1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/list.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/usb.h> 14 #include <linux/videodev2.h> 15 #include <linux/vmalloc.h> 16 #include <linux/wait.h> 17 #include <linux/atomic.h> 18 #include <asm/unaligned.h> 19 20 #include <media/v4l2-common.h> 21 22 #include "uvcvideo.h" 23 24 /* ------------------------------------------------------------------------ 25 * UVC Controls 26 */ 27 28 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 29 u8 intfnum, u8 cs, void *data, u16 size, 30 int timeout) 31 { 32 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 33 unsigned int pipe; 34 35 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 36 : usb_sndctrlpipe(dev->udev, 0); 37 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 38 39 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 40 unit << 8 | intfnum, data, size, timeout); 41 } 42 43 static const char *uvc_query_name(u8 query) 44 { 45 switch (query) { 46 case UVC_SET_CUR: 47 return "SET_CUR"; 48 case UVC_GET_CUR: 49 return "GET_CUR"; 50 case UVC_GET_MIN: 51 return "GET_MIN"; 52 case UVC_GET_MAX: 53 return "GET_MAX"; 54 case UVC_GET_RES: 55 return "GET_RES"; 56 case UVC_GET_LEN: 57 return "GET_LEN"; 58 case UVC_GET_INFO: 59 return "GET_INFO"; 60 case UVC_GET_DEF: 61 return "GET_DEF"; 62 default: 63 return "<invalid>"; 64 } 65 } 66 67 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 68 u8 intfnum, u8 cs, void *data, u16 size) 69 { 70 int ret; 71 u8 error; 72 u8 tmp; 73 74 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 75 UVC_CTRL_CONTROL_TIMEOUT); 76 if (likely(ret == size)) 77 return 0; 78 79 uvc_printk(KERN_ERR, 80 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 81 uvc_query_name(query), cs, unit, ret, size); 82 83 if (ret != -EPIPE) 84 return ret; 85 86 tmp = *(u8 *)data; 87 88 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 89 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 90 UVC_CTRL_CONTROL_TIMEOUT); 91 92 error = *(u8 *)data; 93 *(u8 *)data = tmp; 94 95 if (ret != 1) 96 return ret < 0 ? ret : -EPIPE; 97 98 uvc_trace(UVC_TRACE_CONTROL, "Control error %u\n", error); 99 100 switch (error) { 101 case 0: 102 /* Cannot happen - we received a STALL */ 103 return -EPIPE; 104 case 1: /* Not ready */ 105 return -EBUSY; 106 case 2: /* Wrong state */ 107 return -EILSEQ; 108 case 3: /* Power */ 109 return -EREMOTE; 110 case 4: /* Out of range */ 111 return -ERANGE; 112 case 5: /* Invalid unit */ 113 case 6: /* Invalid control */ 114 case 7: /* Invalid Request */ 115 case 8: /* Invalid value within range */ 116 return -EINVAL; 117 default: /* reserved or unknown */ 118 break; 119 } 120 121 return -EPIPE; 122 } 123 124 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 125 struct uvc_streaming_control *ctrl) 126 { 127 struct uvc_format *format = NULL; 128 struct uvc_frame *frame = NULL; 129 unsigned int i; 130 131 for (i = 0; i < stream->nformats; ++i) { 132 if (stream->format[i].index == ctrl->bFormatIndex) { 133 format = &stream->format[i]; 134 break; 135 } 136 } 137 138 if (format == NULL) 139 return; 140 141 for (i = 0; i < format->nframes; ++i) { 142 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 143 frame = &format->frame[i]; 144 break; 145 } 146 } 147 148 if (frame == NULL) 149 return; 150 151 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 152 (ctrl->dwMaxVideoFrameSize == 0 && 153 stream->dev->uvc_version < 0x0110)) 154 ctrl->dwMaxVideoFrameSize = 155 frame->dwMaxVideoFrameBufferSize; 156 157 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 158 * compute the bandwidth on 16 bits and erroneously sign-extend it to 159 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 160 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 161 */ 162 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 163 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 164 165 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 166 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 167 stream->intf->num_altsetting > 1) { 168 u32 interval; 169 u32 bandwidth; 170 171 interval = (ctrl->dwFrameInterval > 100000) 172 ? ctrl->dwFrameInterval 173 : frame->dwFrameInterval[0]; 174 175 /* Compute a bandwidth estimation by multiplying the frame 176 * size by the number of video frames per second, divide the 177 * result by the number of USB frames (or micro-frames for 178 * high-speed devices) per second and add the UVC header size 179 * (assumed to be 12 bytes long). 180 */ 181 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 182 bandwidth *= 10000000 / interval + 1; 183 bandwidth /= 1000; 184 if (stream->dev->udev->speed == USB_SPEED_HIGH) 185 bandwidth /= 8; 186 bandwidth += 12; 187 188 /* The bandwidth estimate is too low for many cameras. Don't use 189 * maximum packet sizes lower than 1024 bytes to try and work 190 * around the problem. According to measurements done on two 191 * different camera models, the value is high enough to get most 192 * resolutions working while not preventing two simultaneous 193 * VGA streams at 15 fps. 194 */ 195 bandwidth = max_t(u32, bandwidth, 1024); 196 197 ctrl->dwMaxPayloadTransferSize = bandwidth; 198 } 199 } 200 201 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 202 { 203 /* 204 * Return the size of the video probe and commit controls, which depends 205 * on the protocol version. 206 */ 207 if (stream->dev->uvc_version < 0x0110) 208 return 26; 209 else if (stream->dev->uvc_version < 0x0150) 210 return 34; 211 else 212 return 48; 213 } 214 215 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 216 struct uvc_streaming_control *ctrl, int probe, u8 query) 217 { 218 u16 size = uvc_video_ctrl_size(stream); 219 u8 *data; 220 int ret; 221 222 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 223 query == UVC_GET_DEF) 224 return -EIO; 225 226 data = kmalloc(size, GFP_KERNEL); 227 if (data == NULL) 228 return -ENOMEM; 229 230 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 231 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 232 size, uvc_timeout_param); 233 234 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 235 /* Some cameras, mostly based on Bison Electronics chipsets, 236 * answer a GET_MIN or GET_MAX request with the wCompQuality 237 * field only. 238 */ 239 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 240 "compliance - GET_MIN/MAX(PROBE) incorrectly " 241 "supported. Enabling workaround.\n"); 242 memset(ctrl, 0, sizeof(*ctrl)); 243 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 244 ret = 0; 245 goto out; 246 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 247 /* Many cameras don't support the GET_DEF request on their 248 * video probe control. Warn once and return, the caller will 249 * fall back to GET_CUR. 250 */ 251 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 252 "compliance - GET_DEF(PROBE) not supported. " 253 "Enabling workaround.\n"); 254 ret = -EIO; 255 goto out; 256 } else if (ret != size) { 257 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 258 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 259 ret, size); 260 ret = -EIO; 261 goto out; 262 } 263 264 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 265 ctrl->bFormatIndex = data[2]; 266 ctrl->bFrameIndex = data[3]; 267 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 268 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 269 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 270 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 271 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 272 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 273 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 274 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 275 276 if (size >= 34) { 277 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 278 ctrl->bmFramingInfo = data[30]; 279 ctrl->bPreferedVersion = data[31]; 280 ctrl->bMinVersion = data[32]; 281 ctrl->bMaxVersion = data[33]; 282 } else { 283 ctrl->dwClockFrequency = stream->dev->clock_frequency; 284 ctrl->bmFramingInfo = 0; 285 ctrl->bPreferedVersion = 0; 286 ctrl->bMinVersion = 0; 287 ctrl->bMaxVersion = 0; 288 } 289 290 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 291 * dwMaxPayloadTransferSize fields. Try to get the value from the 292 * format and frame descriptors. 