xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-dv-timings.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19 
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23 
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25 	V4L2_DV_BT_CEA_640X480P59_94,
26 	V4L2_DV_BT_CEA_720X480I59_94,
27 	V4L2_DV_BT_CEA_720X480P59_94,
28 	V4L2_DV_BT_CEA_720X576I50,
29 	V4L2_DV_BT_CEA_720X576P50,
30 	V4L2_DV_BT_CEA_1280X720P24,
31 	V4L2_DV_BT_CEA_1280X720P25,
32 	V4L2_DV_BT_CEA_1280X720P30,
33 	V4L2_DV_BT_CEA_1280X720P50,
34 	V4L2_DV_BT_CEA_1280X720P60,
35 	V4L2_DV_BT_CEA_1920X1080P24,
36 	V4L2_DV_BT_CEA_1920X1080P25,
37 	V4L2_DV_BT_CEA_1920X1080P30,
38 	V4L2_DV_BT_CEA_1920X1080I50,
39 	V4L2_DV_BT_CEA_1920X1080P50,
40 	V4L2_DV_BT_CEA_1920X1080I60,
41 	V4L2_DV_BT_CEA_1920X1080P60,
42 	V4L2_DV_BT_DMT_640X350P85,
43 	V4L2_DV_BT_DMT_640X400P85,
44 	V4L2_DV_BT_DMT_720X400P85,
45 	V4L2_DV_BT_DMT_640X480P72,
46 	V4L2_DV_BT_DMT_640X480P75,
47 	V4L2_DV_BT_DMT_640X480P85,
48 	V4L2_DV_BT_DMT_800X600P56,
49 	V4L2_DV_BT_DMT_800X600P60,
50 	V4L2_DV_BT_DMT_800X600P72,
51 	V4L2_DV_BT_DMT_800X600P75,
52 	V4L2_DV_BT_DMT_800X600P85,
53 	V4L2_DV_BT_DMT_800X600P120_RB,
54 	V4L2_DV_BT_DMT_848X480P60,
55 	V4L2_DV_BT_DMT_1024X768I43,
56 	V4L2_DV_BT_DMT_1024X768P60,
57 	V4L2_DV_BT_DMT_1024X768P70,
58 	V4L2_DV_BT_DMT_1024X768P75,
59 	V4L2_DV_BT_DMT_1024X768P85,
60 	V4L2_DV_BT_DMT_1024X768P120_RB,
61 	V4L2_DV_BT_DMT_1152X864P75,
62 	V4L2_DV_BT_DMT_1280X768P60_RB,
63 	V4L2_DV_BT_DMT_1280X768P60,
64 	V4L2_DV_BT_DMT_1280X768P75,
65 	V4L2_DV_BT_DMT_1280X768P85,
66 	V4L2_DV_BT_DMT_1280X768P120_RB,
67 	V4L2_DV_BT_DMT_1280X800P60_RB,
68 	V4L2_DV_BT_DMT_1280X800P60,
69 	V4L2_DV_BT_DMT_1280X800P75,
70 	V4L2_DV_BT_DMT_1280X800P85,
71 	V4L2_DV_BT_DMT_1280X800P120_RB,
72 	V4L2_DV_BT_DMT_1280X960P60,
73 	V4L2_DV_BT_DMT_1280X960P85,
74 	V4L2_DV_BT_DMT_1280X960P120_RB,
75 	V4L2_DV_BT_DMT_1280X1024P60,
76 	V4L2_DV_BT_DMT_1280X1024P75,
77 	V4L2_DV_BT_DMT_1280X1024P85,
78 	V4L2_DV_BT_DMT_1280X1024P120_RB,
79 	V4L2_DV_BT_DMT_1360X768P60,
80 	V4L2_DV_BT_DMT_1360X768P120_RB,
81 	V4L2_DV_BT_DMT_1366X768P60,
82 	V4L2_DV_BT_DMT_1366X768P60_RB,
83 	V4L2_DV_BT_DMT_1400X1050P60_RB,
84 	V4L2_DV_BT_DMT_1400X1050P60,
85 	V4L2_DV_BT_DMT_1400X1050P75,
86 	V4L2_DV_BT_DMT_1400X1050P85,
87 	V4L2_DV_BT_DMT_1400X1050P120_RB,
88 	V4L2_DV_BT_DMT_1440X900P60_RB,
89 	V4L2_DV_BT_DMT_1440X900P60,
90 	V4L2_DV_BT_DMT_1440X900P75,
91 	V4L2_DV_BT_DMT_1440X900P85,
92 	V4L2_DV_BT_DMT_1440X900P120_RB,
93 	V4L2_DV_BT_DMT_1600X900P60_RB,
94 	V4L2_DV_BT_DMT_1600X1200P60,
95 	V4L2_DV_BT_DMT_1600X1200P65,
96 	V4L2_DV_BT_DMT_1600X1200P70,
97 	V4L2_DV_BT_DMT_1600X1200P75,
98 	V4L2_DV_BT_DMT_1600X1200P85,
99 	V4L2_DV_BT_DMT_1600X1200P120_RB,
100 	V4L2_DV_BT_DMT_1680X1050P60_RB,
101 	V4L2_DV_BT_DMT_1680X1050P60,
102 	V4L2_DV_BT_DMT_1680X1050P75,
103 	V4L2_DV_BT_DMT_1680X1050P85,
104 	V4L2_DV_BT_DMT_1680X1050P120_RB,
105 	V4L2_DV_BT_DMT_1792X1344P60,
106 	V4L2_DV_BT_DMT_1792X1344P75,
107 	V4L2_DV_BT_DMT_1792X1344P120_RB,
108 	V4L2_DV_BT_DMT_1856X1392P60,
109 	V4L2_DV_BT_DMT_1856X1392P75,
110 	V4L2_DV_BT_DMT_1856X1392P120_RB,
111 	V4L2_DV_BT_DMT_1920X1200P60_RB,
112 	V4L2_DV_BT_DMT_1920X1200P60,
113 	V4L2_DV_BT_DMT_1920X1200P75,
114 	V4L2_DV_BT_DMT_1920X1200P85,
115 	V4L2_DV_BT_DMT_1920X1200P120_RB,
116 	V4L2_DV_BT_DMT_1920X1440P60,
117 	V4L2_DV_BT_DMT_1920X1440P75,
118 	V4L2_DV_BT_DMT_1920X1440P120_RB,
119 	V4L2_DV_BT_DMT_2048X1152P60_RB,
120 	V4L2_DV_BT_DMT_2560X1600P60_RB,
121 	V4L2_DV_BT_DMT_2560X1600P60,
122 	V4L2_DV_BT_DMT_2560X1600P75,
123 	V4L2_DV_BT_DMT_2560X1600P85,
124 	V4L2_DV_BT_DMT_2560X1600P120_RB,
125 	V4L2_DV_BT_CEA_3840X2160P24,
126 	V4L2_DV_BT_CEA_3840X2160P25,
127 	V4L2_DV_BT_CEA_3840X2160P30,
128 	V4L2_DV_BT_CEA_3840X2160P50,
129 	V4L2_DV_BT_CEA_3840X2160P60,
130 	V4L2_DV_BT_CEA_4096X2160P24,
131 	V4L2_DV_BT_CEA_4096X2160P25,
132 	V4L2_DV_BT_CEA_4096X2160P30,
133 	V4L2_DV_BT_CEA_4096X2160P50,
