph_get_port_parent(fwnode); 684 connector_type = v4l2_fwnode_get_connector_type(connector_node); 685 if (connector_type == V4L2_CONN_UNKNOWN) { 686 fwnode_handle_put(connector_node); 687 connector_node = fwnode_graph_get_remote_port_parent(fwnode); 688 connector_type = v4l2_fwnode_get_connector_type(connector_node); 689 } 690 691 if (connector_type == V4L2_CONN_UNKNOWN) { 692 pr_err("Unknown connector type\n"); 693 err = -ENOTCONN; 694 goto out; 695 } 696 697 connector->type = connector_type; 698 connector->name = fwnode_get_name(connector_node); 699 err = fwnode_property_read_string(connector_node, "label", &label); 700 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL); 701 702 /* Parse the connector specific properties. */ 703 switch (connector->type) { 704 case V4L2_CONN_COMPOSITE: 705 case V4L2_CONN_SVIDEO: 706 v4l2_fwnode_connector_parse_analog(connector_node, connector); 707 break; 708 /* Avoid compiler warnings */ 709 case V4L2_CONN_UNKNOWN: 710 break; 711 } 712 713 out: 714 fwnode_handle_put(connector_node); 715 716 return err; 717 } 718 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse); 719 720 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode, 721 struct v4l2_fwnode_connector *connector) 722 { 723 struct fwnode_handle *connector_ep; 724 struct v4l2_connector_link *link; 725 int err; 726 727 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN) 728 return -EINVAL; 729 730 connector_ep = fwnode_graph_get_remote_endpoint(fwnode); 731 if (!connector_ep) 732 return -ENOTCONN; 733 734 link = kzalloc(sizeof(*link), GFP_KERNEL); 735 if (!link) { 736 err = -ENOMEM; 737 goto err; 738 } 739 740 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link); 741 if (err) 742 goto err; 743 744 fwnode_handle_put(connector_ep); 745 746 list_add(&link->head, &connector->links); 747 connector->nr_of_links++; 748 749 return 0; 750 751 err: 752 kfree(link); 753 fwnode_handle_put(connector_ep); 754 755 return err; 756 } 757 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link); 758 759 static int 760 v4l2_async_notifier_fwnode_parse_endpoint(struct device *dev, 761 struct v4l2_async_notifier *notifier, 762 struct fwnode_handle *endpoint, 763 unsigned int asd_struct_size, 764 parse_endpoint_func parse_endpoint) 765 { 766 struct v4l2_fwnode_endpoint vep = { .bus_type = 0 }; 767 struct v4l2_async_subdev *asd; 768 int ret; 769 770 asd = kzalloc(asd_struct_size, GFP_KERNEL); 771 if (!asd) 772 return -ENOMEM; 773 774 asd->match_type = V4L2_ASYNC_MATCH_FWNODE; 775 asd->match.fwnode = 776 fwnode_graph_get_remote_port_parent(endpoint); 777 if (!asd->match.fwnode) { 778 dev_dbg(dev, "no remote endpoint found\n"); 779 ret = -ENOTCONN; 780 goto out_err; 781 } 782 783 ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep); 784 if (ret) { 785 dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n", 786 ret); 787 goto out_err; 788 } 789 790 ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0; 791 if (ret == -ENOTCONN) 792 dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port, 793 vep.base.id); 794 else if (ret < 0) 795 dev_warn(dev, 796 "driver could not parse port@%u/endpoint@%u (%d)\n", 797 vep.base.port, vep.base.id, ret); 798 v4l2_fwnode_endpoint_free(&vep); 799 if (ret < 0) 800 goto out_err; 801 802 ret = v4l2_async_notifier_add_subdev(notifier, asd); 803 if (ret < 0) { 804 /* not an error if asd already exists */ 805 if (ret == -EEXIST) 806 ret = 0; 807 goto out_err; 808 } 809 810 return 0; 811 812 out_err: 813 fwnode_handle_put(asd->match.fwnode); 814 kfree(asd); 815 816 return ret == -ENOTCONN ? 