293 */ 294 uvc_fixup_video_ctrl(stream, ctrl); 295 ret = 0; 296 297 out: 298 kfree(data); 299 return ret; 300 } 301 302 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 303 struct uvc_streaming_control *ctrl, int probe) 304 { 305 u16 size = uvc_video_ctrl_size(stream); 306 u8 *data; 307 int ret; 308 309 data = kzalloc(size, GFP_KERNEL); 310 if (data == NULL) 311 return -ENOMEM; 312 313 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 314 data[2] = ctrl->bFormatIndex; 315 data[3] = ctrl->bFrameIndex; 316 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 317 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 318 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 319 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 320 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 321 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 322 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 323 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 324 325 if (size >= 34) { 326 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 327 data[30] = ctrl->bmFramingInfo; 328 data[31] = ctrl->bPreferedVersion; 329 data[32] = ctrl->bMinVersion; 330 data[33] = ctrl->bMaxVersion; 331 } 332 333 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 334 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 335 size, uvc_timeout_param); 336 if (ret != size) { 337 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 338 "%d (exp. %u).\n", probe ? "probe" : "commit", 339 ret, size); 340 ret = -EIO; 341 } 342 343 kfree(data); 344 return ret; 345 } 346 347 int uvc_probe_video(struct uvc_streaming *stream, 348 struct uvc_streaming_control *probe) 349 { 350 struct uvc_streaming_control probe_min, probe_max; 351 u16 bandwidth; 352 unsigned int i; 353 int ret; 354 355 /* Perform probing. The device should adjust the requested values 356 * according to its capabilities. However, some devices, namely the 357 * first generation UVC Logitech webcams, don't implement the Video 358 * Probe control properly, and just return the needed bandwidth. For 359 * that reason, if the needed bandwidth exceeds the maximum available 360 * bandwidth, try to lower the quality. 361 */ 362 ret = uvc_set_video_ctrl(stream, probe, 1); 363 if (ret < 0) 364 goto done; 365 366 /* Get the minimum and maximum values for compression settings. */ 367 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 368 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 369 if (ret < 0) 370 goto done; 371 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 372 if (ret < 0) 373 goto done; 374 375 probe->wCompQuality = probe_max.wCompQuality; 376 } 377 378 for (i = 0; i < 2; ++i) { 379 ret = uvc_set_video_ctrl(stream, probe, 1); 380 if (ret < 0) 381 goto done; 382 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 383 if (ret < 0) 384 goto done; 385 386 if (stream->intf->num_altsetting == 1) 387 break; 388 389 bandwidth = probe->dwMaxPayloadTransferSize; 390 if (bandwidth <= stream->maxpsize) 391 break; 392 393 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 394 ret = -ENOSPC; 395 goto done; 396 } 397 398 /* TODO: negotiate compression parameters */ 399 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 400 probe->wPFrameRate = probe_min.wPFrameRate; 401 probe->wCompQuality = probe_max.wCompQuality; 402 probe->wCompWindowSize = probe_min.wCompWindowSize; 403 } 404 405 done: 406 return ret; 407 } 408 409 static int uvc_commit_video(struct uvc_streaming *stream, 410 struct uvc_streaming_control *probe) 411 { 412 return uvc_set_video_ctrl(stream, probe, 0); 413 } 414 415 /* ----------------------------------------------------------------------------- 416 * Clocks and timestamps 417 */ 418 419 static inline ktime_t uvc_video_get_time(void) 420 { 421 if (uvc_clock_param == CLOCK_MONOTONIC) 422 return ktime_get(); 423 else 424 return ktime_get_real(); 425 } 426 427 static void 428 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 429 const u8 *data, int len) 430 { 431 struct uvc_clock_sample *sample; 432 unsigned int header_size; 433 bool has_pts = false; 434 bool has_scr = false; 435 unsigned long flags; 436 ktime_t time; 437 u16 host_sof; 438 u16 dev_sof; 439 440 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 441 case UVC_STREAM_PTS | UVC_STREAM_SCR: 442 header_size = 12; 443 has_pts = true; 444 has_scr = true; 445 break; 446 case UVC_STREAM_PTS: 447 header_size = 6; 448 has_pts = true; 449 break; 450 case UVC_STREAM_SCR: 451 header_size = 8; 452 has_scr = true; 453 break; 454 default: 455 header_size = 2; 456 break; 457 } 458 459 /* Check for invalid headers. */ 460 if (len < header_size) 461 return; 462 463 /* Extract the timestamps: 464 * 465 * - store the frame PTS in the buffer structure 466 * - if the SCR field is present, retrieve the host SOF counter and 467 * kernel timestamps and store them with the SCR STC and SOF fields 468 * in the ring buffer 469 */ 470 if (has_pts && buf != NULL) 471 buf->pts = get_unaligned_le32(&data[2]); 472 473 if (!has_scr) 474 return; 475 476 /* To limit the amount of data, drop SCRs with an SOF identical to the 477 * previous one. 478 */ 479 dev_sof = get_unaligned_le16(&data[header_size - 2]); 480 if (dev_sof == stream->clock.last_sof) 481 return; 482 483 stream->clock.last_sof = dev_sof; 484 485 host_sof = usb_get_current_frame_number(stream->dev->udev); 486 time = uvc_video_get_time(); 487 488 /* The UVC specification allows device implementations that can't obtain 489 * the USB frame number to keep their own frame counters as long as they 490 * match the size and frequency of the frame number associated with USB 491 * SOF tokens. The SOF values sent by such devices differ from the USB 492 * SOF tokens by a fixed offset that needs to be estimated and accounted 493 * for to make timestamp recovery as accurate as possible. 494 * 495 * The offset is estimated the first time a device SOF value is received 496 * as the difference between the host and device SOF values. As the two 497 * SOF values can differ slightly due to transmission delays, consider 498 * that the offset is null if the difference is not higher than 10 ms 499 * (negative differences can not happen and are thus considered as an 500 * offset). The video commit control wDelay field should be used to 501 * compute a dynamic threshold instead of using a fixed 10 ms value, but 502 * devices don't report reliable wDelay values. 503 * 504 * See uvc_video_clock_host_sof() for an explanation regarding why only 505 * the 8 LSBs of the delta are kept. 506 */ 507 if (stream->clock.sof_offset == (u16)-1) { 508 u16 delta_sof = (host_sof - dev_sof) & 255; 509 if (delta_sof >= 10) 510 stream->clock.sof_offset = delta_sof; 511 else 512 stream->clock.sof_offset = 0; 513 } 514 515 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 516 517 spin_lock_irqsave(&stream->clock.lock, flags); 518 519 sample = &stream->clock.samples[stream->clock.head]; 520 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 521 sample->dev_sof = dev_sof; 522 sample->host_sof = host_sof; 523 sample->host_time = time; 524 525 /* Update the sliding window head and count. */ 526 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 527 528 if (stream->clock.count < stream->clock.size) 529 stream->clock.count++; 530 531 spin_unlock_irqrestore(&stream->clock.lock, flags); 532 } 533 534 static void uvc_video_clock_reset(struct uvc_streaming *stream) 535 { 536 struct uvc_clock *clock = &stream->clock; 537 538 clock->head = 0; 539 clock->count = 0; 540 clock->last_sof = -1; 541 clock->sof_offset = -1; 542 } 543 544 static int uvc_video_clock_init(struct uvc_streaming *stream) 545 { 546 struct uvc_clock *clock = &stream->clock; 547 548 spin_lock_init(&clock->lock); 549 clock->size = 32; 550 551 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 552 GFP_KERNEL); 553 if (clock->samples == NULL) 554 return -ENOMEM; 555 556 uvc_video_clock_reset(stream); 557 558 return 0; 559 } 560 561 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 562 { 563 kfree(stream->clock.samples); 564 stream->clock.samples = NULL; 565 } 566 567 /* 568 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 569 * 570 * Host SOF counters reported by usb_get_current_frame_number() usually don't 571 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 572 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 573 * controller and its configuration. 