1 /*
2  * v4l2-dv-timings - dv-timings helper functions
3  *
4  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5  *
6  * This program is free software; you may redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17  * SOFTWARE.
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/videodev2.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <media/v4l2-dv-timings.h>
28 #include <linux/math64.h>
29 
30 MODULE_AUTHOR("Hans Verkuil");
31 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
32 MODULE_LICENSE("GPL");
33 
34 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
35 	V4L2_DV_BT_CEA_640X480P59_94,
36 	V4L2_DV_BT_CEA_720X480I59_94,
37 	V4L2_DV_BT_CEA_720X480P59_94,
38 	V4L2_DV_BT_CEA_720X576I50,
39 	V4L2_DV_BT_CEA_720X576P50,
40 	V4L2_DV_BT_CEA_1280X720P24,
41 	V4L2_DV_BT_CEA_1280X720P25,
42 	V4L2_DV_BT_CEA_1280X720P30,
43 	V4L2_DV_BT_CEA_1280X720P50,
44 	V4L2_DV_BT_CEA_1280X720P60,
45 	V4L2_DV_BT_CEA_1920X1080P24,
46 	V4L2_DV_BT_CEA_1920X1080P25,
47 	V4L2_DV_BT_CEA_1920X1080P30,
48 	V4L2_DV_BT_CEA_1920X1080I50,
49 	V4L2_DV_BT_CEA_1920X1080P50,
50 	V4L2_DV_BT_CEA_1920X1080I60,
51 	V4L2_DV_BT_CEA_1920X1080P60,
52 	V4L2_DV_BT_DMT_640X350P85,
53 	V4L2_DV_BT_DMT_640X400P85,
54 	V4L2_DV_BT_DMT_720X400P85,
55 	V4L2_DV_BT_DMT_640X480P72,
56 	V4L2_DV_BT_DMT_640X480P75,
57 	V4L2_DV_BT_DMT_640X480P85,
58 	V4L2_DV_BT_DMT_800X600P56,
59 	V4L2_DV_BT_DMT_800X600P60,
60 	V4L2_DV_BT_DMT_800X600P72,
61 	V4L2_DV_BT_DMT_800X600P75,
62 	V4L2_DV_BT_DMT_800X600P85,
63 	V4L2_DV_BT_DMT_800X600P120_RB,
64 	V4L2_DV_BT_DMT_848X480P60,
65 	V4L2_DV_BT_DMT_1024X768I43,
66 	V4L2_DV_BT_DMT_1024X768P60,
67 	V4L2_DV_BT_DMT_1024X768P70,
68 	V4L2_DV_BT_DMT_1024X768P75,
69 	V4L2_DV_BT_DMT_1024X768P85,
70 	V4L2_DV_BT_DMT_1024X768P120_RB,
71 	V4L2_DV_BT_DMT_1152X864P75,
72 	V4L2_DV_BT_DMT_1280X768P60_RB,
73 	V4L2_DV_BT_DMT_1280X768P60,
74 	V4L2_DV_BT_DMT_1280X768P75,
75 	V4L2_DV_BT_DMT_1280X768P85,
76 	V4L2_DV_BT_DMT_1280X768P120_RB,
77 	V4L2_DV_BT_DMT_1280X800P60_RB,
78 	V4L2_DV_BT_DMT_1280X800P60,
79 	V4L2_DV_BT_DMT_1280X800P75,
80 	V4L2_DV_BT_DMT_1280X800P85,
81 	V4L2_DV_BT_DMT_1280X800P120_RB,
82 	V4L2_DV_BT_DMT_1280X960P60,
83 	V4L2_DV_BT_DMT_1280X960P85,
84 	V4L2_DV_BT_DMT_1280X960P120_RB,
85 	V4L2_DV_BT_DMT_1280X1024P60,
86 	V4L2_DV_BT_DMT_1280X1024P75,
87 	V4L2_DV_BT_DMT_1280X1024P85,
88 	V4L2_DV_BT_DMT_1280X1024P120_RB,
89 	V4L2_DV_BT_DMT_1360X768P60,
90 	V4L2_DV_BT_DMT_1360X768P120_RB,
91 	V4L2_DV_BT_DMT_1366X768P60,
92 	V4L2_DV_BT_DMT_1366X768P60_RB,
93 	V4L2_DV_BT_DMT_1400X1050P60_RB,
94 	V4L2_DV_BT_DMT_1400X1050P60,
95 	V4L2_DV_BT_DMT_1400X1050P75,
96 	V4L2_DV_BT_DMT_1400X1050P85,
97 	V4L2_DV_BT_DMT_1400X1050P120_RB,
98 	V4L2_DV_BT_DMT_1440X900P60_RB,
99 	V4L2_DV_BT_DMT_1440X900P60,
100 	V4L2_DV_BT_DMT_1440X900P75,
101 	V4L2_DV_BT_DMT_1440X900P85,
102 	V4L2_DV_BT_DMT_1440X900P120_RB,
103 	V4L2_DV_BT_DMT_1600X900P60_RB,
104 	V4L2_DV_BT_DMT_1600X1200P60,
105 	V4L2_DV_BT_DMT_1600X1200P65,
106 	V4L2_DV_BT_DMT_1600X1200P70,
107 	V4L2_DV_BT_DMT_1600X1200P75,
108 	V4L2_DV_BT_DMT_1600X1200P85,
109 	V4L2_DV_BT_DMT_1600X1200P120_RB,
110 	V4L2_DV_BT_DMT_1680X1050P60_RB,
111 	V4L2_DV_BT_DMT_1680X1050P60,
112 	V4L2_DV_BT_DMT_1680X1050P75,
113 	V4L2_DV_BT_DMT_1680X1050P85,
114 	V4L2_DV_BT_DMT_1680X1050P120_RB,
115 	V4L2_DV_BT_DMT_1792X1344P60,
116 	V4L2_DV_BT_DMT_1792X1344P75,
117 	V4L2_DV_BT_DMT_1792X1344P120_RB,
118 	V4L2_DV_BT_DMT_1856X1392P60,
