1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 34 u8 intfnum, u8 cs, void *data, u16 size, 35 int timeout) 36 { 37 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 73 u8 intfnum, u8 cs, void *data, u16 size) 74 { 75 int ret; 76 u8 error; 77 u8 tmp; 78 79 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 80 UVC_CTRL_CONTROL_TIMEOUT); 81 if (likely(ret == size)) 82 return 0; 83 84 uvc_printk(KERN_ERR, 85 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 86 uvc_query_name(query), cs, unit, ret, size); 87 88 if (ret != -EPIPE) 89 return ret; 90 91 tmp = *(u8 *)data; 92 93 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 94 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 95 UVC_CTRL_CONTROL_TIMEOUT); 96 97 error = *(u8 *)data; 98 *(u8 *)data = tmp; 99 100 if (ret != 1) 101 return ret < 0 ? ret : -EPIPE; 102 103 uvc_trace(UVC_TRACE_CONTROL, "Control error %u\n", error); 104 105 switch (error) { 106 case 0: 107 /* Cannot happen - we received a STALL */ 108 return -EPIPE; 109 case 1: /* Not ready */ 110 return -EBUSY; 111 case 2: /* Wrong state */ 112 return -EILSEQ; 113 case 3: /* Power */ 114 return -EREMOTE; 115 case 4: /* Out of range */ 116 return -ERANGE; 117 case 5: /* Invalid unit */ 118 case 6: /* Invalid control */ 119 case 7: /* Invalid Request */ 120 case 8: /* Invalid value within range */ 121 return -EINVAL; 122 default: /* reserved or unknown */ 123 break; 124 } 125 126 return -EPIPE; 127 } 128 129 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 130 struct uvc_streaming_control *ctrl) 131 { 132 struct uvc_format *format = NULL; 133 struct uvc_frame *frame = NULL; 134 unsigned int i; 135 136 for (i = 0; i < stream->nformats; ++i) { 137 if (stream->format[i].index == ctrl->bFormatIndex) { 138 format = &stream->format[i]; 139 break; 140 } 141 } 142 143 if (format == NULL) 144 return; 145 146 for (i = 0; i < format->nframes; ++i) { 147 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 148 frame = &format->frame[i]; 149 break; 150 } 151 } 152 153 if (frame == NULL) 154 return; 155 156 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 157 (ctrl->dwMaxVideoFrameSize == 0 && 158 stream->dev->uvc_version < 0x0110)) 159 ctrl->dwMaxVideoFrameSize = 160 frame->dwMaxVideoFrameBufferSize; 161 162 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 163 * compute the bandwidth on 16 bits and erroneously sign-extend it to 164 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 165 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 166 */ 167 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 168 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 169 170 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 171 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 172 stream->intf->num_altsetting > 1) { 173 u32 interval; 174 u32 bandwidth; 175 176 interval = (ctrl->dwFrameInterval > 100000) 177 ? ctrl->dwFrameInterval 178 : frame->dwFrameInterval[0]; 179 180 /* Compute a bandwidth estimation by multiplying the frame 181 * size by the number of video frames per second, divide the 182 * result by the number of USB frames (or micro-frames for 183 * high-speed devices) per second and add the UVC header size 184 * (assumed to be 12 bytes long). 185 */ 186 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 187 bandwidth *= 10000000 / interval + 1; 188 bandwidth /= 1000; 189 if (stream->dev->udev->speed == USB_SPEED_HIGH) 190 bandwidth /= 8; 191 bandwidth += 12; 192 193 /* The bandwidth estimate is too low for many cameras. Don't use 194 * maximum packet sizes lower than 1024 bytes to try and work 195 * around the problem. According to measurements done on two 196 * different camera models, the value is high enough to get most 197 * resolutions working while not preventing two simultaneous 198 * VGA streams at 15 fps. 199 */ 200 bandwidth = max_t(u32, bandwidth, 1024); 201 202 ctrl->dwMaxPayloadTransferSize = bandwidth; 203 } 204 } 205 206 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 207 { 208 /* 209 * Return the size of the video probe and commit controls, which depends 210 * on the protocol version. 211 */ 212 if (stream->dev->uvc_version < 0x0110) 213 return 26; 214 else if (stream->dev->uvc_version < 0x0150) 215 return 34; 216 else 217 return 48; 218 } 219 220 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 221 struct uvc_streaming_control *ctrl, int probe, u8 query) 222 { 223 u16 size = uvc_video_ctrl_size(stream); 224 u8 *data; 225 int ret; 226 227 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 228 query == UVC_GET_DEF) 229 return -EIO; 230 231 data = kmalloc(size, GFP_KERNEL); 232 if (data == NULL) 233 return -ENOMEM; 234 235 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 236 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 237 size, uvc_timeout_param); 238 239 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 240 /* Some cameras, mostly based on Bison Electronics chipsets, 241 * answer a GET_MIN or GET_MAX request with the wCompQuality 242 * field only. 243 */ 244 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 245 "compliance - GET_MIN/MAX(PROBE) incorrectly " 246 "supported. Enabling workaround.\n"); 247 memset(ctrl, 0, sizeof(*ctrl)); 248 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 249 ret = 0; 250 goto out; 251 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 252 /* Many cameras don't support the GET_DEF request on their 253 * video probe control. Warn once and return, the caller will 254 * fall back to GET_CUR. 255 */ 256 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 257 "compliance - GET_DEF(PROBE) not supported. " 258 "Enabling workaround.\n"); 259 ret = -EIO; 260 goto out; 261 } else if (ret != size) { 262 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 263 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 264 ret, size); 265 ret = -EIO; 266 goto out; 267 } 268 269 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 270 ctrl->bFormatIndex = data[2]; 271 ctrl->bFrameIndex = data[3]; 272 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 273 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 274 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 275 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 276 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 277 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 278 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 279 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 280 281 if (size >= 34) { 282 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 283 ctrl->bmFramingInfo = data[30]; 284 ctrl->bPreferedVersion = data[31]; 285 ctrl->bMinVersion = data[32]; 286 ctrl->bMaxVersion = data[33]; 287 } else { 288 ctrl->dwClockFrequency = stream->dev->clock_frequency; 289 ctrl->bmFramingInfo = 0; 290 ctrl->bPreferedVersion = 0; 291 ctrl->bMinVersion = 0; 292 ctrl->bMaxVersion = 0; 293 } 294 295 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 296 * dwMaxPayloadTransferSize fields. Try to get the value from the 297 * format and frame descriptors. 298 */ 299 uvc_fixup_video_ctrl(stream, ctrl); 300 ret = 0; 301 302 out: 303 kfree(data); 304 return ret; 305 } 306 307 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 308 struct uvc_streaming_control *ctrl, int probe) 309 { 310 u16 size = uvc_video_ctrl_size(stream); 311 u8 *data; 312 int ret; 313 314 data = kzalloc(size, GFP_KERNEL); 315 if (data == NULL) 316 return -ENOMEM; 317 318 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 319 data[2] = ctrl->bFormatIndex; 320 data[3] = ctrl->bFrameIndex; 321 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 322 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 323 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 324 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 325 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 326 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 327 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 328 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 329 330 if (size >= 34) { 331 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 332 data[30] = ctrl->bmFramingInfo; 333 data[31] = ctrl->bPreferedVersion; 334 data[32] = ctrl->bMinVersion; 335 data[33] = ctrl->bMaxVersion; 336 } 337 338 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 339 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 340 size, uvc_timeout_param); 341 if (ret != size) { 342 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 343 "%d (exp. %u).