574 * 575 * We thus need to recover the SOF value corresponding to the host frame number. 576 * As the device and host frame numbers are sampled in a short interval, the 577 * difference between their values should be equal to a small delta plus an 578 * integer multiple of 256 caused by the host frame number limited precision. 579 * 580 * To obtain the recovered host SOF value, compute the small delta by masking 581 * the high bits of the host frame counter and device SOF difference and add it 582 * to the device SOF value. 583 */ 584 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 585 { 586 /* The delta value can be negative. */ 587 s8 delta_sof; 588 589 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 590 591 return (sample->dev_sof + delta_sof) & 2047; 592 } 593 594 /* 595 * uvc_video_clock_update - Update the buffer timestamp 596 * 597 * This function converts the buffer PTS timestamp to the host clock domain by 598 * going through the USB SOF clock domain and stores the result in the V4L2 599 * buffer timestamp field. 600 * 601 * The relationship between the device clock and the host clock isn't known. 602 * However, the device and the host share the common USB SOF clock which can be 603 * used to recover that relationship. 604 * 605 * The relationship between the device clock and the USB SOF clock is considered 606 * to be linear over the clock samples sliding window and is given by 607 * 608 * SOF = m * PTS + p 609 * 610 * Several methods to compute the slope (m) and intercept (p) can be used. As 611 * the clock drift should be small compared to the sliding window size, we 612 * assume that the line that goes through the points at both ends of the window 613 * is a good approximation. Naming those points P1 and P2, we get 614 * 615 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 616 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 617 * 618 * or 619 * 620 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 621 * 622 * to avoid losing precision in the division. Similarly, the host timestamp is 623 * computed with 624 * 625 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 626 * 627 * SOF values are coded on 11 bits by USB. We extend their precision with 16 628 * decimal bits, leading to a 11.16 coding. 629 * 630 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 631 * be normalized using the nominal device clock frequency reported through the 632 * UVC descriptors. 633 * 634 * Both the PTS/STC and SOF counters roll over, after a fixed but device 635 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 636 * sliding window size is smaller than the rollover period, differences computed 637 * on unsigned integers will produce the correct result. However, the p term in 638 * the linear relations will be miscomputed. 639 * 640 * To fix the issue, we subtract a constant from the PTS and STC values to bring 641 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 642 * the 32 bit range without any rollover. 643 * 644 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 645 * computed by (1) will never be smaller than 0. This offset is then compensated 646 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 647 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 648 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 649 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 650 * SOF value at the end of the sliding window. 651 * 652 * Finally we subtract a constant from the host timestamps to bring the first 653 * timestamp of the sliding window to 1s. 654 */ 655 void uvc_video_clock_update(struct uvc_streaming *stream, 656 struct vb2_v4l2_buffer *vbuf, 657 struct uvc_buffer *buf) 658 { 659 struct uvc_clock *clock = &stream->clock; 660 struct uvc_clock_sample *first; 661 struct uvc_clock_sample *last; 662 unsigned long flags; 663 u64 timestamp; 664 u32 delta_stc; 665 u32 y1, y2; 666 u32 x1, x2; 667 u32 mean; 668 u32 sof; 669 u64 y; 670 671 if (!uvc_hw_timestamps_param) 672 return; 673 674 /* 675 * We will get called from __vb2_queue_cancel() if there are buffers 676 * done but not dequeued by the user, but the sample array has already 677 * been released at that time. Just bail out in that case. 678 */ 679 if (!clock->samples) 680 return; 681 682 spin_lock_irqsave(&clock->lock, flags); 683 684 if (clock->count < clock->size) 685 goto done; 686 687 first = &clock->samples[clock->head]; 688 last = &clock->samples[(clock->head - 1) % clock->size]; 689 690 /* First step, PTS to SOF conversion. */ 691 delta_stc = buf->pts - (1UL << 31); 692 x1 = first->dev_stc - delta_stc; 693 x2 = last->dev_stc - delta_stc; 694 if (x1 == x2) 695 goto done; 696 697 y1 = (first->dev_sof + 2048) << 16; 698 y2 = (last->dev_sof + 2048) << 16; 699 if (y2 < y1) 700 y2 += 2048 << 16; 701 702 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 703 - (u64)y2 * (u64)x1; 704 y = div_u64(y, x2 - x1); 705 706 sof = y; 707 708 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 709 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 710 stream->dev->name, buf->pts, 711 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 712 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 713 x1, x2, y1, y2, clock->sof_offset); 714 715 /* Second step, SOF to host clock conversion. */ 716 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 717 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 718 if (x2 < x1) 719 x2 += 2048 << 16; 720 if (x1 == x2) 721 goto done; 722 723 y1 = NSEC_PER_SEC; 724 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 725 726 /* Interpolated and host SOF timestamps can wrap around at slightly 727 * different times. Handle this by adding or removing 2048 to or from 728 * the computed SOF value to keep it close to the SOF samples mean 729 * value. 730 */ 731 mean = (x1 + x2) / 2; 732 if (mean - (1024 << 16) > sof) 733 sof += 2048 << 16; 734 else if (sof > mean + (1024 << 16)) 735 sof -= 2048 << 16; 736 737 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 738 - (u64)y2 * (u64)x1; 739 y = div_u64(y, x2 - x1); 740 741 timestamp = ktime_to_ns(first->host_time) + y - y1; 742 743 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 744 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 745 stream->dev->name, 746 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 747 y, timestamp, vbuf->vb2_buf.timestamp, 748 x1, first->host_sof, first->dev_sof, 749 x2, last->host_sof, last->dev_sof, y1, y2); 750 751 /* Update the V4L2 buffer. */ 752 vbuf->vb2_buf.timestamp = timestamp; 753 754 done: 755 spin_unlock_irqrestore(&clock->lock, flags); 756 } 757 758 /* ------------------------------------------------------------------------ 759 * Stream statistics 760 */ 761 762 static void uvc_video_stats_decode(struct uvc_streaming *stream, 763 const u8 *data, int len) 764 { 765 unsigned int header_size; 766 bool has_pts = false; 767 bool has_scr = false; 768 u16 scr_sof; 769 u32 scr_stc; 770 u32 pts; 771 772 if (stream->stats.stream.nb_frames == 0 && 773 stream->stats.frame.nb_packets == 0) 774 stream->stats.stream.start_ts = ktime_get(); 775 776 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 777 case UVC_STREAM_PTS | UVC_STREAM_SCR: 778 header_size = 12; 779 has_pts = true; 780 has_scr = true; 781 break; 782 case UVC_STREAM_PTS: 783 header_size = 6; 784 has_pts = true; 785 break; 786 case UVC_STREAM_SCR: 787 header_size = 8; 788 has_scr = true; 789 break; 790 default: 791 header_size = 2; 792 break; 793 } 794 795 /* Check for invalid headers. */ 796 if (len < header_size || data[0] < header_size) { 797 stream->stats.frame.nb_invalid++; 798 return; 799 } 800 801 /* Extract the timestamps. */ 802 if (has_pts) 803 pts = get_unaligned_le32(&data[2]); 804 805 if (has_scr) { 806 scr_stc = get_unaligned_le32(&data[header_size - 6]); 807 scr_sof = get_unaligned_le16(&data[header_size - 2]); 808 } 809 810 /* Is PTS constant through the whole frame ? */ 811 if (has_pts && stream->stats.frame.nb_pts) { 812 if (stream->stats.frame.pts != pts) { 813 stream->stats.frame.nb_pts_diffs++; 814 stream->stats.frame.last_pts_diff = 815 stream->stats.frame.nb_packets; 816 } 817 } 818 819 if (has_pts) { 820 stream->stats.frame.nb_pts++; 821 stream->stats.frame.pts = pts; 822 } 823 824 /* Do all frames have a PTS in their first non-empty packet, or before 825 * their first empty packet ? 