1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <asm/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 dev_err(&dev->udev->dev, 83 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 84 uvc_query_name(query), cs, unit, ret, size); 85 86 if (ret != -EPIPE) 87 return ret; 88 89 tmp = *(u8 *)data; 90 91 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 92 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 93 UVC_CTRL_CONTROL_TIMEOUT); 94 95 error = *(u8 *)data; 96 *(u8 *)data = tmp; 97 98 if (ret != 1) 99 return ret < 0 ? ret : -EPIPE; 100 101 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 102 103 switch (error) { 104 case 0: 105 /* Cannot happen - we received a STALL */ 106 return -EPIPE; 107 case 1: /* Not ready */ 108 return -EBUSY; 109 case 2: /* Wrong state */ 110 return -EILSEQ; 111 case 3: /* Power */ 112 return -EREMOTE; 113 case 4: /* Out of range */ 114 return -ERANGE; 115 case 5: /* Invalid unit */ 116 case 6: /* Invalid control */ 117 case 7: /* Invalid Request */ 118 /* 119 * The firmware has not properly implemented 120 * the control or there has been a HW error. 121 */ 122 return -EIO; 123 case 8: /* Invalid value within range */ 124 return -EINVAL; 125 default: /* reserved or unknown */ 126 break; 127 } 128 129 return -EPIPE; 130 } 131 132 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 133 struct uvc_streaming_control *ctrl) 134 { 135 static const struct usb_device_id elgato_cam_link_4k = { 136 USB_DEVICE(0x0fd9, 0x0066) 137 }; 138 struct uvc_format *format = NULL; 139 struct uvc_frame *frame = NULL; 140 unsigned int i; 141 142 /* 143 * The response of the Elgato Cam Link 4K is incorrect: The second byte 144 * contains bFormatIndex (instead of being the second byte of bmHint). 145 * The first byte is always zero. The third byte is always 1. 146 * 147 * The UVC 1.5 class specification defines the first five bits in the 148 * bmHint bitfield. The remaining bits are reserved and should be zero. 149 * Therefore a valid bmHint will be less than 32. 150 * 151 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 152 * MCU: 20.02.19, FPGA: 67 153 */ 154 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 155 ctrl->bmHint > 255) { 156 u8 corrected_format_index = ctrl->bmHint >> 8; 157 158 uvc_dbg(stream->dev, VIDEO, 159 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 160 ctrl->bmHint, ctrl->bFormatIndex, 161 1, corrected_format_index); 162 ctrl->bmHint = 1; 163 ctrl->bFormatIndex = corrected_format_index; 164 } 165 166 for (i = 0; i < stream->nformats; ++i) { 167 if (stream->format[i].index == ctrl->bFormatIndex) { 168 format = &stream->format[i]; 169 break; 170 } 171 } 172 173 if (format == NULL) 174 return; 175 176 for (i = 0; i < format->nframes; ++i) { 177 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 178 frame = &format->frame[i]; 179 break; 180 } 181 } 182 183 if (frame == NULL) 184 return; 185 186 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 187 (ctrl->dwMaxVideoFrameSize == 0 && 188 stream->dev->uvc_version < 0x0110)) 189 ctrl->dwMaxVideoFrameSize = 190 frame->dwMaxVideoFrameBufferSize; 191 192 /* 193 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 194 * compute the bandwidth on 16 bits and erroneously sign-extend it to 195 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 196 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 197 */ 198 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 199 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 200 201 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 202 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 203 stream->intf->num_altsetting > 1) { 204 u32 interval; 205 u32 bandwidth; 206 207 interval = (ctrl->dwFrameInterval > 100000) 208 ? ctrl->dwFrameInterval 209 : frame->dwFrameInterval[0]; 210 211 /* 212 * Compute a bandwidth estimation by multiplying the frame 213 * size by the number of video frames per second, divide the 214 * result by the number of USB frames (or micro-frames for 215 * high-speed devices) per second and add the UVC header size 216 * (assumed to be 12 bytes long). 217 */ 218 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 219 bandwidth *= 10000000 / interval + 1; 220 bandwidth /= 1000; 221 if (stream->dev->udev->speed == USB_SPEED_HIGH) 222 bandwidth /= 8; 223 bandwidth += 12; 224 225 /* 226 * The bandwidth estimate is too low for many cameras. Don't use 227 * maximum packet sizes lower than 1024 bytes to try and work 228 * around the problem. According to measurements done on two 229 * different camera models, the value is high enough to get most 230 * resolutions working while not preventing two simultaneous 231 * VGA streams at 15 fps. 232 */ 233 bandwidth = max_t(u32, bandwidth, 1024); 234 235 ctrl->dwMaxPayloadTransferSize = bandwidth; 236 } 237 } 238 239 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 240 { 241 /* 242 * Return the size of the video probe and commit controls, which depends 243 * on the protocol version. 244 */ 245 if (stream->dev->uvc_version < 0x0110) 246 return 26; 247 else if (stream->dev->uvc_version < 0x0150) 248 return 34; 249 else 250 return 48; 251 } 252 253 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 254 struct uvc_streaming_control *ctrl, int probe, u8 query) 255 { 256 u16 size = uvc_video_ctrl_size(stream); 257 u8 *data; 258 int ret; 259 260 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 261 query == UVC_GET_DEF) 262 return -EIO; 263 264 data = kmalloc(size, GFP_KERNEL); 265 if (data == NULL) 266 return -ENOMEM; 267 268 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 269 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 270 size, uvc_timeout_param); 271 272 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 273 /* 274 * Some cameras, mostly based on Bison Electronics chipsets, 275 * answer a GET_MIN or GET_MAX request with the wCompQuality 276 * field only. 277 */ 278 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 279 "compliance - GET_MIN/MAX(PROBE) incorrectly " 280 "supported. Enabling workaround.\n"); 281 memset(ctrl, 0, sizeof(*ctrl)); 282 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 283 ret = 0; 284 goto out; 285 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 286 /* 287 * Many cameras don't support the GET_DEF request on their 288 * video probe control. Warn once and return, the caller will 289 * fall back to GET_CUR. 290 */ 291 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 292 "compliance - GET_DEF(PROBE) not supported. " 293 "Enabling workaround.\n"); 294 ret = -EIO; 295 goto out; 296 } else if (ret != size) { 297 dev_err(&stream->intf->dev, 298 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 299 query, probe ? "probe" : "commit", ret, size); 300 ret = -EIO; 301 goto out; 302 } 303 304 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 305 ctrl->bFormatIndex = data[2]; 306 ctrl->bFrameIndex = data[3]; 307 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 308 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 309 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 310 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 311 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 312 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 313 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 314 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 315 316 if (size >= 34) { 317 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 318 ctrl->bmFramingInfo = data[30]; 319 ctrl->bPreferedVersion = data[31]; 320 ctrl->bMinVersion = data[32]; 321 ctrl->bMaxVersion = data[33]; 322 } else { 323 ctrl->dwClockFrequency = stream->dev->clock_frequency; 324 ctrl->bmFramingInfo = 0; 325 ctrl->bPreferedVersion = 0; 326 ctrl->bMinVersion = 0; 327 ctrl->bMaxVersion = 0; 328 } 329 330 /* 331 * Some broken devices return null or wrong dwMaxVideoFrameSize and 332 * dwMaxPayloadTransferSize fields. Try to get the value from the 333 * format and frame descriptors. 