0 : ret; 817 } 818 819 static int 820 __v4l2_async_notifier_parse_fwnode_ep(struct device *dev, 821 struct v4l2_async_notifier *notifier, 822 size_t asd_struct_size, 823 unsigned int port, 824 bool has_port, 825 parse_endpoint_func parse_endpoint) 826 { 827 struct fwnode_handle *fwnode; 828 int ret = 0; 829 830 if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev))) 831 return -EINVAL; 832 833 fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) { 834 struct fwnode_handle *dev_fwnode; 835 bool is_available; 836 837 dev_fwnode = fwnode_graph_get_port_parent(fwnode); 838 is_available = fwnode_device_is_available(dev_fwnode); 839 fwnode_handle_put(dev_fwnode); 840 if (!is_available) 841 continue; 842 843 if (has_port) { 844 struct fwnode_endpoint ep; 845 846 ret = fwnode_graph_parse_endpoint(fwnode, &ep); 847 if (ret) 848 break; 849 850 if (ep.port != port) 851 continue; 852 } 853 854 ret = v4l2_async_notifier_fwnode_parse_endpoint(dev, 855 notifier, 856 fwnode, 857 asd_struct_size, 858 parse_endpoint); 859 if (ret < 0) 860 break; 861 } 862 863 fwnode_handle_put(fwnode); 864 865 return ret; 866 } 867 868 int 869 v4l2_async_notifier_parse_fwnode_endpoints(struct device *dev, 870 struct v4l2_async_notifier *notifier, 871 size_t asd_struct_size, 872 parse_endpoint_func parse_endpoint) 873 { 874 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier, 875 asd_struct_size, 0, 876 false, parse_endpoint); 877 } 878 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints); 879 880 int 881 v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device *dev, 882 struct v4l2_async_notifier *notifier, 883 size_t asd_struct_size, 884 unsigned int port, 885 parse_endpoint_func parse_endpoint) 886 { 887 return __v4l2_async_notifier_parse_fwnode_ep(dev, notifier, 888 asd_struct_size, 889 port, true, 890 parse_endpoint); 891 } 892 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port); 893 894 /* 895 * v4l2_fwnode_reference_parse - parse references for async sub-devices 896 * @dev: the device node the properties of which are parsed for references 897 * @notifier: the async notifier where the async subdevs will be added 898 * @prop: the name of the property 899 * 900 * Return: 0 on success 901 * -ENOENT if no entries were found 902 * -ENOMEM if memory allocation failed 903 * -EINVAL if property parsing failed 904 */ 905 static int v4l2_fwnode_reference_parse(struct device *dev, 906 struct v4l2_async_notifier *notifier, 907 const char *prop) 908 { 909 struct fwnode_reference_args args; 910 unsigned int index; 911 int ret; 912 913 for (index = 0; 914 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), 915 prop, NULL, 0, 916 index, &args)); 917 index++) 918 fwnode_handle_put(args.fwnode); 919 920 if (!index) 921 return -ENOENT; 922 923 /* 924 * Note that right now both -ENODATA and -ENOENT may signal 925 * out-of-bounds access. Return the error in cases other than that. 926 */ 927 if (ret != -ENOENT && ret != -ENODATA) 928 return ret; 929 930 for (index = 0; 931 !fwnode_property_get_reference_args(dev_fwnode(dev), prop, NULL, 932 0, index, &args); 933 index++) { 934 struct v4l2_async_subdev *asd; 935 936 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, 937 args.fwnode, 938 sizeof(*asd)); 939 fwnode_handle_put(args.fwnode); 940 if (IS_ERR(asd)) { 941 /* not an error if asd already exists */ 942 if (PTR_ERR(asd) == -EEXIST) 943 continue; 944 945 return PTR_ERR(asd); 946 } 947 } 948 949 return 0; 950 } 951 952 /* 953 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer 954 * arguments 955 * @fwnode: fwnode to read @prop from 956 * @notifier: notifier for @dev 957 * @prop: the name of the property 958 * @index: the index of the reference to get 959 * @props: the array of integer property names 960 * @nprops: the number of integer property names in @nprops 961 * 962 * First find an fwnode referred to by the reference at @index in @prop. 963 * 964 * Then under that fwnode, @nprops times, for each property in @props, 965 * iteratively follow child nodes starting from fwnode such that they have the 966 * property in @props array at the index of the child node distance from the 967 * root node and the value of that property matching with the integer argument 968 * of the reference, at the same index. 