1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * v4l2-dv-timings - dv-timings helper functions 4 * 5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/errno.h> 12 #include <linux/rational.h> 13 #include <linux/videodev2.h> 14 #include <linux/v4l2-dv-timings.h> 15 #include <media/v4l2-dv-timings.h> 16 #include <linux/math64.h> 17 #include <linux/hdmi.h> 18 #include <media/cec.h> 19 20 MODULE_AUTHOR("Hans Verkuil"); 21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions"); 22 MODULE_LICENSE("GPL"); 23 24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = { 25 V4L2_DV_BT_CEA_640X480P59_94, 26 V4L2_DV_BT_CEA_720X480I59_94, 27 V4L2_DV_BT_CEA_720X480P59_94, 28 V4L2_DV_BT_CEA_720X576I50, 29 V4L2_DV_BT_CEA_720X576P50, 30 V4L2_DV_BT_CEA_1280X720P24, 31 V4L2_DV_BT_CEA_1280X720P25, 32 V4L2_DV_BT_CEA_1280X720P30, 33 V4L2_DV_BT_CEA_1280X720P50, 34 V4L2_DV_BT_CEA_1280X720P60, 35 V4L2_DV_BT_CEA_1920X1080P24, 36 V4L2_DV_BT_CEA_1920X1080P25, 37 V4L2_DV_BT_CEA_1920X1080P30, 38 V4L2_DV_BT_CEA_1920X1080I50, 39 V4L2_DV_BT_CEA_1920X1080P50, 40 V4L2_DV_BT_CEA_1920X1080I60, 41 V4L2_DV_BT_CEA_1920X1080P60, 42 V4L2_DV_BT_DMT_640X350P85, 43 V4L2_DV_BT_DMT_640X400P85, 44 V4L2_DV_BT_DMT_720X400P85, 45 V4L2_DV_BT_DMT_640X480P72, 46 V4L2_DV_BT_DMT_640X480P75, 47 V4L2_DV_BT_DMT_640X480P85, 48 V4L2_DV_BT_DMT_800X600P56, 49 V4L2_DV_BT_DMT_800X600P60, 50 V4L2_DV_BT_DMT_800X600P72, 51 V4L2_DV_BT_DMT_800X600P75, 52 V4L2_DV_BT_DMT_800X600P85, 53 V4L2_DV_BT_DMT_800X600P120_RB, 54 V4L2_DV_BT_DMT_848X480P60, 55 V4L2_DV_BT_DMT_1024X768I43, 56 V4L2_DV_BT_DMT_1024X768P60, 57 V4L2_DV_BT_DMT_1024X768P70, 58 V4L2_DV_BT_DMT_1024X768P75, 59 V4L2_DV_BT_DMT_1024X768P85, 60 V4L2_DV_BT_DMT_1024X768P120_RB, 61 V4L2_DV_BT_DMT_1152X864P75, 62 V4L2_DV_BT_DMT_1280X768P60_RB, 63 V4L2_DV_BT_DMT_1280X768P60, 64 V4L2_DV_BT_DMT_1280X768P75, 65 V4L2_DV_BT_DMT_1280X768P85, 66 V4L2_DV_BT_DMT_1280X768P120_RB, 67 V4L2_DV_BT_DMT_1280X800P60_RB, 68 V4L2_DV_BT_DMT_1280X800P60, 69 V4L2_DV_BT_DMT_1280X800P75, 70 V4L2_DV_BT_DMT_1280X800P85, 71 V4L2_DV_BT_DMT_1280X800P120_RB, 72 V4L2_DV_BT_DMT_1280X960P60, 73 V4L2_DV_BT_DMT_1280X960P85, 74 V4L2_DV_BT_DMT_1280X960P120_RB, 75 V4L2_DV_BT_DMT_1280X1024P60, 76 V4L2_DV_BT_DMT_1280X1024P75, 77 V4L2_DV_BT_DMT_1280X1024P85, 78 V4L2_DV_BT_DMT_1280X1024P120_RB, 79 V4L2_DV_BT_DMT_1360X768P60, 80 V4L2_DV_BT_DMT_1360X768P120_RB, 81 V4L2_DV_BT_DMT_1366X768P60, 82 V4L2_DV_BT_DMT_1366X768P60_RB, 83 V4L2_DV_BT_DMT_1400X1050P60_RB, 84 V4L2_DV_BT_DMT_1400X1050P60, 85 V4L2_DV_BT_DMT_1400X1050P75, 86 V4L2_DV_BT_DMT_1400X1050P85, 87 V4L2_DV_BT_DMT_1400X1050P120_RB, 88 V4L2_DV_BT_DMT_1440X900P60_RB, 89 V4L2_DV_BT_DMT_1440X900P60, 90 V4L2_DV_BT_DMT_1440X900P75, 91 V4L2_DV_BT_DMT_1440X900P85, 92 V4L2_DV_BT_DMT_1440X900P120_RB, 93 V4L2_DV_BT_DMT_1600X900P60_RB, 94 V4L2_DV_BT_DMT_1600X1200P60, 95 V4L2_DV_BT_DMT_1600X1200P65, 96 V4L2_DV_BT_DMT_1600X1200P70, 97 V4L2_DV_BT_DMT_1600X1200P75, 98 V4L2_DV_BT_DMT_1600X1200P85, 99 V4L2_DV_BT_DMT_1600X1200P120_RB, 100 V4L2_DV_BT_DMT_1680X1050P60_RB, 101 V4L2_DV_BT_DMT_1680X1050P60, 102 V4L2_DV_BT_DMT_1680X1050P75, 103 V4L2_DV_BT_DMT_1680X1050P85, 104 V4L2_DV_BT_DMT_1680X1050P120_RB, 105 V4L2_DV_BT_DMT_1792X1344P60, 106 V4L2_DV_BT_DMT_1792X1344P75, 107 V4L2_DV_BT_DMT_1792X1344P120_RB, 108 V4L2_DV_BT_DMT_1856X1392P60, 109 V4L2_DV_BT_DMT_1856X1392P75, 110 V4L2_DV_BT_DMT_1856X1392P120_RB, 111 V4L2_DV_BT_DMT_1920X1200P60_RB, 112 V4L2_DV_BT_DMT_1920X1200P60, 113 V4L2_DV_BT_DMT_1920X1200P75, 114 V4L2_DV_BT_DMT_1920X1200P85, 115 V4L2_DV_BT_DMT_1920X1200P120_RB, 116 V4L2_DV_BT_DMT_1920X1440P60, 117 V4L2_DV_BT_DMT_1920X1440P75, 118 V4L2_DV_BT_DMT_1920X1440P120_RB, 119 V4L2_DV_BT_DMT_2048X1152P60_RB, 120 V4L2_DV_BT_DMT_2560X1600P60_RB, 121 V4L2_DV_BT_DMT_2560X1600P60, 122 V4L2_DV_BT_DMT_2560X1600P75, 123 V4L2_DV_BT_DMT_2560X1600P85, 124 V4L2_DV_BT_DMT_2560X1600P120_RB, 125 V4L2_DV_BT_CEA_3840X2160P24, 126 V4L2_DV_BT_CEA_3840X2160P25, 127 V4L2_DV_BT_CEA_3840X2160P30, 128 V4L2_DV_BT_CEA_3840X2160P50, 129 V4L2_DV_BT_CEA_3840X2160P60, 130 V4L2_DV_BT_CEA_4096X2160P24, 131 V4L2_DV_BT_CEA_4096X2160P25, 132 V4L2_DV_BT_CEA_4096X2160P30, 133 V4L2_DV_BT_CEA_4096X2160P50, 134 V4L2_DV_BT_DMT_4096X2160P59_94_RB, 135 V4L2_DV_BT_CEA_4096X2160P60, 136 { } 137 }; 138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets); 139 140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t, 141 const struct v4l2_dv_timings_cap *dvcap, 142 v4l2_check_dv_timings_fnc fnc, 143 void *fnc_handle) 144 { 145 const struct v4l2_bt_timings *bt = &t->bt; 146 const struct v4l2_bt_timings_cap *cap = &dvcap->bt; 147 u32 caps = cap->capabilities; 148 149 if (t->type != V4L2_DV_BT_656_1120) 150 return false; 151 if (t->type != dvcap->type || 152 bt->height < cap->min_height || 153 bt->height > cap->max_height || 154 bt->width < cap->min_width || 155 bt->width > cap->max_width || 156 bt->pixelclock < cap->min_pixelclock || 157 bt->pixelclock > cap->max_pixelclock || 158 (!