334 */ 335 uvc_fixup_video_ctrl(stream, ctrl); 336 ret = 0; 337 338 out: 339 kfree(data); 340 return ret; 341 } 342 343 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 344 struct uvc_streaming_control *ctrl, int probe) 345 { 346 u16 size = uvc_video_ctrl_size(stream); 347 u8 *data; 348 int ret; 349 350 data = kzalloc(size, GFP_KERNEL); 351 if (data == NULL) 352 return -ENOMEM; 353 354 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 355 data[2] = ctrl->bFormatIndex; 356 data[3] = ctrl->bFrameIndex; 357 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 358 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 359 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 360 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 361 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 362 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 363 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 364 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 365 366 if (size >= 34) { 367 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 368 data[30] = ctrl->bmFramingInfo; 369 data[31] = ctrl->bPreferedVersion; 370 data[32] = ctrl->bMinVersion; 371 data[33] = ctrl->bMaxVersion; 372 } 373 374 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 375 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 376 size, uvc_timeout_param); 377 if (ret != size) { 378 dev_err(&stream->intf->dev, 379 "Failed to set UVC %s control : %d (exp. %u).\n", 380 probe ? "probe" : "commit", ret, size); 381 ret = -EIO; 382 } 383 384 kfree(data); 385 return ret; 386 } 387 388 int uvc_probe_video(struct uvc_streaming *stream, 389 struct uvc_streaming_control *probe) 390 { 391 struct uvc_streaming_control probe_min, probe_max; 392 unsigned int i; 393 int ret; 394 395 /* 396 * Perform probing. The device should adjust the requested values 397 * according to its capabilities. However, some devices, namely the 398 * first generation UVC Logitech webcams, don't implement the Video 399 * Probe control properly, and just return the needed bandwidth. For 400 * that reason, if the needed bandwidth exceeds the maximum available 401 * bandwidth, try to lower the quality. 402 */ 403 ret = uvc_set_video_ctrl(stream, probe, 1); 404 if (ret < 0) 405 goto done; 406 407 /* Get the minimum and maximum values for compression settings. */ 408 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 409 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 410 if (ret < 0) 411 goto done; 412 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 413 if (ret < 0) 414 goto done; 415 416 probe->wCompQuality = probe_max.wCompQuality; 417 } 418 419 for (i = 0; i < 2; ++i) { 420 ret = uvc_set_video_ctrl(stream, probe, 1); 421 if (ret < 0) 422 goto done; 423 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 424 if (ret < 0) 425 goto done; 426 427 if (stream->intf->num_altsetting == 1) 428 break; 429 430 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize) 431 break; 432 433 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 434 ret = -ENOSPC; 435 goto done; 436 } 437 438 /* TODO: negotiate compression parameters */ 439 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 440 probe->wPFrameRate = probe_min.wPFrameRate; 441 probe->wCompQuality = probe_max.wCompQuality; 442 probe->wCompWindowSize = probe_min.wCompWindowSize; 443 } 444 445 done: 446 return ret; 447 } 448 449 static int uvc_commit_video(struct uvc_streaming *stream, 450 struct uvc_streaming_control *probe) 451 { 452 return uvc_set_video_ctrl(stream, probe, 0); 453 } 454 455 /* ----------------------------------------------------------------------------- 456 * Clocks and timestamps 457 */ 458 459 static inline ktime_t uvc_video_get_time(void) 460 { 461 if (uvc_clock_param == CLOCK_MONOTONIC) 462 return ktime_get(); 463 else 464 return ktime_get_real(); 465 } 466 467 static void 468 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 469 const u8 *data, int len) 470 { 471 struct uvc_clock_sample *sample; 472 unsigned int header_size; 473 bool has_pts = false; 474 bool has_scr = false; 475 unsigned long flags; 476 ktime_t time; 477 u16 host_sof; 478 u16 dev_sof; 479 480 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 481 case UVC_STREAM_PTS | UVC_STREAM_SCR: 482 header_size = 12; 483 has_pts = true; 484 has_scr = true; 485 break; 486 case UVC_STREAM_PTS: 487 header_size = 6; 488 has_pts = true; 489 break; 490 case UVC_STREAM_SCR: 491 header_size = 8; 492 has_scr = true; 493 break; 494 default: 495 header_size = 2; 496 break; 497 } 498 499 /* Check for invalid headers. */ 500 if (len < header_size) 501 return; 502 503 /* 504 * Extract the timestamps: 505 * 506 * - store the frame PTS in the buffer structure 507 * - if the SCR field is present, retrieve the host SOF counter and 508 * kernel timestamps and store them with the SCR STC and SOF fields 509 * in the ring buffer 510 */ 511 if (has_pts && buf != NULL) 512 buf->pts = get_unaligned_le32(&data[2]); 513 514 if (!has_scr) 515 return; 516 517 /* 518 * To limit the amount of data, drop SCRs with an SOF identical to the 519 * previous one. 520 */ 521 dev_sof = get_unaligned_le16(&data[header_size - 2]); 522 if (dev_sof == stream->clock.last_sof) 523 return; 524 525 stream->clock.last_sof = dev_sof; 526 527 host_sof = usb_get_current_frame_number(stream->dev->udev); 528 time = uvc_video_get_time(); 529 530 /* 531 * The UVC specification allows device implementations that can't obtain 532 * the USB frame number to keep their own frame counters as long as they 533 * match the size and frequency of the frame number associated with USB 534 * SOF tokens. The SOF values sent by such devices differ from the USB 535 * SOF tokens by a fixed offset that needs to be estimated and accounted 536 * for to make timestamp recovery as accurate as possible. 537 * 538 * The offset is estimated the first time a device SOF value is received 539 * as the difference between the host and device SOF values. As the two 540 * SOF values can differ slightly due to transmission delays, consider 541 * that the offset is null if the difference is not higher than 10 ms 542 * (negative differences can not happen and are thus considered as an 543 * offset). The video commit control wDelay field should be used to 544 * compute a dynamic threshold instead of using a fixed 10 ms value, but 545 * devices don't report reliable wDelay values. 546 * 547 * See uvc_video_clock_host_sof() for an explanation regarding why only 548 * the 8 LSBs of the delta are kept. 549 */ 550 if (stream->clock.sof_offset == (u16)-1) { 551 u16 delta_sof = (host_sof - dev_sof) & 255; 552 if (delta_sof >= 10) 553 stream->clock.sof_offset = delta_sof; 554 else 555 stream->clock.sof_offset = 0; 556 } 557 558 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 559 560 spin_lock_irqsave(&stream->clock.lock, flags); 561 562 sample = &stream->clock.samples[stream->clock.head]; 563 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 564 sample->dev_sof = dev_sof; 565 sample->host_sof = host_sof; 566 sample->host_time = time; 567 568 /* Update the sliding window head and count. */ 569 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 570 571 if (stream->clock.count < stream->clock.size) 572 stream->clock.count++; 573 574 spin_unlock_irqrestore(&stream->clock.lock, flags); 575 } 576 577 static void uvc_video_clock_reset(struct uvc_streaming *stream) 578 { 579 struct uvc_clock *clock = &stream->clock; 580 581 clock->head = 0; 582 clock->count = 0; 583 clock->last_sof = -1; 584 clock->sof_offset = -1; 585 } 586 587 static int uvc_video_clock_init(struct uvc_streaming *stream) 588 { 589 struct uvc_clock *clock = &stream->clock; 590 591 spin_lock_init(&clock->lock); 592 clock->size = 32; 593 594 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 595 GFP_KERNEL); 596 if (clock->samples == NULL) 597 return -ENOMEM; 598 599 uvc_video_clock_reset(stream); 600 601 return 0; 602 } 603 604 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 605 { 606 kfree(stream->clock.samples); 607 stream->clock.samples = NULL; 608 } 609 610 /* 611 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 612 * 613 * Host SOF counters reported by usb_get_current_frame_number() usually don't 614 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 615 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 616 * controller and its configuration. 617 * 618 * We thus need to recover the SOF value corresponding to the host frame number. 619 * As the device and host frame numbers are sampled in a short interval, the 620 * difference between their values should be equal to a small delta plus an 621 * integer multiple of 256 caused by the host frame number limited precision. 622 * 623 * To obtain the recovered host SOF value, compute the small delta by masking 624 * the high bits of the host frame counter and device SOF difference and add it 625 * to the device SOF value. 