1 /*
2  * v4l2-dv-timings - dv-timings helper functions
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
28 
29 MODULE_AUTHOR("Hans Verkuil");
30 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
31 MODULE_LICENSE("GPL");
32 
33 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
34 	V4L2_DV_BT_CEA_640X480P59_94,
35 	V4L2_DV_BT_CEA_720X480I59_94,
36 	V4L2_DV_BT_CEA_720X480P59_94,
37 	V4L2_DV_BT_CEA_720X576I50,
38 	V4L2_DV_BT_CEA_720X576P50,
39 	V4L2_DV_BT_CEA_1280X720P24,
40 	V4L2_DV_BT_CEA_1280X720P25,
41 	V4L2_DV_BT_CEA_1280X720P30,
42 	V4L2_DV_BT_CEA_1280X720P50,
43 	V4L2_DV_BT_CEA_1280X720P60,
44 	V4L2_DV_BT_CEA_1920X1080P24,
45 	V4L2_DV_BT_CEA_1920X1080P25,
46 	V4L2_DV_BT_CEA_1920X1080P30,
47 	V4L2_DV_BT_CEA_1920X1080I50,
48 	V4L2_DV_BT_CEA_1920X1080P50,
49 	V4L2_DV_BT_CEA_1920X1080I60,
50 	V4L2_DV_BT_CEA_1920X1080P60,
51 	V4L2_DV_BT_DMT_640X350P85,
52 	V4L2_DV_BT_DMT_640X400P85,
53 	V4L2_DV_BT_DMT_720X400P85,
54 	V4L2_DV_BT_DMT_640X480P72,
55 	V4L2_DV_BT_DMT_640X480P75,
56 	V4L2_DV_BT_DMT_640X480P85,
57 	V4L2_DV_BT_DMT_800X600P56,
58 	V4L2_DV_BT_DMT_800X600P60,
59 	V4L2_DV_BT_DMT_800X600P72,
60 	V4L2_DV_BT_DMT_800X600P75,
61 	V4L2_DV_BT_DMT_800X600P85,
62 	V4L2_DV_BT_DMT_800X600P120_RB,
63 	V4L2_DV_BT_DMT_848X480P60,
64 	V4L2_DV_BT_DMT_1024X768I43,
65 	V4L2_DV_BT_DMT_1024X768P60,
66 	V4L2_DV_BT_DMT_1024X768P70,
67 	V4L2_DV_BT_DMT_1024X768P75,
68 	V4L2_DV_BT_DMT_1024X768P85,
69 	V4L2_DV_BT_DMT_1024X768P120_RB,
70 	V4L2_DV_BT_DMT_1152X864P75,
71 	V4L2_DV_BT_DMT_1280X768P60_RB,
72 	V4L2_DV_BT_DMT_1280X768P60,
73 	V4L2_DV_BT_DMT_1280X768P75,
74 	V4L2_DV_BT_DMT_1280X768P85,
75 	V4L2_DV_BT_DMT_1280X768P120_RB,
76 	V4L2_DV_BT_DMT_1280X800P60_RB,
77 	V4L2_DV_BT_DMT_1280X800P60,
78 	V4L2_DV_BT_DMT_1280X800P75,
79 	V4L2_DV_BT_DMT_1280X800P85,
80 	V4L2_DV_BT_DMT_1280X800P120_RB,
81 	V4L2_DV_BT_DMT_1280X960P60,
82 	V4L2_DV_BT_DMT_1280X960P85,
83 	V4L2_DV_BT_DMT_1280X960P120_RB,
84 	V4L2_DV_BT_DMT_1280X1024P60,
85 	V4L2_DV_BT_DMT_1280X1024P75,
86 	V4L2_DV_BT_DMT_1280X1024P85,
87 	V4L2_DV_BT_DMT_1280X1024P120_RB,
88 	V4L2_DV_BT_DMT_1360X768P60,
89 	V4L2_DV_BT_DMT_1360X768P120_RB,
90 	V4L2_DV_BT_DMT_1366X768P60,
91 	V4L2_DV_BT_DMT_1366X768P60_RB,
92 	V4L2_DV_BT_DMT_1400X1050P60_RB,
93 	V4L2_DV_BT_DMT_1400X1050P60,
94 	V4L2_DV_BT_DMT_1400X1050P75,
95 	V4L2_DV_BT_DMT_1400X1050P85,
96 	V4L2_DV_BT_DMT_1400X1050P120_RB,
97 	V4L2_DV_BT_DMT_1440X900P60_RB,
98 	V4L2_DV_BT_DMT_1440X900P60,
99 	V4L2_DV_BT_DMT_1440X900P75,
100 	V4L2_DV_BT_DMT_1440X900P85,
101 	V4L2_DV_BT_DMT_1440X900P120_RB,
102 	V4L2_DV_BT_DMT_1600X900P60_RB,
103 	V4L2_DV_BT_DMT_1600X1200P60,
104 	V4L2_DV_BT_DMT_1600X1200P65,
105 	V4L2_DV_BT_DMT_1600X1200P70,
106 	V4L2_DV_BT_DMT_1600X1200P75,
107 	V4L2_DV_BT_DMT_1600X1200P85,
108 	V4L2_DV_BT_DMT_1600X1200P120_RB,
109 	V4L2_DV_BT_DMT_1680X1050P60_RB,
110 	V4L2_DV_BT_DMT_1680X1050P60,
111 	V4L2_DV_BT_DMT_1680X1050P75,
112 	V4L2_DV_BT_DMT_1680X1050P85,
113 	V4L2_DV_BT_DMT_1680X1050P120_RB,
114 	V4L2_DV_BT_DMT_1792X1344P60,
115 	V4L2_DV_BT_DMT_1792X1344P75,
116 	V4L2_DV_BT_DMT_1792X1344P120_RB,
117 	V4L2_DV_BT_DMT_1856X1392P60,
118 	V4L2_DV_BT_DMT_1856X1392P75,
119 	V4L2_DV_BT_DMT_1856X1392P120_RB,
120 	V4L2_DV_BT_DMT_1920X1200P60_RB,
121 	V4L2_DV_BT_DMT_1920X1200P60,
122 	V4L2_DV_BT_DMT_1920X1200P75,
123 	V4L2_DV_BT_DMT_1920X1200P85,
124 	V4L2_DV_BT_DMT_1920X1200P120_RB,
125 	V4L2_DV_BT_DMT_1920X1440P60,
126 	V4L2_DV_BT_DMT_1920X1440P75,
127 	V4L2_DV_BT_DMT_1920X1440P120_RB,
128 	V4L2_DV_BT_DMT_2048X1152P60_RB,
129 	V4L2_DV_BT_DMT_2560X1600P60_RB,
130 	V4L2_DV_BT_DMT_2560X1600P60,