134 	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135 	V4L2_DV_BT_CEA_4096X2160P60,
136 	{ }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139 
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141 			   const struct v4l2_dv_timings_cap *dvcap,
142 			   v4l2_check_dv_timings_fnc fnc,
143 			   void *fnc_handle)
144 {
145 	const struct v4l2_bt_timings *bt = &t->bt;
146 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147 	u32 caps = cap->capabilities;
148 	const u32 max_vert = 10240;
149 	u32 max_hor = 3 * bt->width;
150 
151 	if (t->type != V4L2_DV_BT_656_1120)
152 		return false;
153 	if (t->type != dvcap->type ||
154 	    bt->height < cap->min_height ||
155 	    bt->height > cap->max_height ||
156 	    bt->width < cap->min_width ||
157 	    bt->width > cap->max_width ||
158 	    bt->pixelclock < cap->min_pixelclock ||
159 	    bt->pixelclock > cap->max_pixelclock ||
160 	    (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161 	     cap->standards && bt->standards &&
162 	     !(bt->standards & cap->standards)) ||
163 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165 		return false;
166 
167 	/* sanity checks for the blanking timings */
168 	if (!bt->interlaced &&
169 	    (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170 		return false;
171 	/*
172 	 * Some video receivers cannot properly separate the frontporch,
173 	 * backporch and sync values, and instead they only have the total
174 	 * blanking. That can be assigned to any of these three fields.
175 	 * So just check that none of these are way out of range.
176 	 */
177 	if (bt->hfrontporch > max_hor ||
178 	    bt->hsync > max_hor || bt->hbackporch > max_hor)
179 		return false;
180 	if (bt->vfrontporch > max_vert ||
181 	    bt->vsync > max_vert || bt->vbackporch > max_vert)
182 		return false;
183 	if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184 	    bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185 		return false;
186 	return fnc == NULL || fnc(t, fnc_handle);
187 }
188 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189 
190 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191 			     const struct v4l2_dv_timings_cap *cap,
192 			     v4l2_check_dv_timings_fnc fnc,
193 			     void *fnc_handle)
194 {
195 	u32 i, idx;
196 
197 	memset(t->reserved, 0, sizeof(t->reserved));
198 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200 					  fnc, fnc_handle) &&
201 		    idx++ == t->index) {
202 			t->timings = v4l2_dv_timings_presets[i];
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209 
210 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211 			      const struct v4l2_dv_timings_cap *cap,
212 			      unsigned pclock_delta,
213 			      v4l2_check_dv_timings_fnc fnc,
214 			      void *fnc_handle)
215 {
216 	int i;
217 
218 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219 		return false;
220 
221 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223 					  fnc, fnc_handle) &&
224 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225 					  pclock_delta, false)) {
226 			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227 
228 			*t = v4l2_dv_timings_presets[i];
229 			if (can_reduce_fps(&t->bt))
230 				t->bt.flags |= flags;
231 
232 			return true;
233 		}
234 	}
235 	return false;
236 }
237 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238 
239 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240 {
241 	unsigned int i;
242 
243 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244 		const struct v4l2_bt_timings *bt =
245 			&v4l2_dv_timings_presets[i].bt;
246 
247 		if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248 		    bt->cea861_vic == vic) {
249 			*t = v4l2_dv_timings_presets[i];
250 			return true;
251 		}
252 	}
253 	return false;
254 }
255 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256 
257 /**
258  * v4l2_match_dv_timings - check if two timings match
259  * @t1: compare this v4l2_dv_timings struct...