626 */ 627 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 628 { 629 /* The delta value can be negative. */ 630 s8 delta_sof; 631 632 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 633 634 return (sample->dev_sof + delta_sof) & 2047; 635 } 636 637 /* 638 * uvc_video_clock_update - Update the buffer timestamp 639 * 640 * This function converts the buffer PTS timestamp to the host clock domain by 641 * going through the USB SOF clock domain and stores the result in the V4L2 642 * buffer timestamp field. 643 * 644 * The relationship between the device clock and the host clock isn't known. 645 * However, the device and the host share the common USB SOF clock which can be 646 * used to recover that relationship. 647 * 648 * The relationship between the device clock and the USB SOF clock is considered 649 * to be linear over the clock samples sliding window and is given by 650 * 651 * SOF = m * PTS + p 652 * 653 * Several methods to compute the slope (m) and intercept (p) can be used. As 654 * the clock drift should be small compared to the sliding window size, we 655 * assume that the line that goes through the points at both ends of the window 656 * is a good approximation. Naming those points P1 and P2, we get 657 * 658 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 659 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 660 * 661 * or 662 * 663 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 664 * 665 * to avoid losing precision in the division. Similarly, the host timestamp is 666 * computed with 667 * 668 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 669 * 670 * SOF values are coded on 11 bits by USB. We extend their precision with 16 671 * decimal bits, leading to a 11.16 coding. 672 * 673 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 674 * be normalized using the nominal device clock frequency reported through the 675 * UVC descriptors. 676 * 677 * Both the PTS/STC and SOF counters roll over, after a fixed but device 678 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 679 * sliding window size is smaller than the rollover period, differences computed 680 * on unsigned integers will produce the correct result. However, the p term in 681 * the linear relations will be miscomputed. 682 * 683 * To fix the issue, we subtract a constant from the PTS and STC values to bring 684 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 685 * the 32 bit range without any rollover. 686 * 687 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 688 * computed by (1) will never be smaller than 0. This offset is then compensated 689 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 690 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 691 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 692 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 693 * SOF value at the end of the sliding window. 694 * 695 * Finally we subtract a constant from the host timestamps to bring the first 696 * timestamp of the sliding window to 1s. 697 */ 698 void uvc_video_clock_update(struct uvc_streaming *stream, 699 struct vb2_v4l2_buffer *vbuf, 700 struct uvc_buffer *buf) 701 { 702 struct uvc_clock *clock = &stream->clock; 703 struct uvc_clock_sample *first; 704 struct uvc_clock_sample *last; 705 unsigned long flags; 706 u64 timestamp; 707 u32 delta_stc; 708 u32 y1, y2; 709 u32 x1, x2; 710 u32 mean; 711 u32 sof; 712 u64 y; 713 714 if (!uvc_hw_timestamps_param) 715 return; 716 717 /* 718 * We will get called from __vb2_queue_cancel() if there are buffers 719 * done but not dequeued by the user, but the sample array has already 720 * been released at that time. Just bail out in that case. 721 */ 722 if (!clock->samples) 723 return; 724 725 spin_lock_irqsave(&clock->lock, flags); 726 727 if (clock->count < clock->size) 728 goto done; 729 730 first = &clock->samples[clock->head]; 731 last = &clock->samples[(clock->head - 1) % clock->size]; 732 733 /* First step, PTS to SOF conversion. */ 734 delta_stc = buf->pts - (1UL << 31); 735 x1 = first->dev_stc - delta_stc; 736 x2 = last->dev_stc - delta_stc; 737 if (x1 == x2) 738 goto done; 739 740 y1 = (first->dev_sof + 2048) << 16; 741 y2 = (last->dev_sof + 2048) << 16; 742 if (y2 < y1) 743 y2 += 2048 << 16; 744 745 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 746 - (u64)y2 * (u64)x1; 747 y = div_u64(y, x2 - x1); 748 749 sof = y; 750 751 uvc_dbg(stream->dev, CLOCK, 752 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 753 stream->dev->name, buf->pts, 754 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 755 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 756 x1, x2, y1, y2, clock->sof_offset); 757 758 /* Second step, SOF to host clock conversion. */ 759 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 760 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 761 if (x2 < x1) 762 x2 += 2048 << 16; 763 if (x1 == x2) 764 goto done; 765 766 y1 = NSEC_PER_SEC; 767 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 768 769 /* 770 * Interpolated and host SOF timestamps can wrap around at slightly 771 * different times. Handle this by adding or removing 2048 to or from 772 * the computed SOF value to keep it close to the SOF samples mean 773 * value. 774 */ 775 mean = (x1 + x2) / 2; 776 if (mean - (1024 << 16) > sof) 777 sof += 2048 << 16; 778 else if (sof > mean + (1024 << 16)) 779 sof -= 2048 << 16; 780 781 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 782 - (u64)y2 * (u64)x1; 783 y = div_u64(y, x2 - x1); 784 785 timestamp = ktime_to_ns(first->host_time) + y - y1; 786 787 uvc_dbg(stream->dev, CLOCK, 788 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 789 stream->dev->name, 790 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 791 y, timestamp, vbuf->vb2_buf.timestamp, 792 x1, first->host_sof, first->dev_sof, 793 x2, last->host_sof, last->dev_sof, y1, y2); 794 795 /* Update the V4L2 buffer. */ 796 vbuf->vb2_buf.timestamp = timestamp; 797 798 done: 799 spin_unlock_irqrestore(&clock->lock, flags); 800 } 801 802 /* ------------------------------------------------------------------------ 803 * Stream statistics 804 */ 805 806 static void uvc_video_stats_decode(struct uvc_streaming *stream, 807 const u8 *data, int len) 808 { 809 unsigned int header_size; 810 bool has_pts = false; 811 bool has_scr = false; 812 u16 scr_sof; 813 u32 scr_stc; 814 u32 pts; 815 816 if (stream->stats.stream.nb_frames == 0 && 817 stream->stats.frame.nb_packets == 0) 818 stream->stats.stream.start_ts = ktime_get(); 819 820 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 821 case UVC_STREAM_PTS | UVC_STREAM_SCR: 822 header_size = 12; 823 has_pts = true; 824 has_scr = true; 825 break; 826 case UVC_STREAM_PTS: 827 header_size = 6; 828 has_pts = true; 829 break; 830 case UVC_STREAM_SCR: 831 header_size = 8; 832 has_scr = true; 833 break; 834 default: 835 header_size = 2; 836 break; 837 } 838 839 /* Check for invalid headers. */ 840 if (len < header_size || data[0] < header_size) { 841 stream->stats.frame.nb_invalid++; 842 return; 843 } 844 845 /* Extract the timestamps. */ 846 if (has_pts) 847 pts = get_unaligned_le32(&data[2]); 848 849 if (has_scr) { 850 scr_stc = get_unaligned_le32(&data[header_size - 6]); 851 scr_sof = get_unaligned_le16(&data[header_size - 2]); 852 } 853 854 /* Is PTS constant through the whole frame ? */ 855 if (has_pts && stream->stats.frame.nb_pts) { 856 if (stream->stats.frame.pts != pts) { 857 stream->stats.frame.nb_pts_diffs++; 858 stream->stats.frame.last_pts_diff = 859 stream->stats.frame.nb_packets; 860 } 861 } 862 863 if (has_pts) { 864 stream->stats.frame.nb_pts++; 865 stream->stats.frame.pts = pts; 866 } 867 868 /* 869 * Do all frames have a PTS in their first non-empty packet, or before 870 * their first empty packet ? 