826 */ 827 if (stream->stats.frame.size == 0) { 828 if (len > header_size) 829 stream->stats.frame.has_initial_pts = has_pts; 830 if (len == header_size && has_pts) 831 stream->stats.frame.has_early_pts = true; 832 } 833 834 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 835 if (has_scr && stream->stats.frame.nb_scr) { 836 if (stream->stats.frame.scr_stc != scr_stc) 837 stream->stats.frame.nb_scr_diffs++; 838 } 839 840 if (has_scr) { 841 /* Expand the SOF counter to 32 bits and store its value. */ 842 if (stream->stats.stream.nb_frames > 0 || 843 stream->stats.frame.nb_scr > 0) 844 stream->stats.stream.scr_sof_count += 845 (scr_sof - stream->stats.stream.scr_sof) % 2048; 846 stream->stats.stream.scr_sof = scr_sof; 847 848 stream->stats.frame.nb_scr++; 849 stream->stats.frame.scr_stc = scr_stc; 850 stream->stats.frame.scr_sof = scr_sof; 851 852 if (scr_sof < stream->stats.stream.min_sof) 853 stream->stats.stream.min_sof = scr_sof; 854 if (scr_sof > stream->stats.stream.max_sof) 855 stream->stats.stream.max_sof = scr_sof; 856 } 857 858 /* Record the first non-empty packet number. */ 859 if (stream->stats.frame.size == 0 && len > header_size) 860 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 861 862 /* Update the frame size. */ 863 stream->stats.frame.size += len - header_size; 864 865 /* Update the packets counters. */ 866 stream->stats.frame.nb_packets++; 867 if (len <= header_size) 868 stream->stats.frame.nb_empty++; 869 870 if (data[1] & UVC_STREAM_ERR) 871 stream->stats.frame.nb_errors++; 872 } 873 874 static void uvc_video_stats_update(struct uvc_streaming *stream) 875 { 876 struct uvc_stats_frame *frame = &stream->stats.frame; 877 878 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 879 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 880 "last pts/stc/sof %u/%u/%u\n", 881 stream->sequence, frame->first_data, 882 frame->nb_packets - frame->nb_empty, frame->nb_packets, 883 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 884 frame->has_early_pts ? "" : "!", 885 frame->has_initial_pts ? "" : "!", 886 frame->nb_scr_diffs, frame->nb_scr, 887 frame->pts, frame->scr_stc, frame->scr_sof); 888 889 stream->stats.stream.nb_frames++; 890 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 891 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 892 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 893 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 894 895 if (frame->has_early_pts) 896 stream->stats.stream.nb_pts_early++; 897 if (frame->has_initial_pts) 898 stream->stats.stream.nb_pts_initial++; 899 if (frame->last_pts_diff <= frame->first_data) 900 stream->stats.stream.nb_pts_constant++; 901 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 902 stream->stats.stream.nb_scr_count_ok++; 903 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 904 stream->stats.stream.nb_scr_diffs_ok++; 905 906 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 907 } 908 909 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 910 size_t size) 911 { 912 unsigned int scr_sof_freq; 913 unsigned int duration; 914 size_t count = 0; 915 916 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 917 * frequency this will not overflow before more than 1h. 918 */ 919 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 920 stream->stats.stream.start_ts); 921 if (duration != 0) 922 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 923 / duration; 924 else 925 scr_sof_freq = 0; 926 927 count += scnprintf(buf + count, size - count, 928 "frames: %u\npackets: %u\nempty: %u\n" 929 "errors: %u\ninvalid: %u\n", 930 stream->stats.stream.nb_frames, 931 stream->stats.stream.nb_packets, 932 stream->stats.stream.nb_empty, 933 stream->stats.stream.nb_errors, 934 stream->stats.stream.nb_invalid); 935 count += scnprintf(buf + count, size - count, 936 "pts: %u early, %u initial, %u ok\n", 937 stream->stats.stream.nb_pts_early, 938 stream->stats.stream.nb_pts_initial, 939 stream->stats.stream.nb_pts_constant); 940 count += scnprintf(buf + count, size - count, 941 "scr: %u count ok, %u diff ok\n", 942 stream->stats.stream.nb_scr_count_ok, 943 stream->stats.stream.nb_scr_diffs_ok); 944 count += scnprintf(buf + count, size - count, 945 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 946 stream->stats.stream.min_sof, 947 stream->stats.stream.max_sof, 948 scr_sof_freq / 1000, scr_sof_freq % 1000); 949 950 return count; 951 } 952 953 static void uvc_video_stats_start(struct uvc_streaming *stream) 954 { 955 memset(&stream->stats, 0, sizeof(stream->stats)); 956 stream->stats.stream.min_sof = 2048; 957 } 958 959 static void uvc_video_stats_stop(struct uvc_streaming *stream) 960 { 961 stream->stats.stream.stop_ts = ktime_get(); 962 } 963 964 /* ------------------------------------------------------------------------ 965 * Video codecs 966 */ 967 968 /* Video payload decoding is handled by uvc_video_decode_start(), 969 * uvc_video_decode_data() and uvc_video_decode_end(). 970 * 971 * uvc_video_decode_start is called with URB data at the start of a bulk or 972 * isochronous payload. It processes header data and returns the header size 973 * in bytes if successful. If an error occurs, it returns a negative error 974 * code. The following error codes have special meanings. 975 * 976 * - EAGAIN informs the caller that the current video buffer should be marked 977 * as done, and that the function should be called again with the same data 978 * and a new video buffer. This is used when end of frame conditions can be 979 * reliably detected at the beginning of the next frame only. 980 * 981 * If an error other than -EAGAIN is returned, the caller will drop the current 982 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 983 * made until the next payload. -ENODATA can be used to drop the current 984 * payload if no other error code is appropriate. 985 * 986 * uvc_video_decode_data is called for every URB with URB data. It copies the 987 * data to the video buffer. 988 * 989 * uvc_video_decode_end is called with header data at the end of a bulk or 990 * isochronous payload. It performs any additional header data processing and 991 * returns 0 or a negative error code if an error occurred. As header data have 992 * already been processed by uvc_video_decode_start, this functions isn't 993 * required to perform sanity checks a second time. 994 * 995 * For isochronous transfers where a payload is always transferred in a single 996 * URB, the three functions will be called in a row. 997 * 998 * To let the decoder process header data and update its internal state even 999 * when no video buffer is available, uvc_video_decode_start must be prepared 1000 * to be called with a NULL buf parameter. uvc_video_decode_data and 1001 * uvc_video_decode_end will never be called with a NULL buffer. 1002 */ 1003 static int uvc_video_decode_start(struct uvc_streaming *stream, 1004 struct uvc_buffer *buf, const u8 *data, int len) 1005 { 1006 u8 fid; 1007 1008 /* Sanity checks: 1009 * - packet must be at least 2 bytes long 1010 * - bHeaderLength value must be at least 2 bytes (see above) 1011 * - bHeaderLength value can't be larger than the packet size. 1012 */ 1013 if (len < 2 || data[0] < 2 || data[0] > len) { 1014 stream->stats.frame.nb_invalid++; 1015 return -EINVAL; 1016 } 1017 1018 fid = data[1] & UVC_STREAM_FID; 1019 1020 /* Increase the sequence number regardless of any buffer states, so 1021 * that discontinuous sequence numbers always indicate lost frames. 1022 */ 1023 if (stream->last_fid != fid) { 1024 stream->sequence++; 1025 if (stream->sequence) 1026 uvc_video_stats_update(stream); 1027 } 1028 1029 uvc_video_clock_decode(stream, buf, data, len); 1030 uvc_video_stats_decode(stream, data, len); 1031 1032 /* Store the payload FID bit and return immediately when the buffer is 1033 * NULL. 1034 */ 1035 if (buf == NULL) { 1036 stream->last_fid = fid; 1037 return -ENODATA; 1038 } 1039 1040 /* Mark the buffer as bad if the error bit is set. */ 1041 if (data[1] & UVC_STREAM_ERR) { 1042 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1043 "set).