xref: /openbmc/linux/drivers/media/v4l2-core/v4l2-dv-timings.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19 
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23 
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25 	V4L2_DV_BT_CEA_640X480P59_94,
26 	V4L2_DV_BT_CEA_720X480I59_94,
27 	V4L2_DV_BT_CEA_720X480P59_94,
28 	V4L2_DV_BT_CEA_720X576I50,
29 	V4L2_DV_BT_CEA_720X576P50,
30 	V4L2_DV_BT_CEA_1280X720P24,
31 	V4L2_DV_BT_CEA_1280X720P25,
32 	V4L2_DV_BT_CEA_1280X720P30,
33 	V4L2_DV_BT_CEA_1280X720P50,
34 	V4L2_DV_BT_CEA_1280X720P60,
35 	V4L2_DV_BT_CEA_1920X1080P24,
36 	V4L2_DV_BT_CEA_1920X1080P25,
37 	V4L2_DV_BT_CEA_1920X1080P30,
38 	V4L2_DV_BT_CEA_1920X1080I50,
39 	V4L2_DV_BT_CEA_1920X1080P50,
40 	V4L2_DV_BT_CEA_1920X1080I60,
41 	V4L2_DV_BT_CEA_1920X1080P60,
42 	V4L2_DV_BT_DMT_640X350P85,
43 	V4L2_DV_BT_DMT_640X400P85,
44 	V4L2_DV_BT_DMT_720X400P85,
45 	V4L2_DV_BT_DMT_640X480P72,
46 	V4L2_DV_BT_DMT_640X480P75,
47 	V4L2_DV_BT_DMT_640X480P85,
48 	V4L2_DV_BT_DMT_800X600P56,
49 	V4L2_DV_BT_DMT_800X600P60,
50 	V4L2_DV_BT_DMT_800X600P72,
51 	V4L2_DV_BT_DMT_800X600P75,
52 	V4L2_DV_BT_DMT_800X600P85,
53 	V4L2_DV_BT_DMT_800X600P120_RB,
54 	V4L2_DV_BT_DMT_848X480P60,
55 	V4L2_DV_BT_DMT_1024X768I43,
56 	V4L2_DV_BT_DMT_1024X768P60,
57 	V4L2_DV_BT_DMT_1024X768P70,
58 	V4L2_DV_BT_DMT_1024X768P75,
59 	V4L2_DV_BT_DMT_1024X768P85,
60 	V4L2_DV_BT_DMT_1024X768P120_RB,
61 	V4L2_DV_BT_DMT_1152X864P75,
62 	V4L2_DV_BT_DMT_1280X768P60_RB,
63 	V4L2_DV_BT_DMT_1280X768P60,
64 	V4L2_DV_BT_DMT_1280X768P75,
65 	V4L2_DV_BT_DMT_1280X768P85,
66 	V4L2_DV_BT_DMT_1280X768P120_RB,
67 	V4L2_DV_BT_DMT_1280X800P60_RB,
68 	V4L2_DV_BT_DMT_1280X800P60,
69 	V4L2_DV_BT_DMT_1280X800P75,
70 	V4L2_DV_BT_DMT_1280X800P85,
71 	V4L2_DV_BT_DMT_1280X800P120_RB,
72 	V4L2_DV_BT_DMT_1280X960P60,
73 	V4L2_DV_BT_DMT_1280X960P85,
74 	V4L2_DV_BT_DMT_1280X960P120_RB,
75 	V4L2_DV_BT_DMT_1280X1024P60,
76 	V4L2_DV_BT_DMT_1280X1024P75,
77 	V4L2_DV_BT_DMT_1280X1024P85,
78 	V4L2_DV_BT_DMT_1280X1024P120_RB,
79 	V4L2_DV_BT_DMT_1360X768P60,
80 	V4L2_DV_BT_DMT_1360X768P120_RB,
81 	V4L2_DV_BT_DMT_1366X768P60,
82 	V4L2_DV_BT_DMT_1366X768P60_RB,
83 	V4L2_DV_BT_DMT_1400X1050P60_RB,
84 	V4L2_DV_BT_DMT_1400X1050P60,
85 	V4L2_DV_BT_DMT_1400X1050P75,
86 	V4L2_DV_BT_DMT_1400X1050P85,
87 	V4L2_DV_BT_DMT_1400X1050P120_RB,
88 	V4L2_DV_BT_DMT_1440X900P60_RB,
89 	V4L2_DV_BT_DMT_1440X900P60,
90 	V4L2_DV_BT_DMT_1440X900P75,
91 	V4L2_DV_BT_DMT_1440X900P85,
92 	V4L2_DV_BT_DMT_1440X900P120_RB,
93 	V4L2_DV_BT_DMT_1600X900P60_RB,
94 	V4L2_DV_BT_DMT_1600X1200P60,
95 	V4L2_DV_BT_DMT_1600X1200P65,
96 	V4L2_DV_BT_DMT_1600X1200P70,
97 	V4L2_DV_BT_DMT_1600X1200P75,
98 	V4L2_DV_BT_DMT_1600X1200P85,
99 	V4L2_DV_BT_DMT_1600X1200P120_RB,
100 	V4L2_DV_BT_DMT_1680X1050P60_RB,
101 	V4L2_DV_BT_DMT_1680X1050P60,
102 	V4L2_DV_BT_DMT_1680X1050P75,
103 	V4L2_DV_BT_DMT_1680X1050P85,
104 	V4L2_DV_BT_DMT_1680X1050P120_RB,
105 	V4L2_DV_BT_DMT_1792X1344P60,
106 	V4L2_DV_BT_DMT_1792X1344P75,
107 	V4L2_DV_BT_DMT_1792X1344P120_RB,
108 	V4L2_DV_BT_DMT_1856X1392P60,
109 	V4L2_DV_BT_DMT_1856X1392P75,
110 	V4L2_DV_BT_DMT_1856X1392P120_RB,
111 	V4L2_DV_BT_DMT_1920X1200P60_RB,
112 	V4L2_DV_BT_DMT_1920X1200P60,
113 	V4L2_DV_BT_DMT_1920X1200P75,
114 	V4L2_DV_BT_DMT_1920X1200P85,
115 	V4L2_DV_BT_DMT_1920X1200P120_RB,
116 	V4L2_DV_BT_DMT_1920X1440P60,
117 	V4L2_DV_BT_DMT_1920X1440P75,
118 	V4L2_DV_BT_DMT_1920X1440P120_RB,
119 	V4L2_DV_BT_DMT_2048X1152P60_RB,
120 	V4L2_DV_BT_DMT_2560X1600P60_RB,
121 	V4L2_DV_BT_DMT_2560X1600P60,
122 	V4L2_DV_BT_DMT_2560X1600P75,
123 	V4L2_DV_BT_DMT_2560X1600P85,
124 	V4L2_DV_BT_DMT_2560X1600P120_RB,
125 	V4L2_DV_BT_CEA_3840X2160P24,
126 	V4L2_DV_BT_CEA_3840X2160P25,
127 	V4L2_DV_BT_CEA_3840X2160P30,
128 	V4L2_DV_BT_CEA_3840X2160P50,
129 	V4L2_DV_BT_CEA_3840X2160P60,
130 	V4L2_DV_BT_CEA_4096X2160P24,
131 	V4L2_DV_BT_CEA_4096X2160P25,
132 	V4L2_DV_BT_CEA_4096X2160P30,