871 */ 872 if (stream->stats.frame.size == 0) { 873 if (len > header_size) 874 stream->stats.frame.has_initial_pts = has_pts; 875 if (len == header_size && has_pts) 876 stream->stats.frame.has_early_pts = true; 877 } 878 879 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 880 if (has_scr && stream->stats.frame.nb_scr) { 881 if (stream->stats.frame.scr_stc != scr_stc) 882 stream->stats.frame.nb_scr_diffs++; 883 } 884 885 if (has_scr) { 886 /* Expand the SOF counter to 32 bits and store its value. */ 887 if (stream->stats.stream.nb_frames > 0 || 888 stream->stats.frame.nb_scr > 0) 889 stream->stats.stream.scr_sof_count += 890 (scr_sof - stream->stats.stream.scr_sof) % 2048; 891 stream->stats.stream.scr_sof = scr_sof; 892 893 stream->stats.frame.nb_scr++; 894 stream->stats.frame.scr_stc = scr_stc; 895 stream->stats.frame.scr_sof = scr_sof; 896 897 if (scr_sof < stream->stats.stream.min_sof) 898 stream->stats.stream.min_sof = scr_sof; 899 if (scr_sof > stream->stats.stream.max_sof) 900 stream->stats.stream.max_sof = scr_sof; 901 } 902 903 /* Record the first non-empty packet number. */ 904 if (stream->stats.frame.size == 0 && len > header_size) 905 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 906 907 /* Update the frame size. */ 908 stream->stats.frame.size += len - header_size; 909 910 /* Update the packets counters. */ 911 stream->stats.frame.nb_packets++; 912 if (len <= header_size) 913 stream->stats.frame.nb_empty++; 914 915 if (data[1] & UVC_STREAM_ERR) 916 stream->stats.frame.nb_errors++; 917 } 918 919 static void uvc_video_stats_update(struct uvc_streaming *stream) 920 { 921 struct uvc_stats_frame *frame = &stream->stats.frame; 922 923 uvc_dbg(stream->dev, STATS, 924 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 925 stream->sequence, frame->first_data, 926 frame->nb_packets - frame->nb_empty, frame->nb_packets, 927 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 928 frame->has_early_pts ? "" : "!", 929 frame->has_initial_pts ? "" : "!", 930 frame->nb_scr_diffs, frame->nb_scr, 931 frame->pts, frame->scr_stc, frame->scr_sof); 932 933 stream->stats.stream.nb_frames++; 934 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 935 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 936 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 937 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 938 939 if (frame->has_early_pts) 940 stream->stats.stream.nb_pts_early++; 941 if (frame->has_initial_pts) 942 stream->stats.stream.nb_pts_initial++; 943 if (frame->last_pts_diff <= frame->first_data) 944 stream->stats.stream.nb_pts_constant++; 945 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 946 stream->stats.stream.nb_scr_count_ok++; 947 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 948 stream->stats.stream.nb_scr_diffs_ok++; 949 950 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 951 } 952 953 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 954 size_t size) 955 { 956 unsigned int scr_sof_freq; 957 unsigned int duration; 958 size_t count = 0; 959 960 /* 961 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 962 * frequency this will not overflow before more than 1h. 963 */ 964 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 965 stream->stats.stream.start_ts); 966 if (duration != 0) 967 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 968 / duration; 969 else 970 scr_sof_freq = 0; 971 972 count += scnprintf(buf + count, size - count, 973 "frames: %u\npackets: %u\nempty: %u\n" 974 "errors: %u\ninvalid: %u\n", 975 stream->stats.stream.nb_frames, 976 stream->stats.stream.nb_packets, 977 stream->stats.stream.nb_empty, 978 stream->stats.stream.nb_errors, 979 stream->stats.stream.nb_invalid); 980 count += scnprintf(buf + count, size - count, 981 "pts: %u early, %u initial, %u ok\n", 982 stream->stats.stream.nb_pts_early, 983 stream->stats.stream.nb_pts_initial, 984 stream->stats.stream.nb_pts_constant); 985 count += scnprintf(buf + count, size - count, 986 "scr: %u count ok, %u diff ok\n", 987 stream->stats.stream.nb_scr_count_ok, 988 stream->stats.stream.nb_scr_diffs_ok); 989 count += scnprintf(buf + count, size - count, 990 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 991 stream->stats.stream.min_sof, 992 stream->stats.stream.max_sof, 993 scr_sof_freq / 1000, scr_sof_freq % 1000); 994 995 return count; 996 } 997 998 static void uvc_video_stats_start(struct uvc_streaming *stream) 999 { 1000 memset(&stream->stats, 0, sizeof(stream->stats)); 1001 stream->stats.stream.min_sof = 2048; 1002 } 1003 1004 static void uvc_video_stats_stop(struct uvc_streaming *stream) 1005 { 1006 stream->stats.stream.stop_ts = ktime_get(); 1007 } 1008 1009 /* ------------------------------------------------------------------------ 1010 * Video codecs 1011 */ 1012 1013 /* 1014 * Video payload decoding is handled by uvc_video_decode_start(), 1015 * uvc_video_decode_data() and uvc_video_decode_end(). 1016 * 1017 * uvc_video_decode_start is called with URB data at the start of a bulk or 1018 * isochronous payload. It processes header data and returns the header size 1019 * in bytes if successful. If an error occurs, it returns a negative error 1020 * code. The following error codes have special meanings. 1021 * 1022 * - EAGAIN informs the caller that the current video buffer should be marked 1023 * as done, and that the function should be called again with the same data 1024 * and a new video buffer. This is used when end of frame conditions can be 1025 * reliably detected at the beginning of the next frame only. 1026 * 1027 * If an error other than -EAGAIN is returned, the caller will drop the current 1028 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1029 * made until the next payload. -ENODATA can be used to drop the current 1030 * payload if no other error code is appropriate. 1031 * 1032 * uvc_video_decode_data is called for every URB with URB data. It copies the 1033 * data to the video buffer. 1034 * 1035 * uvc_video_decode_end is called with header data at the end of a bulk or 1036 * isochronous payload. It performs any additional header data processing and 1037 * returns 0 or a negative error code if an error occurred. As header data have 1038 * already been processed by uvc_video_decode_start, this functions isn't 1039 * required to perform sanity checks a second time. 1040 * 1041 * For isochronous transfers where a payload is always transferred in a single 1042 * URB, the three functions will be called in a row. 1043 * 1044 * To let the decoder process header data and update its internal state even 1045 * when no video buffer is available, uvc_video_decode_start must be prepared 1046 * to be called with a NULL buf parameter. uvc_video_decode_data and 1047 * uvc_video_decode_end will never be called with a NULL buffer. 1048 */ 1049 static int uvc_video_decode_start(struct uvc_streaming *stream, 1050 struct uvc_buffer *buf, const u8 *data, int len) 1051 { 1052 u8 fid; 1053 1054 /* 1055 * Sanity checks: 1056 * - packet must be at least 2 bytes long 1057 * - bHeaderLength value must be at least 2 bytes (see above) 1058 * - bHeaderLength value can't be larger than the packet size. 1059 */ 1060 if (len < 2 || data[0] < 2 || data[0] > len) { 1061 stream->stats.frame.nb_invalid++; 1062 return -EINVAL; 1063 } 1064 1065 fid = data[1] & UVC_STREAM_FID; 1066 1067 /* 1068 * Increase the sequence number regardless of any buffer states, so 1069 * that discontinuous sequence numbers always indicate lost frames. 1070 */ 1071 if (stream->last_fid != fid) { 1072 stream->sequence++; 1073 if (stream->sequence) 1074 uvc_video_stats_update(stream); 1075 } 1076 1077 uvc_video_clock_decode(stream, buf, data, len); 1078 uvc_video_stats_decode(stream, data, len); 1079 1080 /* 1081 * Store the payload FID bit and return immediately when the buffer is 1082 * NULL. 1083 */ 1084 if (buf == NULL) { 1085 stream->last_fid = fid; 1086 return -ENODATA; 1087 } 1088 1089 /* Mark the buffer as bad if the error bit is set. */ 1090 if (data[1] & UVC_STREAM_ERR) { 1091 uvc_dbg(stream->dev, FRAME, 1092 "Marking buffer as bad (error bit set)\n"); 1093 buf->error = 1; 1094 } 1095 1096 /* 1097 * Synchronize to the input stream by waiting for the FID bit to be 1098 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE. 1099 * stream->last_fid is initialized to -1, so the first isochronous 1100 * frame will always be in sync. 1101 * 1102 * If the device doesn't toggle the FID bit, invert stream->last_fid 1103 * when the EOF bit is set to force synchronisation on the next packet. 1104 */ 1105 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1106 if (fid == stream->last_fid) { 1107 uvc_dbg(stream->dev, FRAME, 1108 "Dropping payload (out of sync)\n"); 1109 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1110 (data[1] & UVC_STREAM_EOF)) 1111 stream->last_fid ^= UVC_STREAM_FID; 1112 return -ENODATA; 1113 } 1114 1115 buf->buf.field = V4L2_FIELD_NONE; 1116 buf->buf.sequence = stream->sequence; 1117 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1118 1119 /* TODO: Handle PTS and SCR. */ 1120 buf->state = UVC_BUF_STATE_ACTIVE; 1121 } 1122 1123 /* 1124 * Mark the buffer as done if we're at the beginning of a new frame. 