1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 34 __u8 intfnum, __u8 cs, void *data, __u16 size, 35 int timeout) 36 { 37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(__u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 73 __u8 intfnum, __u8 cs, void *data, __u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 123 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 124 stream->intf->num_altsetting > 1) { 125 u32 interval; 126 u32 bandwidth; 127 128 interval = (ctrl->dwFrameInterval > 100000) 129 ? ctrl->dwFrameInterval 130 : frame->dwFrameInterval[0]; 131 132 /* Compute a bandwidth estimation by multiplying the frame 133 * size by the number of video frames per second, divide the 134 * result by the number of USB frames (or micro-frames for 135 * high-speed devices) per second and add the UVC header size 136 * (assumed to be 12 bytes long). 137 */ 138 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 139 bandwidth *= 10000000 / interval + 1; 140 bandwidth /= 1000; 141 if (stream->dev->udev->speed == USB_SPEED_HIGH) 142 bandwidth /= 8; 143 bandwidth += 12; 144 145 /* The bandwidth estimate is too low for many cameras. Don't use 146 * maximum packet sizes lower than 1024 bytes to try and work 147 * around the problem. According to measurements done on two 148 * different camera models, the value is high enough to get most 149 * resolutions working while not preventing two simultaneous 150 * VGA streams at 15 fps. 151 */ 152 bandwidth = max_t(u32, bandwidth, 1024); 153 154 ctrl->dwMaxPayloadTransferSize = bandwidth; 155 } 156 } 157 158 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 159 struct uvc_streaming_control *ctrl, int probe, __u8 query) 160 { 161 __u8 *data; 162 __u16 size; 163 int ret; 164 165 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 166 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 167 query == UVC_GET_DEF) 168 return -EIO; 169 170 data = kmalloc(size, GFP_KERNEL); 171 if (data == NULL) 172 return -ENOMEM; 173 174 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 175 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 176 size, uvc_timeout_param); 177 178 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 179 /* Some cameras, mostly based on Bison Electronics chipsets, 180 * answer a GET_MIN or GET_MAX request with the wCompQuality 181 * field only. 182 */ 183 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 184 "compliance - GET_MIN/MAX(PROBE) incorrectly " 185 "supported. Enabling workaround.\n"); 186 memset(ctrl, 0, sizeof *ctrl); 187 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 188 ret = 0; 189 goto out; 190 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 191 /* Many cameras don't support the GET_DEF request on their 192 * video probe control. Warn once and return, the caller will 193 * fall back to GET_CUR. 194 */ 195 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 196 "compliance - GET_DEF(PROBE) not supported. " 197 "Enabling workaround.\n"); 198 ret = -EIO; 199 goto out; 200 } else if (ret != size) { 201 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 202 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 203 ret, size); 204 ret = -EIO; 205 goto out; 206 } 207 208 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 209 ctrl->bFormatIndex = data[2]; 210 ctrl->bFrameIndex = data[3]; 211 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 212 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 213 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 214 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 215 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 216 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 217 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 218 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 219 220 if (size == 34) { 221 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 222 ctrl->bmFramingInfo = data[30]; 223 ctrl->bPreferedVersion = data[31]; 224 ctrl->bMinVersion = data[32]; 225 ctrl->bMaxVersion = data[33]; 226 } else { 227 ctrl->dwClockFrequency = stream->dev->clock_frequency; 228 ctrl->bmFramingInfo = 0; 229 ctrl->bPreferedVersion = 0; 230 ctrl->bMinVersion = 0; 231 ctrl->bMaxVersion = 0; 232 } 233 234 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 235 * dwMaxPayloadTransferSize fields. Try to get the value from the 236 * format and frame descriptors. 237 */ 238 uvc_fixup_video_ctrl(stream, ctrl); 239 ret = 0; 240 241 out: 242 kfree(data); 243 return ret; 244 } 245 246 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 247 struct uvc_streaming_control *ctrl, int probe) 248 { 249 __u8 *data; 250 __u16 size; 251 int ret; 252 253 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 254 data = kzalloc(size, GFP_KERNEL); 255 if (data == NULL) 256 return -ENOMEM; 257 258 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 259 data[2] = ctrl->bFormatIndex; 260 data[3] = ctrl->bFrameIndex; 261 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 262 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 263 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 264 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 265 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 266 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 267 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 268 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 269 270 if (size == 34) { 271 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 272 data[30] = ctrl->bmFramingInfo; 273 data[31] = ctrl->bPreferedVersion; 274 data[32] = ctrl->bMinVersion; 275 data[33] = ctrl->bMaxVersion; 276 } 277 278 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 279 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 280 size, uvc_timeout_param); 281 if (ret != size) { 282 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 283 "%d (exp. %u).\n", probe ? "probe" : "commit", 284 ret, size); 285 ret = -EIO; 286 } 287 288 kfree(data); 289 return ret; 290 } 291 292 int uvc_probe_video(struct uvc_streaming *stream, 293 struct uvc_streaming_control *probe) 294 { 295 struct uvc_streaming_control probe_min, probe_max; 296 __u16 bandwidth; 297 unsigned int i; 298 int ret; 299 300 /* Perform probing. The device should adjust the requested values 301 * according to its capabilities. However, some devices, namely the 302 * first generation UVC Logitech webcams, don't implement the Video 303 * Probe control properly, and just return the needed bandwidth. For 304 * that reason, if the needed bandwidth exceeds the maximum available 305 * bandwidth, try to lower the quality. 