133 	V4L2_DV_BT_CEA_4096X2160P50,
134 	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135 	V4L2_DV_BT_CEA_4096X2160P60,
136 	{ }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139 
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141 			   const struct v4l2_dv_timings_cap *dvcap,
142 			   v4l2_check_dv_timings_fnc fnc,
143 			   void *fnc_handle)
144 {
145 	const struct v4l2_bt_timings *bt = &t->bt;
146 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147 	u32 caps = cap->capabilities;
148 
149 	if (t->type != V4L2_DV_BT_656_1120)
150 		return false;
151 	if (t->type != dvcap->type ||
152 	    bt->height < cap->min_height ||
153 	    bt->height > cap->max_height ||
154 	    bt->width < cap->min_width ||
155 	    bt->width > cap->max_width ||
156 	    bt->pixelclock < cap->min_pixelclock ||
157 	    bt->pixelclock > cap->max_pixelclock ||
158 	    (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
159 	     cap->standards && bt->standards &&
160 	     !(bt->standards & cap->standards)) ||
161 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
162 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
163 		return false;
164 
165 	/* sanity checks for the blanking timings */
166 	if (!bt->interlaced &&
167 	    (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
168 		return false;
169 	if (bt->hfrontporch > 2 * bt->width ||
170 	    bt->hsync > 1024 || bt->hbackporch > 1024)
171 		return false;
172 	if (bt->vfrontporch > 4096 ||
173 	    bt->vsync > 128 || bt->vbackporch > 4096)
174 		return false;
175 	if (bt->interlaced && (bt->il_vfrontporch > 4096 ||
176 	    bt->il_vsync > 128 || bt->il_vbackporch > 4096))
177 		return false;
178 	return fnc == NULL || fnc(t, fnc_handle);
179 }
180 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
181 
182 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
183 			     const struct v4l2_dv_timings_cap *cap,
184 			     v4l2_check_dv_timings_fnc fnc,
185 			     void *fnc_handle)
186 {
187 	u32 i, idx;
188 
189 	memset(t->reserved, 0, sizeof(t->reserved));
190 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
191 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
192 					  fnc, fnc_handle) &&
193 		    idx++ == t->index) {
194 			t->timings = v4l2_dv_timings_presets[i];
195 			return 0;
196 		}
197 	}
198 	return -EINVAL;
199 }
200 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
201 
202 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
203 			      const struct v4l2_dv_timings_cap *cap,
204 			      unsigned pclock_delta,
205 			      v4l2_check_dv_timings_fnc fnc,
206 			      void *fnc_handle)
207 {
208 	int i;
209 
210 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
211 		return false;
212 
213 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
214 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
215 					  fnc, fnc_handle) &&
216 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
217 					  pclock_delta, false)) {
218 			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
219 
220 			*t = v4l2_dv_timings_presets[i];
221 			if (can_reduce_fps(&t->bt))
222 				t->bt.flags |= flags;
223 
224 			return true;
225 		}
226 	}
227 	return false;
228 }
229 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
230 
231 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
232 {
233 	unsigned int i;
234 
235 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
236 		const struct v4l2_bt_timings *bt =
237 			&v4l2_dv_timings_presets[i].bt;
238 
239 		if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
240 		    bt->cea861_vic == vic) {
241 			*t = v4l2_dv_timings_presets[i];
242 			return true;
243 		}
244 	}
245 	return false;
246 }
247 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
248 
249 /**
250  * v4l2_match_dv_timings - check if two timings match
251  * @t1: compare this v4l2_dv_timings struct...