1125 * End of frame detection is better implemented by checking the EOF 1126 * bit (FID bit toggling is delayed by one frame compared to the EOF 1127 * bit), but some devices don't set the bit at end of frame (and the 1128 * last payload can be lost anyway). We thus must check if the FID has 1129 * been toggled. 1130 * 1131 * stream->last_fid is initialized to -1, so the first isochronous 1132 * frame will never trigger an end of frame detection. 1133 * 1134 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1135 * as it doesn't make sense to return an empty buffer. This also 1136 * avoids detecting end of frame conditions at FID toggling if the 1137 * previous payload had the EOF bit set. 1138 */ 1139 if (fid != stream->last_fid && buf->bytesused != 0) { 1140 uvc_dbg(stream->dev, FRAME, 1141 "Frame complete (FID bit toggled)\n"); 1142 buf->state = UVC_BUF_STATE_READY; 1143 return -EAGAIN; 1144 } 1145 1146 stream->last_fid = fid; 1147 1148 return data[0]; 1149 } 1150 1151 static inline enum dma_data_direction uvc_stream_dir( 1152 struct uvc_streaming *stream) 1153 { 1154 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1155 return DMA_FROM_DEVICE; 1156 else 1157 return DMA_TO_DEVICE; 1158 } 1159 1160 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1161 { 1162 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1163 } 1164 1165 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1166 { 1167 /* Sync DMA. */ 1168 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1169 uvc_urb->sgt, 1170 uvc_stream_dir(uvc_urb->stream)); 1171 return usb_submit_urb(uvc_urb->urb, mem_flags); 1172 } 1173 1174 /* 1175 * uvc_video_decode_data_work: Asynchronous memcpy processing 1176 * 1177 * Copy URB data to video buffers in process context, releasing buffer 1178 * references and requeuing the URB when done. 1179 */ 1180 static void uvc_video_copy_data_work(struct work_struct *work) 1181 { 1182 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1183 unsigned int i; 1184 int ret; 1185 1186 for (i = 0; i < uvc_urb->async_operations; i++) { 1187 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1188 1189 memcpy(op->dst, op->src, op->len); 1190 1191 /* Release reference taken on this buffer. */ 1192 uvc_queue_buffer_release(op->buf); 1193 } 1194 1195 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1196 if (ret < 0) 1197 dev_err(&uvc_urb->stream->intf->dev, 1198 "Failed to resubmit video URB (%d).\n", ret); 1199 } 1200 1201 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1202 struct uvc_buffer *buf, const u8 *data, int len) 1203 { 1204 unsigned int active_op = uvc_urb->async_operations; 1205 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1206 unsigned int maxlen; 1207 1208 if (len <= 0) 1209 return; 1210 1211 maxlen = buf->length - buf->bytesused; 1212 1213 /* Take a buffer reference for async work. */ 1214 kref_get(&buf->ref); 1215 1216 op->buf = buf; 1217 op->src = data; 1218 op->dst = buf->mem + buf->bytesused; 1219 op->len = min_t(unsigned int, len, maxlen); 1220 1221 buf->bytesused += op->len; 1222 1223 /* Complete the current frame if the buffer size was exceeded. */ 1224 if (len > maxlen) { 1225 uvc_dbg(uvc_urb->stream->dev, FRAME, 1226 "Frame complete (overflow)\n"); 1227 buf->error = 1; 1228 buf->state = UVC_BUF_STATE_READY; 1229 } 1230 1231 uvc_urb->async_operations++; 1232 } 1233 1234 static void uvc_video_decode_end(struct uvc_streaming *stream, 1235 struct uvc_buffer *buf, const u8 *data, int len) 1236 { 1237 /* Mark the buffer as done if the EOF marker is set. */ 1238 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1239 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1240 if (data[0] == len) 1241 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1242 buf->state = UVC_BUF_STATE_READY; 1243 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1244 stream->last_fid ^= UVC_STREAM_FID; 1245 } 1246 } 1247 1248 /* 1249 * Video payload encoding is handled by uvc_video_encode_header() and 1250 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1251 * 1252 * uvc_video_encode_header is called at the start of a payload. It adds header 1253 * data to the transfer buffer and returns the header size. As the only known 1254 * UVC output device transfers a whole frame in a single payload, the EOF bit 1255 * is always set in the header. 1256 * 1257 * uvc_video_encode_data is called for every URB and copies the data from the 1258 * video buffer to the transfer buffer. 1259 */ 1260 static int uvc_video_encode_header(struct uvc_streaming *stream, 1261 struct uvc_buffer *buf, u8 *data, int len) 1262 { 1263 data[0] = 2; /* Header length */ 1264 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1265 | (stream->last_fid & UVC_STREAM_FID); 1266 return 2; 1267 } 1268 1269 static int uvc_video_encode_data(struct uvc_streaming *stream, 1270 struct uvc_buffer *buf, u8 *data, int len) 1271 { 1272 struct uvc_video_queue *queue = &stream->queue; 1273 unsigned int nbytes; 1274 void *mem; 1275 1276 /* Copy video data to the URB buffer. */ 1277 mem = buf->mem + queue->buf_used; 1278 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1279 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1280 nbytes); 1281 memcpy(data, mem, nbytes); 1282 1283 queue->buf_used += nbytes; 1284 1285 return nbytes; 1286 } 1287 1288 /* ------------------------------------------------------------------------ 1289 * Metadata 1290 */ 1291 1292 /* 1293 * Additionally to the payload headers we also want to provide the user with USB 1294 * Frame Numbers and system time values. The resulting buffer is thus composed 1295 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1296 * Number, and a copy of the payload header. 1297 * 1298 * Ideally we want to capture all payload headers for each frame. However, their 1299 * number is unknown and unbound. We thus drop headers that contain no vendor 1300 * data and that either contain no SCR value or an SCR value identical to the 1301 * previous header. 1302 */ 1303 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1304 struct uvc_buffer *meta_buf, 1305 const u8 *mem, unsigned int length) 1306 { 1307 struct uvc_meta_buf *meta; 1308 size_t len_std = 2; 1309 bool has_pts, has_scr; 1310 unsigned long flags; 1311 unsigned int sof; 1312 ktime_t time; 1313 const u8 *scr; 1314 1315 if (!meta_buf || length == 2) 1316 return; 1317 1318 if (meta_buf->length - meta_buf->bytesused < 1319 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1320 meta_buf->error = 1; 1321 return; 1322 } 1323 1324 has_pts = mem[1] & UVC_STREAM_PTS; 1325 has_scr = mem[1] & UVC_STREAM_SCR; 1326 1327 if (has_pts) { 1328 len_std += 4; 1329 scr = mem + 6; 1330 } else { 1331 scr = mem + 2; 1332 } 1333 1334 if (has_scr) 1335 len_std += 6; 1336 1337 if (stream->meta.format == V4L2_META_FMT_UVC) 1338 length = len_std; 1339 1340 if (length == len_std && (!has_scr || 1341 !memcmp(scr, stream->clock.last_scr, 6))) 1342 return; 1343 1344 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1345 local_irq_save(flags); 1346 time = uvc_video_get_time(); 1347 sof = usb_get_current_frame_number(stream->dev->udev); 1348 local_irq_restore(flags); 1349 put_unaligned(ktime_to_ns(time), &meta->ns); 1350 put_unaligned(sof, &meta->sof); 1351 1352 if (has_scr) 1353 memcpy(stream->clock.last_scr, scr, 6); 1354 1355 memcpy(&meta->length, mem, length); 1356 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1357 1358 uvc_dbg(stream->dev, FRAME, 1359 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1360 __func__, ktime_to_ns(time), meta->sof, meta->length, 1361 meta->flags, 1362 has_pts ? *(u32 *)meta->buf : 0, 1363 has_scr ? *(u32 *)scr : 0, 1364 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1365 } 1366 1367 /* ------------------------------------------------------------------------ 1368 * URB handling 1369 */ 1370 1371 /* 1372 * Set error flag for incomplete buffer. 