\n", probe ? "probe" : "commit", 344 ret, size); 345 ret = -EIO; 346 } 347 348 kfree(data); 349 return ret; 350 } 351 352 int uvc_probe_video(struct uvc_streaming *stream, 353 struct uvc_streaming_control *probe) 354 { 355 struct uvc_streaming_control probe_min, probe_max; 356 u16 bandwidth; 357 unsigned int i; 358 int ret; 359 360 /* Perform probing. The device should adjust the requested values 361 * according to its capabilities. However, some devices, namely the 362 * first generation UVC Logitech webcams, don't implement the Video 363 * Probe control properly, and just return the needed bandwidth. For 364 * that reason, if the needed bandwidth exceeds the maximum available 365 * bandwidth, try to lower the quality. 366 */ 367 ret = uvc_set_video_ctrl(stream, probe, 1); 368 if (ret < 0) 369 goto done; 370 371 /* Get the minimum and maximum values for compression settings. */ 372 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 373 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 374 if (ret < 0) 375 goto done; 376 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 377 if (ret < 0) 378 goto done; 379 380 probe->wCompQuality = probe_max.wCompQuality; 381 } 382 383 for (i = 0; i < 2; ++i) { 384 ret = uvc_set_video_ctrl(stream, probe, 1); 385 if (ret < 0) 386 goto done; 387 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 388 if (ret < 0) 389 goto done; 390 391 if (stream->intf->num_altsetting == 1) 392 break; 393 394 bandwidth = probe->dwMaxPayloadTransferSize; 395 if (bandwidth <= stream->maxpsize) 396 break; 397 398 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 399 ret = -ENOSPC; 400 goto done; 401 } 402 403 /* TODO: negotiate compression parameters */ 404 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 405 probe->wPFrameRate = probe_min.wPFrameRate; 406 probe->wCompQuality = probe_max.wCompQuality; 407 probe->wCompWindowSize = probe_min.wCompWindowSize; 408 } 409 410 done: 411 return ret; 412 } 413 414 static int uvc_commit_video(struct uvc_streaming *stream, 415 struct uvc_streaming_control *probe) 416 { 417 return uvc_set_video_ctrl(stream, probe, 0); 418 } 419 420 /* ----------------------------------------------------------------------------- 421 * Clocks and timestamps 422 */ 423 424 static inline ktime_t uvc_video_get_time(void) 425 { 426 if (uvc_clock_param == CLOCK_MONOTONIC) 427 return ktime_get(); 428 else 429 return ktime_get_real(); 430 } 431 432 static void 433 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 434 const u8 *data, int len) 435 { 436 struct uvc_clock_sample *sample; 437 unsigned int header_size; 438 bool has_pts = false; 439 bool has_scr = false; 440 unsigned long flags; 441 ktime_t time; 442 u16 host_sof; 443 u16 dev_sof; 444 445 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 446 case UVC_STREAM_PTS | UVC_STREAM_SCR: 447 header_size = 12; 448 has_pts = true; 449 has_scr = true; 450 break; 451 case UVC_STREAM_PTS: 452 header_size = 6; 453 has_pts = true; 454 break; 455 case UVC_STREAM_SCR: 456 header_size = 8; 457 has_scr = true; 458 break; 459 default: 460 header_size = 2; 461 break; 462 } 463 464 /* Check for invalid headers. */ 465 if (len < header_size) 466 return; 467 468 /* Extract the timestamps: 469 * 470 * - store the frame PTS in the buffer structure 471 * - if the SCR field is present, retrieve the host SOF counter and 472 * kernel timestamps and store them with the SCR STC and SOF fields 473 * in the ring buffer 474 */ 475 if (has_pts && buf != NULL) 476 buf->pts = get_unaligned_le32(&data[2]); 477 478 if (!has_scr) 479 return; 480 481 /* To limit the amount of data, drop SCRs with an SOF identical to the 482 * previous one. 483 */ 484 dev_sof = get_unaligned_le16(&data[header_size - 2]); 485 if (dev_sof == stream->clock.last_sof) 486 return; 487 488 stream->clock.last_sof = dev_sof; 489 490 host_sof = usb_get_current_frame_number(stream->dev->udev); 491 time = uvc_video_get_time(); 492 493 /* The UVC specification allows device implementations that can't obtain 494 * the USB frame number to keep their own frame counters as long as they 495 * match the size and frequency of the frame number associated with USB 496 * SOF tokens. The SOF values sent by such devices differ from the USB 497 * SOF tokens by a fixed offset that needs to be estimated and accounted 498 * for to make timestamp recovery as accurate as possible. 499 * 500 * The offset is estimated the first time a device SOF value is received 501 * as the difference between the host and device SOF values. As the two 502 * SOF values can differ slightly due to transmission delays, consider 503 * that the offset is null if the difference is not higher than 10 ms 504 * (negative differences can not happen and are thus considered as an 505 * offset). The video commit control wDelay field should be used to 506 * compute a dynamic threshold instead of using a fixed 10 ms value, but 507 * devices don't report reliable wDelay values. 508 * 509 * See uvc_video_clock_host_sof() for an explanation regarding why only 510 * the 8 LSBs of the delta are kept. 511 */ 512 if (stream->clock.sof_offset == (u16)-1) { 513 u16 delta_sof = (host_sof - dev_sof) & 255; 514 if (delta_sof >= 10) 515 stream->clock.sof_offset = delta_sof; 516 else 517 stream->clock.sof_offset = 0; 518 } 519 520 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 521 522 spin_lock_irqsave(&stream->clock.lock, flags); 523 524 sample = &stream->clock.samples[stream->clock.head]; 525 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 526 sample->dev_sof = dev_sof; 527 sample->host_sof = host_sof; 528 sample->host_time = time; 529 530 /* Update the sliding window head and count. */ 531 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 532 533 if (stream->clock.count < stream->clock.size) 534 stream->clock.count++; 535 536 spin_unlock_irqrestore(&stream->clock.lock, flags); 537 } 538 539 static void uvc_video_clock_reset(struct uvc_streaming *stream) 540 { 541 struct uvc_clock *clock = &stream->clock; 542 543 clock->head = 0; 544 clock->count = 0; 545 clock->last_sof = -1; 546 clock->sof_offset = -1; 547 } 548 549 static int uvc_video_clock_init(struct uvc_streaming *stream) 550 { 551 struct uvc_clock *clock = &stream->clock; 552 553 spin_lock_init(&clock->lock); 554 clock->size = 32; 555 556 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 557 GFP_KERNEL); 558 if (clock->samples == NULL) 559 return -ENOMEM; 560 561 uvc_video_clock_reset(stream); 562 563 return 0; 564 } 565 566 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 567 { 568 kfree(stream->clock.samples); 569 stream->clock.samples = NULL; 570 } 571 572 /* 573 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 574 * 575 * Host SOF counters reported by usb_get_current_frame_number() usually don't 576 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 577 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 578 * controller and its configuration. 579 * 580 * We thus need to recover the SOF value corresponding to the host frame number. 581 * As the device and host frame numbers are sampled in a short interval, the 582 * difference between their values should be equal to a small delta plus an 583 * integer multiple of 256 caused by the host frame number limited precision. 584 * 585 * To obtain the recovered host SOF value, compute the small delta by masking 586 * the high bits of the host frame counter and device SOF difference and add it 587 * to the device SOF value. 588 */ 589 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 590 { 591 /* The delta value can be negative. */ 592 s8 delta_sof; 593 594 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 595 596 return (sample->dev_sof + delta_sof) & 2047; 597 } 598 599 /* 600 * uvc_video_clock_update - Update the buffer timestamp 601 * 602 * This function converts the buffer PTS timestamp to the host clock domain by 603 * going through the USB SOF clock domain and stores the result in the V4L2 604 * buffer timestamp field. 