\n"); 1044 buf->error = 1; 1045 } 1046 1047 /* Synchronize to the input stream by waiting for the FID bit to be 1048 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1049 * stream->last_fid is initialized to -1, so the first isochronous 1050 * frame will always be in sync. 1051 * 1052 * If the device doesn't toggle the FID bit, invert stream->last_fid 1053 * when the EOF bit is set to force synchronisation on the next packet. 1054 */ 1055 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1056 if (fid == stream->last_fid) { 1057 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1058 "sync).\n"); 1059 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1060 (data[1] & UVC_STREAM_EOF)) 1061 stream->last_fid ^= UVC_STREAM_FID; 1062 return -ENODATA; 1063 } 1064 1065 buf->buf.field = V4L2_FIELD_NONE; 1066 buf->buf.sequence = stream->sequence; 1067 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1068 1069 /* TODO: Handle PTS and SCR. */ 1070 buf->state = UVC_BUF_STATE_ACTIVE; 1071 } 1072 1073 /* Mark the buffer as done if we're at the beginning of a new frame. 1074 * End of frame detection is better implemented by checking the EOF 1075 * bit (FID bit toggling is delayed by one frame compared to the EOF 1076 * bit), but some devices don't set the bit at end of frame (and the 1077 * last payload can be lost anyway). We thus must check if the FID has 1078 * been toggled. 1079 * 1080 * stream->last_fid is initialized to -1, so the first isochronous 1081 * frame will never trigger an end of frame detection. 1082 * 1083 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1084 * as it doesn't make sense to return an empty buffer. This also 1085 * avoids detecting end of frame conditions at FID toggling if the 1086 * previous payload had the EOF bit set. 1087 */ 1088 if (fid != stream->last_fid && buf->bytesused != 0) { 1089 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1090 "toggled).\n"); 1091 buf->state = UVC_BUF_STATE_READY; 1092 return -EAGAIN; 1093 } 1094 1095 stream->last_fid = fid; 1096 1097 return data[0]; 1098 } 1099 1100 /* 1101 * uvc_video_decode_data_work: Asynchronous memcpy processing 1102 * 1103 * Copy URB data to video buffers in process context, releasing buffer 1104 * references and requeuing the URB when done. 1105 */ 1106 static void uvc_video_copy_data_work(struct work_struct *work) 1107 { 1108 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1109 unsigned int i; 1110 int ret; 1111 1112 for (i = 0; i < uvc_urb->async_operations; i++) { 1113 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1114 1115 memcpy(op->dst, op->src, op->len); 1116 1117 /* Release reference taken on this buffer. */ 1118 uvc_queue_buffer_release(op->buf); 1119 } 1120 1121 ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL); 1122 if (ret < 0) 1123 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1124 ret); 1125 } 1126 1127 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1128 struct uvc_buffer *buf, const u8 *data, int len) 1129 { 1130 unsigned int active_op = uvc_urb->async_operations; 1131 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1132 unsigned int maxlen; 1133 1134 if (len <= 0) 1135 return; 1136 1137 maxlen = buf->length - buf->bytesused; 1138 1139 /* Take a buffer reference for async work. */ 1140 kref_get(&buf->ref); 1141 1142 op->buf = buf; 1143 op->src = data; 1144 op->dst = buf->mem + buf->bytesused; 1145 op->len = min_t(unsigned int, len, maxlen); 1146 1147 buf->bytesused += op->len; 1148 1149 /* Complete the current frame if the buffer size was exceeded. */ 1150 if (len > maxlen) { 1151 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1152 buf->error = 1; 1153 buf->state = UVC_BUF_STATE_READY; 1154 } 1155 1156 uvc_urb->async_operations++; 1157 } 1158 1159 static void uvc_video_decode_end(struct uvc_streaming *stream, 1160 struct uvc_buffer *buf, const u8 *data, int len) 1161 { 1162 /* Mark the buffer as done if the EOF marker is set. */ 1163 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1164 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1165 if (data[0] == len) 1166 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1167 buf->state = UVC_BUF_STATE_READY; 1168 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1169 stream->last_fid ^= UVC_STREAM_FID; 1170 } 1171 } 1172 1173 /* Video payload encoding is handled by uvc_video_encode_header() and 1174 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1175 * 1176 * uvc_video_encode_header is called at the start of a payload. It adds header 1177 * data to the transfer buffer and returns the header size. As the only known 1178 * UVC output device transfers a whole frame in a single payload, the EOF bit 1179 * is always set in the header. 1180 * 1181 * uvc_video_encode_data is called for every URB and copies the data from the 1182 * video buffer to the transfer buffer. 1183 */ 1184 static int uvc_video_encode_header(struct uvc_streaming *stream, 1185 struct uvc_buffer *buf, u8 *data, int len) 1186 { 1187 data[0] = 2; /* Header length */ 1188 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1189 | (stream->last_fid & UVC_STREAM_FID); 1190 return 2; 1191 } 1192 1193 static int uvc_video_encode_data(struct uvc_streaming *stream, 1194 struct uvc_buffer *buf, u8 *data, int len) 1195 { 1196 struct uvc_video_queue *queue = &stream->queue; 1197 unsigned int nbytes; 1198 void *mem; 1199 1200 /* Copy video data to the URB buffer. */ 1201 mem = buf->mem + queue->buf_used; 1202 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1203 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1204 nbytes); 1205 memcpy(data, mem, nbytes); 1206 1207 queue->buf_used += nbytes; 1208 1209 return nbytes; 1210 } 1211 1212 /* ------------------------------------------------------------------------ 1213 * Metadata 1214 */ 1215 1216 /* 1217 * Additionally to the payload headers we also want to provide the user with USB 1218 * Frame Numbers and system time values. The resulting buffer is thus composed 1219 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1220 * Number, and a copy of the payload header. 1221 * 1222 * Ideally we want to capture all payload headers for each frame. However, their 1223 * number is unknown and unbound. We thus drop headers that contain no vendor 1224 * data and that either contain no SCR value or an SCR value identical to the 1225 * previous header. 1226 */ 1227 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1228 struct uvc_buffer *meta_buf, 1229 const u8 *mem, unsigned int length) 1230 { 1231 struct uvc_meta_buf *meta; 1232 size_t len_std = 2; 1233 bool has_pts, has_scr; 1234 unsigned long flags; 1235 unsigned int sof; 1236 ktime_t time; 1237 const u8 *scr; 1238 1239 if (!meta_buf || length == 2) 1240 return; 1241 1242 if (meta_buf->length - meta_buf->bytesused < 1243 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1244 meta_buf->error = 1; 1245 return; 1246 } 1247 1248 has_pts = mem[1] & UVC_STREAM_PTS; 1249 has_scr = mem[1] & UVC_STREAM_SCR; 1250 1251 if (has_pts) { 1252 len_std += 4; 1253 scr = mem + 6; 1254 } else { 1255 scr = mem + 2; 1256 } 1257 1258 if (has_scr) 1259 len_std += 6; 1260 1261 if (stream->meta.format == V4L2_META_FMT_UVC) 1262 length = len_std; 1263 1264 if (length == len_std && (!has_scr || 1265 !memcmp(scr, stream->clock.last_scr, 6))) 1266 return; 1267 1268 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1269 local_irq_save(flags); 1270 time = uvc_video_get_time(); 1271 sof = usb_get_current_frame_number(stream->dev->udev); 1272 local_irq_restore(flags); 1273 put_unaligned(ktime_to_ns(time), &meta->ns); 1274 put_unaligned(sof, &meta->sof); 1275 1276 if (has_scr) 1277 memcpy(stream->clock.last_scr, scr, 6); 1278 1279 memcpy(&meta->length, mem, length); 1280 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1281 1282 uvc_trace(UVC_TRACE_FRAME, 1283 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1284 __func__, ktime_to_ns(time), meta->sof, meta->length, 1285 meta->flags, 1286 has_pts ? *(u32 *)meta->buf : 0, 1287 has_scr ? *(u32 *)scr : 0, 1288 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1289 } 1290 1291 /* ------------------------------------------------------------------------ 1292 * URB handling 1293 */ 1294 1295 /* 1296 * Set error flag for incomplete buffer. 