260  * @t2: with this struct.
261  * @pclock_delta: the allowed pixelclock deviation.
262  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263  *	match.
264  *
265  * Compare t1 with t2 with a given margin of error for the pixelclock.
266  */
267 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268 			   const struct v4l2_dv_timings *t2,
269 			   unsigned pclock_delta, bool match_reduced_fps)
270 {
271 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272 		return false;
273 	if (t1->bt.width == t2->bt.width &&
274 	    t1->bt.height == t2->bt.height &&
275 	    t1->bt.interlaced == t2->bt.interlaced &&
276 	    t1->bt.polarities == t2->bt.polarities &&
277 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
280 	    t1->bt.hsync == t2->bt.hsync &&
281 	    t1->bt.hbackporch == t2->bt.hbackporch &&
282 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
283 	    t1->bt.vsync == t2->bt.vsync &&
284 	    t1->bt.vbackporch == t2->bt.vbackporch &&
285 	    (!match_reduced_fps ||
286 	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287 		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288 	    (!t1->bt.interlaced ||
289 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290 		 t1->bt.il_vsync == t2->bt.il_vsync &&
291 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292 		return true;
293 	return false;
294 }
295 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296 
297 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298 			   const struct v4l2_dv_timings *t, bool detailed)
299 {
300 	const struct v4l2_bt_timings *bt = &t->bt;
301 	u32 htot, vtot;
302 	u32 fps;
303 
304 	if (t->type != V4L2_DV_BT_656_1120)
305 		return;
306 
307 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309 	if (bt->interlaced)
310 		vtot /= 2;
311 
312 	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313 				  (htot * vtot)) : 0;
314 
315 	if (prefix == NULL)
316 		prefix = "";
317 
318 	pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
319 		bt->width, bt->height, bt->interlaced ? "i" : "p",
320 		fps / 100, fps % 100, htot, vtot);
321 
322 	if (!detailed)
323 		return;
324 
325 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326 			dev_prefix, bt->hfrontporch,
327 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328 			bt->hsync, bt->hbackporch);
329 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330 			dev_prefix, bt->vfrontporch,
331 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332 			bt->vsync, bt->vbackporch);
333 	if (bt->interlaced)
334 		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335 			dev_prefix, bt->il_vfrontporch,
336 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337 			bt->il_vsync, bt->il_vbackporch);
338 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339 	pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340 			dev_prefix, bt->flags,
341 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342 			" REDUCED_BLANKING" : "",
343 			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344 			 bt->vsync == 8) ? " (V2)" : "",
345 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346 			" CAN_REDUCE_FPS" : "",
347 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348 			" REDUCED_FPS" : "",
349 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
350 			" HALF_LINE" : "",
351 			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352 			" CE_VIDEO" : "",
353 			(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354 			" FIRST_FIELD_EXTRA_LINE" : "",
355 			(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356 			" HAS_PICTURE_ASPECT" : "",
357 			(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358 			" HAS_CEA861_VIC" : "",
359 			(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360 			" HAS_HDMI_VIC" : "");
361 	pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
363 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
364 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
365 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
366 			(bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
367 	if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368 		pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369 			bt->picture_aspect.numerator,
370 			bt->picture_aspect.denominator);
371 	if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372 		pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373 	if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374 		pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375 }
376 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377 
378 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379 {
380 	struct v4l2_fract ratio = { 1, 1 };
381 	unsigned long n, d;
382 
383 	if (t->type != V4L2_DV_BT_656_1120)
384 		return ratio;
385 	if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386 		return ratio;
387 
388 	ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389 	ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390 
391 	rational_best_approximation(ratio.numerator, ratio.denominator,
392 				    ratio.numerator, ratio.denominator, &n, &d);
393 	ratio.numerator = n;
394 	ratio.denominator = d;
395 	return ratio;
396 }
397 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398 
399 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
400  *	v4l2_dv_timings fields.
401  * @t - Timings for the video mode.
402  *
403  * Calculates the expected timeperframe using the pixel clock value and
404  * horizontal/vertical measures. This means that v4l2_dv_timings structure
405  * must be correctly and fully filled.