605 * 606 * The relationship between the device clock and the host clock isn't known. 607 * However, the device and the host share the common USB SOF clock which can be 608 * used to recover that relationship. 609 * 610 * The relationship between the device clock and the USB SOF clock is considered 611 * to be linear over the clock samples sliding window and is given by 612 * 613 * SOF = m * PTS + p 614 * 615 * Several methods to compute the slope (m) and intercept (p) can be used. As 616 * the clock drift should be small compared to the sliding window size, we 617 * assume that the line that goes through the points at both ends of the window 618 * is a good approximation. Naming those points P1 and P2, we get 619 * 620 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 621 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 622 * 623 * or 624 * 625 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 626 * 627 * to avoid losing precision in the division. Similarly, the host timestamp is 628 * computed with 629 * 630 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 631 * 632 * SOF values are coded on 11 bits by USB. We extend their precision with 16 633 * decimal bits, leading to a 11.16 coding. 634 * 635 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 636 * be normalized using the nominal device clock frequency reported through the 637 * UVC descriptors. 638 * 639 * Both the PTS/STC and SOF counters roll over, after a fixed but device 640 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 641 * sliding window size is smaller than the rollover period, differences computed 642 * on unsigned integers will produce the correct result. However, the p term in 643 * the linear relations will be miscomputed. 644 * 645 * To fix the issue, we subtract a constant from the PTS and STC values to bring 646 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 647 * the 32 bit range without any rollover. 648 * 649 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 650 * computed by (1) will never be smaller than 0. This offset is then compensated 651 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 652 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 653 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 654 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 655 * SOF value at the end of the sliding window. 656 * 657 * Finally we subtract a constant from the host timestamps to bring the first 658 * timestamp of the sliding window to 1s. 659 */ 660 void uvc_video_clock_update(struct uvc_streaming *stream, 661 struct vb2_v4l2_buffer *vbuf, 662 struct uvc_buffer *buf) 663 { 664 struct uvc_clock *clock = &stream->clock; 665 struct uvc_clock_sample *first; 666 struct uvc_clock_sample *last; 667 unsigned long flags; 668 u64 timestamp; 669 u32 delta_stc; 670 u32 y1, y2; 671 u32 x1, x2; 672 u32 mean; 673 u32 sof; 674 u64 y; 675 676 if (!uvc_hw_timestamps_param) 677 return; 678 679 /* 680 * We will get called from __vb2_queue_cancel() if there are buffers 681 * done but not dequeued by the user, but the sample array has already 682 * been released at that time. Just bail out in that case. 683 */ 684 if (!clock->samples) 685 return; 686 687 spin_lock_irqsave(&clock->lock, flags); 688 689 if (clock->count < clock->size) 690 goto done; 691 692 first = &clock->samples[clock->head]; 693 last = &clock->samples[(clock->head - 1) % clock->size]; 694 695 /* First step, PTS to SOF conversion. */ 696 delta_stc = buf->pts - (1UL << 31); 697 x1 = first->dev_stc - delta_stc; 698 x2 = last->dev_stc - delta_stc; 699 if (x1 == x2) 700 goto done; 701 702 y1 = (first->dev_sof + 2048) << 16; 703 y2 = (last->dev_sof + 2048) << 16; 704 if (y2 < y1) 705 y2 += 2048 << 16; 706 707 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 708 - (u64)y2 * (u64)x1; 709 y = div_u64(y, x2 - x1); 710 711 sof = y; 712 713 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 714 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 715 stream->dev->name, buf->pts, 716 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 717 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 718 x1, x2, y1, y2, clock->sof_offset); 719 720 /* Second step, SOF to host clock conversion. */ 721 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 722 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 723 if (x2 < x1) 724 x2 += 2048 << 16; 725 if (x1 == x2) 726 goto done; 727 728 y1 = NSEC_PER_SEC; 729 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 730 731 /* Interpolated and host SOF timestamps can wrap around at slightly 732 * different times. Handle this by adding or removing 2048 to or from 733 * the computed SOF value to keep it close to the SOF samples mean 734 * value. 735 */ 736 mean = (x1 + x2) / 2; 737 if (mean - (1024 << 16) > sof) 738 sof += 2048 << 16; 739 else if (sof > mean + (1024 << 16)) 740 sof -= 2048 << 16; 741 742 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 743 - (u64)y2 * (u64)x1; 744 y = div_u64(y, x2 - x1); 745 746 timestamp = ktime_to_ns(first->host_time) + y - y1; 747 748 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 749 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 750 stream->dev->name, 751 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 752 y, timestamp, vbuf->vb2_buf.timestamp, 753 x1, first->host_sof, first->dev_sof, 754 x2, last->host_sof, last->dev_sof, y1, y2); 755 756 /* Update the V4L2 buffer. */ 757 vbuf->vb2_buf.timestamp = timestamp; 758 759 done: 760 spin_unlock_irqrestore(&clock->lock, flags); 761 } 762 763 /* ------------------------------------------------------------------------ 764 * Stream statistics 765 */ 766 767 static void uvc_video_stats_decode(struct uvc_streaming *stream, 768 const u8 *data, int len) 769 { 770 unsigned int header_size; 771 bool has_pts = false; 772 bool has_scr = false; 773 u16 uninitialized_var(scr_sof); 774 u32 uninitialized_var(scr_stc); 775 u32 uninitialized_var(pts); 776 777 if (stream->stats.stream.nb_frames == 0 && 778 stream->stats.frame.nb_packets == 0) 779 stream->stats.stream.start_ts = ktime_get(); 780 781 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 782 case UVC_STREAM_PTS | UVC_STREAM_SCR: 783 header_size = 12; 784 has_pts = true; 785 has_scr = true; 786 break; 787 case UVC_STREAM_PTS: 788 header_size = 6; 789 has_pts = true; 790 break; 791 case UVC_STREAM_SCR: 792 header_size = 8; 793 has_scr = true; 794 break; 795 default: 796 header_size = 2; 797 break; 798 } 799 800 /* Check for invalid headers. */ 801 if (len < header_size || data[0] < header_size) { 802 stream->stats.frame.nb_invalid++; 803 return; 804 } 805 806 /* Extract the timestamps. */ 807 if (has_pts) 808 pts = get_unaligned_le32(&data[2]); 809 810 if (has_scr) { 811 scr_stc = get_unaligned_le32(&data[header_size - 6]); 812 scr_sof = get_unaligned_le16(&data[header_size - 2]); 813 } 814 815 /* Is PTS constant through the whole frame ? */ 816 if (has_pts && stream->stats.frame.nb_pts) { 817 if (stream->stats.frame.pts != pts) { 818 stream->stats.frame.nb_pts_diffs++; 819 stream->stats.frame.last_pts_diff = 820 stream->stats.frame.nb_packets; 821 } 822 } 823 824 if (has_pts) { 825 stream->stats.frame.nb_pts++; 826 stream->stats.frame.pts = pts; 827 } 828 829 /* Do all frames have a PTS in their first non-empty packet, or before 830 * their first empty packet ? 