969 * 970 * The child fwnode reached at the end of the iteration is then returned to the 971 * caller. 972 * 973 * The core reason for this is that you cannot refer to just any node in ACPI. 974 * So to refer to an endpoint (easy in DT) you need to refer to a device, then 975 * provide a list of (property name, property value) tuples where each tuple 976 * uniquely identifies a child node. The first tuple identifies a child directly 977 * underneath the device fwnode, the next tuple identifies a child node 978 * underneath the fwnode identified by the previous tuple, etc. until you 979 * reached the fwnode you need. 980 * 981 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A 982 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under 983 * Documentation/acpi/dsd instead and especially graph.txt, 984 * data-node-references.txt and leds.txt . 985 * 986 * Scope (\_SB.PCI0.I2C2) 987 * { 988 * Device (CAM0) 989 * { 990 * Name (_DSD, Package () { 991 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 992 * Package () { 993 * Package () { 994 * "compatible", 995 * Package () { "nokia,smia" } 996 * }, 997 * }, 998 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 999 * Package () { 1000 * Package () { "port0", "PRT0" }, 1001 * } 1002 * }) 1003 * Name (PRT0, Package() { 1004 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1005 * Package () { 1006 * Package () { "port", 0 }, 1007 * }, 1008 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1009 * Package () { 1010 * Package () { "endpoint0", "EP00" }, 1011 * } 1012 * }) 1013 * Name (EP00, Package() { 1014 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1015 * Package () { 1016 * Package () { "endpoint", 0 }, 1017 * Package () { 1018 * "remote-endpoint", 1019 * Package() { 1020 * \_SB.PCI0.ISP, 4, 0 1021 * } 1022 * }, 1023 * } 1024 * }) 1025 * } 1026 * } 1027 * 1028 * Scope (\_SB.PCI0) 1029 * { 1030 * Device (ISP) 1031 * { 1032 * Name (_DSD, Package () { 1033 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1034 * Package () { 1035 * Package () { "port4", "PRT4" }, 1036 * } 1037 * }) 1038 * 1039 * Name (PRT4, Package() { 1040 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1041 * Package () { 1042 * Package () { "port", 4 }, 1043 * }, 1044 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), 1045 * Package () { 1046 * Package () { "endpoint0", "EP40" }, 1047 * } 1048 * }) 1049 * 1050 * Name (EP40, Package() { 1051 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), 1052 * Package () { 1053 * Package () { "endpoint", 0 }, 1054 * Package () { 1055 * "remote-endpoint", 1056 * Package () { 1057 * \_SB.PCI0.I2C2.CAM0, 1058 * 0, 0 1059 * } 1060 * }, 1061 * } 1062 * }) 1063 * } 1064 * } 1065 * 1066 * From the EP40 node under ISP device, you could parse the graph remote 1067 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments: 1068 * 1069 * @fwnode: fwnode referring to EP40 under ISP. 1070 * @prop: "remote-endpoint" 1071 * @index: 0 1072 * @props: "port", "endpoint" 1073 * @nprops: 2 1074 * 1075 * And you'd get back fwnode referring to EP00 under CAM0. 1076 * 1077 * The same works the other way around: if you use EP00 under CAM0 as the 1078 * fwnode, you'll get fwnode referring to EP40 under ISP. 1079 * 1080 * The same example in DT syntax would look like this: 1081 * 1082 * cam: cam0 { 1083 * compatible = "nokia,smia"; 1084 * 1085 * port { 1086 * port = <0>; 1087 * endpoint { 1088 * endpoint = <0>; 1089 * remote-endpoint = <&isp 4 0>; 1090 * }; 1091 * }; 1092 * }; 1093 * 1094 * isp: isp { 1095 * ports { 1096 * port@4 { 1097 * port = <4>; 1098 * endpoint { 1099 * endpoint = <0>; 1100 * remote-endpoint = <&cam 0 0>; 1101 * }; 1102 * }; 1103 * }; 1104 * }; 1105 * 1106 * Return: 0 on success 1107 * -ENOENT if no entries (or the property itself) were found 1108 * -EINVAL if property parsing otherwise failed 1109 * -ENOMEM if memory allocation failed 1110 */ 1111 static struct fwnode_handle * 1112 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode, 1113 const char *prop, 1114 unsigned int index, 1115 const char * const *props, 1116 unsigned int nprops) 1117 { 1118 struct fwnode_reference_args fwnode_args; 1119 u64 *args = fwnode_args.args; 1120 struct fwnode_handle *child; 1121 int ret; 1122 1123 /* 1124 * Obtain remote fwnode as well as the integer arguments. 