131 	V4L2_DV_BT_DMT_2560X1600P75,
132 	V4L2_DV_BT_DMT_2560X1600P85,
133 	V4L2_DV_BT_DMT_2560X1600P120_RB,
134 	{ }
135 };
136 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
137 
138 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
139 			   const struct v4l2_dv_timings_cap *dvcap,
140 			   v4l2_check_dv_timings_fnc fnc,
141 			   void *fnc_handle)
142 {
143 	const struct v4l2_bt_timings *bt = &t->bt;
144 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
145 	u32 caps = cap->capabilities;
146 
147 	if (t->type != V4L2_DV_BT_656_1120)
148 		return false;
149 	if (t->type != dvcap->type ||
150 	    bt->height < cap->min_height ||
151 	    bt->height > cap->max_height ||
152 	    bt->width < cap->min_width ||
153 	    bt->width > cap->max_width ||
154 	    bt->pixelclock < cap->min_pixelclock ||
155 	    bt->pixelclock > cap->max_pixelclock ||
156 	    (cap->standards && !(bt->standards & cap->standards)) ||
157 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
158 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
159 		return false;
160 	return fnc == NULL || fnc(t, fnc_handle);
161 }
162 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
163 
164 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
165 			     const struct v4l2_dv_timings_cap *cap,
166 			     v4l2_check_dv_timings_fnc fnc,
167 			     void *fnc_handle)
168 {
169 	u32 i, idx;
170 
171 	memset(t->reserved, 0, sizeof(t->reserved));
172 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
173 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
174 					  fnc, fnc_handle) &&
175 		    idx++ == t->index) {
176 			t->timings = v4l2_dv_timings_presets[i];
177 			return 0;
178 		}
179 	}
180 	return -EINVAL;
181 }
182 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
183 
184 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
185 			      const struct v4l2_dv_timings_cap *cap,
186 			      unsigned pclock_delta,
187 			      v4l2_check_dv_timings_fnc fnc,
188 			      void *fnc_handle)
189 {
190 	int i;
191 
192 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
193 		return false;
194 
195 	for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
196 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
197 					  fnc, fnc_handle) &&
198 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
199 					  pclock_delta)) {
200 			*t = v4l2_dv_timings_presets[i];
201 			return true;
202 		}
203 	}
204 	return false;
205 }
206 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
207 
208 /**
209  * v4l2_match_dv_timings - check if two timings match
210  * @t1 - compare this v4l2_dv_timings struct...
211  * @t2 - with this struct.
212  * @pclock_delta - the allowed pixelclock deviation.
213  *
214  * Compare t1 with t2 with a given margin of error for the pixelclock.
215  */
216 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
217 			   const struct v4l2_dv_timings *t2,
218 			   unsigned pclock_delta)
219 {
220 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
221 		return false;
222 	if (t1->bt.width == t2->bt.width &&
223 	    t1->bt.height == t2->bt.height &&
224 	    t1->bt.interlaced == t2->bt.interlaced &&
225 	    t1->bt.polarities == t2->bt.polarities &&
226 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
227 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
228 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
229 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
230 	    t1->bt.vsync == t2->bt.vsync &&
231 	    t1->bt.vbackporch == t2->bt.vbackporch &&