252  * @t2: with this struct.
253  * @pclock_delta: the allowed pixelclock deviation.
254  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
255  *	match.
256  *
257  * Compare t1 with t2 with a given margin of error for the pixelclock.
258  */
259 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
260 			   const struct v4l2_dv_timings *t2,
261 			   unsigned pclock_delta, bool match_reduced_fps)
262 {
263 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
264 		return false;
265 	if (t1->bt.width == t2->bt.width &&
266 	    t1->bt.height == t2->bt.height &&
267 	    t1->bt.interlaced == t2->bt.interlaced &&
268 	    t1->bt.polarities == t2->bt.polarities &&
269 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
270 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
271 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
272 	    t1->bt.hsync == t2->bt.hsync &&
273 	    t1->bt.hbackporch == t2->bt.hbackporch &&
274 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
275 	    t1->bt.vsync == t2->bt.vsync &&
276 	    t1->bt.vbackporch == t2->bt.vbackporch &&
277 	    (!match_reduced_fps ||
278 	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
279 		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
280 	    (!t1->bt.interlaced ||
281 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
282 		 t1->bt.il_vsync == t2->bt.il_vsync &&
283 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
284 		return true;
285 	return false;
286 }
287 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
288 
289 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
290 			   const struct v4l2_dv_timings *t, bool detailed)
291 {
292 	const struct v4l2_bt_timings *bt = &t->bt;
293 	u32 htot, vtot;
294 	u32 fps;
295 
296 	if (t->type != V4L2_DV_BT_656_1120)
297 		return;
298 
299 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
300 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
301 	if (bt->interlaced)
302 		vtot /= 2;
303 
304 	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
305 				  (htot * vtot)) : 0;
306 
307 	if (prefix == NULL)
308 		prefix = "";
309 
310 	pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
311 		bt->width, bt->height, bt->interlaced ? "i" : "p",
312 		fps / 100, fps % 100, htot, vtot);
313 
314 	if (!detailed)
315 		return;
316 
317 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
318 			dev_prefix, bt->hfrontporch,
319 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
320 			bt->hsync, bt->hbackporch);
321 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
322 			dev_prefix, bt->vfrontporch,
323 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
324 			bt->vsync, bt->vbackporch);
325 	if (bt->interlaced)
326 		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
327 			dev_prefix, bt->il_vfrontporch,
328 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
329 			bt->il_vsync, bt->il_vbackporch);
330 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
331 	pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
332 			dev_prefix, bt->flags,
333 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
334 			" REDUCED_BLANKING" : "",
335 			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
336 			 bt->vsync == 8) ? " (V2)" : "",
337 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
338 			" CAN_REDUCE_FPS" : "",
339 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
340 			" REDUCED_FPS" : "",
341 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
342 			" HALF_LINE" : "",
343 			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
344 			" CE_VIDEO" : "",
345 			(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
346 			" FIRST_FIELD_EXTRA_LINE" : "",
347 			(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
348 			" HAS_PICTURE_ASPECT" : "",
349 			(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
350 			" HAS_CEA861_VIC" : "",
351 			(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
352 			" HAS_HDMI_VIC" : "");
353 	pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
354 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
355 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
356 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
357 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
358 			(bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
359 	if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
360 		pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
361 			bt->picture_aspect.numerator,
362 			bt->picture_aspect.denominator);
363 	if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
364 		pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
365 	if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
366 		pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
367 }
368 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
369 
370 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
371 {
372 	struct v4l2_fract ratio = { 1, 1 };
373 	unsigned long n, d;
374 
375 	if (t->type != V4L2_DV_BT_656_1120)
376 		return ratio;
377 	if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
378 		return ratio;
379 
380 	ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
381 	ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
382 
383 	rational_best_approximation(ratio.numerator, ratio.denominator,
384 				    ratio.numerator, ratio.denominator, &n, &d);
385 	ratio.numerator = n;
386 	ratio.denominator = d;
387 	return ratio;
388 }
389 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
390 
391 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
392  *	v4l2_dv_timings fields.