1297 */ 1298 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1299 struct uvc_buffer *buf) 1300 { 1301 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1302 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1303 buf->error = 1; 1304 } 1305 1306 /* 1307 * Completion handler for video URBs. 1308 */ 1309 1310 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1311 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1312 { 1313 uvc_video_validate_buffer(stream, *video_buf); 1314 1315 if (*meta_buf) { 1316 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1317 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1318 1319 vb2_meta->sequence = vb2_video->sequence; 1320 vb2_meta->field = vb2_video->field; 1321 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1322 1323 (*meta_buf)->state = UVC_BUF_STATE_READY; 1324 if (!(*meta_buf)->error) 1325 (*meta_buf)->error = (*video_buf)->error; 1326 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1327 *meta_buf); 1328 } 1329 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1330 } 1331 1332 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1333 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1334 { 1335 struct urb *urb = uvc_urb->urb; 1336 struct uvc_streaming *stream = uvc_urb->stream; 1337 u8 *mem; 1338 int ret, i; 1339 1340 for (i = 0; i < urb->number_of_packets; ++i) { 1341 if (urb->iso_frame_desc[i].status < 0) { 1342 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1343 "lost (%d).\n", urb->iso_frame_desc[i].status); 1344 /* Mark the buffer as faulty. */ 1345 if (buf != NULL) 1346 buf->error = 1; 1347 continue; 1348 } 1349 1350 /* Decode the payload header. */ 1351 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1352 do { 1353 ret = uvc_video_decode_start(stream, buf, mem, 1354 urb->iso_frame_desc[i].actual_length); 1355 if (ret == -EAGAIN) 1356 uvc_video_next_buffers(stream, &buf, &meta_buf); 1357 } while (ret == -EAGAIN); 1358 1359 if (ret < 0) 1360 continue; 1361 1362 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1363 1364 /* Decode the payload data. */ 1365 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1366 urb->iso_frame_desc[i].actual_length - ret); 1367 1368 /* Process the header again. */ 1369 uvc_video_decode_end(stream, buf, mem, 1370 urb->iso_frame_desc[i].actual_length); 1371 1372 if (buf->state == UVC_BUF_STATE_READY) 1373 uvc_video_next_buffers(stream, &buf, &meta_buf); 1374 } 1375 } 1376 1377 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1378 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1379 { 1380 struct urb *urb = uvc_urb->urb; 1381 struct uvc_streaming *stream = uvc_urb->stream; 1382 u8 *mem; 1383 int len, ret; 1384 1385 /* 1386 * Ignore ZLPs if they're not part of a frame, otherwise process them 1387 * to trigger the end of payload detection. 1388 */ 1389 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1390 return; 1391 1392 mem = urb->transfer_buffer; 1393 len = urb->actual_length; 1394 stream->bulk.payload_size += len; 1395 1396 /* If the URB is the first of its payload, decode and save the 1397 * header. 1398 */ 1399 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1400 do { 1401 ret = uvc_video_decode_start(stream, buf, mem, len); 1402 if (ret == -EAGAIN) 1403 uvc_video_next_buffers(stream, &buf, &meta_buf); 1404 } while (ret == -EAGAIN); 1405 1406 /* If an error occurred skip the rest of the payload. */ 1407 if (ret < 0 || buf == NULL) { 1408 stream->bulk.skip_payload = 1; 1409 } else { 1410 memcpy(stream->bulk.header, mem, ret); 1411 stream->bulk.header_size = ret; 1412 1413 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1414 1415 mem += ret; 1416 len -= ret; 1417 } 1418 } 1419 1420 /* The buffer queue might have been cancelled while a bulk transfer 1421 * was in progress, so we can reach here with buf equal to NULL. Make 1422 * sure buf is never dereferenced if NULL. 1423 */ 1424 1425 /* Prepare video data for processing. */ 1426 if (!stream->bulk.skip_payload && buf != NULL) 1427 uvc_video_decode_data(uvc_urb, buf, mem, len); 1428 1429 /* Detect the payload end by a URB smaller than the maximum size (or 1430 * a payload size equal to the maximum) and process the header again. 1431 */ 1432 if (urb->actual_length < urb->transfer_buffer_length || 1433 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1434 if (!stream->bulk.skip_payload && buf != NULL) { 1435 uvc_video_decode_end(stream, buf, stream->bulk.header, 1436 stream->bulk.payload_size); 1437 if (buf->state == UVC_BUF_STATE_READY) 1438 uvc_video_next_buffers(stream, &buf, &meta_buf); 1439 } 1440 1441 stream->bulk.header_size = 0; 1442 stream->bulk.skip_payload = 0; 1443 stream->bulk.payload_size = 0; 1444 } 1445 } 1446 1447 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1448 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1449 { 1450 struct urb *urb = uvc_urb->urb; 1451 struct uvc_streaming *stream = uvc_urb->stream; 1452 1453 u8 *mem = urb->transfer_buffer; 1454 int len = stream->urb_size, ret; 1455 1456 if (buf == NULL) { 1457 urb->transfer_buffer_length = 0; 1458 return; 1459 } 1460 1461 /* If the URB is the first of its payload, add the header. */ 1462 if (stream->bulk.header_size == 0) { 1463 ret = uvc_video_encode_header(stream, buf, mem, len); 1464 stream->bulk.header_size = ret; 1465 stream->bulk.payload_size += ret; 1466 mem += ret; 1467 len -= ret; 1468 } 1469 1470 /* Process video data. */ 1471 ret = uvc_video_encode_data(stream, buf, mem, len); 1472 1473 stream->bulk.payload_size += ret; 1474 len -= ret; 1475 1476 if (buf->bytesused == stream->queue.buf_used || 1477 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1478 if (buf->bytesused == stream->queue.buf_used) { 1479 stream->queue.buf_used = 0; 1480 buf->state = UVC_BUF_STATE_READY; 1481 buf->buf.sequence = ++stream->sequence; 1482 uvc_queue_next_buffer(&stream->queue, buf); 1483 stream->last_fid ^= UVC_STREAM_FID; 1484 } 1485 1486 stream->bulk.header_size = 0; 1487 stream->bulk.payload_size = 0; 1488 } 1489 1490 urb->transfer_buffer_length = stream->urb_size - len; 1491 } 1492 1493 static void uvc_video_complete(struct urb *urb) 1494 { 1495 struct uvc_urb *uvc_urb = urb->context; 1496 struct uvc_streaming *stream = uvc_urb->stream; 1497 struct uvc_video_queue *queue = &stream->queue; 1498 struct uvc_video_queue *qmeta = &stream->meta.queue; 1499 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1500 struct uvc_buffer *buf = NULL; 1501 struct uvc_buffer *buf_meta = NULL; 1502 unsigned long flags; 1503 int ret; 1504 1505 switch (urb->status) { 1506 case 0: 1507 break; 1508 1509 default: 1510 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1511 "completion handler.\n", urb->status); 1512 fallthrough; 1513 case -ENOENT: /* usb_poison_urb() called. */ 1514 if (stream->frozen) 1515 return; 1516 fallthrough; 1517 case -ECONNRESET: /* usb_unlink_urb() called. */ 1518 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1519 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1520 if (vb2_qmeta) 1521 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1522 return; 1523 } 1524 1525 buf = uvc_queue_get_current_buffer(queue); 1526 1527 if (vb2_qmeta) { 1528 spin_lock_irqsave(&qmeta->irqlock, flags); 1529 if (!list_empty(&qmeta->irqqueue)) 1530 buf_meta = list_first_entry(&qmeta->irqqueue, 1531 struct uvc_buffer, queue); 1532 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1533 } 1534 1535 /* Re-initialise the URB async work. */ 1536 uvc_urb->async_operations = 0; 1537 1538 /* 1539 * Process the URB headers, and optionally queue expensive memcpy tasks 1540 * to be deferred to a work queue. 1541 */ 1542 stream->decode(uvc_urb, buf, buf_meta); 1543 1544 /* If no async work is needed, resubmit the URB immediately. */ 1545 if (!uvc_urb->async_operations) { 1546 ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC); 1547 if (ret < 0) 1548 uvc_printk(KERN_ERR, 1549 "Failed to resubmit video URB (%d).\n", 1550 ret); 1551 return; 1552 } 1553 1554 queue_work(stream->async_wq, &uvc_urb->work); 1555 } 1556 1557 /* 1558 * Free transfer buffers. 