406  */
407 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
408 {
409 	const struct v4l2_bt_timings *bt = &t->bt;
410 	struct v4l2_fract fps_fract = { 1, 1 };
411 	unsigned long n, d;
412 	u32 htot, vtot, fps;
413 	u64 pclk;
414 
415 	if (t->type != V4L2_DV_BT_656_1120)
416 		return fps_fract;
417 
418 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
419 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
420 	pclk = bt->pixelclock;
421 
422 	if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
423 	    (bt->flags & V4L2_DV_FL_REDUCED_FPS))
424 		pclk = div_u64(pclk * 1000ULL, 1001);
425 
426 	fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
427 	if (!fps)
428 		return fps_fract;
429 
430 	rational_best_approximation(fps, 100, fps, 100, &n, &d);
431 
432 	fps_fract.numerator = d;
433 	fps_fract.denominator = n;
434 	return fps_fract;
435 }
436 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
437 
438 /*
439  * CVT defines
440  * Based on Coordinated Video Timings Standard
441  * version 1.1 September 10, 2003
442  */
443 
444 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
445 #define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
446 
447 /* Normal blanking */
448 #define CVT_MIN_V_BPORCH	7	/* lines */
449 #define CVT_MIN_V_PORCH_RND	3	/* lines */
450 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
451 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
452 
453 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
454 #define CVT_CELL_GRAN		8	/* character cell granularity */
455 #define CVT_M			600	/* blanking formula gradient */
456 #define CVT_C			40	/* blanking formula offset */
457 #define CVT_K			128	/* blanking formula scaling factor */
458 #define CVT_J			20	/* blanking formula scaling factor */
459 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
460 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
461 
462 /* Reduced Blanking */
463 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
464 #define CVT_RB_V_FPORCH        3       /* lines  */
465 #define CVT_RB_MIN_V_BLANK   460       /* us     */
466 #define CVT_RB_H_SYNC         32       /* pixels */
467 #define CVT_RB_H_BLANK       160       /* pixels */
468 /* Reduce blanking Version 2 */
469 #define CVT_RB_V2_H_BLANK     80       /* pixels */
470 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
471 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
472 #define CVT_RB_V_BPORCH        6       /* lines  */
473 
474 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
475  * @frame_height - the total height of the frame (including blanking) in lines.
476  * @hfreq - the horizontal frequency in Hz.
477  * @vsync - the height of the vertical sync in lines.
478  * @active_width - active width of image (does not include blanking). This
479  * information is needed only in case of version 2 of reduced blanking.
480  * In other cases, this parameter does not have any effect on timings.
481  * @polarities - the horizontal and vertical polarities (same as struct
482  *		v4l2_bt_timings polarities).
483  * @interlaced - if this flag is true, it indicates interlaced format
484  * @cap - the v4l2_dv_timings_cap capabilities.
485  * @timings - the resulting timings.
486  *
487  * This function will attempt to detect if the given values correspond to a
488  * valid CVT format. If so, then it will return true, and fmt will be filled
489  * in with the found CVT timings.
490  */
491 bool v4l2_detect_cvt(unsigned int frame_height,
492 		     unsigned int hfreq,
493 		     unsigned int vsync,
494 		     unsigned int active_width,
495 		     u32 polarities,
496 		     bool interlaced,
497 		     const struct v4l2_dv_timings_cap *cap,
498 		     struct v4l2_dv_timings *timings)
499 {
500 	struct v4l2_dv_timings t = {};
501 	int v_fp, v_bp, h_fp, h_bp, hsync;
502 	int frame_width, image_height, image_width;
503 	bool reduced_blanking;
504 	bool rb_v2 = false;
505 	unsigned int pix_clk;
506 
507 	if (vsync < 4 || vsync > 8)
508 		return false;
509 
510 	if (polarities == V4L2_DV_VSYNC_POS_POL)
511 		reduced_blanking = false;
512 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
513 		reduced_blanking = true;
514 	else
515 		return false;
516 
517 	if (reduced_blanking && vsync == 8)
518 		rb_v2 = true;
519 
520 	if (rb_v2 && active_width == 0)
521 		return false;
522 
523 	if (!rb_v2 && vsync > 7)
524 		return false;
525 
526 	if (hfreq == 0)
527 		return false;
528 
529 	/* Vertical */
530 	if (reduced_blanking) {
531 		if (rb_v2) {
532 			v_bp = CVT_RB_V_BPORCH;
533 			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
534 			v_fp -= vsync + v_bp;
535 
536 			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
537 				v_fp = CVT_RB_V2_MIN_V_FPORCH;
538 		} else {
539 			v_fp = CVT_RB_V_FPORCH;
540 			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
541 			v_bp -= vsync + v_fp;
542 
543 			if (v_bp < CVT_RB_MIN_V_BPORCH)
544 				v_bp = CVT_RB_MIN_V_BPORCH;
545 		}
546 	} else {
547 		v_fp = CVT_MIN_V_PORCH_RND;
548 		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
549 
550 		if (v_bp < CVT_MIN_V_BPORCH)
551 			v_bp = CVT_MIN_V_BPORCH;
552 	}
553 
554 	if (interlaced)