1125 * 1126 * Note that right now both -ENODATA and -ENOENT may signal 1127 * out-of-bounds access. Return -ENOENT in that case. 1128 */ 1129 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops, 1130 index, &fwnode_args); 1131 if (ret) 1132 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret); 1133 1134 /* 1135 * Find a node in the tree under the referred fwnode corresponding to 1136 * the integer arguments. 1137 */ 1138 fwnode = fwnode_args.fwnode; 1139 while (nprops--) { 1140 u32 val; 1141 1142 /* Loop over all child nodes under fwnode. */ 1143 fwnode_for_each_child_node(fwnode, child) { 1144 if (fwnode_property_read_u32(child, *props, &val)) 1145 continue; 1146 1147 /* Found property, see if its value matches. */ 1148 if (val == *args) 1149 break; 1150 } 1151 1152 fwnode_handle_put(fwnode); 1153 1154 /* No property found; return an error here. */ 1155 if (!child) { 1156 fwnode = ERR_PTR(-ENOENT); 1157 break; 1158 } 1159 1160 props++; 1161 args++; 1162 fwnode = child; 1163 } 1164 1165 return fwnode; 1166 } 1167 1168 struct v4l2_fwnode_int_props { 1169 const char *name; 1170 const char * const *props; 1171 unsigned int nprops; 1172 }; 1173 1174 /* 1175 * v4l2_fwnode_reference_parse_int_props - parse references for async 1176 * sub-devices 1177 * @dev: struct device pointer 1178 * @notifier: notifier for @dev 1179 * @prop: the name of the property 1180 * @props: the array of integer property names 1181 * @nprops: the number of integer properties 1182 * 1183 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in 1184 * property @prop with integer arguments with child nodes matching in properties 1185 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier 1186 * accordingly. 1187 * 1188 * While it is technically possible to use this function on DT, it is only 1189 * meaningful on ACPI. On Device tree you can refer to any node in the tree but 1190 * on ACPI the references are limited to devices. 1191 * 1192 * Return: 0 on success 1193 * -ENOENT if no entries (or the property itself) were found 1194 * -EINVAL if property parsing otherwisefailed 1195 * -ENOMEM if memory allocation failed 1196 */ 1197 static int 1198 v4l2_fwnode_reference_parse_int_props(struct device *dev, 1199 struct v4l2_async_notifier *notifier, 1200 const struct v4l2_fwnode_int_props *p) 1201 { 1202 struct fwnode_handle *fwnode; 1203 unsigned int index; 1204 int ret; 1205 const char *prop = p->name; 1206 const char * const *props = p->props; 1207 unsigned int nprops = p->nprops; 1208 1209 index = 0; 1210 do { 1211 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1212 prop, index, 1213 props, nprops); 1214 if (IS_ERR(fwnode)) { 1215 /* 1216 * Note that right now both -ENODATA and -ENOENT may 1217 * signal out-of-bounds access. Return the error in 1218 * cases other than that. 1219 */ 1220 if (PTR_ERR(fwnode) != -ENOENT && 1221 PTR_ERR(fwnode) != -ENODATA) 1222 return PTR_ERR(fwnode); 1223 break; 1224 } 1225 fwnode_handle_put(fwnode); 1226 index++; 1227 } while (1); 1228 1229 for (index = 0; 1230 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev), 1231 prop, index, 1232 props, 1233 nprops))); 1234 index++) { 1235 struct v4l2_async_subdev *asd; 1236 1237 asd = v4l2_async_notifier_add_fwnode_subdev(notifier, fwnode, 1238 sizeof(*asd)); 1239 fwnode_handle_put(fwnode); 1240 if (IS_ERR(asd)) { 1241 ret = PTR_ERR(asd); 1242 /* not