831 */ 832 if (stream->stats.frame.size == 0) { 833 if (len > header_size) 834 stream->stats.frame.has_initial_pts = has_pts; 835 if (len == header_size && has_pts) 836 stream->stats.frame.has_early_pts = true; 837 } 838 839 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 840 if (has_scr && stream->stats.frame.nb_scr) { 841 if (stream->stats.frame.scr_stc != scr_stc) 842 stream->stats.frame.nb_scr_diffs++; 843 } 844 845 if (has_scr) { 846 /* Expand the SOF counter to 32 bits and store its value. */ 847 if (stream->stats.stream.nb_frames > 0 || 848 stream->stats.frame.nb_scr > 0) 849 stream->stats.stream.scr_sof_count += 850 (scr_sof - stream->stats.stream.scr_sof) % 2048; 851 stream->stats.stream.scr_sof = scr_sof; 852 853 stream->stats.frame.nb_scr++; 854 stream->stats.frame.scr_stc = scr_stc; 855 stream->stats.frame.scr_sof = scr_sof; 856 857 if (scr_sof < stream->stats.stream.min_sof) 858 stream->stats.stream.min_sof = scr_sof; 859 if (scr_sof > stream->stats.stream.max_sof) 860 stream->stats.stream.max_sof = scr_sof; 861 } 862 863 /* Record the first non-empty packet number. */ 864 if (stream->stats.frame.size == 0 && len > header_size) 865 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 866 867 /* Update the frame size. */ 868 stream->stats.frame.size += len - header_size; 869 870 /* Update the packets counters. */ 871 stream->stats.frame.nb_packets++; 872 if (len <= header_size) 873 stream->stats.frame.nb_empty++; 874 875 if (data[1] & UVC_STREAM_ERR) 876 stream->stats.frame.nb_errors++; 877 } 878 879 static void uvc_video_stats_update(struct uvc_streaming *stream) 880 { 881 struct uvc_stats_frame *frame = &stream->stats.frame; 882 883 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 884 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 885 "last pts/stc/sof %u/%u/%u\n", 886 stream->sequence, frame->first_data, 887 frame->nb_packets - frame->nb_empty, frame->nb_packets, 888 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 889 frame->has_early_pts ? "" : "!", 890 frame->has_initial_pts ? "" : "!", 891 frame->nb_scr_diffs, frame->nb_scr, 892 frame->pts, frame->scr_stc, frame->scr_sof); 893 894 stream->stats.stream.nb_frames++; 895 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 896 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 897 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 898 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 899 900 if (frame->has_early_pts) 901 stream->stats.stream.nb_pts_early++; 902 if (frame->has_initial_pts) 903 stream->stats.stream.nb_pts_initial++; 904 if (frame->last_pts_diff <= frame->first_data) 905 stream->stats.stream.nb_pts_constant++; 906 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 907 stream->stats.stream.nb_scr_count_ok++; 908 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 909 stream->stats.stream.nb_scr_diffs_ok++; 910 911 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 912 } 913 914 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 915 size_t size) 916 { 917 unsigned int scr_sof_freq; 918 unsigned int duration; 919 size_t count = 0; 920 921 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 922 * frequency this will not overflow before more than 1h. 923 */ 924 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 925 stream->stats.stream.start_ts); 926 if (duration != 0) 927 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 928 / duration; 929 else 930 scr_sof_freq = 0; 931 932 count += scnprintf(buf + count, size - count, 933 "frames: %u\npackets: %u\nempty: %u\n" 934 "errors: %u\ninvalid: %u\n", 935 stream->stats.stream.nb_frames, 936 stream->stats.stream.nb_packets, 937 stream->stats.stream.nb_empty, 938 stream->stats.stream.nb_errors, 939 stream->stats.stream.nb_invalid); 940 count += scnprintf(buf + count, size - count, 941 "pts: %u early, %u initial, %u ok\n", 942 stream->stats.stream.nb_pts_early, 943 stream->stats.stream.nb_pts_initial, 944 stream->stats.stream.nb_pts_constant); 945 count += scnprintf(buf + count, size - count, 946 "scr: %u count ok, %u diff ok\n", 947 stream->stats.stream.nb_scr_count_ok, 948 stream->stats.stream.nb_scr_diffs_ok); 949 count += scnprintf(buf + count, size - count, 950 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 951 stream->stats.stream.min_sof, 952 stream->stats.stream.max_sof, 953 scr_sof_freq / 1000, scr_sof_freq % 1000); 954 955 return count; 956 } 957 958 static void uvc_video_stats_start(struct uvc_streaming *stream) 959 { 960 memset(&stream->stats, 0, sizeof(stream->stats)); 961 stream->stats.stream.min_sof = 2048; 962 } 963 964 static void uvc_video_stats_stop(struct uvc_streaming *stream) 965 { 966 stream->stats.stream.stop_ts = ktime_get(); 967 } 968 969 /* ------------------------------------------------------------------------ 970 * Video codecs 971 */ 972 973 /* Video payload decoding is handled by uvc_video_decode_start(), 974 * uvc_video_decode_data() and uvc_video_decode_end(). 975 * 976 * uvc_video_decode_start is called with URB data at the start of a bulk or 977 * isochronous payload. It processes header data and returns the header size 978 * in bytes if successful. If an error occurs, it returns a negative error 979 * code. The following error codes have special meanings. 980 * 981 * - EAGAIN informs the caller that the current video buffer should be marked 982 * as done, and that the function should be called again with the same data 983 * and a new video buffer. This is used when end of frame conditions can be 984 * reliably detected at the beginning of the next frame only. 985 * 986 * If an error other than -EAGAIN is returned, the caller will drop the current 987 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 988 * made until the next payload. -ENODATA can be used to drop the current 989 * payload if no other error code is appropriate. 990 * 991 * uvc_video_decode_data is called for every URB with URB data. It copies the 992 * data to the video buffer. 993 * 994 * uvc_video_decode_end is called with header data at the end of a bulk or 995 * isochronous payload. It performs any additional header data processing and 996 * returns 0 or a negative error code if an error occurred. As header data have 997 * already been processed by uvc_video_decode_start, this functions isn't 998 * required to perform sanity checks a second time. 999 * 1000 * For isochronous transfers where a payload is always transferred in a single 1001 * URB, the three functions will be called in a row. 1002 * 1003 * To let the decoder process header data and update its internal state even 1004 * when no video buffer is available, uvc_video_decode_start must be prepared 1005 * to be called with a NULL buf parameter. uvc_video_decode_data and 1006 * uvc_video_decode_end will never be called with a NULL buffer. 1007 */ 1008 static int uvc_video_decode_start(struct uvc_streaming *stream, 1009 struct uvc_buffer *buf, const u8 *data, int len) 1010 { 1011 u8 fid; 1012 1013 /* Sanity checks: 1014 * - packet must be at least 2 bytes long 1015 * - bHeaderLength value must be at least 2 bytes (see above) 1016 * - bHeaderLength value can't be larger than the packet size. 1017 */ 1018 if (len < 2 || data[0] < 2 || data[0] > len) { 1019 stream->stats.frame.nb_invalid++; 1020 return -EINVAL; 1021 } 1022 1023 fid = data[1] & UVC_STREAM_FID; 1024 1025 /* Increase the sequence number regardless of any buffer states, so 1026 * that discontinuous sequence numbers always indicate lost frames. 1027 */ 1028 if (stream->last_fid != fid) { 1029 stream->sequence++; 1030 if (stream->sequence) 1031 uvc_video_stats_update(stream); 1032 } 1033 1034 uvc_video_clock_decode(stream, buf, data, len); 1035 uvc_video_stats_decode(stream, data, len); 1036 1037 /* Store the payload FID bit and return immediately when the buffer is 1038 * NULL. 1039 */ 1040 if (buf == NULL) { 1041 stream->last_fid = fid; 1042 return -ENODATA; 1043 } 1044 1045 /* Mark the buffer as bad if the error bit is set. */ 1046 if (data[1] & UVC_STREAM_ERR) { 1047 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1048 "set).\n"); 1049 buf->error = 1; 1050 } 1051 1052 /* Synchronize to the input stream by waiting for the FID bit to be 1053 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1054 * stream->last_fid is initialized to -1, so the first isochronous 1055 * frame will always be in sync. 1056 * 1057 * If the device doesn't toggle the FID bit, invert stream->last_fid 1058 * when the EOF bit is set to force synchronisation on the next packet. 1059 */ 1060 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1061 if (fid == stream->last_fid) { 1062 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1063 "sync).