232 	    (!t1->bt.interlaced ||
233 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
234 		 t1->bt.il_vsync == t2->bt.il_vsync &&
235 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
236 		return true;
237 	return false;
238 }
239 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
240 
241 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
242 			   const struct v4l2_dv_timings *t, bool detailed)
243 {
244 	const struct v4l2_bt_timings *bt = &t->bt;
245 	u32 htot, vtot;
246 
247 	if (t->type != V4L2_DV_BT_656_1120)
248 		return;
249 
250 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
251 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
252 
253 	if (prefix == NULL)
254 		prefix = "";
255 
256 	pr_info("%s: %s%ux%u%s%u (%ux%u)\n", dev_prefix, prefix,
257 		bt->width, bt->height, bt->interlaced ? "i" : "p",
258 		(htot * vtot) > 0 ? ((u32)bt->pixelclock / (htot * vtot)) : 0,
259 		htot, vtot);
260 
261 	if (!detailed)
262 		return;
263 
264 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
265 			dev_prefix, bt->hfrontporch,
266 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
267 			bt->hsync, bt->hbackporch);
268 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
269 			dev_prefix, bt->vfrontporch,
270 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
271 			bt->vsync, bt->vbackporch);
272 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
273 	pr_info("%s: flags (0x%x):%s%s%s%s\n", dev_prefix, bt->flags,
274 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
275 			" REDUCED_BLANKING" : "",
276 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
277 			" CAN_REDUCE_FPS" : "",
278 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
279 			" REDUCED_FPS" : "",
280 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
281 			" HALF_LINE" : "");
282 	pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix, bt->standards,
283 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
284 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
285 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
286 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "");
287 }
288 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
289 
290 /*
291  * CVT defines
292  * Based on Coordinated Video Timings Standard
293  * version 1.1 September 10, 2003
294  */
295 
296 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
297 
298 /* Normal blanking */
299 #define CVT_MIN_V_BPORCH	7	/* lines */
300 #define CVT_MIN_V_PORCH_RND	3	/* lines */
301 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
302 
303 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
304 #define CVT_CELL_GRAN		8	/* character cell granularity */
305 #define CVT_M			600	/* blanking formula gradient */
306 #define CVT_C			40	/* blanking formula offset */
307 #define CVT_K			128	/* blanking formula scaling factor */
308 #define CVT_J			20	/* blanking formula scaling factor */
309 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
310 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
311 
312 /* Reduced Blanking */
313 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
314 #define CVT_RB_V_FPORCH        3       /* lines  */
315 #define CVT_RB_MIN_V_BLANK   460     /* us     */
316 #define CVT_RB_H_SYNC         32       /* pixels */
317 #define CVT_RB_H_BPORCH       80       /* pixels */
318 #define CVT_RB_H_BLANK       160       /* pixels */
319 
320 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
321  * @frame_height - the total height of the frame (including blanking) in lines.