393  * @t - Timings for the video mode.
394  *
395  * Calculates the expected timeperframe using the pixel clock value and
396  * horizontal/vertical measures. This means that v4l2_dv_timings structure
397  * must be correctly and fully filled.
398  */
399 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
400 {
401 	const struct v4l2_bt_timings *bt = &t->bt;
402 	struct v4l2_fract fps_fract = { 1, 1 };
403 	unsigned long n, d;
404 	u32 htot, vtot, fps;
405 	u64 pclk;
406 
407 	if (t->type != V4L2_DV_BT_656_1120)
408 		return fps_fract;
409 
410 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
411 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
412 	pclk = bt->pixelclock;
413 
414 	if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
415 	    (bt->flags & V4L2_DV_FL_REDUCED_FPS))
416 		pclk = div_u64(pclk * 1000ULL, 1001);
417 
418 	fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
419 	if (!fps)
420 		return fps_fract;
421 
422 	rational_best_approximation(fps, 100, fps, 100, &n, &d);
423 
424 	fps_fract.numerator = d;
425 	fps_fract.denominator = n;
426 	return fps_fract;
427 }
428 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
429 
430 /*
431  * CVT defines
432  * Based on Coordinated Video Timings Standard
433  * version 1.1 September 10, 2003
434  */
435 
436 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
437 #define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
438 
439 /* Normal blanking */
440 #define CVT_MIN_V_BPORCH	7	/* lines */
441 #define CVT_MIN_V_PORCH_RND	3	/* lines */
442 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
443 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
444 
445 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
446 #define CVT_CELL_GRAN		8	/* character cell granularity */
447 #define CVT_M			600	/* blanking formula gradient */
448 #define CVT_C			40	/* blanking formula offset */
449 #define CVT_K			128	/* blanking formula scaling factor */
450 #define CVT_J			20	/* blanking formula scaling factor */
451 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
452 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
453 
454 /* Reduced Blanking */
455 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
456 #define CVT_RB_V_FPORCH        3       /* lines  */
457 #define CVT_RB_MIN_V_BLANK   460       /* us     */
458 #define CVT_RB_H_SYNC         32       /* pixels */
459 #define CVT_RB_H_BLANK       160       /* pixels */
460 /* Reduce blanking Version 2 */
461 #define CVT_RB_V2_H_BLANK     80       /* pixels */
462 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
463 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
464 #define CVT_RB_V_BPORCH        6       /* lines  */
465 
466 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
467  * @frame_height - the total height of the frame (including blanking) in lines.
468  * @hfreq - the horizontal frequency in Hz.
469  * @vsync - the height of the vertical sync in lines.
470  * @active_width - active width of image (does not include blanking). This
471  * information is needed only in case of version 2 of reduced blanking.
472  * In other cases, this parameter does not have any effect on timings.
473  * @polarities - the horizontal and vertical polarities (same as struct
474  *		v4l2_bt_timings polarities).
475  * @interlaced - if this flag is true, it indicates interlaced format
476  * @fmt - the resulting timings.
477  *
478  * This function will attempt to detect if the given values correspond to a
479  * valid CVT format. If so, then it will return true, and fmt will be filled
480  * in with the found CVT timings.
481  */
482 bool v4l2_detect_cvt(unsigned frame_height,
483 		     unsigned hfreq,
484 		     unsigned vsync,
485 		     unsigned active_width,
486 		     u32 polarities,
487 		     bool interlaced,
488 		     struct v4l2_dv_timings *fmt)
489 {
490 	int  v_fp, v_bp, h_fp, h_bp, hsync;
491 	int  frame_width, image_height, image_width;
492 	bool reduced_blanking;
493 	bool rb_v2 = false;
494 	unsigned pix_clk;
495 
496 	if (vsync < 4 || vsync > 8)
497 		return false;
498 
499 	if (polarities == V4L2_DV_VSYNC_POS_POL)
500 		reduced_blanking = false;
501 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
502 		reduced_blanking = true;
503 	else
504 		return false;
505 
506 	if (reduced_blanking && vsync == 8)
507 		rb_v2 = true;
508 
509 	if (rb_v2 && active_width == 0)
510 		return false;
511 
512 	if (!rb_v2 && vsync > 7)
513 		return false;
514 
515 	if (hfreq == 0)
516 		return false;
517 
518 	/* Vertical */
519 	if (reduced_blanking) {
520 		if (rb_v2) {
521 			v_bp = CVT_RB_V_BPORCH;
522 			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
523 			v_fp -= vsync + v_bp;
524 
525 			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
526 				v_fp = CVT_RB_V2_MIN_V_FPORCH;
527 		} else {
528 			v_fp = CVT_RB_V_FPORCH;
529 			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
530 			v_bp -= vsync + v_fp;
531 
532 			if (v_bp < CVT_RB_MIN_V_BPORCH)