(caps & V4L2_DV_BT_CAP_CUSTOM) && 159 cap->standards && bt->standards && 160 !(bt->standards & cap->standards)) || 161 (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) || 162 (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE))) 163 return false; 164 return fnc == NULL || fnc(t, fnc_handle); 165 } 166 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings); 167 168 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t, 169 const struct v4l2_dv_timings_cap *cap, 170 v4l2_check_dv_timings_fnc fnc, 171 void *fnc_handle) 172 { 173 u32 i, idx; 174 175 memset(t->reserved, 0, sizeof(t->reserved)); 176 for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) { 177 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, 178 fnc, fnc_handle) && 179 idx++ == t->index) { 180 t->timings = v4l2_dv_timings_presets[i]; 181 return 0; 182 } 183 } 184 return -EINVAL; 185 } 186 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap); 187 188 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t, 189 const struct v4l2_dv_timings_cap *cap, 190 unsigned pclock_delta, 191 v4l2_check_dv_timings_fnc fnc, 192 void *fnc_handle) 193 { 194 int i; 195 196 if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle)) 197 return false; 198 199 for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) { 200 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, 201 fnc, fnc_handle) && 202 v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i, 203 pclock_delta, false)) { 204 u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS; 205 206 *t = v4l2_dv_timings_presets[i]; 207 if (can_reduce_fps(&t->bt)) 208 t->bt.flags |= flags; 209 210 return true; 211 } 212 } 213 return false; 214 } 215 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap); 216 217 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic) 218 { 219 unsigned int i; 220 221 for (i = 0; i < v4l2_dv_timings_presets[i].bt.width; i++) { 222 const struct v4l2_bt_timings *bt = 223 &v4l2_dv_timings_presets[i].bt; 224 225 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) && 226 bt->cea861_vic == vic) { 227 *t = v4l2_dv_timings_presets[i]; 228 return true; 229 } 230 } 231 return false; 232 } 233 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic); 234 235 /** 236 * v4l2_match_dv_timings - check if two timings match 237 * @t1: compare this v4l2_dv_timings struct... 238 * @t2: with this struct. 239 * @pclock_delta: the allowed pixelclock deviation. 240 * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not 241 * match. 242 * 243 * Compare t1 with t2 with a given margin of error for the pixelclock. 244 */ 245 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1, 246 const struct v4l2_dv_timings *t2, 247 unsigned pclock_delta, bool match_reduced_fps) 248 { 249 if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120) 250 return false; 251 if (t1->bt.width == t2->bt.width && 252 t1->bt.height == t2->bt.height && 253 t1->bt.interlaced == t2->bt.interlaced && 254 t1->bt.polarities == t2->bt.polarities && 255 t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta && 256 t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta && 257 t1->bt.hfrontporch == t2->bt.hfrontporch && 258 t1->bt.hsync == t2->bt.hsync && 259 t1->bt.hbackporch == t2->bt.hbackporch && 260 t1->bt.vfrontporch == t2->bt.vfrontporch && 261 t1->bt.vsync == t2->bt.vsync && 262 t1->bt.vbackporch == t2->bt.vbackporch && 263 (!match_reduced_fps || 264 (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) == 265 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) && 266 (!t1->bt.interlaced || 267 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch && 268 t1->bt.il_vsync == t2->bt.il_vsync && 269 t1->bt.il_vbackporch == t2->bt.il_vbackporch))) 270 return true; 271 return false; 272 } 273 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings); 274 275 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix, 276 const struct v4l2_dv_timings *t, bool detailed) 277 { 278 const struct v4l2_bt_timings *bt = &t->bt; 279 u32 htot, vtot; 280 u32 fps; 281 282 if (t->type != V4L2_DV_BT_656_1120) 283 return; 284 285 htot = V4L2_DV_BT_FRAME_WIDTH(bt); 286 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); 287 if (bt->interlaced) 288 vtot /= 2; 289 290 fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock), 291 (htot * vtot)) : 0; 292 293 if (prefix == NULL) 294 prefix = ""; 295 296 pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix, 297 bt->width, bt->height, bt->interlaced ? "i" : "p", 298 fps / 100, fps % 100, htot, vtot); 299 300 if (!detailed) 301 return; 302 303 pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n", 304 dev_prefix, bt->hfrontporch, 305 (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-", 306 bt->hsync, bt->hbackporch); 307 pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n", 308 dev_prefix, bt->vfrontporch, 309 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", 310 bt->vsync, bt->vbackporch); 311 if (bt->interlaced) 312 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n", 313 dev_prefix, bt->il_vfrontporch, 314 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", 315 bt->il_vsync, bt->il_vbackporch); 316 pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock); 317 pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n", 318 dev_prefix, bt->flags, 319 (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ? 320 " REDUCED_BLANKING" : "", 321 ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) && 322 bt->vsync == 8) ? " (V2)" : "", 323 (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ? 324 " CAN_REDUCE_FPS" : "", 325 (bt->flags & V4L2_DV_FL_REDUCED_FPS) ? 326 " REDUCED_FPS" : "", 327 (bt->flags & V4L2_DV_FL_HALF_LINE) ? 328 " HALF_LINE" : "", 329 (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ? 330 " CE_VIDEO" : "", 331 (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ? 332 " FIRST_FIELD_EXTRA_LINE" : "", 333 (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ? 334 " HAS_PICTURE_ASPECT" : "", 335 (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ? 336 " HAS_CEA861_VIC" : "", 337 (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ? 338 " HAS_HDMI_VIC" : ""); 339 pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards, 340 (bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "", 341 (bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "", 342 (bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "", 343 (bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "", 344 (bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : ""); 345 if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) 346 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix, 347 bt->picture_aspect.numerator, 348 bt->picture_aspect.denominator); 349 if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) 350 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic); 351 if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) 352 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic); 353 } 354 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings); 355 356 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t) 357 { 358 struct v4l2_fract ratio = { 1, 1 }; 359 unsigned long n, d; 360 361 if (t->type != V4L2_DV_BT_656_1120) 362 return ratio; 363 if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)) 364 return ratio; 365 366 ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator; 367 ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator; 368 369 rational_best_approximation(ratio.numerator, ratio.denominator, 370 ratio.numerator, ratio.denominator, &n, &d); 371 ratio.numerator = n; 372 ratio.denominator = d; 373 return ratio; 374 } 375 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio); 376 377 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based 378 * v4l2_dv_timings fields. 379 * @t - Timings for the video mode. 380 * 381 * Calculates the expected timeperframe using the pixel clock value and 382 * horizontal/vertical measures. This means that v4l2_dv_timings structure 383 * must be correctly and fully filled. 384 */ 385 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t) 386 { 387 const struct v4l2_bt_timings *bt = &t->bt; 388 struct v4l2_fract fps_fract = { 1, 1 }; 389 unsigned long n, d; 390 u32 htot, vtot, fps; 391 u64 pclk; 392 393 if (t->type != V4L2_DV_BT_656_1120) 394 return fps_fract; 395 396 htot = V4L2_DV_BT_FRAME_WIDTH(bt); 397 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); 398 pclk = bt->pixelclock; 399 400 if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) && 401 (bt->flags & V4L2_DV_FL_REDUCED_FPS)) 402 pclk = div_u64(pclk * 1000ULL, 1001); 403 404 fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0; 405 if (!fps) 406 return fps_fract; 407 408 rational_best_approximation(fps, 100, fps, 100, &n, &d); 409 410 fps_fract.numerator = d; 411 