306 */ 307 ret = uvc_set_video_ctrl(stream, probe, 1); 308 if (ret < 0) 309 goto done; 310 311 /* Get the minimum and maximum values for compression settings. */ 312 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 313 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 314 if (ret < 0) 315 goto done; 316 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 317 if (ret < 0) 318 goto done; 319 320 probe->wCompQuality = probe_max.wCompQuality; 321 } 322 323 for (i = 0; i < 2; ++i) { 324 ret = uvc_set_video_ctrl(stream, probe, 1); 325 if (ret < 0) 326 goto done; 327 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 328 if (ret < 0) 329 goto done; 330 331 if (stream->intf->num_altsetting == 1) 332 break; 333 334 bandwidth = probe->dwMaxPayloadTransferSize; 335 if (bandwidth <= stream->maxpsize) 336 break; 337 338 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 339 ret = -ENOSPC; 340 goto done; 341 } 342 343 /* TODO: negotiate compression parameters */ 344 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 345 probe->wPFrameRate = probe_min.wPFrameRate; 346 probe->wCompQuality = probe_max.wCompQuality; 347 probe->wCompWindowSize = probe_min.wCompWindowSize; 348 } 349 350 done: 351 return ret; 352 } 353 354 static int uvc_commit_video(struct uvc_streaming *stream, 355 struct uvc_streaming_control *probe) 356 { 357 return uvc_set_video_ctrl(stream, probe, 0); 358 } 359 360 /* ----------------------------------------------------------------------------- 361 * Clocks and timestamps 362 */ 363 364 static void 365 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 366 const __u8 *data, int len) 367 { 368 struct uvc_clock_sample *sample; 369 unsigned int header_size; 370 bool has_pts = false; 371 bool has_scr = false; 372 unsigned long flags; 373 struct timespec ts; 374 u16 host_sof; 375 u16 dev_sof; 376 377 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 378 case UVC_STREAM_PTS | UVC_STREAM_SCR: 379 header_size = 12; 380 has_pts = true; 381 has_scr = true; 382 break; 383 case UVC_STREAM_PTS: 384 header_size = 6; 385 has_pts = true; 386 break; 387 case UVC_STREAM_SCR: 388 header_size = 8; 389 has_scr = true; 390 break; 391 default: 392 header_size = 2; 393 break; 394 } 395 396 /* Check for invalid headers. */ 397 if (len < header_size) 398 return; 399 400 /* Extract the timestamps: 401 * 402 * - store the frame PTS in the buffer structure 403 * - if the SCR field is present, retrieve the host SOF counter and 404 * kernel timestamps and store them with the SCR STC and SOF fields 405 * in the ring buffer 406 */ 407 if (has_pts && buf != NULL) 408 buf->pts = get_unaligned_le32(&data[2]); 409 410 if (!has_scr) 411 return; 412 413 /* To limit the amount of data, drop SCRs with an SOF identical to the 414 * previous one. 415 */ 416 dev_sof = get_unaligned_le16(&data[header_size - 2]); 417 if (dev_sof == stream->clock.last_sof) 418 return; 419 420 stream->clock.last_sof = dev_sof; 421 422 host_sof = usb_get_current_frame_number(stream->dev->udev); 423 ktime_get_ts(&ts); 424 425 /* The UVC specification allows device implementations that can't obtain 426 * the USB frame number to keep their own frame counters as long as they 427 * match the size and frequency of the frame number associated with USB 428 * SOF tokens. The SOF values sent by such devices differ from the USB 429 * SOF tokens by a fixed offset that needs to be estimated and accounted 430 * for to make timestamp recovery as accurate as possible. 431 * 432 * The offset is estimated the first time a device SOF value is received 433 * as the difference between the host and device SOF values. As the two 434 * SOF values can differ slightly due to transmission delays, consider 435 * that the offset is null if the difference is not higher than 10 ms 436 * (negative differences can not happen and are thus considered as an 437 * offset). The video commit control wDelay field should be used to 438 * compute a dynamic threshold instead of using a fixed 10 ms value, but 439 * devices don't report reliable wDelay values. 440 * 441 * See uvc_video_clock_host_sof() for an explanation regarding why only 442 * the 8 LSBs of the delta are kept. 443 */ 444 if (stream->clock.sof_offset == (u16)-1) { 445 u16 delta_sof = (host_sof - dev_sof) & 255; 446 if (delta_sof >= 10) 447 stream->clock.sof_offset = delta_sof; 448 else 449 stream->clock.sof_offset = 0; 450 } 451 452 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 453 454 spin_lock_irqsave(&stream->clock.lock, flags); 455 456 sample = &stream->clock.samples[stream->clock.head]; 457 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 458 sample->dev_sof = dev_sof; 459 sample->host_sof = host_sof; 460 sample->host_ts = ts; 461 462 /* Update the sliding window head and count. */ 463 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 464 465 if (stream->clock.count < stream->clock.size) 466 stream->clock.count++; 467 468 spin_unlock_irqrestore(&stream->clock.lock, flags); 469 } 470 471 static void uvc_video_clock_reset(struct uvc_streaming *stream) 472 { 473 struct uvc_clock *clock = &stream->clock; 474 475 clock->head = 0; 476 clock->count = 0; 477 clock->last_sof = -1; 478 clock->sof_offset = -1; 479 } 480 481 static int uvc_video_clock_init(struct uvc_streaming *stream) 482 { 483 struct uvc_clock *clock = &stream->clock; 484 485 spin_lock_init(&clock->lock); 486 clock->size = 32; 487 488 clock->samples = kmalloc(clock->size * sizeof(*clock->samples), 489 GFP_KERNEL); 490 if (clock->samples == NULL) 491 return -ENOMEM; 492 493 uvc_video_clock_reset(stream); 494 495 return 0; 496 } 497 498 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 499 { 500 kfree(stream->clock.samples); 501 stream->clock.samples = NULL; 502 } 503 504 /* 505 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 506 * 507 * Host SOF counters reported by usb_get_current_frame_number() usually don't 508 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 509 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 510 * controller and its configuration. 511 * 512 * We thus need to recover the SOF value corresponding to the host frame number. 513 * As the device and host frame numbers are sampled in a short interval, the 514 * difference between their values should be equal to a small delta plus an 515 * integer multiple of 256 caused by the host frame number limited precision. 516 * 517 * To obtain the recovered host SOF value, compute the small delta by masking 518 * the high bits of the host frame counter and device SOF difference and add it 519 * to the device SOF value. 520 */ 521 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 522 { 523 /* The delta value can be negative. */ 524 s8 delta_sof; 525 526 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 527 528 return (sample->dev_sof + delta_sof) & 2047; 529 } 530 531 /* 532 * uvc_video_clock_update - Update the buffer timestamp 533 * 534 * This function converts the buffer PTS timestamp to the host clock domain by 535 * going through the USB SOF clock domain and stores the result in the V4L2 536 * buffer timestamp field. 537 * 538 * The relationship between the device clock and the host clock isn't known. 539 * However, the device and the host share the common USB SOF clock which can be 540 * used to recover that relationship. 