533 				v_bp = CVT_RB_MIN_V_BPORCH;
534 		}
535 	} else {
536 		v_fp = CVT_MIN_V_PORCH_RND;
537 		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
538 
539 		if (v_bp < CVT_MIN_V_BPORCH)
540 			v_bp = CVT_MIN_V_BPORCH;
541 	}
542 
543 	if (interlaced)
544 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
545 	else
546 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
547 
548 	if (image_height < 0)
549 		return false;
550 
551 	/* Aspect ratio based on vsync */
552 	switch (vsync) {
553 	case 4:
554 		image_width = (image_height * 4) / 3;
555 		break;
556 	case 5:
557 		image_width = (image_height * 16) / 9;
558 		break;
559 	case 6:
560 		image_width = (image_height * 16) / 10;
561 		break;
562 	case 7:
563 		/* special case */
564 		if (image_height == 1024)
565 			image_width = (image_height * 5) / 4;
566 		else if (image_height == 768)
567 			image_width = (image_height * 15) / 9;
568 		else
569 			return false;
570 		break;
571 	case 8:
572 		image_width = active_width;
573 		break;
574 	default:
575 		return false;
576 	}
577 
578 	if (!rb_v2)
579 		image_width = image_width & ~7;
580 
581 	/* Horizontal */
582 	if (reduced_blanking) {
583 		int h_blank;
584 		int clk_gran;
585 
586 		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
587 		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
588 
589 		pix_clk = (image_width + h_blank) * hfreq;
590 		pix_clk = (pix_clk / clk_gran) * clk_gran;
591 
592 		h_bp  = h_blank / 2;
593 		hsync = CVT_RB_H_SYNC;
594 		h_fp  = h_blank - h_bp - hsync;
595 
596 		frame_width = image_width + h_blank;
597 	} else {
598 		unsigned ideal_duty_cycle_per_myriad =
599 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
600 		int h_blank;
601 
602 		if (ideal_duty_cycle_per_myriad < 2000)
603 			ideal_duty_cycle_per_myriad = 2000;
604 
605 		h_blank = image_width * ideal_duty_cycle_per_myriad /
606 					(10000 - ideal_duty_cycle_per_myriad);
607 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
608 
609 		pix_clk = (image_width + h_blank) * hfreq;
610 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
611 
612 		h_bp = h_blank / 2;
613 		frame_width = image_width + h_blank;
614 
615 		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
616 		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
617 		h_fp = h_blank - hsync - h_bp;
618 	}
619 
620 	fmt->type = V4L2_DV_BT_656_1120;
621 	fmt->bt.polarities = polarities;
622 	fmt->bt.width = image_width;
623 	fmt->bt.height = image_height;
624 	fmt->bt.hfrontporch = h_fp;
625 	fmt->bt.vfrontporch = v_fp;
626 	fmt->bt.hsync = hsync;
627 	fmt->bt.vsync = vsync;
628 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
629 
630 	if (!interlaced) {
631 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
632 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
633 	} else {
634 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
635 				      2 * vsync) / 2;
636 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
637 					2 * vsync - fmt->bt.vbackporch;
638 		fmt->bt.il_vfrontporch = v_fp;
639 		fmt->bt.il_vsync = vsync;
640 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
641 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
642 	}
643 
644 	fmt->bt.pixelclock = pix_clk;
645 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
646 
647 	if (reduced_blanking)
648 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
649 
650 	return true;
651 }
652 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
653 
654 /*
655  * GTF defines
656  * Based on Generalized Timing Formula Standard
657  * Version 1.1 September 2, 1999
658  */
659 
660 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
661 
662 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
663 #define GTF_V_FP		1	/* vertical front porch (lines) */
664 #define GTF_CELL_GRAN		8	/* character cell granularity */
665 
666 /* Default */
667 #define GTF_D_M			600	/* blanking formula gradient */
668 #define GTF_D_C			40	/* blanking formula offset */
669 #define GTF_D_K			128	/* blanking formula scaling factor */
670 #define GTF_D_J			20	/* blanking formula scaling factor */
671 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
672 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
673 
674 /* Secondary */
675 #define GTF_S_M			3600	/* blanking formula gradient */
676 #define GTF_S_C			40	/* blanking formula offset */
677 #define GTF_S_K			128	/* blanking formula scaling factor */
678 #define GTF_S_J			35	/* blanking formula scaling factor */
679 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
680 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
681 
682 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
683  * @frame_height - the total height of the frame (including blanking) in lines.
684  * @hfreq - the horizontal frequency in Hz.
685  * @vsync - the height of the vertical sync in lines.
686  * @polarities - the horizontal and vertical polarities (same as struct
687  *		v4l2_bt_timings polarities).