fps_fract.denominator = n; 412 return fps_fract; 413 } 414 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe); 415 416 /* 417 * CVT defines 418 * Based on Coordinated Video Timings Standard 419 * version 1.1 September 10, 2003 420 */ 421 422 #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */ 423 #define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/ 424 425 /* Normal blanking */ 426 #define CVT_MIN_V_BPORCH 7 /* lines */ 427 #define CVT_MIN_V_PORCH_RND 3 /* lines */ 428 #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ 429 #define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */ 430 431 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */ 432 #define CVT_CELL_GRAN 8 /* character cell granularity */ 433 #define CVT_M 600 /* blanking formula gradient */ 434 #define CVT_C 40 /* blanking formula offset */ 435 #define CVT_K 128 /* blanking formula scaling factor */ 436 #define CVT_J 20 /* blanking formula scaling factor */ 437 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J) 438 #define CVT_M_PRIME (CVT_K * CVT_M / 256) 439 440 /* Reduced Blanking */ 441 #define CVT_RB_MIN_V_BPORCH 7 /* lines */ 442 #define CVT_RB_V_FPORCH 3 /* lines */ 443 #define CVT_RB_MIN_V_BLANK 460 /* us */ 444 #define CVT_RB_H_SYNC 32 /* pixels */ 445 #define CVT_RB_H_BLANK 160 /* pixels */ 446 /* Reduce blanking Version 2 */ 447 #define CVT_RB_V2_H_BLANK 80 /* pixels */ 448 #define CVT_RB_MIN_V_FPORCH 3 /* lines */ 449 #define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */ 450 #define CVT_RB_V_BPORCH 6 /* lines */ 451 452 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard 453 * @frame_height - the total height of the frame (including blanking) in lines. 454 * @hfreq - the horizontal frequency in Hz. 455 * @vsync - the height of the vertical sync in lines. 456 * @active_width - active width of image (does not include blanking). This 457 * information is needed only in case of version 2 of reduced blanking. 458 * In other cases, this parameter does not have any effect on timings. 459 * @polarities - the horizontal and vertical polarities (same as struct 460 * v4l2_bt_timings polarities). 461 * @interlaced - if this flag is true, it indicates interlaced format 462 * @fmt - the resulting timings. 463 * 464 * This function will attempt to detect if the given values correspond to a 465 * valid CVT format. If so, then it will return true, and fmt will be filled 466 * in with the found CVT timings. 467 */ 468 bool v4l2_detect_cvt(unsigned frame_height, 469 unsigned hfreq, 470 unsigned vsync, 471 unsigned active_width, 472 u32 polarities, 473 bool interlaced, 474 struct v4l2_dv_timings *fmt) 475 { 476 int v_fp, v_bp, h_fp, h_bp, hsync; 477 int frame_width, image_height, image_width; 478 bool reduced_blanking; 479 bool rb_v2 = false; 480 unsigned pix_clk; 481 482 if (vsync < 4 || vsync > 8) 483 return false; 484 485 if (polarities == V4L2_DV_VSYNC_POS_POL) 486 reduced_blanking = false; 487 else if (polarities == V4L2_DV_HSYNC_POS_POL) 488 reduced_blanking = true; 489 else 490 return false; 491 492 if (reduced_blanking && vsync == 8) 493 rb_v2 = true; 494 495 if (rb_v2 && active_width == 0) 496 return false; 497 498 if (!rb_v2 && vsync > 7) 499 return false; 500 501 if (hfreq == 0) 502 return false; 503 504 /* Vertical */ 505 if (reduced_blanking) { 506 if (rb_v2) { 507 v_bp = CVT_RB_V_BPORCH; 508 v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; 509 v_fp -= vsync + v_bp; 510 511 if (v_fp < CVT_RB_V2_MIN_V_FPORCH) 512 v_fp = CVT_RB_V2_MIN_V_FPORCH; 513 } else { 514 v_fp = CVT_RB_V_FPORCH; 515 v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; 516 v_bp -= vsync + v_fp; 517 518 if (v_bp < CVT_RB_MIN_V_BPORCH) 519 v_bp = CVT_RB_MIN_V_BPORCH; 520 } 521 } else { 522 v_fp = CVT_MIN_V_PORCH_RND; 523 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync; 524 525 if (v_bp < CVT_MIN_V_BPORCH) 526 v_bp = CVT_MIN_V_BPORCH; 527 } 528 529 if (interlaced) 530 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; 531 else 532 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; 533 534 if (image_height < 0) 535 return false; 536 537 /* Aspect ratio based on vsync */ 538 switch (vsync) { 539 case 4: 540 image_width = (image_height * 4) / 3; 541 break; 542 case 5: 543 image_width = (image_height * 16) / 9; 544 break; 545 case 6: 546 image_width = (image_height * 16) / 10; 547 break; 548 case 7: 549 /* special case */ 550 if (image_height == 1024) 551 image_width = (image_height * 5) / 4; 552 else if (image_height == 768) 553 image_width = (image_height * 15) / 9; 554 else 555 return false; 556 break; 557 case 