541 * 542 * The relationship between the device clock and the USB SOF clock is considered 543 * to be linear over the clock samples sliding window and is given by 544 * 545 * SOF = m * PTS + p 546 * 547 * Several methods to compute the slope (m) and intercept (p) can be used. As 548 * the clock drift should be small compared to the sliding window size, we 549 * assume that the line that goes through the points at both ends of the window 550 * is a good approximation. Naming those points P1 and P2, we get 551 * 552 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 553 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 554 * 555 * or 556 * 557 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 558 * 559 * to avoid loosing precision in the division. Similarly, the host timestamp is 560 * computed with 561 * 562 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 563 * 564 * SOF values are coded on 11 bits by USB. We extend their precision with 16 565 * decimal bits, leading to a 11.16 coding. 566 * 567 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 568 * be normalized using the nominal device clock frequency reported through the 569 * UVC descriptors. 570 * 571 * Both the PTS/STC and SOF counters roll over, after a fixed but device 572 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 573 * sliding window size is smaller than the rollover period, differences computed 574 * on unsigned integers will produce the correct result. However, the p term in 575 * the linear relations will be miscomputed. 576 * 577 * To fix the issue, we subtract a constant from the PTS and STC values to bring 578 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 579 * the 32 bit range without any rollover. 580 * 581 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 582 * computed by (1) will never be smaller than 0. This offset is then compensated 583 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 584 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 585 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 586 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 587 * SOF value at the end of the sliding window. 588 * 589 * Finally we subtract a constant from the host timestamps to bring the first 590 * timestamp of the sliding window to 1s. 591 */ 592 void uvc_video_clock_update(struct uvc_streaming *stream, 593 struct v4l2_buffer *v4l2_buf, 594 struct uvc_buffer *buf) 595 { 596 struct uvc_clock *clock = &stream->clock; 597 struct uvc_clock_sample *first; 598 struct uvc_clock_sample *last; 599 unsigned long flags; 600 struct timespec ts; 601 u32 delta_stc; 602 u32 y1, y2; 603 u32 x1, x2; 604 u32 mean; 605 u32 sof; 606 u32 div; 607 u32 rem; 608 u64 y; 609 610 spin_lock_irqsave(&clock->lock, flags); 611 612 if (clock->count < clock->size) 613 goto done; 614 615 first = &clock->samples[clock->head]; 616 last = &clock->samples[(clock->head - 1) % clock->size]; 617 618 /* First step, PTS to SOF conversion. */ 619 delta_stc = buf->pts - (1UL << 31); 620 x1 = first->dev_stc - delta_stc; 621 x2 = last->dev_stc - delta_stc; 622 if (x1 == x2) 623 goto done; 624 625 y1 = (first->dev_sof + 2048) << 16; 626 y2 = (last->dev_sof + 2048) << 16; 627 if (y2 < y1) 628 y2 += 2048 << 16; 629 630 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 631 - (u64)y2 * (u64)x1; 632 y = div_u64(y, x2 - x1); 633 634 sof = y; 635 636 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 637 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 638 stream->dev->name, buf->pts, 639 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 640 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 641 x1, x2, y1, y2, clock->sof_offset); 642 643 /* Second step, SOF to host clock conversion. */ 644 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 645 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 646 if (x2 < x1) 647 x2 += 2048 << 16; 648 if (x1 == x2) 649 goto done; 650 651 ts = timespec_sub(last->host_ts, first->host_ts); 652 y1 = NSEC_PER_SEC; 653 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec; 654 655 /* Interpolated and host SOF timestamps can wrap around at slightly 656 * different times. Handle this by adding or removing 2048 to or from 657 * the computed SOF value to keep it close to the SOF samples mean 658 * value. 659 */ 660 mean = (x1 + x2) / 2; 661 if (mean - (1024 << 16) > sof) 662 sof += 2048 << 16; 663 else if (sof > mean + (1024 << 16)) 664 sof -= 2048 << 16; 665 666 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 667 - (u64)y2 * (u64)x1; 668 y = div_u64(y, x2 - x1); 669 670 div = div_u64_rem(y, NSEC_PER_SEC, &rem); 671 ts.tv_sec = first->host_ts.tv_sec - 1 + div; 672 ts.tv_nsec = first->host_ts.tv_nsec + rem; 673 if (ts.tv_nsec >= NSEC_PER_SEC) { 674 ts.tv_sec++; 675 ts.tv_nsec -= NSEC_PER_SEC; 676 } 677 678 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu " 679 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 680 stream->dev->name, 681 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 682 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC, 683 v4l2_buf->timestamp.tv_sec, v4l2_buf->timestamp.tv_usec, 684 x1, first->host_sof, first->dev_sof, 685 x2, last->host_sof, last->dev_sof, y1, y2); 686 687 /* Update the V4L2 buffer. */ 688 v4l2_buf->timestamp.tv_sec = ts.tv_sec; 689 v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC; 690 691 done: 692 spin_unlock_irqrestore(&stream->clock.lock, flags); 693 } 694 695 /* ------------------------------------------------------------------------ 696 * Stream statistics 697 */ 698 699 static void uvc_video_stats_decode(struct uvc_streaming *stream, 700 const __u8 *data, int len) 701 { 702 unsigned int header_size; 703 bool has_pts = false; 704 bool has_scr = false; 705 u16 uninitialized_var(scr_sof); 706 u32 uninitialized_var(scr_stc); 707 u32 uninitialized_var(pts); 708 709 if (stream->stats.stream.nb_frames == 0 && 710 stream->stats.frame.nb_packets == 0) 711 ktime_get_ts(&stream->stats.stream.start_ts); 712 713 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 714 case UVC_STREAM_PTS | UVC_STREAM_SCR: 715 header_size = 12; 716 has_pts = true; 717 has_scr = true; 718 break; 719 case UVC_STREAM_PTS: 720 header_size = 6; 721 has_pts = true; 722 break; 723 case UVC_STREAM_SCR: 724 header_size = 8; 725 has_scr = true; 726 break; 727 default: 728 header_size = 2; 729 break; 730 } 731 732 /* Check for invalid headers. */ 733 if (len < header_size || data[0] < header_size) { 734 stream->stats.frame.nb_invalid++; 735 return; 736 } 737 738 /* Extract the timestamps. */ 739 if (has_pts) 740 pts = get_unaligned_le32(&data[2]); 741 742 if (has_scr) { 743 scr_stc = get_unaligned_le32(&data[header_size - 6]); 744 scr_sof = get_unaligned_le16(&data[header_size - 2]); 745 } 746 747 /* Is PTS constant through the whole frame ? */ 748 if (has_pts && stream->stats.frame.nb_pts) { 749 if (stream->stats.frame.pts != pts) { 750 stream->stats.frame.nb_pts_diffs++; 751 stream->stats.frame.last_pts_diff = 752 stream->stats.frame.nb_packets; 753 } 754 } 755 756 if (has_pts) { 757 stream->stats.frame.nb_pts++; 758 stream->stats.frame.pts = pts; 759 } 760 761 /* Do all frames have a PTS in their first non-empty packet, or before 762 * their first empty packet ? 