322  * @hfreq - the horizontal frequency in Hz.
323  * @vsync - the height of the vertical sync in lines.
324  * @polarities - the horizontal and vertical polarities (same as struct
325  *		v4l2_bt_timings polarities).
326  * @fmt - the resulting timings.
327  *
328  * This function will attempt to detect if the given values correspond to a
329  * valid CVT format. If so, then it will return true, and fmt will be filled
330  * in with the found CVT timings.
331  *
332  * TODO: VESA defined a new version 2 of their reduced blanking
333  * formula. Support for that is currently missing in this CVT
334  * detection function.
335  */
336 bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync,
337 		u32 polarities, struct v4l2_dv_timings *fmt)
338 {
339 	int  v_fp, v_bp, h_fp, h_bp, hsync;
340 	int  frame_width, image_height, image_width;
341 	bool reduced_blanking;
342 	unsigned pix_clk;
343 
344 	if (vsync < 4 || vsync > 7)
345 		return false;
346 
347 	if (polarities == V4L2_DV_VSYNC_POS_POL)
348 		reduced_blanking = false;
349 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
350 		reduced_blanking = true;
351 	else
352 		return false;
353 
354 	/* Vertical */
355 	if (reduced_blanking) {
356 		v_fp = CVT_RB_V_FPORCH;
357 		v_bp = (CVT_RB_MIN_V_BLANK * hfreq + 1999999) / 1000000;
358 		v_bp -= vsync + v_fp;
359 
360 		if (v_bp < CVT_RB_MIN_V_BPORCH)
361 			v_bp = CVT_RB_MIN_V_BPORCH;
362 	} else {
363 		v_fp = CVT_MIN_V_PORCH_RND;
364 		v_bp = (CVT_MIN_VSYNC_BP * hfreq + 1999999) / 1000000 - vsync;
365 
366 		if (v_bp < CVT_MIN_V_BPORCH)
367 			v_bp = CVT_MIN_V_BPORCH;
368 	}
369 	image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
370 
371 	/* Aspect ratio based on vsync */
372 	switch (vsync) {
373 	case 4:
374 		image_width = (image_height * 4) / 3;
375 		break;
376 	case 5:
377 		image_width = (image_height * 16) / 9;
378 		break;
379 	case 6:
380 		image_width = (image_height * 16) / 10;
381 		break;
382 	case 7:
383 		/* special case */
384 		if (image_height == 1024)
385 			image_width = (image_height * 5) / 4;
386 		else if (image_height == 768)
387 			image_width = (image_height * 15) / 9;
388 		else
389 			return false;
390 		break;
391 	default:
392 		return false;
393 	}
394 
395 	image_width = image_width & ~7;
396 
397 	/* Horizontal */
398 	if (reduced_blanking) {
399 		pix_clk = (image_width + CVT_RB_H_BLANK) * hfreq;
400 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
401 
402 		h_bp = CVT_RB_H_BPORCH;
403 		hsync = CVT_RB_H_SYNC;
404 		h_fp = CVT_RB_H_BLANK - h_bp - hsync;
405 
406 		frame_width = image_width + CVT_RB_H_BLANK;
407 	} else {
408 		unsigned ideal_duty_cycle_per_myriad =
409 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
410 		int h_blank;
411 
412 		if (ideal_duty_cycle_per_myriad < 2000)
413 			ideal_duty_cycle_per_myriad = 2000;
414 
415 		h_blank = image_width * ideal_duty_cycle_per_myriad /
416 					(10000 - ideal_duty_cycle_per_myriad);
417 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
418 