1373 */ 1374 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1375 struct uvc_buffer *buf) 1376 { 1377 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1378 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1379 buf->error = 1; 1380 } 1381 1382 /* 1383 * Completion handler for video URBs. 1384 */ 1385 1386 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1387 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1388 { 1389 uvc_video_validate_buffer(stream, *video_buf); 1390 1391 if (*meta_buf) { 1392 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1393 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1394 1395 vb2_meta->sequence = vb2_video->sequence; 1396 vb2_meta->field = vb2_video->field; 1397 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1398 1399 (*meta_buf)->state = UVC_BUF_STATE_READY; 1400 if (!(*meta_buf)->error) 1401 (*meta_buf)->error = (*video_buf)->error; 1402 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1403 *meta_buf); 1404 } 1405 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1406 } 1407 1408 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1409 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1410 { 1411 struct urb *urb = uvc_urb->urb; 1412 struct uvc_streaming *stream = uvc_urb->stream; 1413 u8 *mem; 1414 int ret, i; 1415 1416 for (i = 0; i < urb->number_of_packets; ++i) { 1417 if (urb->iso_frame_desc[i].status < 0) { 1418 uvc_dbg(stream->dev, FRAME, 1419 "USB isochronous frame lost (%d)\n", 1420 urb->iso_frame_desc[i].status); 1421 /* Mark the buffer as faulty. */ 1422 if (buf != NULL) 1423 buf->error = 1; 1424 continue; 1425 } 1426 1427 /* Decode the payload header. */ 1428 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1429 do { 1430 ret = uvc_video_decode_start(stream, buf, mem, 1431 urb->iso_frame_desc[i].actual_length); 1432 if (ret == -EAGAIN) 1433 uvc_video_next_buffers(stream, &buf, &meta_buf); 1434 } while (ret == -EAGAIN); 1435 1436 if (ret < 0) 1437 continue; 1438 1439 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1440 1441 /* Decode the payload data. */ 1442 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1443 urb->iso_frame_desc[i].actual_length - ret); 1444 1445 /* Process the header again. */ 1446 uvc_video_decode_end(stream, buf, mem, 1447 urb->iso_frame_desc[i].actual_length); 1448 1449 if (buf->state == UVC_BUF_STATE_READY) 1450 uvc_video_next_buffers(stream, &buf, &meta_buf); 1451 } 1452 } 1453 1454 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1455 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1456 { 1457 struct urb *urb = uvc_urb->urb; 1458 struct uvc_streaming *stream = uvc_urb->stream; 1459 u8 *mem; 1460 int len, ret; 1461 1462 /* 1463 * Ignore ZLPs if they're not part of a frame, otherwise process them 1464 * to trigger the end of payload detection. 1465 */ 1466 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1467 return; 1468 1469 mem = urb->transfer_buffer; 1470 len = urb->actual_length; 1471 stream->bulk.payload_size += len; 1472 1473 /* 1474 * If the URB is the first of its payload, decode and save the 1475 * header. 1476 */ 1477 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1478 do { 1479 ret = uvc_video_decode_start(stream, buf, mem, len); 1480 if (ret == -EAGAIN) 1481 uvc_video_next_buffers(stream, &buf, &meta_buf); 1482 } while (ret == -EAGAIN); 1483 1484 /* If an error occurred skip the rest of the payload. */ 1485 if (ret < 0 || buf == NULL) { 1486 stream->bulk.skip_payload = 1; 1487 } else { 1488 memcpy(stream->bulk.header, mem, ret); 1489 stream->bulk.header_size = ret; 1490 1491 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1492 1493 mem += ret; 1494 len -= ret; 1495 } 1496 } 1497 1498 /* 1499 * The buffer queue might have been cancelled while a bulk transfer 1500 * was in progress, so we can reach here with buf equal to NULL. Make 1501 * sure buf is never dereferenced if NULL. 1502 */ 1503 1504 /* Prepare video data for processing. */ 1505 if (!stream->bulk.skip_payload && buf != NULL) 1506 uvc_video_decode_data(uvc_urb, buf, mem, len); 1507 1508 /* 1509 * Detect the payload end by a URB smaller than the maximum size (or 1510 * a payload size equal to the maximum) and process the header again. 1511 */ 1512 if (urb->actual_length < urb->transfer_buffer_length || 1513 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1514 if (!stream->bulk.skip_payload && buf != NULL) { 1515 uvc_video_decode_end(stream, buf, stream->bulk.header, 1516 stream->bulk.payload_size); 1517 if (buf->state == UVC_BUF_STATE_READY) 1518 uvc_video_next_buffers(stream, &buf, &meta_buf); 1519 } 1520 1521 stream->bulk.header_size = 0; 1522 stream->bulk.skip_payload = 0; 1523 stream->bulk.payload_size = 0; 1524 } 1525 } 1526 1527 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1528 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1529 { 1530 struct urb *urb = uvc_urb->urb; 1531 struct uvc_streaming *stream = uvc_urb->stream; 1532 1533 u8 *mem = urb->transfer_buffer; 1534 int len = stream->urb_size, ret; 1535 1536 if (buf == NULL) { 1537 urb->transfer_buffer_length = 0; 1538 return; 1539 } 1540 1541 /* If the URB is the first of its payload, add the header. */ 1542 if (stream->bulk.header_size == 0) { 1543 ret = uvc_video_encode_header(stream, buf, mem, len); 1544 stream->bulk.header_size = ret; 1545 stream->bulk.payload_size += ret; 1546 mem += ret; 1547 len -= ret; 1548 } 1549 1550 /* Process video data. */ 1551 ret = uvc_video_encode_data(stream, buf, mem, len); 1552 1553 stream->bulk.payload_size += ret; 1554 len -= ret; 1555 1556 if (buf->bytesused == stream->queue.buf_used || 1557 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1558 if (buf->bytesused == stream->queue.buf_used) { 1559 stream->queue.buf_used = 0; 1560 buf->state = UVC_BUF_STATE_READY; 1561 buf->buf.sequence = ++stream->sequence; 1562 uvc_queue_next_buffer(&stream->queue, buf); 1563 stream->last_fid ^= UVC_STREAM_FID; 1564 } 1565 1566 stream->bulk.header_size = 0; 1567 stream->bulk.payload_size = 0; 1568 } 1569 1570 urb->transfer_buffer_length = stream->urb_size - len; 1571 } 1572 1573 static void uvc_video_complete(struct urb *urb) 1574 { 1575 struct uvc_urb *uvc_urb = urb->context; 1576 struct uvc_streaming *stream = uvc_urb->stream; 1577 struct uvc_video_queue *queue = &stream->queue; 1578 struct uvc_video_queue *qmeta = &stream->meta.queue; 1579 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1580 struct uvc_buffer *buf = NULL; 1581 struct uvc_buffer *buf_meta = NULL; 1582 unsigned long flags; 1583 int ret; 1584 1585 switch (urb->status) { 1586 case 0: 1587 break; 1588 1589 default: 1590 dev_warn(&stream->intf->dev, 1591 "Non-zero status (%d) in video completion handler.\n", 1592 urb->status); 1593 fallthrough; 1594 case -ENOENT: /* usb_poison_urb() called. */ 1595 if (stream->frozen) 1596 return; 1597 fallthrough; 1598 case -ECONNRESET: /* usb_unlink_urb() called. */ 1599 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1600 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1601 if (vb2_qmeta) 1602 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1603 return; 1604 } 1605 1606 buf = uvc_queue_get_current_buffer(queue); 1607 1608 if (vb2_qmeta) { 1609 spin_lock_irqsave(&qmeta->irqlock, flags); 1610 if (!list_empty(&qmeta->irqqueue)) 1611 buf_meta = list_first_entry(&qmeta->irqqueue, 1612 struct uvc_buffer, queue); 1613 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1614 } 1615 1616 /* Re-initialise the URB async work. */ 1617 uvc_urb->async_operations = 0; 1618 1619 /* Sync DMA and invalidate vmap range. */ 1620 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1621 uvc_urb->sgt, uvc_stream_dir(stream)); 1622 invalidate_kernel_vmap_range(uvc_urb->buffer, 1623 uvc_urb->stream->urb_size); 1624 1625 /* 1626 * Process the URB headers, and optionally queue expensive memcpy tasks 1627 * to be deferred to a work queue. 1628 */ 1629 stream->decode(uvc_urb, buf, buf_meta); 1630 1631 /* If no async work is needed, resubmit the URB immediately. */ 1632 if (!uvc_urb->async_operations) { 1633 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1634 if (ret < 0) 1635 dev_err(&stream->intf->dev, 1636 "Failed to resubmit video URB (%d).\n", ret); 1637 return; 1638 } 1639 1640 queue_work(stream->async_wq, &uvc_urb->work); 1641 } 1642 1643 /* 1644 * Free transfer buffers. 