763 */ 764 if (stream->stats.frame.size == 0) { 765 if (len > header_size) 766 stream->stats.frame.has_initial_pts = has_pts; 767 if (len == header_size && has_pts) 768 stream->stats.frame.has_early_pts = true; 769 } 770 771 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 772 if (has_scr && stream->stats.frame.nb_scr) { 773 if (stream->stats.frame.scr_stc != scr_stc) 774 stream->stats.frame.nb_scr_diffs++; 775 } 776 777 if (has_scr) { 778 /* Expand the SOF counter to 32 bits and store its value. */ 779 if (stream->stats.stream.nb_frames > 0 || 780 stream->stats.frame.nb_scr > 0) 781 stream->stats.stream.scr_sof_count += 782 (scr_sof - stream->stats.stream.scr_sof) % 2048; 783 stream->stats.stream.scr_sof = scr_sof; 784 785 stream->stats.frame.nb_scr++; 786 stream->stats.frame.scr_stc = scr_stc; 787 stream->stats.frame.scr_sof = scr_sof; 788 789 if (scr_sof < stream->stats.stream.min_sof) 790 stream->stats.stream.min_sof = scr_sof; 791 if (scr_sof > stream->stats.stream.max_sof) 792 stream->stats.stream.max_sof = scr_sof; 793 } 794 795 /* Record the first non-empty packet number. */ 796 if (stream->stats.frame.size == 0 && len > header_size) 797 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 798 799 /* Update the frame size. */ 800 stream->stats.frame.size += len - header_size; 801 802 /* Update the packets counters. */ 803 stream->stats.frame.nb_packets++; 804 if (len > header_size) 805 stream->stats.frame.nb_empty++; 806 807 if (data[1] & UVC_STREAM_ERR) 808 stream->stats.frame.nb_errors++; 809 } 810 811 static void uvc_video_stats_update(struct uvc_streaming *stream) 812 { 813 struct uvc_stats_frame *frame = &stream->stats.frame; 814 815 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 816 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 817 "last pts/stc/sof %u/%u/%u\n", 818 stream->sequence, frame->first_data, 819 frame->nb_packets - frame->nb_empty, frame->nb_packets, 820 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 821 frame->has_early_pts ? "" : "!", 822 frame->has_initial_pts ? "" : "!", 823 frame->nb_scr_diffs, frame->nb_scr, 824 frame->pts, frame->scr_stc, frame->scr_sof); 825 826 stream->stats.stream.nb_frames++; 827 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 828 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 829 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 830 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 831 832 if (frame->has_early_pts) 833 stream->stats.stream.nb_pts_early++; 834 if (frame->has_initial_pts) 835 stream->stats.stream.nb_pts_initial++; 836 if (frame->last_pts_diff <= frame->first_data) 837 stream->stats.stream.nb_pts_constant++; 838 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 839 stream->stats.stream.nb_scr_count_ok++; 840 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 841 stream->stats.stream.nb_scr_diffs_ok++; 842 843 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 844 } 845 846 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 847 size_t size) 848 { 849 unsigned int scr_sof_freq; 850 unsigned int duration; 851 struct timespec ts; 852 size_t count = 0; 853 854 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec 855 - stream->stats.stream.start_ts.tv_sec; 856 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec 857 - stream->stats.stream.start_ts.tv_nsec; 858 if (ts.tv_nsec < 0) { 859 ts.tv_sec--; 860 ts.tv_nsec += 1000000000; 861 } 862 863 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 864 * frequency this will not overflow before more than 1h. 865 */ 866 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000; 867 if (duration != 0) 868 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 869 / duration; 870 else 871 scr_sof_freq = 0; 872 873 count += scnprintf(buf + count, size - count, 874 "frames: %u\npackets: %u\nempty: %u\n" 875 "errors: %u\ninvalid: %u\n", 876 stream->stats.stream.nb_frames, 877 stream->stats.stream.nb_packets, 878 stream->stats.stream.nb_empty, 879 stream->stats.stream.nb_errors, 880 stream->stats.stream.nb_invalid); 881 count += scnprintf(buf + count, size - count, 882 "pts: %u early, %u initial, %u ok\n", 883 stream->stats.stream.nb_pts_early, 884 stream->stats.stream.nb_pts_initial, 885 stream->stats.stream.nb_pts_constant); 886 count += scnprintf(buf + count, size - count, 887 "scr: %u count ok, %u diff ok\n", 888 stream->stats.stream.nb_scr_count_ok, 889 stream->stats.stream.nb_scr_diffs_ok); 890 count += scnprintf(buf + count, size - count, 891 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 892 stream->stats.stream.min_sof, 893 stream->stats.stream.max_sof, 894 scr_sof_freq / 1000, scr_sof_freq % 1000); 895 896 return count; 897 } 898 899 static void uvc_video_stats_start(struct uvc_streaming *stream) 900 { 901 memset(&stream->stats, 0, sizeof(stream->stats)); 902 stream->stats.stream.min_sof = 2048; 903 } 904 905 static void uvc_video_stats_stop(struct uvc_streaming *stream) 906 { 907 ktime_get_ts(&stream->stats.stream.stop_ts); 908 } 909 910 /* ------------------------------------------------------------------------ 911 * Video codecs 912 */ 913 914 /* Video payload decoding is handled by uvc_video_decode_start(), 915 * uvc_video_decode_data() and uvc_video_decode_end(). 916 * 917 * uvc_video_decode_start is called with URB data at the start of a bulk or 918 * isochronous payload. It processes header data and returns the header size 919 * in bytes if successful. If an error occurs, it returns a negative error 920 * code. The following error codes have special meanings. 921 * 922 * - EAGAIN informs the caller that the current video buffer should be marked 923 * as done, and that the function should be called again with the same data 924 * and a new video buffer. This is used when end of frame conditions can be 925 * reliably detected at the beginning of the next frame only. 926 * 927 * If an error other than -EAGAIN is returned, the caller will drop the current 928 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 929 * made until the next payload. -ENODATA can be used to drop the current 930 * payload if no other error code is appropriate. 931 * 932 * uvc_video_decode_data is called for every URB with URB data. It copies the 933 * data to the video buffer. 934 * 935 * uvc_video_decode_end is called with header data at the end of a bulk or 936 * isochronous payload. It performs any additional header data processing and 937 * returns 0 or a negative error code if an error occurred. As header data have 938 * already been processed by uvc_video_decode_start, this functions isn't 939 * required to perform sanity checks a second time. 940 * 941 * For isochronous transfers where a payload is always transferred in a single 942 * URB, the three functions will be called in a row. 943 * 944 * To let the decoder process header data and update its internal state even 945 * when no video buffer is available, uvc_video_decode_start must be prepared 946 * to be called with a NULL buf parameter. uvc_video_decode_data and 947 * uvc_video_decode_end will never be called with a NULL buffer. 