419 		pix_clk = (image_width + h_blank) * hfreq;
420 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
421 
422 		h_bp = h_blank / 2;
423 		frame_width = image_width + h_blank;
424 
425 		hsync = (frame_width * 8 + 50) / 100;
426 		hsync = hsync - hsync % CVT_CELL_GRAN;
427 		h_fp = h_blank - hsync - h_bp;
428 	}
429 
430 	fmt->type = V4L2_DV_BT_656_1120;
431 	fmt->bt.polarities = polarities;
432 	fmt->bt.width = image_width;
433 	fmt->bt.height = image_height;
434 	fmt->bt.hfrontporch = h_fp;
435 	fmt->bt.vfrontporch = v_fp;
436 	fmt->bt.hsync = hsync;
437 	fmt->bt.vsync = vsync;
438 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
439 	fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
440 	fmt->bt.pixelclock = pix_clk;
441 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
442 	if (reduced_blanking)
443 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
444 	return true;
445 }
446 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
447 
448 /*
449  * GTF defines
450  * Based on Generalized Timing Formula Standard
451  * Version 1.1 September 2, 1999
452  */
453 
454 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
455 
456 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
457 #define GTF_V_FP		1	/* vertical front porch (lines) */
458 #define GTF_CELL_GRAN		8	/* character cell granularity */
459 
460 /* Default */
461 #define GTF_D_M			600	/* blanking formula gradient */
462 #define GTF_D_C			40	/* blanking formula offset */
463 #define GTF_D_K			128	/* blanking formula scaling factor */
464 #define GTF_D_J			20	/* blanking formula scaling factor */
465 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
466 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
467 
468 /* Secondary */
469 #define GTF_S_M			3600	/* blanking formula gradient */
470 #define GTF_S_C			40	/* blanking formula offset */
471 #define GTF_S_K			128	/* blanking formula scaling factor */
472 #define GTF_S_J			35	/* blanking formula scaling factor */
473 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
474 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
475 
476 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
477  * @frame_height - the total height of the frame (including blanking) in lines.
478  * @hfreq - the horizontal frequency in Hz.
479  * @vsync - the height of the vertical sync in lines.
480  * @polarities - the horizontal and vertical polarities (same as struct
481  *		v4l2_bt_timings polarities).
482  * @aspect - preferred aspect ratio. GTF has no method of determining the
483  *		aspect ratio in order to derive the image width from the
484  *		image height, so it has to be passed explicitly. Usually
485  *		the native screen aspect ratio is used for this. If it
486  *		is not filled in correctly, then 16:9 will be assumed.
487  * @fmt - the resulting timings.
488  *
489  * This function will attempt to detect if the given values correspond to a
490  * valid GTF format. If so, then it will return true, and fmt will be filled
491  * in with the found GTF timings.