555 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
556 	else
557 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
558 
559 	if (image_height < 0)
560 		return false;
561 
562 	/* Aspect ratio based on vsync */
563 	switch (vsync) {
564 	case 4:
565 		image_width = (image_height * 4) / 3;
566 		break;
567 	case 5:
568 		image_width = (image_height * 16) / 9;
569 		break;
570 	case 6:
571 		image_width = (image_height * 16) / 10;
572 		break;
573 	case 7:
574 		/* special case */
575 		if (image_height == 1024)
576 			image_width = (image_height * 5) / 4;
577 		else if (image_height == 768)
578 			image_width = (image_height * 15) / 9;
579 		else
580 			return false;
581 		break;
582 	case 8:
583 		image_width = active_width;
584 		break;
585 	default:
586 		return false;
587 	}
588 
589 	if (!rb_v2)
590 		image_width = image_width & ~7;
591 
592 	/* Horizontal */
593 	if (reduced_blanking) {
594 		int h_blank;
595 		int clk_gran;
596 
597 		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
598 		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
599 
600 		pix_clk = (image_width + h_blank) * hfreq;
601 		pix_clk = (pix_clk / clk_gran) * clk_gran;
602 
603 		h_bp  = h_blank / 2;
604 		hsync = CVT_RB_H_SYNC;
605 		h_fp  = h_blank - h_bp - hsync;
606 
607 		frame_width = image_width + h_blank;
608 	} else {
609 		unsigned ideal_duty_cycle_per_myriad =
610 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
611 		int h_blank;
612 
613 		if (ideal_duty_cycle_per_myriad < 2000)
614 			ideal_duty_cycle_per_myriad = 2000;
615 
616 		h_blank = image_width * ideal_duty_cycle_per_myriad /
617 					(10000 - ideal_duty_cycle_per_myriad);
618 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
619 
620 		pix_clk = (image_width + h_blank) * hfreq;
621 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
622 
623 		h_bp = h_blank / 2;
624 		frame_width = image_width + h_blank;
625 
626 		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
627 		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
628 		h_fp = h_blank - hsync - h_bp;
629 	}
630 
631 	t.type = V4L2_DV_BT_656_1120;
632 	t.bt.polarities = polarities;
633 	t.bt.width = image_width;
634 	t.bt.height = image_height;
635 	t.bt.hfrontporch = h_fp;
636 	t.bt.vfrontporch = v_fp;
637 	t.bt.hsync = hsync;
638 	t.bt.vsync = vsync;
639 	t.bt.hbackporch = frame_width - image_width - h_fp - hsync;
640 
641 	if (!interlaced) {
642 		t.bt.vbackporch = frame_height - image_height - v_fp - vsync;
643 		t.bt.interlaced = V4L2_DV_PROGRESSIVE;
644 	} else {
645 		t.bt.vbackporch = (frame_height - image_height - 2 * v_fp -
646 				      2 * vsync) / 2;
647 		t.bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
648 					2 * vsync - t.bt.vbackporch;
649 		t.bt.il_vfrontporch = v_fp;
650 		t.bt.il_vsync = vsync;
651 		t.bt.flags |= V4L2_DV_FL_HALF_LINE;
652 		t.bt.interlaced = V4L2_DV_INTERLACED;
653 	}
654 
655 	t.bt.pixelclock = pix_clk;
656 	t.bt.standards = V4L2_DV_BT_STD_CVT;
657 
658 	if (reduced_blanking)
659 		t.bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
660 
661 	if (!v4l2_valid_dv_timings(&t, cap, NULL, NULL))
662 		return false;
663 	*timings = t;
664 	return true;
665 }
666 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
667 
668 /*
669  * GTF defines
670  * Based on Generalized Timing Formula Standard
671  * Version 1.1 September 2, 1999
672  */
673 
674 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
675 
676 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
677 #define GTF_V_FP		1	/* vertical front porch (lines) */
678 #define GTF_CELL_GRAN		8	/* character cell granularity */
679 
680 /* Default */
681 #define GTF_D_M			600	/* blanking formula gradient */
682 #define GTF_D_C			40	/* blanking formula offset */
683 #define GTF_D_K			128	/* blanking formula scaling factor */
684 #define GTF_D_J			20	/* blanking formula scaling factor */
685 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
686 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
687 
688 /* Secondary */
689 #define GTF_S_M			3600	/* blanking formula gradient */
690 #define GTF_S_C			40	/* blanking formula offset */
691 #define GTF_S_K			128	/* blanking formula scaling factor */
692 #define GTF_S_J			35	/* blanking formula scaling factor */
693 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
694 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
695 
696 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
697  * @frame_height - the total height of the frame (including blanking) in lines.
698  * @hfreq - the horizontal frequency in Hz.
699  * @vsync - the height of the vertical sync in lines.
700  * @polarities - the horizontal and vertical polarities (same as struct
701  *		v4l2_bt_timings polarities).
702  * @interlaced - if this flag is true, it indicates interlaced format
703  * @aspect - preferred aspect ratio. GTF has no method of determining the
704  *		aspect ratio in order to derive the image width from the
705  *		image height, so it has to be passed explicitly. Usually
706  *		the native screen aspect ratio is used for this. If it
707  *		is not filled in correctly, then 16:9 will be assumed.
708  * @cap - the v4l2_dv_timings_cap capabilities.
