1 /*
2  * v4l2-dv-timings - dv-timings helper functions
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
28 
29 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
30 	V4L2_DV_BT_CEA_640X480P59_94,
31 	V4L2_DV_BT_CEA_720X480I59_94,
32 	V4L2_DV_BT_CEA_720X480P59_94,
33 	V4L2_DV_BT_CEA_720X576I50,
34 	V4L2_DV_BT_CEA_720X576P50,
35 	V4L2_DV_BT_CEA_1280X720P24,
36 	V4L2_DV_BT_CEA_1280X720P25,
37 	V4L2_DV_BT_CEA_1280X720P30,
38 	V4L2_DV_BT_CEA_1280X720P50,
39 	V4L2_DV_BT_CEA_1280X720P60,
40 	V4L2_DV_BT_CEA_1920X1080P24,
41 	V4L2_DV_BT_CEA_1920X1080P25,
42 	V4L2_DV_BT_CEA_1920X1080P30,
43 	V4L2_DV_BT_CEA_1920X1080I50,
44 	V4L2_DV_BT_CEA_1920X1080P50,
45 	V4L2_DV_BT_CEA_1920X1080I60,
46 	V4L2_DV_BT_CEA_1920X1080P60,
47 	V4L2_DV_BT_DMT_640X350P85,
48 	V4L2_DV_BT_DMT_640X400P85,
49 	V4L2_DV_BT_DMT_720X400P85,
50 	V4L2_DV_BT_DMT_640X480P72,
51 	V4L2_DV_BT_DMT_640X480P75,
52 	V4L2_DV_BT_DMT_640X480P85,
53 	V4L2_DV_BT_DMT_800X600P56,
54 	V4L2_DV_BT_DMT_800X600P60,
55 	V4L2_DV_BT_DMT_800X600P72,
56 	V4L2_DV_BT_DMT_800X600P75,
57 	V4L2_DV_BT_DMT_800X600P85,
58 	V4L2_DV_BT_DMT_800X600P120_RB,
59 	V4L2_DV_BT_DMT_848X480P60,
60 	V4L2_DV_BT_DMT_1024X768I43,
61 	V4L2_DV_BT_DMT_1024X768P60,
62 	V4L2_DV_BT_DMT_1024X768P70,
63 	V4L2_DV_BT_DMT_1024X768P75,
64 	V4L2_DV_BT_DMT_1024X768P85,
65 	V4L2_DV_BT_DMT_1024X768P120_RB,
66 	V4L2_DV_BT_DMT_1152X864P75,
67 	V4L2_DV_BT_DMT_1280X768P60_RB,
68 	V4L2_DV_BT_DMT_1280X768P60,
69 	V4L2_DV_BT_DMT_1280X768P75,
70 	V4L2_DV_BT_DMT_1280X768P85,
71 	V4L2_DV_BT_DMT_1280X768P120_RB,
72 	V4L2_DV_BT_DMT_1280X800P60_RB,
73 	V4L2_DV_BT_DMT_1280X800P60,
74 	V4L2_DV_BT_DMT_1280X800P75,
75 	V4L2_DV_BT_DMT_1280X800P85,
76 	V4L2_DV_BT_DMT_1280X800P120_RB,
77 	V4L2_DV_BT_DMT_1280X960P60,
78 	V4L2_DV_BT_DMT_1280X960P85,
79 	V4L2_DV_BT_DMT_1280X960P120_RB,
80 	V4L2_DV_BT_DMT_1280X1024P60,
81 	V4L2_DV_BT_DMT_1280X1024P75,
82 	V4L2_DV_BT_DMT_1280X1024P85,
83 	V4L2_DV_BT_DMT_1280X1024P120_RB,
84 	V4L2_DV_BT_DMT_1360X768P60,
85 	V4L2_DV_BT_DMT_1360X768P120_RB,
86 	V4L2_DV_BT_DMT_1366X768P60,
87 	V4L2_DV_BT_DMT_1366X768P60_RB,
88 	V4L2_DV_BT_DMT_1400X1050P60_RB,
89 	V4L2_DV_BT_DMT_1400X1050P60,
90 	V4L2_DV_BT_DMT_1400X1050P75,
91 	V4L2_DV_BT_DMT_1400X1050P85,
92 	V4L2_DV_BT_DMT_1400X1050P120_RB,
93 	V4L2_DV_BT_DMT_1440X900P60_RB,
94 	V4L2_DV_BT_DMT_1440X900P60,
95 	V4L2_DV_BT_DMT_1440X900P75,
96 	V4L2_DV_BT_DMT_1440X900P85,
97 	V4L2_DV_BT_DMT_1440X900P120_RB,
98 	V4L2_DV_BT_DMT_1600X900P60_RB,
99 	V4L2_DV_BT_DMT_1600X1200P60,
100 	V4L2_DV_BT_DMT_1600X1200P65,
101 	V4L2_DV_BT_DMT_1600X1200P70,
102 	V4L2_DV_BT_DMT_1600X1200P75,
103 	V4L2_DV_BT_DMT_1600X1200P85,
104 	V4L2_DV_BT_DMT_1600X1200P120_RB,
105 	V4L2_DV_BT_DMT_1680X1050P60_RB,
106 	V4L2_DV_BT_DMT_1680X1050P60,
107 	V4L2_DV_BT_DMT_1680X1050P75,
108 	V4L2_DV_BT_DMT_1680X1050P85,
109 	V4L2_DV_BT_DMT_1680X1050P120_RB,
110 	V4L2_DV_BT_DMT_1792X1344P60,
111 	V4L2_DV_BT_DMT_1792X1344P75,
112 	V4L2_DV_BT_DMT_1792X1344P120_RB,
113 	V4L2_DV_BT_DMT_1856X1392P60,
114 	V4L2_DV_BT_DMT_1856X1392P75,
115 	V4L2_DV_BT_DMT_1856X1392P120_RB,
116 	V4L2_DV_BT_DMT_1920X1200P60_RB,
117 	V4L2_DV_BT_DMT_1920X1200P60,
118 	V4L2_DV_BT_DMT_1920X1200P75,
119 	V4L2_DV_BT_DMT_1920X1200P85,
120 	V4L2_DV_BT_DMT_1920X1200P120_RB,
121 	V4L2_DV_BT_DMT_1920X1440P60,
122 	V4L2_DV_BT_DMT_1920X1440P75,
123 	V4L2_DV_BT_DMT_1920X1440P120_RB,
124 	V4L2_DV_BT_DMT_2048X1152P60_RB,
125 	V4L2_DV_BT_DMT_2560X1600P60_RB,
126 	V4L2_DV_BT_DMT_2560X1600P60,
127 	V4L2_DV_BT_DMT_2560X1600P75,
128 	V4L2_DV_BT_DMT_2560X1600P85,