\n"); 1064 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1065 (data[1] & UVC_STREAM_EOF)) 1066 stream->last_fid ^= UVC_STREAM_FID; 1067 return -ENODATA; 1068 } 1069 1070 buf->buf.field = V4L2_FIELD_NONE; 1071 buf->buf.sequence = stream->sequence; 1072 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1073 1074 /* TODO: Handle PTS and SCR. */ 1075 buf->state = UVC_BUF_STATE_ACTIVE; 1076 } 1077 1078 /* Mark the buffer as done if we're at the beginning of a new frame. 1079 * End of frame detection is better implemented by checking the EOF 1080 * bit (FID bit toggling is delayed by one frame compared to the EOF 1081 * bit), but some devices don't set the bit at end of frame (and the 1082 * last payload can be lost anyway). We thus must check if the FID has 1083 * been toggled. 1084 * 1085 * stream->last_fid is initialized to -1, so the first isochronous 1086 * frame will never trigger an end of frame detection. 1087 * 1088 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1089 * as it doesn't make sense to return an empty buffer. This also 1090 * avoids detecting end of frame conditions at FID toggling if the 1091 * previous payload had the EOF bit set. 1092 */ 1093 if (fid != stream->last_fid && buf->bytesused != 0) { 1094 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1095 "toggled).\n"); 1096 buf->state = UVC_BUF_STATE_READY; 1097 return -EAGAIN; 1098 } 1099 1100 stream->last_fid = fid; 1101 1102 return data[0]; 1103 } 1104 1105 /* 1106 * uvc_video_decode_data_work: Asynchronous memcpy processing 1107 * 1108 * Copy URB data to video buffers in process context, releasing buffer 1109 * references and requeuing the URB when done. 1110 */ 1111 static void uvc_video_copy_data_work(struct work_struct *work) 1112 { 1113 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1114 unsigned int i; 1115 int ret; 1116 1117 for (i = 0; i < uvc_urb->async_operations; i++) { 1118 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1119 1120 memcpy(op->dst, op->src, op->len); 1121 1122 /* Release reference taken on this buffer. */ 1123 uvc_queue_buffer_release(op->buf); 1124 } 1125 1126 ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL); 1127 if (ret < 0) 1128 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1129 ret); 1130 } 1131 1132 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1133 struct uvc_buffer *buf, const u8 *data, int len) 1134 { 1135 unsigned int active_op = uvc_urb->async_operations; 1136 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1137 unsigned int maxlen; 1138 1139 if (len <= 0) 1140 return; 1141 1142 maxlen = buf->length - buf->bytesused; 1143 1144 /* Take a buffer reference for async work. */ 1145 kref_get(&buf->ref); 1146 1147 op->buf = buf; 1148 op->src = data; 1149 op->dst = buf->mem + buf->bytesused; 1150 op->len = min_t(unsigned int, len, maxlen); 1151 1152 buf->bytesused += op->len; 1153 1154 /* Complete the current frame if the buffer size was exceeded. */ 1155 if (len > maxlen) { 1156 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1157 buf->error = 1; 1158 buf->state = UVC_BUF_STATE_READY; 1159 } 1160 1161 uvc_urb->async_operations++; 1162 } 1163 1164 static void uvc_video_decode_end(struct uvc_streaming *stream, 1165 struct uvc_buffer *buf, const u8 *data, int len) 1166 { 1167 /* Mark the buffer as done if the EOF marker is set. */ 1168 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1169 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1170 if (data[0] == len) 1171 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1172 buf->state = UVC_BUF_STATE_READY; 1173 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1174 stream->last_fid ^= UVC_STREAM_FID; 1175 } 1176 } 1177 1178 /* Video payload encoding is handled by uvc_video_encode_header() and 1179 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1180 * 1181 * uvc_video_encode_header is called at the start of a payload. It adds header 1182 * data to the transfer buffer and returns the header size. As the only known 1183 * UVC output device transfers a whole frame in a single payload, the EOF bit 1184 * is always set in the header. 1185 * 1186 * uvc_video_encode_data is called for every URB and copies the data from the 1187 * video buffer to the transfer buffer. 1188 */ 1189 static int uvc_video_encode_header(struct uvc_streaming *stream, 1190 struct uvc_buffer *buf, u8 *data, int len) 1191 { 1192 data[0] = 2; /* Header length */ 1193 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1194 | (stream->last_fid & UVC_STREAM_FID); 1195 return 2; 1196 } 1197 1198 static int uvc_video_encode_data(struct uvc_streaming *stream, 1199 struct uvc_buffer *buf, u8 *data, int len) 1200 { 1201 struct uvc_video_queue *queue = &stream->queue; 1202 unsigned int nbytes; 1203 void *mem; 1204 1205 /* Copy video data to the URB buffer. */ 1206 mem = buf->mem + queue->buf_used; 1207 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1208 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1209 nbytes); 1210 memcpy(data, mem, nbytes); 1211 1212 queue->buf_used += nbytes; 1213 1214 return nbytes; 1215 } 1216 1217 /* ------------------------------------------------------------------------ 1218 * Metadata 1219 */ 1220 1221 /* 1222 * Additionally to the payload headers we also want to provide the user with USB 1223 * Frame Numbers and system time values. The resulting buffer is thus composed 1224 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1225 * Number, and a copy of the payload header. 1226 * 1227 * Ideally we want to capture all payload headers for each frame. However, their 1228 * number is unknown and unbound. We thus drop headers that contain no vendor 1229 * data and that either contain no SCR value or an SCR value identical to the 1230 * previous header. 1231 */ 1232 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1233 struct uvc_buffer *meta_buf, 1234 const u8 *mem, unsigned int length) 1235 { 1236 struct uvc_meta_buf *meta; 1237 size_t len_std = 2; 1238 bool has_pts, has_scr; 1239 unsigned long flags; 1240 unsigned int sof; 1241 ktime_t time; 1242 const u8 *scr; 1243 1244 if (!meta_buf || length == 2) 1245 return; 1246 1247 if (meta_buf->length - meta_buf->bytesused < 1248 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1249 meta_buf->error = 1; 1250 return; 1251 } 1252 1253 has_pts = mem[1] & UVC_STREAM_PTS; 1254 has_scr = mem[1] & UVC_STREAM_SCR; 1255 1256 if (has_pts) { 1257 len_std += 4; 1258 scr = mem + 6; 1259 } else { 1260 scr = mem + 2; 1261 } 1262 1263 if (has_scr) 1264 len_std += 6; 1265 1266 if (stream->meta.format == V4L2_META_FMT_UVC) 1267 length = len_std; 1268 1269 if (length == len_std && (!has_scr || 1270 !memcmp(scr, stream->clock.last_scr, 6))) 1271 return; 1272 1273 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1274 local_irq_save(flags); 1275 time = uvc_video_get_time(); 1276 sof = usb_get_current_frame_number(stream->dev->udev); 1277 local_irq_restore(flags); 1278 put_unaligned(ktime_to_ns(time), &meta->ns); 1279 put_unaligned(sof, &meta->sof); 1280 1281 if (has_scr) 1282 memcpy(stream->clock.last_scr, scr, 6); 1283 1284 memcpy(&meta->length, mem, length); 1285 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1286 1287 uvc_trace(UVC_TRACE_FRAME, 1288 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1289 __func__, ktime_to_ns(time), meta->sof, meta->length, 1290 meta->flags, 1291 has_pts ? *(u32 *)meta->buf : 0, 1292 has_scr ? *(u32 *)scr : 0, 1293 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1294 } 1295 1296 /* ------------------------------------------------------------------------ 1297 * URB handling 1298 */ 1299 1300 /* 1301 * Set error flag for incomplete buffer. 1302 */ 1303 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1304 struct uvc_buffer *buf) 1305 { 1306 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1307 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1308 buf->error = 1; 1309 } 1310 1311 /* 1312 * Completion handler for video URBs. 1313 */ 1314 1315 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1316 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1317 { 1318 uvc_video_validate_buffer(stream, *video_buf); 1319 1320 if (*meta_buf) { 1321 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1322 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1323 1324 vb2_meta->sequence = vb2_video->sequence; 1325 vb2_meta->field = vb2_video->field; 1326 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1327 1328 (*meta_buf)->state = UVC_BUF_STATE_READY; 1329 if (!