709  * @timings - the resulting timings.
710  *
711  * This function will attempt to detect if the given values correspond to a
712  * valid GTF format. If so, then it will return true, and fmt will be filled
713  * in with the found GTF timings.
714  */
715 bool v4l2_detect_gtf(unsigned int frame_height,
716 		     unsigned int hfreq,
717 		     unsigned int vsync,
718 		     u32 polarities,
719 		     bool interlaced,
720 		     struct v4l2_fract aspect,
721 		     const struct v4l2_dv_timings_cap *cap,
722 		     struct v4l2_dv_timings *timings)
723 {
724 	struct v4l2_dv_timings t = {};
725 	int pix_clk;
726 	int v_fp, v_bp, h_fp, hsync;
727 	int frame_width, image_height, image_width;
728 	bool default_gtf;
729 	int h_blank;
730 
731 	if (vsync != 3)
732 		return false;
733 
734 	if (polarities == V4L2_DV_VSYNC_POS_POL)
735 		default_gtf = true;
736 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
737 		default_gtf = false;
738 	else
739 		return false;
740 
741 	if (hfreq == 0)
742 		return false;
743 
744 	/* Vertical */
745 	v_fp = GTF_V_FP;
746 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
747 	if (interlaced)
748 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
749 	else
750 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
751 
752 	if (image_height < 0)
753 		return false;
754 
755 	if (aspect.numerator == 0 || aspect.denominator == 0) {
756 		aspect.numerator = 16;
757 		aspect.denominator = 9;
758 	}
759 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
760 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
761 
762 	/* Horizontal */
763 	if (default_gtf) {
764 		u64 num;
765 		u32 den;
766 
767 		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
768 		      ((u64)image_width * GTF_D_M_PRIME * 1000));
769 		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
770 		      (2 * GTF_CELL_GRAN);
771 		h_blank = div_u64((num + (den >> 1)), den);
772 		h_blank *= (2 * GTF_CELL_GRAN);
773 	} else {
774 		u64 num;
775 		u32 den;
776 
777 		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
778 		      ((u64)image_width * GTF_S_M_PRIME * 1000));
779 		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
780 		      (2 * GTF_CELL_GRAN);
781 		h_blank = div_u64((num + (den >> 1)), den);
782 		h_blank *= (2 * GTF_CELL_GRAN);
783 	}
784 
785 	frame_width = image_width + h_blank;
786 
787 	pix_clk = (image_width + h_blank) * hfreq;
788 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
789 
790 	hsync = (frame_width * 8 + 50) / 100;
791 	hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
792 
793 	h_fp = h_blank / 2 - hsync;
794 
795 	t.type = V4L2_DV_BT_656_1120;
796 	t.bt.polarities = polarities;
797 	t.bt.width = image_width;
798 	t.bt.height = image_height;
799 	t.bt.hfrontporch = h_fp;
800 	t.bt.vfrontporch = v_fp;
801 	t.bt.hsync = hsync;
802 	t.bt.vsync = vsync;
803 	t.bt.hbackporch = frame_width - image_width - h_fp - hsync;
804 
805 	if (!interlaced) {
806 		t.bt.vbackporch = frame_height - image_height - v_fp - vsync;
807 		t.bt.interlaced = V4L2_DV_PROGRESSIVE;
808 	} else {
809 		t.bt.vbackporch = (frame_height - image_height - 2 * v_fp -
810 				      2 * vsync) / 2;
811 		t.bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
812 					2 * vsync - t.bt.vbackporch;
813 		t.bt.il_vfrontporch = v_fp;
814 		t.bt.il_vsync = vsync;
815 		t.bt.flags |= V4L2_DV_FL_HALF_LINE;
816 		t.bt.interlaced = V4L2_DV_INTERLACED;
817 	}
818 
819 	t.bt.pixelclock = pix_clk;
820 	t.bt.standards = V4L2_DV_BT_STD_GTF;
821 
822 	if (!default_gtf)
823 		t.bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
824 
825 	if (!v4l2_valid_dv_timings(&t, cap, NULL, NULL))
826 		return false;
827 	*timings = t;
828 	return true;
829 }
830 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
831 
832 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
833  *	0x15 and 0x16 from the EDID.
834  * @hor_landscape - byte 0x15 from the EDID.
835  * @vert_portrait - byte 0x16 from the EDID.
836  *
837  * Determines the aspect ratio from the EDID.