688  * @interlaced - if this flag is true, it indicates interlaced format
689  * @aspect - preferred aspect ratio. GTF has no method of determining the
690  *		aspect ratio in order to derive the image width from the
691  *		image height, so it has to be passed explicitly. Usually
692  *		the native screen aspect ratio is used for this. If it
693  *		is not filled in correctly, then 16:9 will be assumed.
694  * @fmt - the resulting timings.
695  *
696  * This function will attempt to detect if the given values correspond to a
697  * valid GTF format. If so, then it will return true, and fmt will be filled
698  * in with the found GTF timings.
699  */
700 bool v4l2_detect_gtf(unsigned frame_height,
701 		unsigned hfreq,
702 		unsigned vsync,
703 		u32 polarities,
704 		bool interlaced,
705 		struct v4l2_fract aspect,
706 		struct v4l2_dv_timings *fmt)
707 {
708 	int pix_clk;
709 	int  v_fp, v_bp, h_fp, hsync;
710 	int frame_width, image_height, image_width;
711 	bool default_gtf;
712 	int h_blank;
713 
714 	if (vsync != 3)
715 		return false;
716 
717 	if (polarities == V4L2_DV_VSYNC_POS_POL)
718 		default_gtf = true;
719 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
720 		default_gtf = false;
721 	else
722 		return false;
723 
724 	if (hfreq == 0)
725 		return false;
726 
727 	/* Vertical */
728 	v_fp = GTF_V_FP;
729 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
730 	if (interlaced)
731 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
732 	else
733 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
734 
735 	if (image_height < 0)
736 		return false;
737 
738 	if (aspect.numerator == 0 || aspect.denominator == 0) {
739 		aspect.numerator = 16;
740 		aspect.denominator = 9;
741 	}
742 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
743 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
744 
745 	/* Horizontal */
746 	if (default_gtf) {
747 		u64 num;
748 		u32 den;
749 
750 		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
751 		      ((u64)image_width * GTF_D_M_PRIME * 1000));
752 		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
753 		      (2 * GTF_CELL_GRAN);
754 		h_blank = div_u64((num + (den >> 1)), den);
755 		h_blank *= (2 * GTF_CELL_GRAN);
756 	} else {
757 		u64 num;
758 		u32 den;
759 
760 		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
761 		      ((u64)image_width * GTF_S_M_PRIME * 1000));
762 		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
763 		      (2 * GTF_CELL_GRAN);
764 		h_blank = div_u64((num + (den >> 1)), den);
765 		h_blank *= (2 * GTF_CELL_GRAN);
766 	}
767 
768 	frame_width = image_width + h_blank;
769 
770 	pix_clk = (image_width + h_blank) * hfreq;
771 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
772 
773 	hsync = (frame_width * 8 + 50) / 100;
774 	hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
775 
776 	h_fp = h_blank / 2 - hsync;
777 
778 	fmt->type = V4L2_DV_BT_656_1120;
779 	fmt->bt.polarities = polarities;
780 	fmt->bt.width = image_width;
781 	fmt->bt.height = image_height;
782 	fmt->bt.hfrontporch = h_fp;
783 	fmt->bt.vfrontporch = v_fp;
784 	fmt->bt.hsync = hsync;
785 	fmt->bt.vsync = vsync;
786 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
787 
788 	if (!interlaced) {
789 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
790 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
791 	} else {
792 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
793 				      2 * vsync) / 2;
794 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
795 					2 * vsync - fmt->bt.vbackporch;
796 		fmt->bt.il_vfrontporch = v_fp;
797 		fmt->bt.il_vsync = vsync;
798 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
799 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
800 	}
801 
802 	fmt->bt.pixelclock = pix_clk;
803 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
804 
805 	if (!default_gtf)
806 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
807 
808 	return true;
809 }
810 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
811 
812 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
813  *	0x15 and 0x16 from the EDID.
814  * @hor_landscape - byte 0x15 from the EDID.
815  * @vert_portrait - byte 0x16 from the EDID.
816  *
817  * Determines the aspect ratio from the EDID.
818  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
819  * "Horizontal and Vertical Screen Size or Aspect Ratio"
820  */
821 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
822 {
823 	struct v4l2_fract aspect = { 16, 9 };
824 	u8 ratio;
825 
826 	/* Nothing filled in, fallback to 16:9 */
827 	if (!hor_landscape && !vert_portrait)
828 		return aspect;
829 	/* Both filled in, so they are interpreted as the screen size in cm */
830 	if (hor_landscape && vert_portrait) {
831 		aspect.numerator = hor_landscape;
832 		aspect.denominator = vert_portrait;
833 		return aspect;
834 	}
835 	/* Only one is filled in, so interpret them as a ratio:
836 	   (val + 99) / 100 */
837 	ratio = hor_landscape | vert_portrait;
838 	/* Change some rounded values into the exact aspect ratio */
839 	if (ratio == 79) {
840 		aspect.numerator = 16;
841 		aspect.denominator = 9;
842 	} else if (ratio == 34) {
843 		aspect.numerator = 4;
844 		aspect.denominator = 3;
845 	} else if (ratio == 68) {
846 		aspect.numerator = 15;
847 		aspect.denominator = 9;
848 	} else {
849 		aspect.numerator = hor_landscape + 99;
850 		aspect.denominator = 100;
851 	}
852 	if (hor_landscape)
853 		return aspect;
854 	/* The aspect ratio is for portrait, so swap numerator and denominator */
855 	swap(aspect.denominator, aspect.numerator);
856 	return aspect;
857 }
858 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
859 
860 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
861  *	based on various InfoFrames.