948 */ 949 static int uvc_video_decode_start(struct uvc_streaming *stream, 950 struct uvc_buffer *buf, const __u8 *data, int len) 951 { 952 __u8 fid; 953 954 /* Sanity checks: 955 * - packet must be at least 2 bytes long 956 * - bHeaderLength value must be at least 2 bytes (see above) 957 * - bHeaderLength value can't be larger than the packet size. 958 */ 959 if (len < 2 || data[0] < 2 || data[0] > len) { 960 stream->stats.frame.nb_invalid++; 961 return -EINVAL; 962 } 963 964 fid = data[1] & UVC_STREAM_FID; 965 966 /* Increase the sequence number regardless of any buffer states, so 967 * that discontinuous sequence numbers always indicate lost frames. 968 */ 969 if (stream->last_fid != fid) { 970 stream->sequence++; 971 if (stream->sequence) 972 uvc_video_stats_update(stream); 973 } 974 975 uvc_video_clock_decode(stream, buf, data, len); 976 uvc_video_stats_decode(stream, data, len); 977 978 /* Store the payload FID bit and return immediately when the buffer is 979 * NULL. 980 */ 981 if (buf == NULL) { 982 stream->last_fid = fid; 983 return -ENODATA; 984 } 985 986 /* Mark the buffer as bad if the error bit is set. */ 987 if (data[1] & UVC_STREAM_ERR) { 988 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 989 "set).\n"); 990 buf->error = 1; 991 } 992 993 /* Synchronize to the input stream by waiting for the FID bit to be 994 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 995 * stream->last_fid is initialized to -1, so the first isochronous 996 * frame will always be in sync. 997 * 998 * If the device doesn't toggle the FID bit, invert stream->last_fid 999 * when the EOF bit is set to force synchronisation on the next packet. 1000 */ 1001 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1002 struct timespec ts; 1003 1004 if (fid == stream->last_fid) { 1005 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1006 "sync).\n"); 1007 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1008 (data[1] & UVC_STREAM_EOF)) 1009 stream->last_fid ^= UVC_STREAM_FID; 1010 return -ENODATA; 1011 } 1012 1013 if (uvc_clock_param == CLOCK_MONOTONIC) 1014 ktime_get_ts(&ts); 1015 else 1016 ktime_get_real_ts(&ts); 1017 1018 buf->buf.v4l2_buf.sequence = stream->sequence; 1019 buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec; 1020 buf->buf.v4l2_buf.timestamp.tv_usec = 1021 ts.tv_nsec / NSEC_PER_USEC; 1022 1023 /* TODO: Handle PTS and SCR. */ 1024 buf->state = UVC_BUF_STATE_ACTIVE; 1025 } 1026 1027 /* Mark the buffer as done if we're at the beginning of a new frame. 1028 * End of frame detection is better implemented by checking the EOF 1029 * bit (FID bit toggling is delayed by one frame compared to the EOF 1030 * bit), but some devices don't set the bit at end of frame (and the 1031 * last payload can be lost anyway). We thus must check if the FID has 1032 * been toggled. 1033 * 1034 * stream->last_fid is initialized to -1, so the first isochronous 1035 * frame will never trigger an end of frame detection. 1036 * 1037 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1038 * as it doesn't make sense to return an empty buffer. This also 1039 * avoids detecting end of frame conditions at FID toggling if the 1040 * previous payload had the EOF bit set. 1041 */ 1042 if (fid != stream->last_fid && buf->bytesused != 0) { 1043 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1044 "toggled).\n"); 1045 buf->state = UVC_BUF_STATE_READY; 1046 return -EAGAIN; 1047 } 1048 1049 stream->last_fid = fid; 1050 1051 return data[0]; 1052 } 1053 1054 static void uvc_video_decode_data(struct uvc_streaming *stream, 1055 struct uvc_buffer *buf, const __u8 *data, int len) 1056 { 1057 unsigned int maxlen, nbytes; 1058 void *mem; 1059 1060 if (len <= 0) 1061 return; 1062 1063 /* Copy the video data to the buffer. */ 1064 maxlen = buf->length - buf->bytesused; 1065 mem = buf->mem + buf->bytesused; 1066 nbytes = min((unsigned int)len, maxlen); 1067 memcpy(mem, data, nbytes); 1068 buf->bytesused += nbytes; 1069 1070 /* Complete the current frame if the buffer size was exceeded. */ 1071 if (len > maxlen) { 1072 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1073 buf->state = UVC_BUF_STATE_READY; 1074 } 1075 } 1076 1077 static void uvc_video_decode_end(struct uvc_streaming *stream, 1078 struct uvc_buffer *buf, const __u8 *data, int len) 1079 { 1080 /* Mark the buffer as done if the EOF marker is set. */ 1081 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1082 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1083 if (data[0] == len) 1084 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1085 buf->state = UVC_BUF_STATE_READY; 1086 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1087 stream->last_fid ^= UVC_STREAM_FID; 1088 } 1089 } 1090 1091 /* Video payload encoding is handled by uvc_video_encode_header() and 1092 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1093 * 1094 * uvc_video_encode_header is called at the start of a payload. It adds header 1095 * data to the transfer buffer and returns the header size. As the only known 1096 * UVC output device transfers a whole frame in a single payload, the EOF bit 1097 * is always set in the header. 1098 * 1099 * uvc_video_encode_data is called for every URB and copies the data from the 1100 * video buffer to the transfer buffer. 1101 */ 1102 static int uvc_video_encode_header(struct uvc_streaming *stream, 1103 struct uvc_buffer *buf, __u8 *data, int len) 1104 { 1105 data[0] = 2; /* Header length */ 1106 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1107 | (stream->last_fid & UVC_STREAM_FID); 1108 return 2; 1109 } 1110 1111 static int uvc_video_encode_data(struct uvc_streaming *stream, 1112 struct uvc_buffer *buf, __u8 *data, int len) 1113 { 1114 struct uvc_video_queue *queue = &stream->queue; 1115 unsigned int nbytes; 1116 void *mem; 1117 1118 /* Copy video data to the URB buffer. */ 1119 mem = buf->mem + queue->buf_used; 1120 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1121 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1122 nbytes); 1123 memcpy(data, mem, nbytes); 1124 1125 queue->buf_used += nbytes; 1126 1127 return nbytes; 1128 } 1129 1130 /* ------------------------------------------------------------------------ 1131 * URB handling 1132 */ 1133 1134 /* 1135 * Completion handler for video URBs. 1136 */ 1137 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1138 struct uvc_buffer *buf) 1139 { 1140 u8 *mem; 1141 int ret, i; 1142 1143 for (i = 0; i < urb->number_of_packets; ++i) { 1144 if (urb->iso_frame_desc[i].status < 0) { 1145 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1146 "lost (%d).