1645 */ 1646 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1647 { 1648 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1649 struct uvc_urb *uvc_urb; 1650 1651 for_each_uvc_urb(uvc_urb, stream) { 1652 if (!uvc_urb->buffer) 1653 continue; 1654 1655 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1656 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1657 uvc_stream_dir(stream)); 1658 1659 uvc_urb->buffer = NULL; 1660 uvc_urb->sgt = NULL; 1661 } 1662 1663 stream->urb_size = 0; 1664 } 1665 1666 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1667 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1668 { 1669 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1670 1671 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1672 uvc_stream_dir(stream), 1673 gfp_flags, 0); 1674 if (!uvc_urb->sgt) 1675 return false; 1676 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1677 1678 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1679 uvc_urb->sgt); 1680 if (!uvc_urb->buffer) { 1681 dma_free_noncontiguous(dma_dev, stream->urb_size, 1682 uvc_urb->sgt, 1683 uvc_stream_dir(stream)); 1684 uvc_urb->sgt = NULL; 1685 return false; 1686 } 1687 1688 return true; 1689 } 1690 1691 /* 1692 * Allocate transfer buffers. This function can be called with buffers 1693 * already allocated when resuming from suspend, in which case it will 1694 * return without touching the buffers. 1695 * 1696 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1697 * system is too low on memory try successively smaller numbers of packets 1698 * until allocation succeeds. 1699 * 1700 * Return the number of allocated packets on success or 0 when out of memory. 1701 */ 1702 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1703 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1704 { 1705 unsigned int npackets; 1706 unsigned int i; 1707 1708 /* Buffers are already allocated, bail out. */ 1709 if (stream->urb_size) 1710 return stream->urb_size / psize; 1711 1712 /* 1713 * Compute the number of packets. Bulk endpoints might transfer UVC 1714 * payloads across multiple URBs. 1715 */ 1716 npackets = DIV_ROUND_UP(size, psize); 1717 if (npackets > UVC_MAX_PACKETS) 1718 npackets = UVC_MAX_PACKETS; 1719 1720 /* Retry allocations until one succeed. */ 1721 for (; npackets > 1; npackets /= 2) { 1722 stream->urb_size = psize * npackets; 1723 1724 for (i = 0; i < UVC_URBS; ++i) { 1725 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1726 1727 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1728 uvc_free_urb_buffers(stream); 1729 break; 1730 } 1731 1732 uvc_urb->stream = stream; 1733 } 1734 1735 if (i == UVC_URBS) { 1736 uvc_dbg(stream->dev, VIDEO, 1737 "Allocated %u URB buffers of %ux%u bytes each\n", 1738 UVC_URBS, npackets, psize); 1739 return npackets; 1740 } 1741 } 1742 1743 uvc_dbg(stream->dev, VIDEO, 1744 "Failed to allocate URB buffers (%u bytes per packet)\n", 1745 psize); 1746 return 0; 1747 } 1748 1749 /* 1750 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1751 */ 1752 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1753 int free_buffers) 1754 { 1755 struct uvc_urb *uvc_urb; 1756 1757 uvc_video_stats_stop(stream); 1758 1759 /* 1760 * We must poison the URBs rather than kill them to ensure that even 1761 * after the completion handler returns, any asynchronous workqueues 1762 * will be prevented from resubmitting the URBs. 1763 */ 1764 for_each_uvc_urb(uvc_urb, stream) 1765 usb_poison_urb(uvc_urb->urb); 1766 1767 flush_workqueue(stream->async_wq); 1768 1769 for_each_uvc_urb(uvc_urb, stream) { 1770 usb_free_urb(uvc_urb->urb); 1771 uvc_urb->urb = NULL; 1772 } 1773 1774 if (free_buffers) 1775 uvc_free_urb_buffers(stream); 1776 } 1777 1778 /* 1779 * Compute the maximum number of bytes per interval for an endpoint. 1780 */ 1781 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep) 1782 { 1783 u16 psize; 1784 1785 switch (dev->speed) { 1786 case USB_SPEED_SUPER: 1787 case USB_SPEED_SUPER_PLUS: 1788 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1789 default: 1790 psize = usb_endpoint_maxp(&ep->desc); 1791 psize *= usb_endpoint_maxp_mult(&ep->desc); 1792 return psize; 1793 } 1794 } 1795 1796 /* 1797 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1798 * is given by the endpoint. 1799 */ 1800 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1801 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1802 { 1803 struct urb *urb; 1804 struct uvc_urb *uvc_urb; 1805 unsigned int npackets, i; 1806 u16 psize; 1807 u32 size; 1808 1809 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1810 size = stream->ctrl.dwMaxVideoFrameSize; 1811 1812 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1813 if (npackets == 0) 1814 return -ENOMEM; 1815 1816 size = npackets * psize; 1817 1818 for_each_uvc_urb(uvc_urb, stream) { 1819 urb = usb_alloc_urb(npackets, gfp_flags); 1820 if (urb == NULL) { 1821 uvc_video_stop_transfer(stream, 1); 1822 return -ENOMEM; 1823 } 1824 1825 urb->dev = stream->dev->udev; 1826 urb->context = uvc_urb; 1827 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1828 ep->desc.bEndpointAddress); 1829 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1830 urb->transfer_dma = uvc_urb->dma; 1831 urb->interval = ep->desc.bInterval; 1832 urb->transfer_buffer = uvc_urb->buffer; 1833 urb->complete = uvc_video_complete; 1834 urb->number_of_packets = npackets; 1835 urb->transfer_buffer_length = size; 1836 1837 for (i = 0; i < npackets; ++i) { 1838 urb->iso_frame_desc[i].offset = i * psize; 1839 urb->iso_frame_desc[i].length = psize; 1840 } 1841 1842 uvc_urb->urb = urb; 1843 } 1844 1845 return 0; 1846 } 1847 1848 /* 1849 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1850 * given by the endpoint. 1851 */ 1852 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1853 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1854 { 1855 struct urb *urb; 1856 struct uvc_urb *uvc_urb; 1857 unsigned int npackets, pipe; 1858 u16 psize; 1859 u32 size; 1860 1861 psize = usb_endpoint_maxp(&ep->desc); 1862 size = stream->ctrl.dwMaxPayloadTransferSize; 1863 stream->bulk.max_payload_size = size; 1864 1865 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1866 if (npackets == 0) 1867 return -ENOMEM; 1868 1869 size = npackets * psize; 1870 1871 if (usb_endpoint_dir_in(&ep->desc)) 1872 pipe = usb_rcvbulkpipe(stream->dev->udev, 1873 ep->desc.bEndpointAddress); 1874 else 1875 pipe = usb_sndbulkpipe(stream->dev->udev, 1876 ep->desc.bEndpointAddress); 1877 1878 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1879 size = 0; 1880 1881 for_each_uvc_urb(uvc_urb, stream) { 1882 urb = usb_alloc_urb(0, gfp_flags); 1883 if (urb == NULL) { 1884 uvc_video_stop_transfer(stream, 1); 1885 return -ENOMEM; 1886 } 1887 1888 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1889 size, uvc_video_complete, uvc_urb); 1890 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1891 urb->transfer_dma = uvc_urb->dma; 1892 1893 uvc_urb->urb = urb; 1894 } 1895 1896 return 0; 1897 } 1898 1899 /* 1900 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1901 */ 1902 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1903 gfp_t gfp_flags) 1904 { 1905 struct usb_interface *intf = stream->intf; 1906 struct usb_host_endpoint *ep; 1907 struct uvc_urb *uvc_urb; 1908 unsigned int i; 1909 int ret; 1910 1911 stream->sequence = -1; 1912 stream->last_fid = -1; 1913 stream->bulk.header_size = 0; 1914 stream->bulk.skip_payload = 0; 1915 stream->bulk.payload_size = 0; 1916 1917 uvc_video_stats_start(stream); 1918 1919 if (intf->num_altsetting > 1) { 1920 struct usb_host_endpoint *best_ep = NULL; 1921 unsigned int best_psize = UINT_MAX; 1922 unsigned int bandwidth; 1923 unsigned int altsetting; 1924 int intfnum = stream->intfnum; 1925 1926 /* Isochronous endpoint, select the alternate setting. */ 1927 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1928 1929 if (bandwidth == 0) { 1930 uvc_dbg(stream->dev, VIDEO, 1931 "Device requested null bandwidth, defaulting to lowest\n"); 1932 bandwidth = 1; 1933 } else { 1934 uvc_dbg(stream->dev, VIDEO, 1935 "Device requested %u B/frame bandwidth\n", 1936 bandwidth); 1937 } 1938 1939 for (i = 0; i < intf->num_altsetting; ++i) { 1940 struct usb_host_interface *alts; 1941 unsigned int psize; 1942 1943 alts = &intf->altsetting[i]; 1944 ep = uvc_find_endpoint(alts, 1945 stream->header.bEndpointAddress); 1946 if (ep == NULL) 1947 continue; 1948 1949 /* Check if the bandwidth is high enough. */ 1950 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1951 if (psize >= bandwidth && psize <= best_psize) { 1952 altsetting = alts->desc.bAlternateSetting; 1953 best_psize = psize; 1954 best_ep = ep; 1955 } 1956 } 1957 1958 if (best_ep == NULL) { 1959 uvc_dbg(stream->dev, VIDEO, 1960 "No fast enough alt setting for requested bandwidth\n"); 1961 return -EIO; 1962 } 1963 1964 uvc_dbg(stream->dev, VIDEO, 1965 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 1966 altsetting, best_psize); 1967 1968 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1969 if (ret < 0) 1970 return ret; 1971 1972 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1973 } else { 1974 /* Bulk endpoint, proceed to URB initialization. */ 1975 ep = uvc_find_endpoint(&intf->altsetting[0], 1976 stream->header.bEndpointAddress); 1977 if (ep == NULL) 1978 return -EIO; 1979 1980 /* Reject broken descriptors. */ 1981 if (usb_endpoint_maxp(&ep->desc) == 0) 1982 return -EIO; 1983 1984 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1985 } 1986 1987 if (ret < 0) 1988 return ret; 1989 1990 /* Submit the URBs. */ 1991 for_each_uvc_urb(uvc_urb, stream) { 1992 ret = uvc_submit_urb(uvc_urb, gfp_flags); 1993 if (ret < 0) { 1994 dev_err(&stream->intf->dev, 1995 "Failed to submit URB %u (%d).