129 	V4L2_DV_BT_DMT_2560X1600P120_RB,
130 	{ }
131 };
132 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
133 
134 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
135 			   const struct v4l2_dv_timings_cap *dvcap,
136 			   v4l2_check_dv_timings_fnc fnc,
137 			   void *fnc_handle)
138 {
139 	const struct v4l2_bt_timings *bt = &t->bt;
140 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
141 	u32 caps = cap->capabilities;
142 
143 	if (t->type != V4L2_DV_BT_656_1120)
144 		return false;
145 	if (t->type != dvcap->type ||
146 	    bt->height < cap->min_height ||
147 	    bt->height > cap->max_height ||
148 	    bt->width < cap->min_width ||
149 	    bt->width > cap->max_width ||
150 	    bt->pixelclock < cap->min_pixelclock ||
151 	    bt->pixelclock > cap->max_pixelclock ||
152 	    (cap->standards && !(bt->standards & cap->standards)) ||
153 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
154 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
155 		return false;
156 	return fnc == NULL || fnc(t, fnc_handle);
157 }
158 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
159 
160 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
161 			     const struct v4l2_dv_timings_cap *cap,
162 			     v4l2_check_dv_timings_fnc fnc,
163 			     void *fnc_handle)
164 {
165 	u32 i, idx;
166 
167 	memset(t->reserved, 0, sizeof(t->reserved));
168 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
169 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
170 					  fnc, fnc_handle) &&
171 		    idx++ == t->index) {
172 			t->timings = v4l2_dv_timings_presets[i];
173 			return 0;
174 		}
175 	}
176 	return -EINVAL;
177 }
178 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
179 
180 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
181 			      const struct v4l2_dv_timings_cap *cap,
182 			      unsigned pclock_delta,
183 			      v4l2_check_dv_timings_fnc fnc,
184 			      void *fnc_handle)
185 {
186 	int i;
187 
188 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
189 		return false;
190 
191 	for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
192 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
193 					  fnc, fnc_handle) &&
194 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
195 					  pclock_delta)) {
196 			*t = v4l2_dv_timings_presets[i];
197 			return true;
198 		}
199 	}
200 	return false;
201 }
202 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
203 
204 /**
205  * v4l2_match_dv_timings - check if two timings match
206  * @t1 - compare this v4l2_dv_timings struct...
207  * @t2 - with this struct.
208  * @pclock_delta - the allowed pixelclock deviation.
209  *
210  * Compare t1 with t2 with a given margin of error for the pixelclock.
211  */
212 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
213 			   const struct v4l2_dv_timings *t2,
214 			   unsigned pclock_delta)
215 {
216 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
217 		return false;
218 	if (t1->bt.width == t2->bt.width &&
219 	    t1->bt.height == t2->bt.height &&
220 	    t1->bt.interlaced == t2->bt.interlaced &&
221 	    t1->bt.polarities == t2->bt.polarities &&
222 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
223 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
224 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
225 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
226 	    t1->bt.vsync == t2->bt.vsync &&
227 	    t1->bt.vbackporch == t2->bt.vbackporch &&
228 	    (!t1->bt.interlaced ||