\n", urb->iso_frame_desc[i].status); 1147 /* Mark the buffer as faulty. */ 1148 if (buf != NULL) 1149 buf->error = 1; 1150 continue; 1151 } 1152 1153 /* Decode the payload header. */ 1154 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1155 do { 1156 ret = uvc_video_decode_start(stream, buf, mem, 1157 urb->iso_frame_desc[i].actual_length); 1158 if (ret == -EAGAIN) 1159 buf = uvc_queue_next_buffer(&stream->queue, 1160 buf); 1161 } while (ret == -EAGAIN); 1162 1163 if (ret < 0) 1164 continue; 1165 1166 /* Decode the payload data. */ 1167 uvc_video_decode_data(stream, buf, mem + ret, 1168 urb->iso_frame_desc[i].actual_length - ret); 1169 1170 /* Process the header again. */ 1171 uvc_video_decode_end(stream, buf, mem, 1172 urb->iso_frame_desc[i].actual_length); 1173 1174 if (buf->state == UVC_BUF_STATE_READY) { 1175 if (buf->length != buf->bytesused && 1176 !(stream->cur_format->flags & 1177 UVC_FMT_FLAG_COMPRESSED)) 1178 buf->error = 1; 1179 1180 buf = uvc_queue_next_buffer(&stream->queue, buf); 1181 } 1182 } 1183 } 1184 1185 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1186 struct uvc_buffer *buf) 1187 { 1188 u8 *mem; 1189 int len, ret; 1190 1191 /* 1192 * Ignore ZLPs if they're not part of a frame, otherwise process them 1193 * to trigger the end of payload detection. 1194 */ 1195 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1196 return; 1197 1198 mem = urb->transfer_buffer; 1199 len = urb->actual_length; 1200 stream->bulk.payload_size += len; 1201 1202 /* If the URB is the first of its payload, decode and save the 1203 * header. 1204 */ 1205 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1206 do { 1207 ret = uvc_video_decode_start(stream, buf, mem, len); 1208 if (ret == -EAGAIN) 1209 buf = uvc_queue_next_buffer(&stream->queue, 1210 buf); 1211 } while (ret == -EAGAIN); 1212 1213 /* If an error occurred skip the rest of the payload. */ 1214 if (ret < 0 || buf == NULL) { 1215 stream->bulk.skip_payload = 1; 1216 } else { 1217 memcpy(stream->bulk.header, mem, ret); 1218 stream->bulk.header_size = ret; 1219 1220 mem += ret; 1221 len -= ret; 1222 } 1223 } 1224 1225 /* The buffer queue might have been cancelled while a bulk transfer 1226 * was in progress, so we can reach here with buf equal to NULL. Make 1227 * sure buf is never dereferenced if NULL. 1228 */ 1229 1230 /* Process video data. */ 1231 if (!stream->bulk.skip_payload && buf != NULL) 1232 uvc_video_decode_data(stream, buf, mem, len); 1233 1234 /* Detect the payload end by a URB smaller than the maximum size (or 1235 * a payload size equal to the maximum) and process the header again. 1236 */ 1237 if (urb->actual_length < urb->transfer_buffer_length || 1238 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1239 if (!stream->bulk.skip_payload && buf != NULL) { 1240 uvc_video_decode_end(stream, buf, stream->bulk.header, 1241 stream->bulk.payload_size); 1242 if (buf->state == UVC_BUF_STATE_READY) 1243 buf = uvc_queue_next_buffer(&stream->queue, 1244 buf); 1245 } 1246 1247 stream->bulk.header_size = 0; 1248 stream->bulk.skip_payload = 0; 1249 stream->bulk.payload_size = 0; 1250 } 1251 } 1252 1253 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1254 struct uvc_buffer *buf) 1255 { 1256 u8 *mem = urb->transfer_buffer; 1257 int len = stream->urb_size, ret; 1258 1259 if (buf == NULL) { 1260 urb->transfer_buffer_length = 0; 1261 return; 1262 } 1263 1264 /* If the URB is the first of its payload, add the header. */ 1265 if (stream->bulk.header_size == 0) { 1266 ret = uvc_video_encode_header(stream, buf, mem, len); 1267 stream->bulk.header_size = ret; 1268 stream->bulk.payload_size += ret; 1269 mem += ret; 1270 len -= ret; 1271 } 1272 1273 /* Process video data. */ 1274 ret = uvc_video_encode_data(stream, buf, mem, len); 1275 1276 stream->bulk.payload_size += ret; 1277 len -= ret; 1278 1279 if (buf->bytesused == stream->queue.buf_used || 1280 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1281 if (buf->bytesused == stream->queue.buf_used) { 1282 stream->queue.buf_used = 0; 1283 buf->state = UVC_BUF_STATE_READY; 1284 buf->buf.v4l2_buf.sequence = ++stream->sequence; 1285 uvc_queue_next_buffer(&stream->queue, buf); 1286 stream->last_fid ^= UVC_STREAM_FID; 1287 } 1288 1289 stream->bulk.header_size = 0; 1290 stream->bulk.payload_size = 0; 1291 } 1292 1293 urb->transfer_buffer_length = stream->urb_size - len; 1294 } 1295 1296 static void uvc_video_complete(struct urb *urb) 1297 { 1298 struct uvc_streaming *stream = urb->context; 1299 struct uvc_video_queue *queue = &stream->queue; 1300 struct uvc_buffer *buf = NULL; 1301 unsigned long flags; 1302 int ret; 1303 1304 switch (urb->status) { 1305 case 0: 1306 break; 1307 1308 default: 1309 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1310 "completion handler.\n", urb->status); 1311 1312 case -ENOENT: /* usb_kill_urb() called. */ 1313 if (stream->frozen) 1314 return; 1315 1316 case -ECONNRESET: /* usb_unlink_urb() called. */ 1317 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1318 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1319 return; 1320 } 1321 1322 spin_lock_irqsave(&queue->irqlock, flags); 1323 if (!list_empty(&queue->irqqueue)) 1324 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1325 queue); 1326 spin_unlock_irqrestore(&queue->irqlock, flags); 1327 1328 stream->decode(urb, stream, buf); 1329 1330 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1331 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1332 ret); 1333 } 1334 } 1335 1336 /* 1337 * Free transfer buffers. 1338 */ 1339 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1340 { 1341 unsigned int i; 1342 1343 for (i = 0; i < UVC_URBS; ++i) { 1344 if (stream->urb_buffer[i]) { 1345 #ifndef CONFIG_DMA_NONCOHERENT 1346 usb_free_coherent(stream->dev->udev, stream->urb_size, 1347 stream->urb_buffer[i], stream->urb_dma[i]); 1348 #else 1349 kfree(stream->urb_buffer[i]); 1350 #endif 1351 stream->urb_buffer[i] = NULL; 1352 } 1353 } 1354 1355 stream->urb_size = 0; 1356 } 1357 1358 /* 1359 * Allocate transfer buffers. This function can be called with buffers 1360 * already allocated when resuming from suspend, in which case it will 1361 * return without touching the buffers. 1362 * 1363 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1364 * system is too low on memory try successively smaller numbers of packets 1365 * until allocation succeeds. 1366 * 1367 * Return the number of allocated packets on success or 0 when out of memory. 1368 */ 1369 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1370 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1371 { 1372 unsigned int npackets; 1373 unsigned int i; 1374 1375 /* Buffers are already allocated, bail out. */ 1376 if (stream->urb_size) 1377 return stream->urb_size / psize; 1378 1379 /* Compute the number of packets. Bulk endpoints might transfer UVC 1380 * payloads across multiple URBs. 1381 */ 1382 npackets = DIV_ROUND_UP(size, psize); 1383 if (npackets > UVC_MAX_PACKETS) 1384 npackets = UVC_MAX_PACKETS; 1385 1386 /* Retry allocations until one succeed. */ 1387 for (; npackets > 1; npackets /= 2) { 1388 for (i = 0; i < UVC_URBS; ++i) { 1389 stream->urb_size = psize * npackets; 1390 #ifndef CONFIG_DMA_NONCOHERENT 1391 stream->urb_buffer[i] = usb_alloc_coherent( 1392 stream->dev->udev, stream->urb_size, 1393 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1394 #else 1395 stream->urb_buffer[i] = 1396 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1397 #endif 1398 if (!stream->urb_buffer[i]) { 1399 uvc_free_urb_buffers(stream); 1400 break; 1401 } 1402 } 1403 1404 if (i == UVC_URBS) { 1405 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1406 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1407 psize); 1408 return npackets; 1409 } 1410 } 1411 1412 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1413 "per packet).