119 	V4L2_DV_BT_DMT_1856X1392P75,
120 	V4L2_DV_BT_DMT_1856X1392P120_RB,
121 	V4L2_DV_BT_DMT_1920X1200P60_RB,
122 	V4L2_DV_BT_DMT_1920X1200P60,
123 	V4L2_DV_BT_DMT_1920X1200P75,
124 	V4L2_DV_BT_DMT_1920X1200P85,
125 	V4L2_DV_BT_DMT_1920X1200P120_RB,
126 	V4L2_DV_BT_DMT_1920X1440P60,
127 	V4L2_DV_BT_DMT_1920X1440P75,
128 	V4L2_DV_BT_DMT_1920X1440P120_RB,
129 	V4L2_DV_BT_DMT_2048X1152P60_RB,
130 	V4L2_DV_BT_DMT_2560X1600P60_RB,
131 	V4L2_DV_BT_DMT_2560X1600P60,
132 	V4L2_DV_BT_DMT_2560X1600P75,
133 	V4L2_DV_BT_DMT_2560X1600P85,
134 	V4L2_DV_BT_DMT_2560X1600P120_RB,
135 	V4L2_DV_BT_CEA_3840X2160P24,
136 	V4L2_DV_BT_CEA_3840X2160P25,
137 	V4L2_DV_BT_CEA_3840X2160P30,
138 	V4L2_DV_BT_CEA_3840X2160P50,
139 	V4L2_DV_BT_CEA_3840X2160P60,
140 	V4L2_DV_BT_CEA_4096X2160P24,
141 	V4L2_DV_BT_CEA_4096X2160P25,
142 	V4L2_DV_BT_CEA_4096X2160P30,
143 	V4L2_DV_BT_CEA_4096X2160P50,
144 	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
145 	V4L2_DV_BT_CEA_4096X2160P60,
146 	{ }
147 };
148 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
149 
150 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
151 			   const struct v4l2_dv_timings_cap *dvcap,
152 			   v4l2_check_dv_timings_fnc fnc,
153 			   void *fnc_handle)
154 {
155 	const struct v4l2_bt_timings *bt = &t->bt;
156 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
157 	u32 caps = cap->capabilities;
158 
159 	if (t->type != V4L2_DV_BT_656_1120)
160 		return false;
161 	if (t->type != dvcap->type ||
162 	    bt->height < cap->min_height ||
163 	    bt->height > cap->max_height ||
164 	    bt->width < cap->min_width ||
165 	    bt->width > cap->max_width ||
166 	    bt->pixelclock < cap->min_pixelclock ||
167 	    bt->pixelclock > cap->max_pixelclock ||
168 	    (cap->standards && bt->standards &&
169 	     !(bt->standards & cap->standards)) ||
170 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
171 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
172 		return false;
173 	return fnc == NULL || fnc(t, fnc_handle);
174 }
175 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
176 
177 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
178 			     const struct v4l2_dv_timings_cap *cap,
179 			     v4l2_check_dv_timings_fnc fnc,
180 			     void *fnc_handle)
181 {
182 	u32 i, idx;
183 
184 	memset(t->reserved, 0, sizeof(t->reserved));
185 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
186 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
187 					  fnc, fnc_handle) &&
188 		    idx++ == t->index) {
189 			t->timings = v4l2_dv_timings_presets[i];
190 			return 0;
191 		}
192 	}
193 	return -EINVAL;
194 }
195 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
196 
197 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
198 			      const struct v4l2_dv_timings_cap *cap,
199 			      unsigned pclock_delta,
200 			      v4l2_check_dv_timings_fnc fnc,
201 			      void *fnc_handle)
202 {
203 	int i;
204 
205 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
206 		return false;
207 
208 	for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) {
209 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
210 					  fnc, fnc_handle) &&
211 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
212 					  pclock_delta, false)) {
213 			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
214 
215 			*t = v4l2_dv_timings_presets[i];