838  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
839  * "Horizontal and Vertical Screen Size or Aspect Ratio"
840  */
841 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
842 {
843 	struct v4l2_fract aspect = { 16, 9 };
844 	u8 ratio;
845 
846 	/* Nothing filled in, fallback to 16:9 */
847 	if (!hor_landscape && !vert_portrait)
848 		return aspect;
849 	/* Both filled in, so they are interpreted as the screen size in cm */
850 	if (hor_landscape && vert_portrait) {
851 		aspect.numerator = hor_landscape;
852 		aspect.denominator = vert_portrait;
853 		return aspect;
854 	}
855 	/* Only one is filled in, so interpret them as a ratio:
856 	   (val + 99) / 100 */
857 	ratio = hor_landscape | vert_portrait;
858 	/* Change some rounded values into the exact aspect ratio */
859 	if (ratio == 79) {
860 		aspect.numerator = 16;
861 		aspect.denominator = 9;
862 	} else if (ratio == 34) {
863 		aspect.numerator = 4;
864 		aspect.denominator = 3;
865 	} else if (ratio == 68) {
866 		aspect.numerator = 15;
867 		aspect.denominator = 9;
868 	} else {
869 		aspect.numerator = hor_landscape + 99;
870 		aspect.denominator = 100;
871 	}
872 	if (hor_landscape)
873 		return aspect;
874 	/* The aspect ratio is for portrait, so swap numerator and denominator */
875 	swap(aspect.denominator, aspect.numerator);
876 	return aspect;
877 }
878 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
879 
880 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
881  *	based on various InfoFrames.
882  * @avi: the AVI InfoFrame
883  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
884  * @height: the frame height
885  *
886  * Determines the HDMI colorimetry information, i.e. how the HDMI
887  * pixel color data should be interpreted.
888  *
889  * Note that some of the newer features (DCI-P3, HDR) are not yet
890  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
891  * and CTA-861-G standards.
892  */
893 struct v4l2_hdmi_colorimetry
894 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
895 			 const struct hdmi_vendor_infoframe *hdmi,
896 			 unsigned int height)
897 {
898 	struct v4l2_hdmi_colorimetry c = {
899 		V4L2_COLORSPACE_SRGB,
900 		V4L2_YCBCR_ENC_DEFAULT,
901 		V4L2_QUANTIZATION_FULL_RANGE,
902 		V4L2_XFER_FUNC_SRGB
903 	};
904 	bool is_ce = avi->video_code || (hdmi && hdmi->vic);
905 	bool is_sdtv = height <= 576;
906 	bool default_is_lim_range_rgb = avi->video_code > 1;
907 
908 	switch (avi->colorspace) {
909 	case HDMI_COLORSPACE_RGB:
910 		/* RGB pixel encoding */
911 		switch (avi->colorimetry) {
912 		case HDMI_COLORIMETRY_EXTENDED:
913 			switch (avi->extended_colorimetry) {
914 			case HDMI_EXTENDED_COLORIMETRY_OPRGB:
915 				c.colorspace = V4L2_COLORSPACE_OPRGB;
916 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
917 				break;
918 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
919 				c.colorspace = V4L2_COLORSPACE_BT2020;
920 				c.xfer_func = V4L2_XFER_FUNC_709;
921 				break;
922 			default:
923 				break;
924 			}
925 			break;
926 		default:
927 			break;
928 		}
929 		switch (avi->quantization_range) {
930 		case HDMI_QUANTIZATION_RANGE_LIMITED:
931 			c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
932 			break;
933 		case HDMI_QUANTIZATION_RANGE_FULL:
934 			break;
935 		default:
936 			if (default_is_lim_range_rgb)
937 				c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
938 			break;
939 		}
940 		break;
941 
942 	default:
943 		/* YCbCr pixel encoding */
944 		c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
945 		switch (avi->colorimetry) {
946 		case HDMI_COLORIMETRY_NONE:
947 			if (!is_ce)
948 				break;
949 			if (is_sdtv) {
950 				c.colorspace = V4L2_COLORSPACE_SMPTE170M;
951 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
952 			} else {
953 				c.colorspace = V4L2_COLORSPACE_REC709;
954 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
955 			}
956 			c.xfer_func = V4L2_XFER_FUNC_709;
957 			break;
958 		case HDMI_COLORIMETRY_ITU_601:
959 			c.colorspace = V4L2_COLORSPACE_SMPTE170M;
960 			c.ycbcr_enc = V4L2_YCBCR_ENC_601;
961 			c.xfer_func = V4L2_XFER_FUNC_709;
962 			break;
963 		case HDMI_COLORIMETRY_ITU_709:
964 			c.colorspace = V4L2_COLORSPACE_REC709;
965 			c.ycbcr_enc = V4L2_YCBCR_ENC_709;
966 			c.xfer_func = V4L2_XFER_FUNC_709;
967 			break;
968 		case HDMI_COLORIMETRY_EXTENDED:
969 			switch (avi->extended_colorimetry) {
970 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
971 				c.colorspace = V4L2_COLORSPACE_REC709;
972 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
973 				c.xfer_func = V4L2_XFER_FUNC_709;
974 				break;
975 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
976 				c.colorspace = V4L2_COLORSPACE_REC709;
977 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
978 				c.xfer_func = V4L2_XFER_FUNC_709;
979 				break;
980 			case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
981 				c.colorspace = V4L2_COLORSPACE_SRGB;
982 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
983 				c.xfer_func = V4L2_XFER_FUNC_SRGB;
984 				break;
985 			case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
986 				c.colorspace = V4L2_COLORSPACE_OPRGB;
987 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
988 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
989 				break;
990 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
991 				c.colorspace = V4L2_COLORSPACE_BT2020;
992 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
993 				c.xfer_func = V4L2_XFER_FUNC_709;
994 				break;
995 			case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
996 				c.colorspace = V4L2_COLORSPACE_BT2020;
997 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
998 				c.xfer_func = V4L2_XFER_FUNC_709;
999 				break;
1000 			default: /* fall back to ITU_709 */
1001 				c.colorspace = V4L2_COLORSPACE_REC709;
1002 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
1003 				c.xfer_func = V4L2_XFER_FUNC_709;
1004 				break;
1005 			}
1006 			break;
1007 		default:
1008 			break;
1009 		}
1010 		/*
1011 		 * YCC Quantization Range signaling is more-or-less broken,
1012 		 * let's just ignore this.