492  */
493 bool v4l2_detect_gtf(unsigned frame_height,
494 		unsigned hfreq,
495 		unsigned vsync,
496 		u32 polarities,
497 		struct v4l2_fract aspect,
498 		struct v4l2_dv_timings *fmt)
499 {
500 	int pix_clk;
501 	int  v_fp, v_bp, h_fp, hsync;
502 	int frame_width, image_height, image_width;
503 	bool default_gtf;
504 	int h_blank;
505 
506 	if (vsync != 3)
507 		return false;
508 
509 	if (polarities == V4L2_DV_VSYNC_POS_POL)
510 		default_gtf = true;
511 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
512 		default_gtf = false;
513 	else
514 		return false;
515 
516 	/* Vertical */
517 	v_fp = GTF_V_FP;
518 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 999999) / 1000000 - vsync;
519 	image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
520 
521 	if (aspect.numerator == 0 || aspect.denominator == 0) {
522 		aspect.numerator = 16;
523 		aspect.denominator = 9;
524 	}
525 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
526 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
527 
528 	/* Horizontal */
529 	if (default_gtf)
530 		h_blank = ((image_width * GTF_D_C_PRIME * hfreq) -
531 					(image_width * GTF_D_M_PRIME * 1000) +
532 			(hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) / 2) /
533 			(hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000);
534 	else
535 		h_blank = ((image_width * GTF_S_C_PRIME * hfreq) -
536 					(image_width * GTF_S_M_PRIME * 1000) +
537 			(hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) / 2) /
538 			(hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000);
539 
540 	h_blank = h_blank - h_blank % (2 * GTF_CELL_GRAN);
541 	frame_width = image_width + h_blank;
542 
543 	pix_clk = (image_width + h_blank) * hfreq;
544 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
545 
546 	hsync = (frame_width * 8 + 50) / 100;
547 	hsync = hsync - hsync % GTF_CELL_GRAN;
548 
549 	h_fp = h_blank / 2 - hsync;
550 
551 	fmt->type = V4L2_DV_BT_656_1120;
552 	fmt->bt.polarities = polarities;
553 	fmt->bt.width = image_width;
554 	fmt->bt.height = image_height;
555 	fmt->bt.hfrontporch = h_fp;
556 	fmt->bt.vfrontporch = v_fp;
557 	fmt->bt.hsync = hsync;
558 	fmt->bt.vsync = vsync;
559 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
560 	fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
561 	fmt->bt.pixelclock = pix_clk;
562 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
563 	if (!default_gtf)
564 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
565 	return true;
566 }
567 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
568 
569 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
570  *	0x15 and 0x16 from the EDID.
571  * @hor_landscape - byte 0x15 from the EDID.
572  * @vert_portrait - byte 0x16 from the EDID.
573  *
574  * Determines the aspect ratio from the EDID.
575  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
576  * "Horizontal and Vertical Screen Size or Aspect Ratio"
577  */
578 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
579 {
580 	struct v4l2_fract aspect = { 16, 9 };
581 	u32 tmp;
582 	u8 ratio;
583 
584 	/* Nothing filled in, fallback to 16:9 */
585 	if (!hor_landscape && !vert_portrait)
586 		return aspect;
587 	/* Both filled in, so they are interpreted as the screen size in cm */
588 	if (hor_landscape && vert_portrait) {
589 		aspect.numerator = hor_landscape;
590 		aspect.denominator = vert_portrait;
591 		return aspect;
592 	}
593 	/* Only one is filled in, so interpret them as a ratio:
594 	   (val + 99) / 100 */
595 	ratio = hor_landscape | vert_portrait;
596 	/* Change some rounded values into the exact aspect ratio */
597 	if (ratio == 79) {
598 		aspect.numerator = 16;
599 		aspect.denominator = 9;
600 	} else if (ratio == 34) {
601 		aspect.numerator = 4;
602 		aspect.numerator = 3;
603 	} else if (ratio == 68) {
604 		aspect.numerator = 15;
605 		aspect.numerator = 9;
606 	} else {
607 		aspect.numerator = hor_landscape + 99;
608 		aspect.denominator = 100;
609 	}
610 	if (hor_landscape)
611 		return aspect;
612 	/* The aspect ratio is for portrait, so swap numerator and denominator */
613 	tmp = aspect.denominator;
614 	aspect.denominator = aspect.numerator;
615 	aspect.numerator = tmp;
616 	return aspect;
617 }
618 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
619