216 			if (can_reduce_fps(&t->bt))
217 				t->bt.flags |= flags;
218 
219 			return true;
220 		}
221 	}
222 	return false;
223 }
224 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
225 
226 /**
227  * v4l2_match_dv_timings - check if two timings match
228  * @t1 - compare this v4l2_dv_timings struct...
229  * @t2 - with this struct.
230  * @pclock_delta - the allowed pixelclock deviation.
231  * @match_reduced_fps - if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
232  * match.
233  *
234  * Compare t1 with t2 with a given margin of error for the pixelclock.
235  */
236 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
237 			   const struct v4l2_dv_timings *t2,
238 			   unsigned pclock_delta, bool match_reduced_fps)
239 {
240 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
241 		return false;
242 	if (t1->bt.width == t2->bt.width &&
243 	    t1->bt.height == t2->bt.height &&
244 	    t1->bt.interlaced == t2->bt.interlaced &&
245 	    t1->bt.polarities == t2->bt.polarities &&
246 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
247 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
248 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
249 	    t1->bt.hsync == t2->bt.hsync &&
250 	    t1->bt.hbackporch == t2->bt.hbackporch &&
251 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
252 	    t1->bt.vsync == t2->bt.vsync &&
253 	    t1->bt.vbackporch == t2->bt.vbackporch &&
254 	    (!match_reduced_fps ||
255 	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
256 		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
257 	    (!t1->bt.interlaced ||
258 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
259 		 t1->bt.il_vsync == t2->bt.il_vsync &&
260 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
261 		return true;
262 	return false;
263 }
264 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
265 
266 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
267 			   const struct v4l2_dv_timings *t, bool detailed)
268 {
269 	const struct v4l2_bt_timings *bt = &t->bt;
270 	u32 htot, vtot;
271 	u32 fps;
272 
273 	if (t->type != V4L2_DV_BT_656_1120)
274 		return;
275 
276 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
277 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
278 	if (bt->interlaced)
279 		vtot /= 2;
280 
281 	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
282 				  (htot * vtot)) : 0;
283 
284 	if (prefix == NULL)
285 		prefix = "";
286 
287 	pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix,
288 		bt->width, bt->height, bt->interlaced ? "i" : "p",
289 		fps / 100, fps % 100, htot, vtot);
290 
291 	if (!detailed)
292 		return;
293 
294 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
295 			dev_prefix, bt->hfrontporch,
296 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
297 			bt->hsync, bt->hbackporch);
298 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
299 			dev_prefix, bt->vfrontporch,
300 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
301 			bt->vsync, bt->vbackporch);
302 	if (bt->interlaced)
303 		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
304 			dev_prefix, bt->il_vfrontporch,
305 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
306 			bt->il_vsync, bt->il_vbackporch);
307 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
308 	pr_info("%s: flags (0x%x):%s%s%s%s%s%s\n", dev_prefix, bt->flags,