1559 */ 1560 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1561 { 1562 struct uvc_urb *uvc_urb; 1563 1564 for_each_uvc_urb(uvc_urb, stream) { 1565 if (!uvc_urb->buffer) 1566 continue; 1567 1568 #ifndef CONFIG_DMA_NONCOHERENT 1569 usb_free_coherent(stream->dev->udev, stream->urb_size, 1570 uvc_urb->buffer, uvc_urb->dma); 1571 #else 1572 kfree(uvc_urb->buffer); 1573 #endif 1574 uvc_urb->buffer = NULL; 1575 } 1576 1577 stream->urb_size = 0; 1578 } 1579 1580 /* 1581 * Allocate transfer buffers. This function can be called with buffers 1582 * already allocated when resuming from suspend, in which case it will 1583 * return without touching the buffers. 1584 * 1585 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1586 * system is too low on memory try successively smaller numbers of packets 1587 * until allocation succeeds. 1588 * 1589 * Return the number of allocated packets on success or 0 when out of memory. 1590 */ 1591 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1592 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1593 { 1594 unsigned int npackets; 1595 unsigned int i; 1596 1597 /* Buffers are already allocated, bail out. */ 1598 if (stream->urb_size) 1599 return stream->urb_size / psize; 1600 1601 /* Compute the number of packets. Bulk endpoints might transfer UVC 1602 * payloads across multiple URBs. 1603 */ 1604 npackets = DIV_ROUND_UP(size, psize); 1605 if (npackets > UVC_MAX_PACKETS) 1606 npackets = UVC_MAX_PACKETS; 1607 1608 /* Retry allocations until one succeed. */ 1609 for (; npackets > 1; npackets /= 2) { 1610 for (i = 0; i < UVC_URBS; ++i) { 1611 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1612 1613 stream->urb_size = psize * npackets; 1614 #ifndef CONFIG_DMA_NONCOHERENT 1615 uvc_urb->buffer = usb_alloc_coherent( 1616 stream->dev->udev, stream->urb_size, 1617 gfp_flags | __GFP_NOWARN, &uvc_urb->dma); 1618 #else 1619 uvc_urb->buffer = 1620 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1621 #endif 1622 if (!uvc_urb->buffer) { 1623 uvc_free_urb_buffers(stream); 1624 break; 1625 } 1626 1627 uvc_urb->stream = stream; 1628 } 1629 1630 if (i == UVC_URBS) { 1631 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1632 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1633 psize); 1634 return npackets; 1635 } 1636 } 1637 1638 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1639 "per packet).\n", psize); 1640 return 0; 1641 } 1642 1643 /* 1644 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1645 */ 1646 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1647 int free_buffers) 1648 { 1649 struct uvc_urb *uvc_urb; 1650 1651 uvc_video_stats_stop(stream); 1652 1653 /* 1654 * We must poison the URBs rather than kill them to ensure that even 1655 * after the completion handler returns, any asynchronous workqueues 1656 * will be prevented from resubmitting the URBs. 1657 */ 1658 for_each_uvc_urb(uvc_urb, stream) 1659 usb_poison_urb(uvc_urb->urb); 1660 1661 flush_workqueue(stream->async_wq); 1662 1663 for_each_uvc_urb(uvc_urb, stream) { 1664 usb_free_urb(uvc_urb->urb); 1665 uvc_urb->urb = NULL; 1666 } 1667 1668 if (free_buffers) 1669 uvc_free_urb_buffers(stream); 1670 } 1671 1672 /* 1673 * Compute the maximum number of bytes per interval for an endpoint. 1674 */ 1675 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1676 struct usb_host_endpoint *ep) 1677 { 1678 u16 psize; 1679 u16 mult; 1680 1681 switch (dev->speed) { 1682 case USB_SPEED_SUPER: 1683 case USB_SPEED_SUPER_PLUS: 1684 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1685 case USB_SPEED_HIGH: 1686 psize = usb_endpoint_maxp(&ep->desc); 1687 mult = usb_endpoint_maxp_mult(&ep->desc); 1688 return psize * mult; 1689 case USB_SPEED_WIRELESS: 1690 psize = usb_endpoint_maxp(&ep->desc); 1691 return psize; 1692 default: 1693 psize = usb_endpoint_maxp(&ep->desc); 1694 return psize; 1695 } 1696 } 1697 1698 /* 1699 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1700 * is given by the endpoint. 1701 */ 1702 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1703 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1704 { 1705 struct urb *urb; 1706 struct uvc_urb *uvc_urb; 1707 unsigned int npackets, i; 1708 u16 psize; 1709 u32 size; 1710 1711 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1712 size = stream->ctrl.dwMaxVideoFrameSize; 1713 1714 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1715 if (npackets == 0) 1716 return -ENOMEM; 1717 1718 size = npackets * psize; 1719 1720 for_each_uvc_urb(uvc_urb, stream) { 1721 urb = usb_alloc_urb(npackets, gfp_flags); 1722 if (urb == NULL) { 1723 uvc_video_stop_transfer(stream, 1); 1724 return -ENOMEM; 1725 } 1726 1727 urb->dev = stream->dev->udev; 1728 urb->context = uvc_urb; 1729 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1730 ep->desc.bEndpointAddress); 1731 #ifndef CONFIG_DMA_NONCOHERENT 1732 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1733 urb->transfer_dma = uvc_urb->dma; 1734 #else 1735 urb->transfer_flags = URB_ISO_ASAP; 1736 #endif 1737 urb->interval = ep->desc.bInterval; 1738 urb->transfer_buffer = uvc_urb->buffer; 1739 urb->complete = uvc_video_complete; 1740 urb->number_of_packets = npackets; 1741 urb->transfer_buffer_length = size; 1742 1743 for (i = 0; i < npackets; ++i) { 1744 urb->iso_frame_desc[i].offset = i * psize; 1745 urb->iso_frame_desc[i].length = psize; 1746 } 1747 1748 uvc_urb->urb = urb; 1749 } 1750 1751 return 0; 1752 } 1753 1754 /* 1755 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1756 * given by the endpoint. 1757 */ 1758 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1759 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1760 { 1761 struct urb *urb; 1762 struct uvc_urb *uvc_urb; 1763 unsigned int npackets, pipe; 1764 u16 psize; 1765 u32 size; 1766 1767 psize = usb_endpoint_maxp(&ep->desc); 1768 size = stream->ctrl.dwMaxPayloadTransferSize; 1769 stream->bulk.max_payload_size = size; 1770 1771 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1772 if (npackets == 0) 1773 return -ENOMEM; 1774 1775 size = npackets * psize; 1776 1777 if (usb_endpoint_dir_in(&ep->desc)) 1778 pipe = usb_rcvbulkpipe(stream->dev->udev, 1779 ep->desc.bEndpointAddress); 1780 else 1781 pipe = usb_sndbulkpipe(stream->dev->udev, 1782 ep->desc.bEndpointAddress); 1783 1784 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1785 size = 0; 1786 1787 for_each_uvc_urb(uvc_urb, stream) { 1788 urb = usb_alloc_urb(0, gfp_flags); 1789 if (urb == NULL) { 1790 uvc_video_stop_transfer(stream, 1); 1791 return -ENOMEM; 1792 } 1793 1794 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1795 size, uvc_video_complete, uvc_urb); 1796 #ifndef CONFIG_DMA_NONCOHERENT 1797 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1798 urb->transfer_dma = uvc_urb->dma; 1799 #endif 1800 1801 uvc_urb->urb = urb; 1802 } 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1809 */ 1810 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1811 gfp_t gfp_flags) 1812 { 1813 struct usb_interface *intf = stream->intf; 1814 struct usb_host_endpoint *ep; 1815 struct uvc_urb *uvc_urb; 1816 unsigned int i; 1817 int ret; 1818 1819 stream->sequence = -1; 1820 stream->last_fid = -1; 1821 stream->bulk.header_size = 0; 1822 stream->bulk.skip_payload = 0; 1823 stream->bulk.payload_size = 0; 1824 1825 uvc_video_stats_start(stream); 1826 1827 if (intf->num_altsetting > 1) { 1828 struct usb_host_endpoint *best_ep = NULL; 1829 unsigned int best_psize = UINT_MAX; 1830 unsigned int bandwidth; 1831 unsigned int altsetting; 1832 int intfnum = stream->intfnum; 1833 1834 /* Isochronous endpoint, select the alternate setting. */ 1835 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1836 1837 if (bandwidth == 0) { 1838 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1839 "bandwidth, defaulting to lowest.\n"); 1840 bandwidth = 1; 1841 } else { 1842 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1843 "B/frame bandwidth.\n", bandwidth); 1844 } 1845 1846 for (i = 0; i < intf->num_altsetting; ++i) { 1847 struct usb_host_interface *alts; 1848 unsigned int psize; 1849 1850 alts = &intf->altsetting[i]; 1851 ep = uvc_find_endpoint(alts, 1852 stream->header.bEndpointAddress); 1853 if (ep == NULL) 1854 continue; 1855 1856 /* Check if the bandwidth is high enough. */ 1857 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1858 if (psize >= bandwidth && psize <= best_psize) { 1859 altsetting = alts->desc.bAlternateSetting; 1860 best_psize = psize; 1861 best_ep = ep; 1862 } 1863 } 1864 1865 if (best_ep == NULL) { 1866 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1867 "for requested bandwidth.