(*meta_buf)->error) 1330 (*meta_buf)->error = (*video_buf)->error; 1331 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1332 *meta_buf); 1333 } 1334 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1335 } 1336 1337 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1338 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1339 { 1340 struct urb *urb = uvc_urb->urb; 1341 struct uvc_streaming *stream = uvc_urb->stream; 1342 u8 *mem; 1343 int ret, i; 1344 1345 for (i = 0; i < urb->number_of_packets; ++i) { 1346 if (urb->iso_frame_desc[i].status < 0) { 1347 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1348 "lost (%d).\n", urb->iso_frame_desc[i].status); 1349 /* Mark the buffer as faulty. */ 1350 if (buf != NULL) 1351 buf->error = 1; 1352 continue; 1353 } 1354 1355 /* Decode the payload header. */ 1356 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1357 do { 1358 ret = uvc_video_decode_start(stream, buf, mem, 1359 urb->iso_frame_desc[i].actual_length); 1360 if (ret == -EAGAIN) 1361 uvc_video_next_buffers(stream, &buf, &meta_buf); 1362 } while (ret == -EAGAIN); 1363 1364 if (ret < 0) 1365 continue; 1366 1367 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1368 1369 /* Decode the payload data. */ 1370 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1371 urb->iso_frame_desc[i].actual_length - ret); 1372 1373 /* Process the header again. */ 1374 uvc_video_decode_end(stream, buf, mem, 1375 urb->iso_frame_desc[i].actual_length); 1376 1377 if (buf->state == UVC_BUF_STATE_READY) 1378 uvc_video_next_buffers(stream, &buf, &meta_buf); 1379 } 1380 } 1381 1382 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1383 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1384 { 1385 struct urb *urb = uvc_urb->urb; 1386 struct uvc_streaming *stream = uvc_urb->stream; 1387 u8 *mem; 1388 int len, ret; 1389 1390 /* 1391 * Ignore ZLPs if they're not part of a frame, otherwise process them 1392 * to trigger the end of payload detection. 1393 */ 1394 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1395 return; 1396 1397 mem = urb->transfer_buffer; 1398 len = urb->actual_length; 1399 stream->bulk.payload_size += len; 1400 1401 /* If the URB is the first of its payload, decode and save the 1402 * header. 1403 */ 1404 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1405 do { 1406 ret = uvc_video_decode_start(stream, buf, mem, len); 1407 if (ret == -EAGAIN) 1408 uvc_video_next_buffers(stream, &buf, &meta_buf); 1409 } while (ret == -EAGAIN); 1410 1411 /* If an error occurred skip the rest of the payload. */ 1412 if (ret < 0 || buf == NULL) { 1413 stream->bulk.skip_payload = 1; 1414 } else { 1415 memcpy(stream->bulk.header, mem, ret); 1416 stream->bulk.header_size = ret; 1417 1418 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1419 1420 mem += ret; 1421 len -= ret; 1422 } 1423 } 1424 1425 /* The buffer queue might have been cancelled while a bulk transfer 1426 * was in progress, so we can reach here with buf equal to NULL. Make 1427 * sure buf is never dereferenced if NULL. 1428 */ 1429 1430 /* Prepare video data for processing. */ 1431 if (!stream->bulk.skip_payload && buf != NULL) 1432 uvc_video_decode_data(uvc_urb, buf, mem, len); 1433 1434 /* Detect the payload end by a URB smaller than the maximum size (or 1435 * a payload size equal to the maximum) and process the header again. 1436 */ 1437 if (urb->actual_length < urb->transfer_buffer_length || 1438 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1439 if (!stream->bulk.skip_payload && buf != NULL) { 1440 uvc_video_decode_end(stream, buf, stream->bulk.header, 1441 stream->bulk.payload_size); 1442 if (buf->state == UVC_BUF_STATE_READY) 1443 uvc_video_next_buffers(stream, &buf, &meta_buf); 1444 } 1445 1446 stream->bulk.header_size = 0; 1447 stream->bulk.skip_payload = 0; 1448 stream->bulk.payload_size = 0; 1449 } 1450 } 1451 1452 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1453 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1454 { 1455 struct urb *urb = uvc_urb->urb; 1456 struct uvc_streaming *stream = uvc_urb->stream; 1457 1458 u8 *mem = urb->transfer_buffer; 1459 int len = stream->urb_size, ret; 1460 1461 if (buf == NULL) { 1462 urb->transfer_buffer_length = 0; 1463 return; 1464 } 1465 1466 /* If the URB is the first of its payload, add the header. */ 1467 if (stream->bulk.header_size == 0) { 1468 ret = uvc_video_encode_header(stream, buf, mem, len); 1469 stream->bulk.header_size = ret; 1470 stream->bulk.payload_size += ret; 1471 mem += ret; 1472 len -= ret; 1473 } 1474 1475 /* Process video data. */ 1476 ret = uvc_video_encode_data(stream, buf, mem, len); 1477 1478 stream->bulk.payload_size += ret; 1479 len -= ret; 1480 1481 if (buf->bytesused == stream->queue.buf_used || 1482 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1483 if (buf->bytesused == stream->queue.buf_used) { 1484 stream->queue.buf_used = 0; 1485 buf->state = UVC_BUF_STATE_READY; 1486 buf->buf.sequence = ++stream->sequence; 1487 uvc_queue_next_buffer(&stream->queue, buf); 1488 stream->last_fid ^= UVC_STREAM_FID; 1489 } 1490 1491 stream->bulk.header_size = 0; 1492 stream->bulk.payload_size = 0; 1493 } 1494 1495 urb->transfer_buffer_length = stream->urb_size - len; 1496 } 1497 1498 static void uvc_video_complete(struct urb *urb) 1499 { 1500 struct uvc_urb *uvc_urb = urb->context; 1501 struct uvc_streaming *stream = uvc_urb->stream; 1502 struct uvc_video_queue *queue = &stream->queue; 1503 struct uvc_video_queue *qmeta = &stream->meta.queue; 1504 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1505 struct uvc_buffer *buf = NULL; 1506 struct uvc_buffer *buf_meta = NULL; 1507 unsigned long flags; 1508 int ret; 1509 1510 switch (urb->status) { 1511 case 0: 1512 break; 1513 1514 default: 1515 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1516 "completion handler.\n", urb->status); 1517 /* fall through */ 1518 case -ENOENT: /* usb_poison_urb() called. */ 1519 if (stream->frozen) 1520 return; 1521 /* fall through */ 1522 case -ECONNRESET: /* usb_unlink_urb() called. */ 1523 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1524 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1525 if (vb2_qmeta) 1526 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1527 return; 1528 } 1529 1530 buf = uvc_queue_get_current_buffer(queue); 1531 1532 if (vb2_qmeta) { 1533 spin_lock_irqsave(&qmeta->irqlock, flags); 1534 if (!list_empty(&qmeta->irqqueue)) 1535 buf_meta = list_first_entry(&qmeta->irqqueue, 1536 struct uvc_buffer, queue); 1537 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1538 } 1539 1540 /* Re-initialise the URB async work. */ 1541 uvc_urb->async_operations = 0; 1542 1543 /* 1544 * Process the URB headers, and optionally queue expensive memcpy tasks 1545 * to be deferred to a work queue. 1546 */ 1547 stream->decode(uvc_urb, buf, buf_meta); 1548 1549 /* If no async work is needed, resubmit the URB immediately. */ 1550 if (!uvc_urb->async_operations) { 1551 ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC); 1552 if (ret < 0) 1553 uvc_printk(KERN_ERR, 1554 "Failed to resubmit video URB (%d).\n", 1555 ret); 1556 return; 1557 } 1558 1559 queue_work(stream->async_wq, &uvc_urb->work); 1560 } 1561 1562 /* 1563 * Free transfer buffers. 1564 */ 1565 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1566 { 1567 struct uvc_urb *uvc_urb; 1568 1569 for_each_uvc_urb(uvc_urb, stream) { 1570 if (!uvc_urb->buffer) 1571 continue; 1572 1573 #ifndef CONFIG_DMA_NONCOHERENT 1574 usb_free_coherent(stream->dev->udev, stream->urb_size, 1575 uvc_urb->buffer, uvc_urb->dma); 1576 #else 1577 kfree(uvc_urb->buffer); 1578 #endif 1579 uvc_urb->buffer = NULL; 1580 } 1581 1582 stream->urb_size = 0; 1583 } 1584 1585 /* 1586 * Allocate transfer buffers. This function can be called with buffers 1587 * already allocated when resuming from suspend, in which case it will 1588 * return without touching the buffers. 