862  * @avi: the AVI InfoFrame
863  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
864  * @height: the frame height
865  *
866  * Determines the HDMI colorimetry information, i.e. how the HDMI
867  * pixel color data should be interpreted.
868  *
869  * Note that some of the newer features (DCI-P3, HDR) are not yet
870  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
871  * and CTA-861-G standards.
872  */
873 struct v4l2_hdmi_colorimetry
874 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
875 			 const struct hdmi_vendor_infoframe *hdmi,
876 			 unsigned int height)
877 {
878 	struct v4l2_hdmi_colorimetry c = {
879 		V4L2_COLORSPACE_SRGB,
880 		V4L2_YCBCR_ENC_DEFAULT,
881 		V4L2_QUANTIZATION_FULL_RANGE,
882 		V4L2_XFER_FUNC_SRGB
883 	};
884 	bool is_ce = avi->video_code || (hdmi && hdmi->vic);
885 	bool is_sdtv = height <= 576;
886 	bool default_is_lim_range_rgb = avi->video_code > 1;
887 
888 	switch (avi->colorspace) {
889 	case HDMI_COLORSPACE_RGB:
890 		/* RGB pixel encoding */
891 		switch (avi->colorimetry) {
892 		case HDMI_COLORIMETRY_EXTENDED:
893 			switch (avi->extended_colorimetry) {
894 			case HDMI_EXTENDED_COLORIMETRY_OPRGB:
895 				c.colorspace = V4L2_COLORSPACE_OPRGB;
896 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
897 				break;
898 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
899 				c.colorspace = V4L2_COLORSPACE_BT2020;
900 				c.xfer_func = V4L2_XFER_FUNC_709;
901 				break;
902 			default:
903 				break;
904 			}
905 			break;
906 		default:
907 			break;
908 		}
909 		switch (avi->quantization_range) {
910 		case HDMI_QUANTIZATION_RANGE_LIMITED:
911 			c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
912 			break;
913 		case HDMI_QUANTIZATION_RANGE_FULL:
914 			break;
915 		default:
916 			if (default_is_lim_range_rgb)
917 				c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
918 			break;
919 		}
920 		break;
921 
922 	default:
923 		/* YCbCr pixel encoding */
924 		c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
925 		switch (avi->colorimetry) {
926 		case HDMI_COLORIMETRY_NONE:
927 			if (!is_ce)
928 				break;
929 			if (is_sdtv) {
930 				c.colorspace = V4L2_COLORSPACE_SMPTE170M;
931 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
932 			} else {
933 				c.colorspace = V4L2_COLORSPACE_REC709;
934 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
935 			}
936 			c.xfer_func = V4L2_XFER_FUNC_709;
937 			break;
938 		case HDMI_COLORIMETRY_ITU_601:
939 			c.colorspace = V4L2_COLORSPACE_SMPTE170M;
940 			c.ycbcr_enc = V4L2_YCBCR_ENC_601;
941 			c.xfer_func = V4L2_XFER_FUNC_709;
942 			break;
943 		case HDMI_COLORIMETRY_ITU_709:
944 			c.colorspace = V4L2_COLORSPACE_REC709;
945 			c.ycbcr_enc = V4L2_YCBCR_ENC_709;
946 			c.xfer_func = V4L2_XFER_FUNC_709;
947 			break;
948 		case HDMI_COLORIMETRY_EXTENDED:
949 			switch (avi->extended_colorimetry) {
950 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
951 				c.colorspace = V4L2_COLORSPACE_REC709;
952 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
953 				c.xfer_func = V4L2_XFER_FUNC_709;
954 				break;
955 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
956 				c.colorspace = V4L2_COLORSPACE_REC709;
957 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
958 				c.xfer_func = V4L2_XFER_FUNC_709;
959 				break;
960 			case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
961 				c.colorspace = V4L2_COLORSPACE_SRGB;
962 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
963 				c.xfer_func = V4L2_XFER_FUNC_SRGB;
964 				break;
965 			case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
966 				c.colorspace = V4L2_COLORSPACE_OPRGB;
967 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
968 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
969 				break;
970 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
971 				c.colorspace = V4L2_COLORSPACE_BT2020;
972 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
973 				c.xfer_func = V4L2_XFER_FUNC_709;
974 				break;
975 			case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
976 				c.colorspace = V4L2_COLORSPACE_BT2020;
977 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
978 				c.xfer_func = V4L2_XFER_FUNC_709;
979 				break;
980 			default: /* fall back to ITU_709 */
981 				c.colorspace = V4L2_COLORSPACE_REC709;
982 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
983 				c.xfer_func = V4L2_XFER_FUNC_709;
984 				break;
985 			}
986 			break;
987 		default:
988 			break;
989 		}
990 		/*
991 		 * YCC Quantization Range signaling is more-or-less broken,
992 		 * let's just ignore this.