309 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
310 			" REDUCED_BLANKING" : "",
311 			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
312 			 bt->vsync == 8) ? " (V2)" : "",
313 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
314 			" CAN_REDUCE_FPS" : "",
315 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
316 			" REDUCED_FPS" : "",
317 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
318 			" HALF_LINE" : "",
319 			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
320 			" CE_VIDEO" : "");
321 	pr_info("%s: standards (0x%x):%s%s%s%s\n", dev_prefix, bt->standards,
322 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
323 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
324 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
325 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "");
326 }
327 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
328 
329 /*
330  * CVT defines
331  * Based on Coordinated Video Timings Standard
332  * version 1.1 September 10, 2003
333  */
334 
335 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
336 #define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
337 
338 /* Normal blanking */
339 #define CVT_MIN_V_BPORCH	7	/* lines */
340 #define CVT_MIN_V_PORCH_RND	3	/* lines */
341 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
342 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
343 
344 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
345 #define CVT_CELL_GRAN		8	/* character cell granularity */
346 #define CVT_M			600	/* blanking formula gradient */
347 #define CVT_C			40	/* blanking formula offset */
348 #define CVT_K			128	/* blanking formula scaling factor */
349 #define CVT_J			20	/* blanking formula scaling factor */
350 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
351 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
352 
353 /* Reduced Blanking */
354 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
355 #define CVT_RB_V_FPORCH        3       /* lines  */
356 #define CVT_RB_MIN_V_BLANK   460       /* us     */
357 #define CVT_RB_H_SYNC         32       /* pixels */
358 #define CVT_RB_H_BLANK       160       /* pixels */
359 /* Reduce blanking Version 2 */
360 #define CVT_RB_V2_H_BLANK     80       /* pixels */
361 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
362 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
363 #define CVT_RB_V_BPORCH        6       /* lines  */
364 
365 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
366  * @frame_height - the total height of the frame (including blanking) in lines.
367  * @hfreq - the horizontal frequency in Hz.
368  * @vsync - the height of the vertical sync in lines.
369  * @active_width - active width of image (does not include blanking). This
370  * information is needed only in case of version 2 of reduced blanking.
371  * In other cases, this parameter does not have any effect on timings.
372  * @polarities - the horizontal and vertical polarities (same as struct
373  *		v4l2_bt_timings polarities).
374  * @interlaced - if this flag is true, it indicates interlaced format
375  * @fmt - the resulting timings.
376  *
377  * This function will attempt to detect if the given values correspond to a
378  * valid CVT format. If so, then it will return true, and fmt will be filled
379  * in with the found CVT timings.