8: 558 image_width = active_width; 559 break; 560 default: 561 return false; 562 } 563 564 if (!rb_v2) 565 image_width = image_width & ~7; 566 567 /* Horizontal */ 568 if (reduced_blanking) { 569 int h_blank; 570 int clk_gran; 571 572 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK; 573 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN; 574 575 pix_clk = (image_width + h_blank) * hfreq; 576 pix_clk = (pix_clk / clk_gran) * clk_gran; 577 578 h_bp = h_blank / 2; 579 hsync = CVT_RB_H_SYNC; 580 h_fp = h_blank - h_bp - hsync; 581 582 frame_width = image_width + h_blank; 583 } else { 584 unsigned ideal_duty_cycle_per_myriad = 585 100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq; 586 int h_blank; 587 588 if (ideal_duty_cycle_per_myriad < 2000) 589 ideal_duty_cycle_per_myriad = 2000; 590 591 h_blank = image_width * ideal_duty_cycle_per_myriad / 592 (10000 - ideal_duty_cycle_per_myriad); 593 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN; 594 595 pix_clk = (image_width + h_blank) * hfreq; 596 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN; 597 598 h_bp = h_blank / 2; 599 frame_width = image_width + h_blank; 600 601 hsync = frame_width * CVT_HSYNC_PERCENT / 100; 602 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN; 603 h_fp = h_blank - hsync - h_bp; 604 } 605 606 fmt->type = V4L2_DV_BT_656_1120; 607 fmt->bt.polarities = polarities; 608 fmt->bt.width = image_width; 609 fmt->bt.height = image_height; 610 fmt->bt.hfrontporch = h_fp; 611 fmt->bt.vfrontporch = v_fp; 612 fmt->bt.hsync = hsync; 613 fmt->bt.vsync = vsync; 614 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; 615 616 if (!interlaced) { 617 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; 618 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; 619 } else { 620 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - 621 2 * vsync) / 2; 622 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - 623 2 * vsync - fmt->bt.vbackporch; 624 fmt->bt.il_vfrontporch = v_fp; 625 fmt->bt.il_vsync = vsync; 626 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; 627 fmt->bt.interlaced = V4L2_DV_INTERLACED; 628 } 629 630 fmt->bt.pixelclock = pix_clk; 631 fmt->bt.standards = V4L2_DV_BT_STD_CVT; 632 633 if (reduced_blanking) 634 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; 635 636 return true; 637 } 638 EXPORT_SYMBOL_GPL(v4l2_detect_cvt); 639 640 /* 641 * GTF defines 642 * Based on Generalized Timing Formula Standard 643 * Version 1.1 September 2, 1999 644 */ 645 646 #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */ 647 648 #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ 649 #define GTF_V_FP 1 /* vertical front porch (lines) */ 650 #define GTF_CELL_GRAN 8 /* character cell granularity */ 651 652 /* Default */ 653 #define GTF_D_M 600 /* blanking formula gradient */ 654 #define GTF_D_C 40 /* blanking formula offset */ 655 #define GTF_D_K 128 /* blanking formula scaling factor */ 656 #define GTF_D_J 20 /* blanking formula scaling factor */ 657 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J) 658 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256) 659 660 /* Secondary */ 661 #define GTF_S_M 3600 /* blanking formula gradient */ 662 #define GTF_S_C 40 /* blanking formula offset */ 663 #define GTF_S_K 128 /* blanking formula scaling factor */ 664 #define GTF_S_J 35 /* blanking formula scaling factor */ 665 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J) 666 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256) 667 668 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard 669 * @frame_height - the total height of the frame (including blanking) in lines. 670 * @hfreq - the horizontal frequency in Hz. 671 * @vsync - the height of the vertical sync in lines. 672 * @polarities - the horizontal and vertical polarities (same as struct 673 * v4l2_bt_timings polarities). 674 * @interlaced - if this flag is true, it indicates interlaced format 675 * @aspect - preferred aspect ratio. GTF has no method of determining the 676 * aspect ratio in order to derive the image width from the 677 * image height, so it has to be passed explicitly. Usually 678 * the native screen aspect ratio is used for this. If it 679 * is not filled in correctly, then 16:9 will be assumed. 680 * @fmt - the resulting timings. 681 * 682 * This function will attempt to detect if the given values correspond to a 683 * valid GTF format. If so, then it will return true, and fmt will be filled 684 * in with the found GTF timings. 