an error if asd already exists */ 1243 if (ret == -EEXIST) 1244 continue; 1245 1246 return PTR_ERR(asd); 1247 } 1248 } 1249 1250 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode); 1251 } 1252 1253 int v4l2_async_notifier_parse_fwnode_sensor_common(struct device *dev, 1254 struct v4l2_async_notifier *notifier) 1255 { 1256 static const char * const led_props[] = { "led" }; 1257 static const struct v4l2_fwnode_int_props props[] = { 1258 { "flash-leds", led_props, ARRAY_SIZE(led_props) }, 1259 { "lens-focus", NULL, 0 }, 1260 }; 1261 unsigned int i; 1262 1263 for (i = 0; i < ARRAY_SIZE(props); i++) { 1264 int ret; 1265 1266 if (props[i].props && is_acpi_node(dev_fwnode(dev))) 1267 ret = v4l2_fwnode_reference_parse_int_props(dev, 1268 notifier, 1269 &props[i]); 1270 else 1271 ret = v4l2_fwnode_reference_parse(dev, notifier, 1272 props[i].name); 1273 if (ret && ret != -ENOENT) { 1274 dev_warn(dev, "parsing property \"%s\" failed (%d)\n", 1275 props[i].name, ret); 1276 return ret; 1277 } 1278 } 1279 1280 return 0; 1281 } 1282 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common); 1283 1284 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd) 1285 { 1286 struct v4l2_async_notifier *notifier; 1287 int ret; 1288 1289 if (WARN_ON(!sd->dev)) 1290 return -ENODEV; 1291 1292 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL); 1293 if (!notifier) 1294 return -ENOMEM; 1295 1296 v4l2_async_notifier_init(notifier); 1297 1298 ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev, 1299 notifier); 1300 if (ret < 0) 1301 goto out_cleanup; 1302 1303 ret = v4l2_async_subdev_notifier_register(sd, notifier); 1304 if (ret < 0) 1305 goto out_cleanup; 1306 1307 ret = v4l2_async_register_subdev(sd); 1308 if (ret < 0) 1309 goto out_unregister; 1310 1311 sd->subdev_notifier = notifier; 1312 1313 return 0; 1314 1315 out_unregister: 1316 v4l2_async_notifier_unregister(notifier); 1317 1318 out_cleanup: 1319 v4l2_async_notifier_cleanup(notifier); 1320 kfree(notifier); 1321 1322 return ret; 1323 } 1324 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common); 1325 1326 int v4l2_async_register_fwnode_subdev(struct v4l2_subdev *sd, 1327 size_t asd_struct_size, 1328 unsigned int *ports, 1329 unsigned int num_ports, 1330 parse_endpoint_func parse_endpoint) 1331 { 1332 struct v4l2_async_notifier *notifier; 1333 struct device *dev = sd->dev; 1334 struct fwnode_handle *fwnode; 1335 int ret; 1336 1337 if (WARN_ON(!dev)) 1338 return -ENODEV; 1339 1340 fwnode = dev_fwnode(dev); 1341 if (!fwnode_device_is_available(fwnode)) 1342 return -ENODEV; 1343 1344 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL); 1345 if (!notifier) 1346 return -ENOMEM; 1347 1348 v4l2_async_notifier_init(notifier); 1349 1350 if (!ports) { 1351 ret = v4l2_async_notifier_parse_fwnode_endpoints(dev, notifier, 1352 asd_struct_size, 1353 parse_endpoint); 1354 if (ret < 0) 1355 goto out_cleanup; 1356 } else { 1357 unsigned int i; 1358 1359 for (i = 0; i < num_ports; i++) { 1360 ret = v4l2_async_notifier_parse_fwnode_endpoints_by_port(dev, notifier, asd_struct_size, ports[i], parse_endpoint); 1361 if (ret < 0) 1362 goto out_cleanup; 1363 } 1364 } 1365 1366 ret = v4l2_async_subdev_notifier_register(sd, notifier); 1367 if (ret < 0) 1368 goto out_cleanup; 1369 1370 ret = v4l2_async_register_subdev(sd); 1371 if (ret < 0) 1372 goto out_unregister; 1373 1374 sd->subdev_notifier = notifier; 1375 1376 return 0; 1377 1378 out_unregister: 1379 v4l2_async_notifier_unregister(notifier); 1380 out_cleanup: 1381 v4l2_async_notifier_cleanup(notifier); 1382 kfree(notifier); 1383 1384 return ret; 1385 } 1386 EXPORT_SYMBOL_GPL(v4l2_async_register_fwnode_subdev); 1387 1388 MODULE_LICENSE("GPL"); 1389 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>"); 1390 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>"); 1391 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); 1392