\n"); 1868 return -EIO; 1869 } 1870 1871 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1872 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1873 1874 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1875 if (ret < 0) 1876 return ret; 1877 1878 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1879 } else { 1880 /* Bulk endpoint, proceed to URB initialization. */ 1881 ep = uvc_find_endpoint(&intf->altsetting[0], 1882 stream->header.bEndpointAddress); 1883 if (ep == NULL) 1884 return -EIO; 1885 1886 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1887 } 1888 1889 if (ret < 0) 1890 return ret; 1891 1892 /* Submit the URBs. */ 1893 for_each_uvc_urb(uvc_urb, stream) { 1894 ret = usb_submit_urb(uvc_urb->urb, gfp_flags); 1895 if (ret < 0) { 1896 uvc_printk(KERN_ERR, "Failed to submit URB %u (%d).\n", 1897 uvc_urb_index(uvc_urb), ret); 1898 uvc_video_stop_transfer(stream, 1); 1899 return ret; 1900 } 1901 } 1902 1903 /* The Logitech C920 temporarily forgets that it should not be adjusting 1904 * Exposure Absolute during init so restore controls to stored values. 1905 */ 1906 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1907 uvc_ctrl_restore_values(stream->dev); 1908 1909 return 0; 1910 } 1911 1912 /* -------------------------------------------------------------------------- 1913 * Suspend/resume 1914 */ 1915 1916 /* 1917 * Stop streaming without disabling the video queue. 1918 * 1919 * To let userspace applications resume without trouble, we must not touch the 1920 * video buffers in any way. We mark the device as frozen to make sure the URB 1921 * completion handler won't try to cancel the queue when we kill the URBs. 1922 */ 1923 int uvc_video_suspend(struct uvc_streaming *stream) 1924 { 1925 if (!uvc_queue_streaming(&stream->queue)) 1926 return 0; 1927 1928 stream->frozen = 1; 1929 uvc_video_stop_transfer(stream, 0); 1930 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1931 return 0; 1932 } 1933 1934 /* 1935 * Reconfigure the video interface and restart streaming if it was enabled 1936 * before suspend. 1937 * 1938 * If an error occurs, disable the video queue. This will wake all pending 1939 * buffers, making sure userspace applications are notified of the problem 1940 * instead of waiting forever. 1941 */ 1942 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1943 { 1944 int ret; 1945 1946 /* If the bus has been reset on resume, set the alternate setting to 0. 1947 * This should be the default value, but some devices crash or otherwise 1948 * misbehave if they don't receive a SET_INTERFACE request before any 1949 * other video control request. 1950 */ 1951 if (reset) 1952 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1953 1954 stream->frozen = 0; 1955 1956 uvc_video_clock_reset(stream); 1957 1958 if (!uvc_queue_streaming(&stream->queue)) 1959 return 0; 1960 1961 ret = uvc_commit_video(stream, &stream->ctrl); 1962 if (ret < 0) 1963 return ret; 1964 1965 return uvc_video_start_transfer(stream, GFP_NOIO); 1966 } 1967 1968 /* ------------------------------------------------------------------------ 1969 * Video device 1970 */ 1971 1972 /* 1973 * Initialize the UVC video device by switching to alternate setting 0 and 1974 * retrieve the default format. 1975 * 1976 * Some cameras (namely the Fuji Finepix) set the format and frame 1977 * indexes to zero. The UVC standard doesn't clearly make this a spec 1978 * violation, so try to silently fix the values if possible. 1979 * 1980 * This function is called before registering the device with V4L. 1981 */ 1982 int uvc_video_init(struct uvc_streaming *stream) 1983 { 1984 struct uvc_streaming_control *probe = &stream->ctrl; 1985 struct uvc_format *format = NULL; 1986 struct uvc_frame *frame = NULL; 1987 struct uvc_urb *uvc_urb; 1988 unsigned int i; 1989 int ret; 1990 1991 if (stream->nformats == 0) { 1992 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1993 return -EINVAL; 1994 } 1995 1996 atomic_set(&stream->active, 0); 1997 1998 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1999 * Cam (and possibly other devices) crash or otherwise misbehave if 2000 * they don't receive a SET_INTERFACE request before any other video 2001 * control request. 2002 */ 2003 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2004 2005 /* Set the streaming probe control with default streaming parameters 2006 * retrieved from the device. Webcams that don't support GET_DEF 2007 * requests on the probe control will just keep their current streaming 2008 * parameters. 2009 */ 2010 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2011 uvc_set_video_ctrl(stream, probe, 1); 2012 2013 /* Initialize the streaming parameters with the probe control current 2014 * value. This makes sure SET_CUR requests on the streaming commit 2015 * control will always use values retrieved from a successful GET_CUR 2016 * request on the probe control, as required by the UVC specification. 2017 */ 2018 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2019 if (ret < 0) 2020 return ret; 2021 2022 /* Check if the default format descriptor exists. Use the first 2023 * available format otherwise. 2024 */ 2025 for (i = stream->nformats; i > 0; --i) { 2026 format = &stream->format[i-1]; 2027 if (format->index == probe->bFormatIndex) 2028 break; 2029 } 2030 2031 if (format->nframes == 0) { 2032 uvc_printk(KERN_INFO, "No frame descriptor found for the " 2033 "default format.\n"); 2034 return -EINVAL; 2035 } 2036 2037 /* Zero bFrameIndex might be correct. Stream-based formats (including 2038 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2039 * descriptor with bFrameIndex set to zero. If the default frame 2040 * descriptor is not found, use the first available frame. 2041 */ 2042 for (i = format->nframes; i > 0; --i) { 2043 frame = &format->frame[i-1]; 2044 if (frame->bFrameIndex == probe->bFrameIndex) 2045 break; 2046 } 2047 2048 probe->bFormatIndex = format->index; 2049 probe->bFrameIndex = frame->bFrameIndex; 2050 2051 stream->def_format = format; 2052 stream->cur_format = format; 2053 stream->cur_frame = frame; 2054 2055 /* Select the video decoding function */ 2056 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2057 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2058 stream->decode = uvc_video_decode_isight; 2059 else if (stream->intf->num_altsetting > 1) 2060 stream->decode = uvc_video_decode_isoc; 2061 else 2062 stream->decode = uvc_video_decode_bulk; 2063 } else { 2064 if (stream->intf->num_altsetting == 1) 2065 stream->decode = uvc_video_encode_bulk; 2066 else { 2067 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 2068 "supported for video output devices.\n"); 2069 return -EINVAL; 2070 } 2071 } 2072 2073 /* Prepare asynchronous work items. */ 2074 for_each_uvc_urb(uvc_urb, stream) 2075 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2076 2077 return 0; 2078 } 2079 2080 int uvc_video_start_streaming(struct uvc_streaming *stream) 2081 { 2082 int ret; 2083 2084 ret = uvc_video_clock_init(stream); 2085 if (ret < 0) 2086 return ret; 2087 2088 /* Commit the streaming parameters. */ 2089 ret = uvc_commit_video(stream, &stream->ctrl); 2090 if (ret < 0) 2091 goto error_commit; 2092 2093 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2094 if (ret < 0) 2095 goto error_video; 2096 2097 return 0; 2098 2099 error_video: 2100 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2101 error_commit: 2102 uvc_video_clock_cleanup(stream); 2103 2104 return ret; 2105 } 2106 2107 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2108 { 2109 uvc_video_stop_transfer(stream, 1); 2110 2111 if (stream->intf->num_altsetting > 1) { 2112 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2113 } else { 2114 /* UVC doesn't specify how to inform a bulk-based device 2115 * when the video stream is stopped. Windows sends a 2116 * CLEAR_FEATURE(HALT) request to the video streaming 2117 * bulk endpoint, mimic the same behaviour. 2118 */ 2119 unsigned int epnum = stream->header.bEndpointAddress 2120 & USB_ENDPOINT_NUMBER_MASK; 2121 unsigned int dir = stream->header.bEndpointAddress 2122 & USB_ENDPOINT_DIR_MASK; 2123 unsigned int pipe; 2124 2125 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2126 usb_clear_halt(stream->dev->udev, pipe); 2127 } 2128 2129 uvc_video_clock_cleanup(stream); 2130 } 2131