\n", psize); 1414 return 0; 1415 } 1416 1417 /* 1418 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1419 */ 1420 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1421 { 1422 struct urb *urb; 1423 unsigned int i; 1424 1425 uvc_video_stats_stop(stream); 1426 1427 for (i = 0; i < UVC_URBS; ++i) { 1428 urb = stream->urb[i]; 1429 if (urb == NULL) 1430 continue; 1431 1432 usb_kill_urb(urb); 1433 usb_free_urb(urb); 1434 stream->urb[i] = NULL; 1435 } 1436 1437 if (free_buffers) 1438 uvc_free_urb_buffers(stream); 1439 } 1440 1441 /* 1442 * Compute the maximum number of bytes per interval for an endpoint. 1443 */ 1444 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1445 struct usb_host_endpoint *ep) 1446 { 1447 u16 psize; 1448 1449 switch (dev->speed) { 1450 case USB_SPEED_SUPER: 1451 return ep->ss_ep_comp.wBytesPerInterval; 1452 case USB_SPEED_HIGH: 1453 psize = usb_endpoint_maxp(&ep->desc); 1454 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3)); 1455 default: 1456 psize = usb_endpoint_maxp(&ep->desc); 1457 return psize & 0x07ff; 1458 } 1459 } 1460 1461 /* 1462 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1463 * is given by the endpoint. 1464 */ 1465 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1466 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1467 { 1468 struct urb *urb; 1469 unsigned int npackets, i, j; 1470 u16 psize; 1471 u32 size; 1472 1473 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1474 size = stream->ctrl.dwMaxVideoFrameSize; 1475 1476 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1477 if (npackets == 0) 1478 return -ENOMEM; 1479 1480 size = npackets * psize; 1481 1482 for (i = 0; i < UVC_URBS; ++i) { 1483 urb = usb_alloc_urb(npackets, gfp_flags); 1484 if (urb == NULL) { 1485 uvc_uninit_video(stream, 1); 1486 return -ENOMEM; 1487 } 1488 1489 urb->dev = stream->dev->udev; 1490 urb->context = stream; 1491 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1492 ep->desc.bEndpointAddress); 1493 #ifndef CONFIG_DMA_NONCOHERENT 1494 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1495 urb->transfer_dma = stream->urb_dma[i]; 1496 #else 1497 urb->transfer_flags = URB_ISO_ASAP; 1498 #endif 1499 urb->interval = ep->desc.bInterval; 1500 urb->transfer_buffer = stream->urb_buffer[i]; 1501 urb->complete = uvc_video_complete; 1502 urb->number_of_packets = npackets; 1503 urb->transfer_buffer_length = size; 1504 1505 for (j = 0; j < npackets; ++j) { 1506 urb->iso_frame_desc[j].offset = j * psize; 1507 urb->iso_frame_desc[j].length = psize; 1508 } 1509 1510 stream->urb[i] = urb; 1511 } 1512 1513 return 0; 1514 } 1515 1516 /* 1517 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1518 * given by the endpoint. 1519 */ 1520 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1521 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1522 { 1523 struct urb *urb; 1524 unsigned int npackets, pipe, i; 1525 u16 psize; 1526 u32 size; 1527 1528 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff; 1529 size = stream->ctrl.dwMaxPayloadTransferSize; 1530 stream->bulk.max_payload_size = size; 1531 1532 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1533 if (npackets == 0) 1534 return -ENOMEM; 1535 1536 size = npackets * psize; 1537 1538 if (usb_endpoint_dir_in(&ep->desc)) 1539 pipe = usb_rcvbulkpipe(stream->dev->udev, 1540 ep->desc.bEndpointAddress); 1541 else 1542 pipe = usb_sndbulkpipe(stream->dev->udev, 1543 ep->desc.bEndpointAddress); 1544 1545 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1546 size = 0; 1547 1548 for (i = 0; i < UVC_URBS; ++i) { 1549 urb = usb_alloc_urb(0, gfp_flags); 1550 if (urb == NULL) { 1551 uvc_uninit_video(stream, 1); 1552 return -ENOMEM; 1553 } 1554 1555 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1556 stream->urb_buffer[i], size, uvc_video_complete, 1557 stream); 1558 #ifndef CONFIG_DMA_NONCOHERENT 1559 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1560 urb->transfer_dma = stream->urb_dma[i]; 1561 #endif 1562 1563 stream->urb[i] = urb; 1564 } 1565 1566 return 0; 1567 } 1568 1569 /* 1570 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1571 */ 1572 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1573 { 1574 struct usb_interface *intf = stream->intf; 1575 struct usb_host_endpoint *ep; 1576 unsigned int i; 1577 int ret; 1578 1579 stream->sequence = -1; 1580 stream->last_fid = -1; 1581 stream->bulk.header_size = 0; 1582 stream->bulk.skip_payload = 0; 1583 stream->bulk.payload_size = 0; 1584 1585 uvc_video_stats_start(stream); 1586 1587 if (intf->num_altsetting > 1) { 1588 struct usb_host_endpoint *best_ep = NULL; 1589 unsigned int best_psize = UINT_MAX; 1590 unsigned int bandwidth; 1591 unsigned int uninitialized_var(altsetting); 1592 int intfnum = stream->intfnum; 1593 1594 /* Isochronous endpoint, select the alternate setting. */ 1595 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1596 1597 if (bandwidth == 0) { 1598 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1599 "bandwidth, defaulting to lowest.\n"); 1600 bandwidth = 1; 1601 } else { 1602 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1603 "B/frame bandwidth.\n", bandwidth); 1604 } 1605 1606 for (i = 0; i < intf->num_altsetting; ++i) { 1607 struct usb_host_interface *alts; 1608 unsigned int psize; 1609 1610 alts = &intf->altsetting[i]; 1611 ep = uvc_find_endpoint(alts, 1612 stream->header.bEndpointAddress); 1613 if (ep == NULL) 1614 continue; 1615 1616 /* Check if the bandwidth is high enough. */ 1617 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1618 if (psize >= bandwidth && psize <= best_psize) { 1619 altsetting = alts->desc.bAlternateSetting; 1620 best_psize = psize; 1621 best_ep = ep; 1622 } 1623 } 1624 1625 if (best_ep == NULL) { 1626 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1627 "for requested bandwidth.\n"); 1628 return -EIO; 1629 } 1630 1631 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1632 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1633 1634 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1635 if (ret < 0) 1636 return ret; 1637 1638 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1639 } else { 1640 /* Bulk endpoint, proceed to URB initialization. */ 1641 ep = uvc_find_endpoint(&intf->altsetting[0], 1642 stream->header.bEndpointAddress); 1643 if (ep == NULL) 1644 return -EIO; 1645 1646 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1647 } 1648 1649 if (ret < 0) 1650 return ret; 1651 1652 /* Submit the URBs. */ 1653 for (i = 0; i < UVC_URBS; ++i) { 1654 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1655 if (ret < 0) { 1656 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1657 "(%d).