993 		 */
994 		break;
995 	}
996 	return c;
997 }
998 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
999 
1000 /**
1001  * v4l2_get_edid_phys_addr() - find and return the physical address
1002  *
1003  * @edid:	pointer to the EDID data
1004  * @size:	size in bytes of the EDID data
1005  * @offset:	If not %NULL then the location of the physical address
1006  *		bytes in the EDID will be returned here. This is set to 0
1007  *		if there is no physical address found.
1008  *
1009  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1010  */
1011 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1012 			    unsigned int *offset)
1013 {
1014 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1015 
1016 	if (offset)
1017 		*offset = loc;
1018 	if (loc == 0)
1019 		return CEC_PHYS_ADDR_INVALID;
1020 	return (edid[loc] << 8) | edid[loc + 1];
1021 }
1022 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1023 
1024 /**
1025  * v4l2_set_edid_phys_addr() - find and set the physical address
1026  *
1027  * @edid:	pointer to the EDID data
1028  * @size:	size in bytes of the EDID data
1029  * @phys_addr:	the new physical address
1030  *
1031  * This function finds the location of the physical address in the EDID
1032  * and fills in the given physical address and updates the checksum
1033  * at the end of the EDID block. It does nothing if the EDID doesn't
1034  * contain a physical address.
1035  */
1036 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1037 {
1038 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1039 	u8 sum = 0;
1040 	unsigned int i;
1041 
1042 	if (loc == 0)
1043 		return;
1044 	edid[loc] = phys_addr >> 8;
1045 	edid[loc + 1] = phys_addr & 0xff;
1046 	loc &= ~0x7f;
1047 
1048 	/* update the checksum */
1049 	for (i = loc; i < loc + 127; i++)
1050 		sum += edid[i];
1051 	edid[i] = 256 - sum;
1052 }
1053 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1054 
1055 /**
1056  * v4l2_phys_addr_for_input() - calculate the PA for an input
1057  *
1058  * @phys_addr:	the physical address of the parent
1059  * @input:	the number of the input port, must be between 1 and 15
1060  *
1061  * This function calculates a new physical address based on the input
1062  * port number. For example:
1063  *
1064  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1065  *
1066  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1067  *
1068  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1069  *
1070  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1071  *
1072  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1073  */
1074 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1075 {
1076 	/* Check if input is sane */
1077 	if (WARN_ON(input == 0 || input > 0xf))
1078 		return CEC_PHYS_ADDR_INVALID;
1079 
1080 	if (phys_addr == 0)
1081 		return input << 12;
1082 
1083 	if ((phys_addr & 0x0fff) == 0)
1084 		return phys_addr | (input << 8);
1085 
1086 	if ((phys_addr & 0x00ff) == 0)
1087 		return phys_addr | (input << 4);
1088 
1089 	if ((phys_addr & 0x000f) == 0)
1090 		return phys_addr | input;
1091 
1092 	/*
1093 	 * All nibbles are used so no valid physical addresses can be assigned
1094 	 * to the input.
1095 	 */
1096 	return CEC_PHYS_ADDR_INVALID;
1097 }
1098 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1099 
1100 /**
1101  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1102  *
1103  * @phys_addr:	the physical address to validate
1104  * @parent:	if not %NULL, then this is filled with the parents PA.
1105  * @port:	if not %NULL, then this is filled with the input port.
1106  *
1107  * This validates a physical address as read from an EDID. If the
1108  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1109  * then it will return -EINVAL.
1110  *
1111  * The parent PA is passed into %parent and the input port is passed into
1112  * %port. For example:
1113  *
1114  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1115  *
1116  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1117  *
1118  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1119  *
1120  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1121  *
1122  * Return: 0 if the PA is valid, -EINVAL if not.
1123  */
1124 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1125 {
1126 	int i;
1127 
1128 	if (parent)
1129 		*parent = phys_addr;
1130 	if (port)
1131 		*port = 0;
1132 	if (phys_addr == CEC_PHYS_ADDR_INVALID)
1133 		return 0;
1134 	for (i = 0; i < 16; i += 4)
1135 		if (phys_addr & (0xf << i))
1136 			break;
1137 	if (i == 16)
1138 		return 0;
1139 	if (parent)
1140 		*parent = phys_addr & (0xfff0 << i);
1141 	if (port)
1142 		*port = (phys_addr >> i) & 0xf;
1143 	for (i += 4; i < 16; i += 4)
1144 		if ((phys_addr & (0xf << i)) == 0)
1145 			return -EINVAL;
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1149