380  */
381 bool v4l2_detect_cvt(unsigned frame_height,
382 		     unsigned hfreq,
383 		     unsigned vsync,
384 		     unsigned active_width,
385 		     u32 polarities,
386 		     bool interlaced,
387 		     struct v4l2_dv_timings *fmt)
388 {
389 	int  v_fp, v_bp, h_fp, h_bp, hsync;
390 	int  frame_width, image_height, image_width;
391 	bool reduced_blanking;
392 	bool rb_v2 = false;
393 	unsigned pix_clk;
394 
395 	if (vsync < 4 || vsync > 8)
396 		return false;
397 
398 	if (polarities == V4L2_DV_VSYNC_POS_POL)
399 		reduced_blanking = false;
400 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
401 		reduced_blanking = true;
402 	else
403 		return false;
404 
405 	if (reduced_blanking && vsync == 8)
406 		rb_v2 = true;
407 
408 	if (rb_v2 && active_width == 0)
409 		return false;
410 
411 	if (!rb_v2 && vsync > 7)
412 		return false;
413 
414 	if (hfreq == 0)
415 		return false;
416 
417 	/* Vertical */
418 	if (reduced_blanking) {
419 		if (rb_v2) {
420 			v_bp = CVT_RB_V_BPORCH;
421 			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
422 			v_fp -= vsync + v_bp;
423 
424 			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
425 				v_fp = CVT_RB_V2_MIN_V_FPORCH;
426 		} else {
427 			v_fp = CVT_RB_V_FPORCH;
428 			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
429 			v_bp -= vsync + v_fp;
430 
431 			if (v_bp < CVT_RB_MIN_V_BPORCH)
432 				v_bp = CVT_RB_MIN_V_BPORCH;
433 		}
434 	} else {
435 		v_fp = CVT_MIN_V_PORCH_RND;
436 		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
437 
438 		if (v_bp < CVT_MIN_V_BPORCH)
439 			v_bp = CVT_MIN_V_BPORCH;
440 	}
441 
442 	if (interlaced)
443 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
444 	else
445 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
446 
447 	if (image_height < 0)
448 		return false;
449 
450 	/* Aspect ratio based on vsync */
451 	switch (vsync) {
452 	case 4:
453 		image_width = (image_height * 4) / 3;
454 		break;
455 	case 5:
456 		image_width = (image_height * 16) / 9;
457 		break;
458 	case 6:
459 		image_width = (image_height * 16) / 10;
460 		break;
461 	case 7:
462 		/* special case */
463 		if (image_height == 1024)
464 			image_width = (image_height * 5) / 4;
465 		else if (image_height == 768)
466 			image_width = (image_height * 15) / 9;
467 		else
468 			return false;
469 		break;
470 	case 8:
471 		image_width = active_width;
472 		break;
473 	default:
474 		return false;
475 	}
476 
477 	if (!rb_v2)
478 		image_width = image_width & ~7;
479 
480 	/* Horizontal */
481 	if (reduced_blanking) {
482 		int h_blank;
483 		int clk_gran;
484 
485 		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
486 		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
487 
488 		pix_clk = (image_width + h_blank) * hfreq;
489 		pix_clk = (pix_clk / clk_gran) * clk_gran;
490 
491 		h_bp  = h_blank / 2;
492 		hsync = CVT_RB_H_SYNC;
493 		h_fp  = h_blank - h_bp - hsync;
494 
495 		frame_width = image_width + h_blank;
496 	} else {
497 		unsigned ideal_duty_cycle_per_myriad =
498 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
499 		int h_blank;
500 
501 		if (ideal_duty_cycle_per_myriad < 2000)
502 			ideal_duty_cycle_per_myriad = 2000;
503 
504 		h_blank = image_width * ideal_duty_cycle_per_myriad /
505 					(10000 - ideal_duty_cycle_per_myriad);
506 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
507 
508 		pix_clk = (image_width + h_blank) * hfreq;
509 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
510 
511 		h_bp = h_blank / 2;