229 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
230 		 t1->bt.il_vsync == t2->bt.il_vsync &&
231 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
232 		return true;
233 	return false;
234 }
235 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
236 
237 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
238 			   const struct v4l2_dv_timings *t, bool detailed)
239 {
240 	const struct v4l2_bt_timings *bt = &t->bt;
241 	u32 htot, vtot;
242 
243 	if (t->type != V4L2_DV_BT_656_1120)
244 		return;
245 
246 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
247 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
248 
249 	if (prefix == NULL)
250 		prefix = "";
251 
252 	pr_info("%s: %s%ux%u%s%u (%ux%u)\n", dev_prefix, prefix,
253 		bt->width, bt->height, bt->interlaced ? "i" : "p",
254 		(htot * vtot) > 0 ? ((u32)bt->pixelclock / (htot * vtot)) : 0,
255 		htot, vtot);
256 
257 	if (!detailed)
258 		return;
259 
260 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
261 			dev_prefix, bt->hfrontporch,
262 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
263 			bt->hsync, bt->hbackporch);
264 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
265 			dev_prefix, bt->vfrontporch,
266 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
267 			bt->vsync, bt->vbackporch);
268 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
269 	pr_info("%s: flags (0x%x):%s%s%s%s\n", dev_prefix, bt->flags,
270 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
271 			" REDUCED_BLANKING" : "",
272 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
273 			" CAN_REDUCE_FPS" : "",
274 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
275 			" REDUCED_FPS" : "",
276 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
277 			" HALF_LINE" : "");
278 	pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix, bt->standards,
279 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
280 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
281 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
282 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "");
283 }
284 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
285 
286 /*
287  * CVT defines
288  * Based on Coordinated Video Timings Standard
289  * version 1.1 September 10, 2003
290  */
291 
292 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
293 
294 /* Normal blanking */
295 #define CVT_MIN_V_BPORCH	7	/* lines */
296 #define CVT_MIN_V_PORCH_RND	3	/* lines */
297 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
298 
299 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
300 #define CVT_CELL_GRAN		8	/* character cell granularity */
301 #define CVT_M			600	/* blanking formula gradient */
302 #define CVT_C			40	/* blanking formula offset */
303 #define CVT_K			128	/* blanking formula scaling factor */
304 #define CVT_J			20	/* blanking formula scaling factor */
305 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
306 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
307 
308 /* Reduced Blanking */
309 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
310 #define CVT_RB_V_FPORCH        3       /* lines  */
311 #define CVT_RB_MIN_V_BLANK   460     /* us     */
312 #define CVT_RB_H_SYNC         32       /* pixels */
313 #define CVT_RB_H_BPORCH       80       /* pixels */
314 #define CVT_RB_H_BLANK       160       /* pixels */
315 
316 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
317  * @frame_height - the total height of the frame (including blanking) in lines.