685 */ 686 bool v4l2_detect_gtf(unsigned frame_height, 687 unsigned hfreq, 688 unsigned vsync, 689 u32 polarities, 690 bool interlaced, 691 struct v4l2_fract aspect, 692 struct v4l2_dv_timings *fmt) 693 { 694 int pix_clk; 695 int v_fp, v_bp, h_fp, hsync; 696 int frame_width, image_height, image_width; 697 bool default_gtf; 698 int h_blank; 699 700 if (vsync != 3) 701 return false; 702 703 if (polarities == V4L2_DV_VSYNC_POS_POL) 704 default_gtf = true; 705 else if (polarities == V4L2_DV_HSYNC_POS_POL) 706 default_gtf = false; 707 else 708 return false; 709 710 if (hfreq == 0) 711 return false; 712 713 /* Vertical */ 714 v_fp = GTF_V_FP; 715 v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync; 716 if (interlaced) 717 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; 718 else 719 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; 720 721 if (image_height < 0) 722 return false; 723 724 if (aspect.numerator == 0 || aspect.denominator == 0) { 725 aspect.numerator = 16; 726 aspect.denominator = 9; 727 } 728 image_width = ((image_height * aspect.numerator) / aspect.denominator); 729 image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1); 730 731 /* Horizontal */ 732 if (default_gtf) { 733 u64 num; 734 u32 den; 735 736 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) - 737 ((u64)image_width * GTF_D_M_PRIME * 1000)); 738 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) * 739 (2 * GTF_CELL_GRAN); 740 h_blank = div_u64((num + (den >> 1)), den); 741 h_blank *= (2 * GTF_CELL_GRAN); 742 } else { 743 u64 num; 744 u32 den; 745 746 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) - 747 ((u64)image_width * GTF_S_M_PRIME * 1000)); 748 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) * 749 (2 * GTF_CELL_GRAN); 750 h_blank = div_u64((num + (den >> 1)), den); 751 h_blank *= (2 * GTF_CELL_GRAN); 752 } 753 754 frame_width = image_width + h_blank; 755 756 pix_clk = (image_width + h_blank) * hfreq; 757 pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN; 758 759 hsync = (frame_width * 8 + 50) / 100; 760 hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN; 761 762 h_fp = h_blank / 2 - hsync; 763 764 fmt->type = V4L2_DV_BT_656_1120; 765 fmt->bt.polarities = polarities; 766 fmt->bt.width = image_width; 767 fmt->bt.height = image_height; 768 fmt->bt.hfrontporch = h_fp; 769 fmt->bt.vfrontporch = v_fp; 770 fmt->bt.hsync = hsync; 771 fmt->bt.vsync = vsync; 772 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; 773 774 if (!interlaced) { 775 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; 776 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; 777 } else { 778 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - 779 2 * vsync) / 2; 780 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - 781 2 * vsync - fmt->bt.vbackporch; 782 fmt->bt.il_vfrontporch = v_fp; 783 fmt->bt.il_vsync = vsync; 784 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; 785 fmt->bt.interlaced = V4L2_DV_INTERLACED; 786 } 787 788 fmt->bt.pixelclock = pix_clk; 789 fmt->bt.standards = V4L2_DV_BT_STD_GTF; 790 791 if (!default_gtf) 792 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; 793 794 return true; 795 } 796 EXPORT_SYMBOL_GPL(v4l2_detect_gtf); 797 798 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes 799 * 0x15 and 0x16 from the EDID. 800 * @hor_landscape - byte 0x15 from the EDID. 801 * @vert_portrait - byte 0x16 from the EDID. 802 * 803 * Determines the aspect ratio from the EDID. 804 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2: 805 * "Horizontal and Vertical Screen Size or Aspect Ratio" 806 */ 807 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait) 808 { 809 struct v4l2_fract aspect = { 16, 9 }; 810 u8 ratio; 811 812 /* Nothing filled in, fallback to 16:9 */ 813 if (!hor_landscape && !vert_portrait) 814 return aspect; 815 /* Both filled in, so they are interpreted as the screen size in cm */ 816 if (hor_landscape && vert_portrait) { 817 aspect.numerator = hor_landscape; 818 aspect.denominator = vert_portrait; 819 return aspect; 820 } 821 /* Only one is filled in, so interpret them as a ratio: 822 (val + 99) / 100 */ 823 ratio = hor_landscape | vert_portrait; 824 /* Change some rounded values into the exact aspect ratio */ 825 if (ratio == 79) { 826 aspect.numerator = 16; 827 aspect.denominator = 9; 828 } else if (ratio == 34) { 829 aspect.numerator = 4; 830 aspect.denominator = 3; 831 } else if (ratio == 68) { 832 aspect.numerator = 15; 833 aspect.denominator = 9; 834 } else { 835 aspect.numerator = hor_landscape + 99; 836 aspect.denominator = 100; 837 } 838 if (hor_landscape) 839 return aspect; 840 /* The aspect ratio is for portrait, so swap numerator and denominator */ 841 swap(aspect.denominator, aspect.numerator); 842 return aspect; 843 } 844 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio); 845 846 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information 847 * based on various InfoFrames. 