\n", 1996 uvc_urb_index(uvc_urb), ret); 1997 uvc_video_stop_transfer(stream, 1); 1998 return ret; 1999 } 2000 } 2001 2002 /* 2003 * The Logitech C920 temporarily forgets that it should not be adjusting 2004 * Exposure Absolute during init so restore controls to stored values. 2005 */ 2006 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 2007 uvc_ctrl_restore_values(stream->dev); 2008 2009 return 0; 2010 } 2011 2012 /* -------------------------------------------------------------------------- 2013 * Suspend/resume 2014 */ 2015 2016 /* 2017 * Stop streaming without disabling the video queue. 2018 * 2019 * To let userspace applications resume without trouble, we must not touch the 2020 * video buffers in any way. We mark the device as frozen to make sure the URB 2021 * completion handler won't try to cancel the queue when we kill the URBs. 2022 */ 2023 int uvc_video_suspend(struct uvc_streaming *stream) 2024 { 2025 if (!uvc_queue_streaming(&stream->queue)) 2026 return 0; 2027 2028 stream->frozen = 1; 2029 uvc_video_stop_transfer(stream, 0); 2030 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2031 return 0; 2032 } 2033 2034 /* 2035 * Reconfigure the video interface and restart streaming if it was enabled 2036 * before suspend. 2037 * 2038 * If an error occurs, disable the video queue. This will wake all pending 2039 * buffers, making sure userspace applications are notified of the problem 2040 * instead of waiting forever. 2041 */ 2042 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2043 { 2044 int ret; 2045 2046 /* 2047 * If the bus has been reset on resume, set the alternate setting to 0. 2048 * This should be the default value, but some devices crash or otherwise 2049 * misbehave if they don't receive a SET_INTERFACE request before any 2050 * other video control request. 2051 */ 2052 if (reset) 2053 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2054 2055 stream->frozen = 0; 2056 2057 uvc_video_clock_reset(stream); 2058 2059 if (!uvc_queue_streaming(&stream->queue)) 2060 return 0; 2061 2062 ret = uvc_commit_video(stream, &stream->ctrl); 2063 if (ret < 0) 2064 return ret; 2065 2066 return uvc_video_start_transfer(stream, GFP_NOIO); 2067 } 2068 2069 /* ------------------------------------------------------------------------ 2070 * Video device 2071 */ 2072 2073 /* 2074 * Initialize the UVC video device by switching to alternate setting 0 and 2075 * retrieve the default format. 2076 * 2077 * Some cameras (namely the Fuji Finepix) set the format and frame 2078 * indexes to zero. The UVC standard doesn't clearly make this a spec 2079 * violation, so try to silently fix the values if possible. 2080 * 2081 * This function is called before registering the device with V4L. 2082 */ 2083 int uvc_video_init(struct uvc_streaming *stream) 2084 { 2085 struct uvc_streaming_control *probe = &stream->ctrl; 2086 struct uvc_format *format = NULL; 2087 struct uvc_frame *frame = NULL; 2088 struct uvc_urb *uvc_urb; 2089 unsigned int i; 2090 int ret; 2091 2092 if (stream->nformats == 0) { 2093 dev_info(&stream->intf->dev, 2094 "No supported video formats found.\n"); 2095 return -EINVAL; 2096 } 2097 2098 atomic_set(&stream->active, 0); 2099 2100 /* 2101 * Alternate setting 0 should be the default, yet the XBox Live Vision 2102 * Cam (and possibly other devices) crash or otherwise misbehave if 2103 * they don't receive a SET_INTERFACE request before any other video 2104 * control request. 2105 */ 2106 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2107 2108 /* 2109 * Set the streaming probe control with default streaming parameters 2110 * retrieved from the device. Webcams that don't support GET_DEF 2111 * requests on the probe control will just keep their current streaming 2112 * parameters. 2113 */ 2114 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2115 uvc_set_video_ctrl(stream, probe, 1); 2116 2117 /* 2118 * Initialize the streaming parameters with the probe control current 2119 * value. This makes sure SET_CUR requests on the streaming commit 2120 * control will always use values retrieved from a successful GET_CUR 2121 * request on the probe control, as required by the UVC specification. 2122 */ 2123 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2124 if (ret < 0) 2125 return ret; 2126 2127 /* 2128 * Check if the default format descriptor exists. Use the first 2129 * available format otherwise. 2130 */ 2131 for (i = stream->nformats; i > 0; --i) { 2132 format = &stream->format[i-1]; 2133 if (format->index == probe->bFormatIndex) 2134 break; 2135 } 2136 2137 if (format->nframes == 0) { 2138 dev_info(&stream->intf->dev, 2139 "No frame descriptor found for the default format.\n"); 2140 return -EINVAL; 2141 } 2142 2143 /* 2144 * Zero bFrameIndex might be correct. Stream-based formats (including 2145 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2146 * descriptor with bFrameIndex set to zero. If the default frame 2147 * descriptor is not found, use the first available frame. 2148 */ 2149 for (i = format->nframes; i > 0; --i) { 2150 frame = &format->frame[i-1]; 2151 if (frame->bFrameIndex == probe->bFrameIndex) 2152 break; 2153 } 2154 2155 probe->bFormatIndex = format->index; 2156 probe->bFrameIndex = frame->bFrameIndex; 2157 2158 stream->def_format = format; 2159 stream->cur_format = format; 2160 stream->cur_frame = frame; 2161 2162 /* Select the video decoding function */ 2163 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2164 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2165 stream->decode = uvc_video_decode_isight; 2166 else if (stream->intf->num_altsetting > 1) 2167 stream->decode = uvc_video_decode_isoc; 2168 else 2169 stream->decode = uvc_video_decode_bulk; 2170 } else { 2171 if (stream->intf->num_altsetting == 1) 2172 stream->decode = uvc_video_encode_bulk; 2173 else { 2174 dev_info(&stream->intf->dev, 2175 "Isochronous endpoints are not supported for video output devices.\n"); 2176 return -EINVAL; 2177 } 2178 } 2179 2180 /* Prepare asynchronous work items. */ 2181 for_each_uvc_urb(uvc_urb, stream) 2182 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2183 2184 return 0; 2185 } 2186 2187 int uvc_video_start_streaming(struct uvc_streaming *stream) 2188 { 2189 int ret; 2190 2191 ret = uvc_video_clock_init(stream); 2192 if (ret < 0) 2193 return ret; 2194 2195 /* Commit the streaming parameters. */ 2196 ret = uvc_commit_video(stream, &stream->ctrl); 2197 if (ret < 0) 2198 goto error_commit; 2199 2200 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2201 if (ret < 0) 2202 goto error_video; 2203 2204 return 0; 2205 2206 error_video: 2207 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2208 error_commit: 2209 uvc_video_clock_cleanup(stream); 2210 2211 return ret; 2212 } 2213 2214 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2215 { 2216 uvc_video_stop_transfer(stream, 1); 2217 2218 if (stream->intf->num_altsetting > 1) { 2219 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2220 } else { 2221 /* 2222 * UVC doesn't specify how to inform a bulk-based device 2223 * when the video stream is stopped. Windows sends a 2224 * CLEAR_FEATURE(HALT) request to the video streaming 2225 * bulk endpoint, mimic the same behaviour. 2226 */ 2227 unsigned int epnum = stream->header.bEndpointAddress 2228 & USB_ENDPOINT_NUMBER_MASK; 2229 unsigned int dir = stream->header.bEndpointAddress 2230 & USB_ENDPOINT_DIR_MASK; 2231 unsigned int pipe; 2232 2233 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2234 usb_clear_halt(stream->dev->udev, pipe); 2235 } 2236 2237 uvc_video_clock_cleanup(stream); 2238 } 2239