1589 * 1590 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1591 * system is too low on memory try successively smaller numbers of packets 1592 * until allocation succeeds. 1593 * 1594 * Return the number of allocated packets on success or 0 when out of memory. 1595 */ 1596 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1597 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1598 { 1599 unsigned int npackets; 1600 unsigned int i; 1601 1602 /* Buffers are already allocated, bail out. */ 1603 if (stream->urb_size) 1604 return stream->urb_size / psize; 1605 1606 /* Compute the number of packets. Bulk endpoints might transfer UVC 1607 * payloads across multiple URBs. 1608 */ 1609 npackets = DIV_ROUND_UP(size, psize); 1610 if (npackets > UVC_MAX_PACKETS) 1611 npackets = UVC_MAX_PACKETS; 1612 1613 /* Retry allocations until one succeed. */ 1614 for (; npackets > 1; npackets /= 2) { 1615 for (i = 0; i < UVC_URBS; ++i) { 1616 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1617 1618 stream->urb_size = psize * npackets; 1619 #ifndef CONFIG_DMA_NONCOHERENT 1620 uvc_urb->buffer = usb_alloc_coherent( 1621 stream->dev->udev, stream->urb_size, 1622 gfp_flags | __GFP_NOWARN, &uvc_urb->dma); 1623 #else 1624 uvc_urb->buffer = 1625 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1626 #endif 1627 if (!uvc_urb->buffer) { 1628 uvc_free_urb_buffers(stream); 1629 break; 1630 } 1631 1632 uvc_urb->stream = stream; 1633 } 1634 1635 if (i == UVC_URBS) { 1636 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1637 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1638 psize); 1639 return npackets; 1640 } 1641 } 1642 1643 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1644 "per packet).\n", psize); 1645 return 0; 1646 } 1647 1648 /* 1649 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1650 */ 1651 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1652 int free_buffers) 1653 { 1654 struct uvc_urb *uvc_urb; 1655 1656 uvc_video_stats_stop(stream); 1657 1658 /* 1659 * We must poison the URBs rather than kill them to ensure that even 1660 * after the completion handler returns, any asynchronous workqueues 1661 * will be prevented from resubmitting the URBs. 1662 */ 1663 for_each_uvc_urb(uvc_urb, stream) 1664 usb_poison_urb(uvc_urb->urb); 1665 1666 flush_workqueue(stream->async_wq); 1667 1668 for_each_uvc_urb(uvc_urb, stream) { 1669 usb_free_urb(uvc_urb->urb); 1670 uvc_urb->urb = NULL; 1671 } 1672 1673 if (free_buffers) 1674 uvc_free_urb_buffers(stream); 1675 } 1676 1677 /* 1678 * Compute the maximum number of bytes per interval for an endpoint. 1679 */ 1680 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1681 struct usb_host_endpoint *ep) 1682 { 1683 u16 psize; 1684 u16 mult; 1685 1686 switch (dev->speed) { 1687 case USB_SPEED_SUPER: 1688 case USB_SPEED_SUPER_PLUS: 1689 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1690 case USB_SPEED_HIGH: 1691 psize = usb_endpoint_maxp(&ep->desc); 1692 mult = usb_endpoint_maxp_mult(&ep->desc); 1693 return psize * mult; 1694 case USB_SPEED_WIRELESS: 1695 psize = usb_endpoint_maxp(&ep->desc); 1696 return psize; 1697 default: 1698 psize = usb_endpoint_maxp(&ep->desc); 1699 return psize; 1700 } 1701 } 1702 1703 /* 1704 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1705 * is given by the endpoint. 1706 */ 1707 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1708 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1709 { 1710 struct urb *urb; 1711 struct uvc_urb *uvc_urb; 1712 unsigned int npackets, i; 1713 u16 psize; 1714 u32 size; 1715 1716 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1717 size = stream->ctrl.dwMaxVideoFrameSize; 1718 1719 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1720 if (npackets == 0) 1721 return -ENOMEM; 1722 1723 size = npackets * psize; 1724 1725 for_each_uvc_urb(uvc_urb, stream) { 1726 urb = usb_alloc_urb(npackets, gfp_flags); 1727 if (urb == NULL) { 1728 uvc_video_stop_transfer(stream, 1); 1729 return -ENOMEM; 1730 } 1731 1732 urb->dev = stream->dev->udev; 1733 urb->context = uvc_urb; 1734 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1735 ep->desc.bEndpointAddress); 1736 #ifndef CONFIG_DMA_NONCOHERENT 1737 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1738 urb->transfer_dma = uvc_urb->dma; 1739 #else 1740 urb->transfer_flags = URB_ISO_ASAP; 1741 #endif 1742 urb->interval = ep->desc.bInterval; 1743 urb->transfer_buffer = uvc_urb->buffer; 1744 urb->complete = uvc_video_complete; 1745 urb->number_of_packets = npackets; 1746 urb->transfer_buffer_length = size; 1747 1748 for (i = 0; i < npackets; ++i) { 1749 urb->iso_frame_desc[i].offset = i * psize; 1750 urb->iso_frame_desc[i].length = psize; 1751 } 1752 1753 uvc_urb->urb = urb; 1754 } 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1761 * given by the endpoint. 1762 */ 1763 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1764 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1765 { 1766 struct urb *urb; 1767 struct uvc_urb *uvc_urb; 1768 unsigned int npackets, pipe; 1769 u16 psize; 1770 u32 size; 1771 1772 psize = usb_endpoint_maxp(&ep->desc); 1773 size = stream->ctrl.dwMaxPayloadTransferSize; 1774 stream->bulk.max_payload_size = size; 1775 1776 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1777 if (npackets == 0) 1778 return -ENOMEM; 1779 1780 size = npackets * psize; 1781 1782 if (usb_endpoint_dir_in(&ep->desc)) 1783 pipe = usb_rcvbulkpipe(stream->dev->udev, 1784 ep->desc.bEndpointAddress); 1785 else 1786 pipe = usb_sndbulkpipe(stream->dev->udev, 1787 ep->desc.bEndpointAddress); 1788 1789 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1790 size = 0; 1791 1792 for_each_uvc_urb(uvc_urb, stream) { 1793 urb = usb_alloc_urb(0, gfp_flags); 1794 if (urb == NULL) { 1795 uvc_video_stop_transfer(stream, 1); 1796 return -ENOMEM; 1797 } 1798 1799 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1800 size, uvc_video_complete, uvc_urb); 1801 #ifndef CONFIG_DMA_NONCOHERENT 1802 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1803 urb->transfer_dma = uvc_urb->dma; 1804 #endif 1805 1806 uvc_urb->urb = urb; 1807 } 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1814 */ 1815 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1816 gfp_t gfp_flags) 1817 { 1818 struct usb_interface *intf = stream->intf; 1819 struct usb_host_endpoint *ep; 1820 struct uvc_urb *uvc_urb; 1821 unsigned int i; 1822 int ret; 1823 1824 stream->sequence = -1; 1825 stream->last_fid = -1; 1826 stream->bulk.header_size = 0; 1827 stream->bulk.skip_payload = 0; 1828 stream->bulk.payload_size = 0; 1829 1830 uvc_video_stats_start(stream); 1831 1832 if (intf->num_altsetting > 1) { 1833 struct usb_host_endpoint *best_ep = NULL; 1834 unsigned int best_psize = UINT_MAX; 1835 unsigned int bandwidth; 1836 unsigned int uninitialized_var(altsetting); 1837 int intfnum = stream->intfnum; 1838 1839 /* Isochronous endpoint, select the alternate setting. */ 1840 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1841 1842 if (bandwidth == 0) { 1843 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1844 "bandwidth, defaulting to lowest.\n"); 1845 bandwidth = 1; 1846 } else { 1847 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1848 "B/frame bandwidth.\n", bandwidth); 1849 } 1850 1851 for (i = 0; i < intf->num_altsetting; ++i) { 1852 struct usb_host_interface *alts; 1853 unsigned int psize; 1854 1855 alts = &intf->altsetting[i]; 1856 ep = uvc_find_endpoint(alts, 1857 stream->header.bEndpointAddress); 1858 if (ep == NULL) 1859 continue; 1860 1861 /* Check if the bandwidth is high enough. */ 1862 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1863 if (psize >= bandwidth && psize <= best_psize) { 1864 altsetting = alts->desc.bAlternateSetting; 1865 best_psize = psize; 1866 best_ep = ep; 1867 } 1868 } 1869 1870 if (best_ep == NULL) { 1871 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1872 "for requested bandwidth.