\n", i, ret); 1658 uvc_uninit_video(stream, 1); 1659 return ret; 1660 } 1661 } 1662 1663 return 0; 1664 } 1665 1666 /* -------------------------------------------------------------------------- 1667 * Suspend/resume 1668 */ 1669 1670 /* 1671 * Stop streaming without disabling the video queue. 1672 * 1673 * To let userspace applications resume without trouble, we must not touch the 1674 * video buffers in any way. We mark the device as frozen to make sure the URB 1675 * completion handler won't try to cancel the queue when we kill the URBs. 1676 */ 1677 int uvc_video_suspend(struct uvc_streaming *stream) 1678 { 1679 if (!uvc_queue_streaming(&stream->queue)) 1680 return 0; 1681 1682 stream->frozen = 1; 1683 uvc_uninit_video(stream, 0); 1684 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1685 return 0; 1686 } 1687 1688 /* 1689 * Reconfigure the video interface and restart streaming if it was enabled 1690 * before suspend. 1691 * 1692 * If an error occurs, disable the video queue. This will wake all pending 1693 * buffers, making sure userspace applications are notified of the problem 1694 * instead of waiting forever. 1695 */ 1696 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1697 { 1698 int ret; 1699 1700 /* If the bus has been reset on resume, set the alternate setting to 0. 1701 * This should be the default value, but some devices crash or otherwise 1702 * misbehave if they don't receive a SET_INTERFACE request before any 1703 * other video control request. 1704 */ 1705 if (reset) 1706 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1707 1708 stream->frozen = 0; 1709 1710 uvc_video_clock_reset(stream); 1711 1712 ret = uvc_commit_video(stream, &stream->ctrl); 1713 if (ret < 0) { 1714 uvc_queue_enable(&stream->queue, 0); 1715 return ret; 1716 } 1717 1718 if (!uvc_queue_streaming(&stream->queue)) 1719 return 0; 1720 1721 ret = uvc_init_video(stream, GFP_NOIO); 1722 if (ret < 0) 1723 uvc_queue_enable(&stream->queue, 0); 1724 1725 return ret; 1726 } 1727 1728 /* ------------------------------------------------------------------------ 1729 * Video device 1730 */ 1731 1732 /* 1733 * Initialize the UVC video device by switching to alternate setting 0 and 1734 * retrieve the default format. 1735 * 1736 * Some cameras (namely the Fuji Finepix) set the format and frame 1737 * indexes to zero. The UVC standard doesn't clearly make this a spec 1738 * violation, so try to silently fix the values if possible. 1739 * 1740 * This function is called before registering the device with V4L. 1741 */ 1742 int uvc_video_init(struct uvc_streaming *stream) 1743 { 1744 struct uvc_streaming_control *probe = &stream->ctrl; 1745 struct uvc_format *format = NULL; 1746 struct uvc_frame *frame = NULL; 1747 unsigned int i; 1748 int ret; 1749 1750 if (stream->nformats == 0) { 1751 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1752 return -EINVAL; 1753 } 1754 1755 atomic_set(&stream->active, 0); 1756 1757 /* Initialize the video buffers queue. */ 1758 ret = uvc_queue_init(&stream->queue, stream->type, !uvc_no_drop_param); 1759 if (ret) 1760 return ret; 1761 1762 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1763 * Cam (and possibly other devices) crash or otherwise misbehave if 1764 * they don't receive a SET_INTERFACE request before any other video 1765 * control request. 1766 */ 1767 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1768 1769 /* Set the streaming probe control with default streaming parameters 1770 * retrieved from the device. Webcams that don't suport GET_DEF 1771 * requests on the probe control will just keep their current streaming 1772 * parameters. 1773 */ 1774 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1775 uvc_set_video_ctrl(stream, probe, 1); 1776 1777 /* Initialize the streaming parameters with the probe control current 1778 * value. This makes sure SET_CUR requests on the streaming commit 1779 * control will always use values retrieved from a successful GET_CUR 1780 * request on the probe control, as required by the UVC specification. 1781 */ 1782 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1783 if (ret < 0) 1784 return ret; 1785 1786 /* Check if the default format descriptor exists. Use the first 1787 * available format otherwise. 1788 */ 1789 for (i = stream->nformats; i > 0; --i) { 1790 format = &stream->format[i-1]; 1791 if (format->index == probe->bFormatIndex) 1792 break; 1793 } 1794 1795 if (format->nframes == 0) { 1796 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1797 "default format.\n"); 1798 return -EINVAL; 1799 } 1800 1801 /* Zero bFrameIndex might be correct. Stream-based formats (including 1802 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1803 * descriptor with bFrameIndex set to zero. If the default frame 1804 * descriptor is not found, use the first available frame. 1805 */ 1806 for (i = format->nframes; i > 0; --i) { 1807 frame = &format->frame[i-1]; 1808 if (frame->bFrameIndex == probe->bFrameIndex) 1809 break; 1810 } 1811 1812 probe->bFormatIndex = format->index; 1813 probe->bFrameIndex = frame->bFrameIndex; 1814 1815 stream->def_format = format; 1816 stream->cur_format = format; 1817 stream->cur_frame = frame; 1818 1819 /* Select the video decoding function */ 1820 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1821 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1822 stream->decode = uvc_video_decode_isight; 1823 else if (stream->intf->num_altsetting > 1) 1824 stream->decode = uvc_video_decode_isoc; 1825 else 1826 stream->decode = uvc_video_decode_bulk; 1827 } else { 1828 if (stream->intf->num_altsetting == 1) 1829 stream->decode = uvc_video_encode_bulk; 1830 else { 1831 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1832 "supported for video output devices.\n"); 1833 return -EINVAL; 1834 } 1835 } 1836 1837 return 0; 1838 } 1839 1840 /* 1841 * Enable or disable the video stream. 1842 */ 1843 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1844 { 1845 int ret; 1846 1847 if (!enable) { 1848 uvc_uninit_video(stream, 1); 1849 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1850 uvc_queue_enable(&stream->queue, 0); 1851 uvc_video_clock_cleanup(stream); 1852 return 0; 1853 } 1854 1855 ret = uvc_video_clock_init(stream); 1856 if (ret < 0) 1857 return ret; 1858 1859 ret = uvc_queue_enable(&stream->queue, 1); 1860 if (ret < 0) 1861 goto error_queue; 1862 1863 /* Commit the streaming parameters. */ 1864 ret = uvc_commit_video(stream, &stream->ctrl); 1865 if (ret < 0) 1866 goto error_commit; 1867 1868 ret = uvc_init_video(stream, GFP_KERNEL); 1869 if (ret < 0) 1870 goto error_video; 1871 1872 return 0; 1873 1874 error_video: 1875 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1876 error_commit: 1877 uvc_queue_enable(&stream->queue, 0); 1878 error_queue: 1879 uvc_video_clock_cleanup(stream); 1880 1881 return ret; 1882 } 1883