848 * @avi: the AVI InfoFrame 849 * @hdmi: the HDMI Vendor InfoFrame, may be NULL 850 * @height: the frame height 851 * 852 * Determines the HDMI colorimetry information, i.e. how the HDMI 853 * pixel color data should be interpreted. 854 * 855 * Note that some of the newer features (DCI-P3, HDR) are not yet 856 * implemented: the hdmi.h header needs to be updated to the HDMI 2.0 857 * and CTA-861-G standards. 858 */ 859 struct v4l2_hdmi_colorimetry 860 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi, 861 const struct hdmi_vendor_infoframe *hdmi, 862 unsigned int height) 863 { 864 struct v4l2_hdmi_colorimetry c = { 865 V4L2_COLORSPACE_SRGB, 866 V4L2_YCBCR_ENC_DEFAULT, 867 V4L2_QUANTIZATION_FULL_RANGE, 868 V4L2_XFER_FUNC_SRGB 869 }; 870 bool is_ce = avi->video_code || (hdmi && hdmi->vic); 871 bool is_sdtv = height <= 576; 872 bool default_is_lim_range_rgb = avi->video_code > 1; 873 874 switch (avi->colorspace) { 875 case HDMI_COLORSPACE_RGB: 876 /* RGB pixel encoding */ 877 switch (avi->colorimetry) { 878 case HDMI_COLORIMETRY_EXTENDED: 879 switch (avi->extended_colorimetry) { 880 case HDMI_EXTENDED_COLORIMETRY_OPRGB: 881 c.colorspace = V4L2_COLORSPACE_OPRGB; 882 c.xfer_func = V4L2_XFER_FUNC_OPRGB; 883 break; 884 case HDMI_EXTENDED_COLORIMETRY_BT2020: 885 c.colorspace = V4L2_COLORSPACE_BT2020; 886 c.xfer_func = V4L2_XFER_FUNC_709; 887 break; 888 default: 889 break; 890 } 891 break; 892 default: 893 break; 894 } 895 switch (avi->quantization_range) { 896 case HDMI_QUANTIZATION_RANGE_LIMITED: 897 c.quantization = V4L2_QUANTIZATION_LIM_RANGE; 898 break; 899 case HDMI_QUANTIZATION_RANGE_FULL: 900 break; 901 default: 902 if (default_is_lim_range_rgb) 903 c.quantization = V4L2_QUANTIZATION_LIM_RANGE; 904 break; 905 } 906 break; 907 908 default: 909 /* YCbCr pixel encoding */ 910 c.quantization = V4L2_QUANTIZATION_LIM_RANGE; 911 switch (avi->colorimetry) { 912 case HDMI_COLORIMETRY_NONE: 913 if (!is_ce) 914 break; 915 if (is_sdtv) { 916 c.colorspace = V4L2_COLORSPACE_SMPTE170M; 917 c.ycbcr_enc = V4L2_YCBCR_ENC_601; 918 } else { 919 c.colorspace = V4L2_COLORSPACE_REC709; 920 c.ycbcr_enc = V4L2_YCBCR_ENC_709; 921 } 922 c.xfer_func = V4L2_XFER_FUNC_709; 923 break; 924 case HDMI_COLORIMETRY_ITU_601: 925 c.colorspace = V4L2_COLORSPACE_SMPTE170M; 926 c.ycbcr_enc = V4L2_YCBCR_ENC_601; 927 c.xfer_func = V4L2_XFER_FUNC_709; 928 break; 929 case HDMI_COLORIMETRY_ITU_709: 930 c.colorspace = V4L2_COLORSPACE_REC709; 931 c.ycbcr_enc = V4L2_YCBCR_ENC_709; 932 c.xfer_func = V4L2_XFER_FUNC_709; 933 break; 934 case HDMI_COLORIMETRY_EXTENDED: 935 switch (avi->extended_colorimetry) { 936 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601: 937 c.colorspace = V4L2_COLORSPACE_REC709; 938 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709; 939 c.xfer_func = V4L2_XFER_FUNC_709; 940 break; 941 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709: 942 c.colorspace = V4L2_COLORSPACE_REC709; 943 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601; 944 c.xfer_func = V4L2_XFER_FUNC_709; 945 break; 946 case HDMI_EXTENDED_COLORIMETRY_S_YCC_601: 947 c.colorspace = V4L2_COLORSPACE_SRGB; 948 c.ycbcr_enc = V4L2_YCBCR_ENC_601; 949 c.xfer_func = V4L2_XFER_FUNC_SRGB; 950 break; 951 case HDMI_EXTENDED_COLORIMETRY_OPYCC_601: 952 c.colorspace = V4L2_COLORSPACE_OPRGB; 953 c.ycbcr_enc = V4L2_YCBCR_ENC_601; 954 c.xfer_func = V4L2_XFER_FUNC_OPRGB; 955 break; 956 case HDMI_EXTENDED_COLORIMETRY_BT2020: 957 c.colorspace = V4L2_COLORSPACE_BT2020; 958 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020; 959 c.xfer_func = V4L2_XFER_FUNC_709; 960 break; 961 case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM: 962 c.colorspace = V4L2_COLORSPACE_BT2020; 963 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM; 964 c.xfer_func = V4L2_XFER_FUNC_709; 965 break; 966 default: /* fall back to ITU_709 */ 967 c.colorspace = V4L2_COLORSPACE_REC709; 968 c.ycbcr_enc = V4L2_YCBCR_ENC_709; 969 c.xfer_func = V4L2_XFER_FUNC_709; 970 break; 971 } 972 break; 973 default: 974 break; 975 } 976 /* 977 * YCC Quantization Range signaling is more-or-less broken, 978 * let's just ignore this. 979 */ 980 break; 981 } 982 return c; 983 } 984 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry); 985 986 /** 987 * v4l2_get_edid_phys_addr() - find and return the physical address 988 * 989 * @edid: pointer to the EDID data 990 * @size: size in bytes of the EDID data 991 * @offset: If not %NULL then the location of the physical address 992 * bytes in the EDID will be returned here. This is set to 0 993 * if there is no physical address found. 