1013 		 */
1014 		break;
1015 	}
1016 	return c;
1017 }
1018 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
1019 
1020 /**
1021  * v4l2_get_edid_phys_addr() - find and return the physical address
1022  *
1023  * @edid:	pointer to the EDID data
1024  * @size:	size in bytes of the EDID data
1025  * @offset:	If not %NULL then the location of the physical address
1026  *		bytes in the EDID will be returned here. This is set to 0
1027  *		if there is no physical address found.
1028  *
1029  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1030  */
1031 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1032 			    unsigned int *offset)
1033 {
1034 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1035 
1036 	if (offset)
1037 		*offset = loc;
1038 	if (loc == 0)
1039 		return CEC_PHYS_ADDR_INVALID;
1040 	return (edid[loc] << 8) | edid[loc + 1];
1041 }
1042 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1043 
1044 /**
1045  * v4l2_set_edid_phys_addr() - find and set the physical address
1046  *
1047  * @edid:	pointer to the EDID data
1048  * @size:	size in bytes of the EDID data
1049  * @phys_addr:	the new physical address
1050  *
1051  * This function finds the location of the physical address in the EDID
1052  * and fills in the given physical address and updates the checksum
1053  * at the end of the EDID block. It does nothing if the EDID doesn't
1054  * contain a physical address.
1055  */
1056 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1057 {
1058 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1059 	u8 sum = 0;
1060 	unsigned int i;
1061 
1062 	if (loc == 0)
1063 		return;
1064 	edid[loc] = phys_addr >> 8;
1065 	edid[loc + 1] = phys_addr & 0xff;
1066 	loc &= ~0x7f;
1067 
1068 	/* update the checksum */
1069 	for (i = loc; i < loc + 127; i++)
1070 		sum += edid[i];
1071 	edid[i] = 256 - sum;
1072 }
1073 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1074 
1075 /**
1076  * v4l2_phys_addr_for_input() - calculate the PA for an input
1077  *
1078  * @phys_addr:	the physical address of the parent
1079  * @input:	the number of the input port, must be between 1 and 15
1080  *
1081  * This function calculates a new physical address based on the input
1082  * port number. For example:
1083  *
1084  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1085  *
1086  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1087  *
1088  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1089  *
1090  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1091  *
1092  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1093  */
1094 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1095 {
1096 	/* Check if input is sane */
1097 	if (WARN_ON(input == 0 || input > 0xf))
1098 		return CEC_PHYS_ADDR_INVALID;
1099 
1100 	if (phys_addr == 0)
1101 		return input << 12;
1102 
1103 	if ((phys_addr & 0x0fff) == 0)
1104 		return phys_addr | (input << 8);
1105 
1106 	if ((phys_addr & 0x00ff) == 0)
1107 		return phys_addr | (input << 4);
1108 
1109 	if ((phys_addr & 0x000f) == 0)
1110 		return phys_addr | input;
1111 
1112 	/*
1113 	 * All nibbles are used so no valid physical addresses can be assigned
1114 	 * to the input.
1115 	 */
1116 	return CEC_PHYS_ADDR_INVALID;
1117 }
1118 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1119 
1120 /**
1121  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1122  *
1123  * @phys_addr:	the physical address to validate
1124  * @parent:	if not %NULL, then this is filled with the parents PA.
1125  * @port:	if not %NULL, then this is filled with the input port.
1126  *
1127  * This validates a physical address as read from an EDID. If the
1128  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1129  * then it will return -EINVAL.
1130  *
1131  * The parent PA is passed into %parent and the input port is passed into
1132  * %port. For example:
1133  *
1134  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1135  *
1136  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1137  *
1138  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1139  *
1140  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1141  *
1142  * Return: 0 if the PA is valid, -EINVAL if not.
1143  */
1144 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1145 {
1146 	int i;
1147 
1148 	if (parent)
1149 		*parent = phys_addr;
1150 	if (port)
1151 		*port = 0;
1152 	if (phys_addr == CEC_PHYS_ADDR_INVALID)
1153 		return 0;
1154 	for (i = 0; i < 16; i += 4)
1155 		if (phys_addr & (0xf << i))
1156 			break;
1157 	if (i == 16)
1158 		return 0;
1159 	if (parent)
1160 		*parent = phys_addr & (0xfff0 << i);
1161 	if (port)
1162 		*port = (phys_addr >> i) & 0xf;
1163 	for (i += 4; i < 16; i += 4)
1164 		if ((phys_addr & (0xf << i)) == 0)
1165 			return -EINVAL;
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1169