512 		frame_width = image_width + h_blank;
513 
514 		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
515 		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
516 		h_fp = h_blank - hsync - h_bp;
517 	}
518 
519 	fmt->type = V4L2_DV_BT_656_1120;
520 	fmt->bt.polarities = polarities;
521 	fmt->bt.width = image_width;
522 	fmt->bt.height = image_height;
523 	fmt->bt.hfrontporch = h_fp;
524 	fmt->bt.vfrontporch = v_fp;
525 	fmt->bt.hsync = hsync;
526 	fmt->bt.vsync = vsync;
527 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
528 
529 	if (!interlaced) {
530 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
531 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
532 	} else {
533 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
534 				      2 * vsync) / 2;
535 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
536 					2 * vsync - fmt->bt.vbackporch;
537 		fmt->bt.il_vfrontporch = v_fp;
538 		fmt->bt.il_vsync = vsync;
539 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
540 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
541 	}
542 
543 	fmt->bt.pixelclock = pix_clk;
544 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
545 
546 	if (reduced_blanking)
547 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
548 
549 	return true;
550 }
551 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
552 
553 /*
554  * GTF defines
555  * Based on Generalized Timing Formula Standard
556  * Version 1.1 September 2, 1999
557  */
558 
559 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
560 
561 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
562 #define GTF_V_FP		1	/* vertical front porch (lines) */
563 #define GTF_CELL_GRAN		8	/* character cell granularity */
564 
565 /* Default */
566 #define GTF_D_M			600	/* blanking formula gradient */
567 #define GTF_D_C			40	/* blanking formula offset */
568 #define GTF_D_K			128	/* blanking formula scaling factor */
569 #define GTF_D_J			20	/* blanking formula scaling factor */
570 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
571 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
572 
573 /* Secondary */
574 #define GTF_S_M			3600	/* blanking formula gradient */
575 #define GTF_S_C			40	/* blanking formula offset */
576 #define GTF_S_K			128	/* blanking formula scaling factor */
577 #define GTF_S_J			35	/* blanking formula scaling factor */
578 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
579 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
580 
581 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
582  * @frame_height - the total height of the frame (including blanking) in lines.
583  * @hfreq - the horizontal frequency in Hz.
584  * @vsync - the height of the vertical sync in lines.
585  * @polarities - the horizontal and vertical polarities (same as struct
586  *		v4l2_bt_timings polarities).
587  * @interlaced - if this flag is true, it indicates interlaced format
588  * @aspect - preferred aspect ratio. GTF has no method of determining the
589  *		aspect ratio in order to derive the image width from the
590  *		image height, so it has to be passed explicitly. Usually
591  *		the native screen aspect ratio is used for this. If it
592  *		is not filled in correctly, then 16:9 will be assumed.
593  * @fmt - the resulting timings.
594  *
595  * This function will attempt to detect if the given values correspond to a
596  * valid GTF format. If so, then it will return true, and fmt will be filled
597  * in with the found GTF timings.