318  * @hfreq - the horizontal frequency in Hz.
319  * @vsync - the height of the vertical sync in lines.
320  * @polarities - the horizontal and vertical polarities (same as struct
321  *		v4l2_bt_timings polarities).
322  * @fmt - the resulting timings.
323  *
324  * This function will attempt to detect if the given values correspond to a
325  * valid CVT format. If so, then it will return true, and fmt will be filled
326  * in with the found CVT timings.
327  */
328 bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync,
329 		u32 polarities, struct v4l2_dv_timings *fmt)
330 {
331 	int  v_fp, v_bp, h_fp, h_bp, hsync;
332 	int  frame_width, image_height, image_width;
333 	bool reduced_blanking;
334 	unsigned pix_clk;
335 
336 	if (vsync < 4 || vsync > 7)
337 		return false;
338 
339 	if (polarities == V4L2_DV_VSYNC_POS_POL)
340 		reduced_blanking = false;
341 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
342 		reduced_blanking = true;
343 	else
344 		return false;
345 
346 	/* Vertical */
347 	if (reduced_blanking) {
348 		v_fp = CVT_RB_V_FPORCH;
349 		v_bp = (CVT_RB_MIN_V_BLANK * hfreq + 1999999) / 1000000;
350 		v_bp -= vsync + v_fp;
351 
352 		if (v_bp < CVT_RB_MIN_V_BPORCH)
353 			v_bp = CVT_RB_MIN_V_BPORCH;
354 	} else {
355 		v_fp = CVT_MIN_V_PORCH_RND;
356 		v_bp = (CVT_MIN_VSYNC_BP * hfreq + 1999999) / 1000000 - vsync;
357 
358 		if (v_bp < CVT_MIN_V_BPORCH)
359 			v_bp = CVT_MIN_V_BPORCH;
360 	}
361 	image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
362 
363 	/* Aspect ratio based on vsync */
364 	switch (vsync) {
365 	case 4:
366 		image_width = (image_height * 4) / 3;
367 		break;
368 	case 5:
369 		image_width = (image_height * 16) / 9;
370 		break;
371 	case 6:
372 		image_width = (image_height * 16) / 10;
373 		break;
374 	case 7:
375 		/* special case */
376 		if (image_height == 1024)
377 			image_width = (image_height * 5) / 4;
378 		else if (image_height == 768)
379 			image_width = (image_height * 15) / 9;
380 		else
381 			return false;
382 		break;
383 	default:
384 		return false;
385 	}
386 
387 	image_width = image_width & ~7;
388 
389 	/* Horizontal */
390 	if (reduced_blanking) {
391 		pix_clk = (image_width + CVT_RB_H_BLANK) * hfreq;
392 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
393 
394 		h_bp = CVT_RB_H_BPORCH;
395 		hsync = CVT_RB_H_SYNC;
396 		h_fp = CVT_RB_H_BLANK - h_bp - hsync;
397 
398 		frame_width = image_width + CVT_RB_H_BLANK;
399 	} else {
400 		unsigned ideal_duty_cycle_per_myriad =
401 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
402 		int h_blank;
403 
404 		if (ideal_duty_cycle_per_myriad < 2000)
405 			ideal_duty_cycle_per_myriad = 2000;
406 
407 		h_blank = image_width * ideal_duty_cycle_per_myriad /
408 					(10000 - ideal_duty_cycle_per_myriad);
409 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
410 
411 		pix_clk = (image_width + h_blank) * hfreq;
412 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