\n"); 1873 return -EIO; 1874 } 1875 1876 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1877 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1878 1879 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1880 if (ret < 0) 1881 return ret; 1882 1883 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1884 } else { 1885 /* Bulk endpoint, proceed to URB initialization. */ 1886 ep = uvc_find_endpoint(&intf->altsetting[0], 1887 stream->header.bEndpointAddress); 1888 if (ep == NULL) 1889 return -EIO; 1890 1891 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1892 } 1893 1894 if (ret < 0) 1895 return ret; 1896 1897 /* Submit the URBs. */ 1898 for_each_uvc_urb(uvc_urb, stream) { 1899 ret = usb_submit_urb(uvc_urb->urb, gfp_flags); 1900 if (ret < 0) { 1901 uvc_printk(KERN_ERR, "Failed to submit URB %u (%d).\n", 1902 uvc_urb_index(uvc_urb), ret); 1903 uvc_video_stop_transfer(stream, 1); 1904 return ret; 1905 } 1906 } 1907 1908 /* The Logitech C920 temporarily forgets that it should not be adjusting 1909 * Exposure Absolute during init so restore controls to stored values. 1910 */ 1911 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1912 uvc_ctrl_restore_values(stream->dev); 1913 1914 return 0; 1915 } 1916 1917 /* -------------------------------------------------------------------------- 1918 * Suspend/resume 1919 */ 1920 1921 /* 1922 * Stop streaming without disabling the video queue. 1923 * 1924 * To let userspace applications resume without trouble, we must not touch the 1925 * video buffers in any way. We mark the device as frozen to make sure the URB 1926 * completion handler won't try to cancel the queue when we kill the URBs. 1927 */ 1928 int uvc_video_suspend(struct uvc_streaming *stream) 1929 { 1930 if (!uvc_queue_streaming(&stream->queue)) 1931 return 0; 1932 1933 stream->frozen = 1; 1934 uvc_video_stop_transfer(stream, 0); 1935 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1936 return 0; 1937 } 1938 1939 /* 1940 * Reconfigure the video interface and restart streaming if it was enabled 1941 * before suspend. 1942 * 1943 * If an error occurs, disable the video queue. This will wake all pending 1944 * buffers, making sure userspace applications are notified of the problem 1945 * instead of waiting forever. 1946 */ 1947 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1948 { 1949 int ret; 1950 1951 /* If the bus has been reset on resume, set the alternate setting to 0. 1952 * This should be the default value, but some devices crash or otherwise 1953 * misbehave if they don't receive a SET_INTERFACE request before any 1954 * other video control request. 1955 */ 1956 if (reset) 1957 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1958 1959 stream->frozen = 0; 1960 1961 uvc_video_clock_reset(stream); 1962 1963 if (!uvc_queue_streaming(&stream->queue)) 1964 return 0; 1965 1966 ret = uvc_commit_video(stream, &stream->ctrl); 1967 if (ret < 0) 1968 return ret; 1969 1970 return uvc_video_start_transfer(stream, GFP_NOIO); 1971 } 1972 1973 /* ------------------------------------------------------------------------ 1974 * Video device 1975 */ 1976 1977 /* 1978 * Initialize the UVC video device by switching to alternate setting 0 and 1979 * retrieve the default format. 1980 * 1981 * Some cameras (namely the Fuji Finepix) set the format and frame 1982 * indexes to zero. The UVC standard doesn't clearly make this a spec 1983 * violation, so try to silently fix the values if possible. 1984 * 1985 * This function is called before registering the device with V4L. 1986 */ 1987 int uvc_video_init(struct uvc_streaming *stream) 1988 { 1989 struct uvc_streaming_control *probe = &stream->ctrl; 1990 struct uvc_format *format = NULL; 1991 struct uvc_frame *frame = NULL; 1992 struct uvc_urb *uvc_urb; 1993 unsigned int i; 1994 int ret; 1995 1996 if (stream->nformats == 0) { 1997 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1998 return -EINVAL; 1999 } 2000 2001 atomic_set(&stream->active, 0); 2002 2003 /* Alternate setting 0 should be the default, yet the XBox Live Vision 2004 * Cam (and possibly other devices) crash or otherwise misbehave if 2005 * they don't receive a SET_INTERFACE request before any other video 2006 * control request. 2007 */ 2008 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2009 2010 /* Set the streaming probe control with default streaming parameters 2011 * retrieved from the device. Webcams that don't support GET_DEF 2012 * requests on the probe control will just keep their current streaming 2013 * parameters. 2014 */ 2015 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2016 uvc_set_video_ctrl(stream, probe, 1); 2017 2018 /* Initialize the streaming parameters with the probe control current 2019 * value. This makes sure SET_CUR requests on the streaming commit 2020 * control will always use values retrieved from a successful GET_CUR 2021 * request on the probe control, as required by the UVC specification. 2022 */ 2023 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2024 if (ret < 0) 2025 return ret; 2026 2027 /* Check if the default format descriptor exists. Use the first 2028 * available format otherwise. 2029 */ 2030 for (i = stream->nformats; i > 0; --i) { 2031 format = &stream->format[i-1]; 2032 if (format->index == probe->bFormatIndex) 2033 break; 2034 } 2035 2036 if (format->nframes == 0) { 2037 uvc_printk(KERN_INFO, "No frame descriptor found for the " 2038 "default format.\n"); 2039 return -EINVAL; 2040 } 2041 2042 /* Zero bFrameIndex might be correct. Stream-based formats (including 2043 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2044 * descriptor with bFrameIndex set to zero. If the default frame 2045 * descriptor is not found, use the first available frame. 2046 */ 2047 for (i = format->nframes; i > 0; --i) { 2048 frame = &format->frame[i-1]; 2049 if (frame->bFrameIndex == probe->bFrameIndex) 2050 break; 2051 } 2052 2053 probe->bFormatIndex = format->index; 2054 probe->bFrameIndex = frame->bFrameIndex; 2055 2056 stream->def_format = format; 2057 stream->cur_format = format; 2058 stream->cur_frame = frame; 2059 2060 /* Select the video decoding function */ 2061 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2062 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2063 stream->decode = uvc_video_decode_isight; 2064 else if (stream->intf->num_altsetting > 1) 2065 stream->decode = uvc_video_decode_isoc; 2066 else 2067 stream->decode = uvc_video_decode_bulk; 2068 } else { 2069 if (stream->intf->num_altsetting == 1) 2070 stream->decode = uvc_video_encode_bulk; 2071 else { 2072 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 2073 "supported for video output devices.\n"); 2074 return -EINVAL; 2075 } 2076 } 2077 2078 /* Prepare asynchronous work items. */ 2079 for_each_uvc_urb(uvc_urb, stream) 2080 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2081 2082 return 0; 2083 } 2084 2085 int uvc_video_start_streaming(struct uvc_streaming *stream) 2086 { 2087 int ret; 2088 2089 ret = uvc_video_clock_init(stream); 2090 if (ret < 0) 2091 return ret; 2092 2093 /* Commit the streaming parameters. */ 2094 ret = uvc_commit_video(stream, &stream->ctrl); 2095 if (ret < 0) 2096 goto error_commit; 2097 2098 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2099 if (ret < 0) 2100 goto error_video; 2101 2102 return 0; 2103 2104 error_video: 2105 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2106 error_commit: 2107 uvc_video_clock_cleanup(stream); 2108 2109 return ret; 2110 } 2111 2112 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2113 { 2114 uvc_video_stop_transfer(stream, 1); 2115 2116 if (stream->intf->num_altsetting > 1) { 2117 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2118 } else { 2119 /* UVC doesn't specify how to inform a bulk-based device 2120 * when the video stream is stopped. Windows sends a 2121 * CLEAR_FEATURE(HALT) request to the video streaming 2122 * bulk endpoint, mimic the same behaviour. 2123 */ 2124 unsigned int epnum = stream->header.bEndpointAddress 2125 & USB_ENDPOINT_NUMBER_MASK; 2126 unsigned int dir = stream->header.bEndpointAddress 2127 & USB_ENDPOINT_DIR_MASK; 2128 unsigned int pipe; 2129 2130 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2131 usb_clear_halt(stream->dev->udev, pipe); 2132 } 2133 2134 uvc_video_clock_cleanup(stream); 2135 } 2136