598  */
599 bool v4l2_detect_gtf(unsigned frame_height,
600 		unsigned hfreq,
601 		unsigned vsync,
602 		u32 polarities,
603 		bool interlaced,
604 		struct v4l2_fract aspect,
605 		struct v4l2_dv_timings *fmt)
606 {
607 	int pix_clk;
608 	int  v_fp, v_bp, h_fp, hsync;
609 	int frame_width, image_height, image_width;
610 	bool default_gtf;
611 	int h_blank;
612 
613 	if (vsync != 3)
614 		return false;
615 
616 	if (polarities == V4L2_DV_VSYNC_POS_POL)
617 		default_gtf = true;
618 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
619 		default_gtf = false;
620 	else
621 		return false;
622 
623 	if (hfreq == 0)
624 		return false;
625 
626 	/* Vertical */
627 	v_fp = GTF_V_FP;
628 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
629 	if (interlaced)
630 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
631 	else
632 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
633 
634 	if (image_height < 0)
635 		return false;
636 
637 	if (aspect.numerator == 0 || aspect.denominator == 0) {
638 		aspect.numerator = 16;
639 		aspect.denominator = 9;
640 	}
641 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
642 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
643 
644 	/* Horizontal */
645 	if (default_gtf) {
646 		u64 num;
647 		u32 den;
648 
649 		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
650 		      ((u64)image_width * GTF_D_M_PRIME * 1000));
651 		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
652 		      (2 * GTF_CELL_GRAN);
653 		h_blank = div_u64((num + (den >> 1)), den);
654 		h_blank *= (2 * GTF_CELL_GRAN);
655 	} else {
656 		u64 num;
657 		u32 den;
658 
659 		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
660 		      ((u64)image_width * GTF_S_M_PRIME * 1000));
661 		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
662 		      (2 * GTF_CELL_GRAN);
663 		h_blank = div_u64((num + (den >> 1)), den);
664 		h_blank *= (2 * GTF_CELL_GRAN);
665 	}
666 
667 	frame_width = image_width + h_blank;
668 
669 	pix_clk = (image_width + h_blank) * hfreq;
670 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
671 
672 	hsync = (frame_width * 8 + 50) / 100;
673 	hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN;
674 
675 	h_fp = h_blank / 2 - hsync;
676 
677 	fmt->type = V4L2_DV_BT_656_1120;
678 	fmt->bt.polarities = polarities;
679 	fmt->bt.width = image_width;
680 	fmt->bt.height = image_height;
681 	fmt->bt.hfrontporch = h_fp;
682 	fmt->bt.vfrontporch = v_fp;
683 	fmt->bt.hsync = hsync;
684 	fmt->bt.vsync = vsync;
685 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
686 
687 	if (!interlaced) {
688 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
689 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
690 	} else {
691 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
692 				      2 * vsync) / 2;
693 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
694 					2 * vsync - fmt->bt.vbackporch;
695 		fmt->bt.il_vfrontporch = v_fp;
696 		fmt->bt.il_vsync = vsync;
697 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
698 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
699 	}
700 
701 	fmt->bt.pixelclock = pix_clk;
702 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
703 
704 	if (!default_gtf)
705 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
706 
707 	return true;
708 }
709 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
710 
711 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
712  *	0x15 and 0x16 from the EDID.
713  * @hor_landscape - byte 0x15 from the EDID.
714  * @vert_portrait - byte 0x16 from the EDID.
715  *
716  * Determines the aspect ratio from the EDID.
717  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
718  * "Horizontal and Vertical Screen Size or Aspect Ratio"
719  */
720 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
721 {
722 	struct v4l2_fract aspect = { 16, 9 };
723 	u8 ratio;
724 
725 	/* Nothing filled in, fallback to 16:9 */
726 	if (!hor_landscape && !vert_portrait)
727 		return aspect;
728 	/* Both filled in, so they are interpreted as the screen size in cm */
729 	if (hor_landscape && vert_portrait) {
730 		aspect.numerator = hor_landscape;
731 		aspect.denominator = vert_portrait;
732 		return aspect;
733 	}
734 	/* Only one is filled in, so interpret them as a ratio:
735 	   (val + 99) / 100 */
736 	ratio = hor_landscape | vert_portrait;
737 	/* Change some rounded values into the exact aspect ratio */
738 	if (ratio == 79) {
739 		aspect.numerator = 16;
740 		aspect.denominator = 9;
741 	} else if (ratio == 34) {
742 		aspect.numerator = 4;
743 		aspect.denominator = 3;
744 	} else if (ratio == 68) {
745 		aspect.numerator = 15;
746 		aspect.denominator = 9;
747 	} else {
748 		aspect.numerator = hor_landscape + 99;
749 		aspect.denominator = 100;
750 	}
751 	if (hor_landscape)
752 		return aspect;
753 	/* The aspect ratio is for portrait, so swap numerator and denominator */
754 	swap(aspect.denominator, aspect.numerator);
755 	return aspect;
756 }
757 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
758