413 
414 		h_bp = h_blank / 2;
415 		frame_width = image_width + h_blank;
416 
417 		hsync = (frame_width * 8 + 50) / 100;
418 		hsync = hsync - hsync % CVT_CELL_GRAN;
419 		h_fp = h_blank - hsync - h_bp;
420 	}
421 
422 	fmt->type = V4L2_DV_BT_656_1120;
423 	fmt->bt.polarities = polarities;
424 	fmt->bt.width = image_width;
425 	fmt->bt.height = image_height;
426 	fmt->bt.hfrontporch = h_fp;
427 	fmt->bt.vfrontporch = v_fp;
428 	fmt->bt.hsync = hsync;
429 	fmt->bt.vsync = vsync;
430 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
431 	fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
432 	fmt->bt.pixelclock = pix_clk;
433 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
434 	if (reduced_blanking)
435 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
436 	return true;
437 }
438 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
439 
440 /*
441  * GTF defines
442  * Based on Generalized Timing Formula Standard
443  * Version 1.1 September 2, 1999
444  */
445 
446 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
447 
448 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
449 #define GTF_V_FP		1	/* vertical front porch (lines) */
450 #define GTF_CELL_GRAN		8	/* character cell granularity */
451 
452 /* Default */
453 #define GTF_D_M			600	/* blanking formula gradient */
454 #define GTF_D_C			40	/* blanking formula offset */
455 #define GTF_D_K			128	/* blanking formula scaling factor */
456 #define GTF_D_J			20	/* blanking formula scaling factor */
457 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
458 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
459 
460 /* Secondary */
461 #define GTF_S_M			3600	/* blanking formula gradient */
462 #define GTF_S_C			40	/* blanking formula offset */
463 #define GTF_S_K			128	/* blanking formula scaling factor */
464 #define GTF_S_J			35	/* blanking formula scaling factor */
465 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
466 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
467 
468 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
469  * @frame_height - the total height of the frame (including blanking) in lines.
470  * @hfreq - the horizontal frequency in Hz.
471  * @vsync - the height of the vertical sync in lines.
472  * @polarities - the horizontal and vertical polarities (same as struct
473  *		v4l2_bt_timings polarities).
474  * @aspect - preferred aspect ratio. GTF has no method of determining the
475  *		aspect ratio in order to derive the image width from the
476  *		image height, so it has to be passed explicitly. Usually
477  *		the native screen aspect ratio is used for this. If it
478  *		is not filled in correctly, then 16:9 will be assumed.
479  * @fmt - the resulting timings.
480  *
481  * This function will attempt to detect if the given values correspond to a
482  * valid GTF format. If so, then it will return true, and fmt will be filled
483  * in with the found GTF timings.