994 * 995 * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none. 996 */ 997 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size, 998 unsigned int *offset) 999 { 1000 unsigned int loc = cec_get_edid_spa_location(edid, size); 1001 1002 if (offset) 1003 *offset = loc; 1004 if (loc == 0) 1005 return CEC_PHYS_ADDR_INVALID; 1006 return (edid[loc] << 8) | edid[loc + 1]; 1007 } 1008 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr); 1009 1010 /** 1011 * v4l2_set_edid_phys_addr() - find and set the physical address 1012 * 1013 * @edid: pointer to the EDID data 1014 * @size: size in bytes of the EDID data 1015 * @phys_addr: the new physical address 1016 * 1017 * This function finds the location of the physical address in the EDID 1018 * and fills in the given physical address and updates the checksum 1019 * at the end of the EDID block. It does nothing if the EDID doesn't 1020 * contain a physical address. 1021 */ 1022 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr) 1023 { 1024 unsigned int loc = cec_get_edid_spa_location(edid, size); 1025 u8 sum = 0; 1026 unsigned int i; 1027 1028 if (loc == 0) 1029 return; 1030 edid[loc] = phys_addr >> 8; 1031 edid[loc + 1] = phys_addr & 0xff; 1032 loc &= ~0x7f; 1033 1034 /* update the checksum */ 1035 for (i = loc; i < loc + 127; i++) 1036 sum += edid[i]; 1037 edid[i] = 256 - sum; 1038 } 1039 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr); 1040 1041 /** 1042 * v4l2_phys_addr_for_input() - calculate the PA for an input 1043 * 1044 * @phys_addr: the physical address of the parent 1045 * @input: the number of the input port, must be between 1 and 15 1046 * 1047 * This function calculates a new physical address based on the input 1048 * port number. For example: 1049 * 1050 * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0 1051 * 1052 * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0 1053 * 1054 * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5 1055 * 1056 * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth. 1057 * 1058 * Return: the new physical address or CEC_PHYS_ADDR_INVALID. 1059 */ 1060 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input) 1061 { 1062 /* Check if input is sane */ 1063 if (WARN_ON(input == 0 || input > 0xf)) 1064 return CEC_PHYS_ADDR_INVALID; 1065 1066 if (phys_addr == 0) 1067 return input << 12; 1068 1069 if ((phys_addr & 0x0fff) == 0) 1070 return phys_addr | (input << 8); 1071 1072 if ((phys_addr & 0x00ff) == 0) 1073 return phys_addr | (input << 4); 1074 1075 if ((phys_addr & 0x000f) == 0) 1076 return phys_addr | input; 1077 1078 /* 1079 * All nibbles are used so no valid physical addresses can be assigned 1080 * to the input. 1081 */ 1082 return CEC_PHYS_ADDR_INVALID; 1083 } 1084 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input); 1085 1086 /** 1087 * v4l2_phys_addr_validate() - validate a physical address from an EDID 1088 * 1089 * @phys_addr: the physical address to validate 1090 * @parent: if not %NULL, then this is filled with the parents PA. 1091 * @port: if not %NULL, then this is filled with the input port. 1092 * 1093 * This validates a physical address as read from an EDID. If the 1094 * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end), 1095 * then it will return -EINVAL. 1096 * 1097 * The parent PA is passed into %parent and the input port is passed into 1098 * %port. For example: 1099 * 1100 * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0. 1101 * 1102 * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1. 1103 * 1104 * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2. 1105 * 1106 * PA = f.f.f.f: has parent f.f.f.f and input port 0. 1107 * 1108 * Return: 0 if the PA is valid, -EINVAL if not. 1109 */ 1110 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port) 1111 { 1112 int i; 1113 1114 if (parent) 1115 *parent = phys_addr; 1116 if (port) 1117 *port = 0; 1118 if (phys_addr == CEC_PHYS_ADDR_INVALID) 1119 return 0; 1120 for (i = 0; i < 16; i += 4) 1121 if (phys_addr & (0xf << i)) 1122 break; 1123 if (i == 16) 1124 return 0; 1125 if (parent) 1126 *parent = phys_addr & (0xfff0 << i); 1127 if (port) 1128 *port = (phys_addr >> i) & 0xf; 1129 for (i += 4; i < 16; i += 4) 1130 if ((phys_addr & (0xf << i)) == 0) 1131 return -EINVAL; 1132 return 0; 1133 } 1134 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate); 1135