484  */
485 bool v4l2_detect_gtf(unsigned frame_height,
486 		unsigned hfreq,
487 		unsigned vsync,
488 		u32 polarities,
489 		struct v4l2_fract aspect,
490 		struct v4l2_dv_timings *fmt)
491 {
492 	int pix_clk;
493 	int  v_fp, v_bp, h_fp, hsync;
494 	int frame_width, image_height, image_width;
495 	bool default_gtf;
496 	int h_blank;
497 
498 	if (vsync != 3)
499 		return false;
500 
501 	if (polarities == V4L2_DV_VSYNC_POS_POL)
502 		default_gtf = true;
503 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
504 		default_gtf = false;
505 	else
506 		return false;
507 
508 	/* Vertical */
509 	v_fp = GTF_V_FP;
510 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 999999) / 1000000 - vsync;
511 	image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
512 
513 	if (aspect.numerator == 0 || aspect.denominator == 0) {
514 		aspect.numerator = 16;
515 		aspect.denominator = 9;
516 	}
517 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
518 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
519 
520 	/* Horizontal */
521 	if (default_gtf)
522 		h_blank = ((image_width * GTF_D_C_PRIME * hfreq) -
523 					(image_width * GTF_D_M_PRIME * 1000) +
524 			(hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) / 2) /
525 			(hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000);
526 	else
527 		h_blank = ((image_width * GTF_S_C_PRIME * hfreq) -
528 					(image_width * GTF_S_M_PRIME * 1000) +
529 			(hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) / 2) /
530 			(hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000);
531 
532 	h_blank = h_blank - h_blank % (2 * GTF_CELL_GRAN);
533 	frame_width = image_width + h_blank;
534 
535 	pix_clk = (image_width + h_blank) * hfreq;
536 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
537 
538 	hsync = (frame_width * 8 + 50) / 100;
539 	hsync = hsync - hsync % GTF_CELL_GRAN;
540 
541 	h_fp = h_blank / 2 - hsync;
542 
543 	fmt->type = V4L2_DV_BT_656_1120;
544 	fmt->bt.polarities = polarities;
545 	fmt->bt.width = image_width;
546 	fmt->bt.height = image_height;
547 	fmt->bt.hfrontporch = h_fp;
548 	fmt->bt.vfrontporch = v_fp;
549 	fmt->bt.hsync = hsync;
550 	fmt->bt.vsync = vsync;
551 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
552 	fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
553 	fmt->bt.pixelclock = pix_clk;
554 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
555 	if (!default_gtf)
556 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
557 	return true;
558 }
559 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
560 
561 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
562  *	0x15 and 0x16 from the EDID.
563  * @hor_landscape - byte 0x15 from the EDID.
564  * @vert_portrait - byte 0x16 from the EDID.
565  *
566  * Determines the aspect ratio from the EDID.
567  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
568  * "Horizontal and Vertical Screen Size or Aspect Ratio"
569  */
570 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
571 {
572 	struct v4l2_fract aspect = { 16, 9 };
573 	u32 tmp;
574 	u8 ratio;
575 
576 	/* Nothing filled in, fallback to 16:9 */
577 	if (!hor_landscape && !vert_portrait)
578 		return aspect;
579 	/* Both filled in, so they are interpreted as the screen size in cm */
580 	if (hor_landscape && vert_portrait) {
581 		aspect.numerator = hor_landscape;
582 		aspect.denominator = vert_portrait;
583 		return aspect;
584 	}
585 	/* Only one is filled in, so interpret them as a ratio:
586 	   (val + 99) / 100 */
587 	ratio = hor_landscape | vert_portrait;
588 	/* Change some rounded values into the exact aspect ratio */
589 	if (ratio == 79) {
590 		aspect.numerator = 16;
591 		aspect.denominator = 9;
592 	} else if (ratio == 34) {
593 		aspect.numerator = 4;
594 		aspect.numerator = 3;
595 	} else if (ratio == 68) {
596 		aspect.numerator = 15;
597 		aspect.numerator = 9;
598 	} else {
599 		aspect.numerator = hor_landscape + 99;
600 		aspect.denominator = 100;
601 	}
602 	if (hor_landscape)
603 		return aspect;
604 	/* The aspect ratio is for portrait, so swap numerator and denominator */
605 	tmp = aspect.denominator;
606 	aspect.denominator = aspect.numerator;
607 	aspect.numerator = tmp;
608 	return aspect;
609 }
610 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
611