xref: /openbmc/linux/drivers/media/usb/uvc/uvc_video.c (revision d0b73b48)
1 /*
2  *      uvc_video.c  --  USB Video Class driver - Video handling
3  *
4  *      Copyright (C) 2005-2010
5  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
6  *
7  *      This program is free software; you can redistribute it and/or modify
8  *      it under the terms of the GNU General Public License as published by
9  *      the Free Software Foundation; either version 2 of the License, or
10  *      (at your option) any later version.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
24 
25 #include <media/v4l2-common.h>
26 
27 #include "uvcvideo.h"
28 
29 /* ------------------------------------------------------------------------
30  * UVC Controls
31  */
32 
33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34 			__u8 intfnum, __u8 cs, void *data, __u16 size,
35 			int timeout)
36 {
37 	__u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
38 	unsigned int pipe;
39 
40 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41 			      : usb_sndctrlpipe(dev->udev, 0);
42 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
43 
44 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45 			unit << 8 | intfnum, data, size, timeout);
46 }
47 
48 static const char *uvc_query_name(__u8 query)
49 {
50 	switch (query) {
51 	case UVC_SET_CUR:
52 		return "SET_CUR";
53 	case UVC_GET_CUR:
54 		return "GET_CUR";
55 	case UVC_GET_MIN:
56 		return "GET_MIN";
57 	case UVC_GET_MAX:
58 		return "GET_MAX";
59 	case UVC_GET_RES:
60 		return "GET_RES";
61 	case UVC_GET_LEN:
62 		return "GET_LEN";
63 	case UVC_GET_INFO:
64 		return "GET_INFO";
65 	case UVC_GET_DEF:
66 		return "GET_DEF";
67 	default:
68 		return "<invalid>";
69 	}
70 }
71 
72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73 			__u8 intfnum, __u8 cs, void *data, __u16 size)
74 {
75 	int ret;
76 
77 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 				UVC_CTRL_CONTROL_TIMEOUT);
79 	if (ret != size) {
80 		uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81 			"unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82 			unit, ret, size);
83 		return -EIO;
84 	}
85 
86 	return 0;
87 }
88 
89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
90 	struct uvc_streaming_control *ctrl)
91 {
92 	struct uvc_format *format = NULL;
93 	struct uvc_frame *frame = NULL;
94 	unsigned int i;
95 
96 	for (i = 0; i < stream->nformats; ++i) {
97 		if (stream->format[i].index == ctrl->bFormatIndex) {
98 			format = &stream->format[i];
99 			break;
100 		}
101 	}
102 
103 	if (format == NULL)
104 		return;
105 
106 	for (i = 0; i < format->nframes; ++i) {
107 		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
108 			frame = &format->frame[i];
109 			break;
110 		}
111 	}
112 
113 	if (frame == NULL)
114 		return;
115 
116 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
117 	     (ctrl->dwMaxVideoFrameSize == 0 &&
118 	      stream->dev->uvc_version < 0x0110))
119 		ctrl->dwMaxVideoFrameSize =
120 			frame->dwMaxVideoFrameBufferSize;
121 
122 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
123 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
124 	    stream->intf->num_altsetting > 1) {
125 		u32 interval;
126 		u32 bandwidth;
127 
128 		interval = (ctrl->dwFrameInterval > 100000)
129 			 ? ctrl->dwFrameInterval
130 			 : frame->dwFrameInterval[0];
131 
132 		/* Compute a bandwidth estimation by multiplying the frame
133 		 * size by the number of video frames per second, divide the
134 		 * result by the number of USB frames (or micro-frames for
135 		 * high-speed devices) per second and add the UVC header size
136 		 * (assumed to be 12 bytes long).
137 		 */
138 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
139 		bandwidth *= 10000000 / interval + 1;
140 		bandwidth /= 1000;
141 		if (stream->dev->udev->speed == USB_SPEED_HIGH)
142 			bandwidth /= 8;
143 		bandwidth += 12;
144 
145 		/* The bandwidth estimate is too low for many cameras. Don't use
146 		 * maximum packet sizes lower than 1024 bytes to try and work
147 		 * around the problem. According to measurements done on two
148 		 * different camera models, the value is high enough to get most
149 		 * resolutions working while not preventing two simultaneous
150 		 * VGA streams at 15 fps.
151 		 */
152 		bandwidth = max_t(u32, bandwidth, 1024);
153 
154 		ctrl->dwMaxPayloadTransferSize = bandwidth;
155 	}
156 }
157 
158 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
159 	struct uvc_streaming_control *ctrl, int probe, __u8 query)
160 {
161 	__u8 *data;
162 	__u16 size;
163 	int ret;
164 
165 	size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
166 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
167 			query == UVC_GET_DEF)
168 		return -EIO;
169 
170 	data = kmalloc(size, GFP_KERNEL);
171 	if (data == NULL)
172 		return -ENOMEM;
173 
174 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
175 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
176 		size, uvc_timeout_param);
177 
178 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
179 		/* Some cameras, mostly based on Bison Electronics chipsets,
180 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
181 		 * field only.
182 		 */
183 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
184 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
185 			"supported. Enabling workaround.\n");
186 		memset(ctrl, 0, sizeof *ctrl);
187 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
188 		ret = 0;
189 		goto out;
190 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
191 		/* Many cameras don't support the GET_DEF request on their
192 		 * video probe control. Warn once and return, the caller will
193 		 * fall back to GET_CUR.
194 		 */
195 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
196 			"compliance - GET_DEF(PROBE) not supported. "
197 			"Enabling workaround.\n");
198 		ret = -EIO;
199 		goto out;
200 	} else if (ret != size) {
201 		uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
202 			"%d (exp. %u).\n", query, probe ? "probe" : "commit",
203 			ret, size);
204 		ret = -EIO;
205 		goto out;
206 	}
207 
208 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
209 	ctrl->bFormatIndex = data[2];
210 	ctrl->bFrameIndex = data[3];
211 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
212 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
213 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
214 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
215 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
216 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
217 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
218 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
219 
220 	if (size == 34) {
221 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
222 		ctrl->bmFramingInfo = data[30];
223 		ctrl->bPreferedVersion = data[31];
224 		ctrl->bMinVersion = data[32];
225 		ctrl->bMaxVersion = data[33];
226 	} else {
227 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
228 		ctrl->bmFramingInfo = 0;
229 		ctrl->bPreferedVersion = 0;
230 		ctrl->bMinVersion = 0;
231 		ctrl->bMaxVersion = 0;
232 	}
233 
234 	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
235 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
236 	 * format and frame descriptors.
237 	 */
238 	uvc_fixup_video_ctrl(stream, ctrl);
239 	ret = 0;
240 
241 out:
242 	kfree(data);
243 	return ret;
244 }
245 
246 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
247 	struct uvc_streaming_control *ctrl, int probe)
248 {
249 	__u8 *data;
250 	__u16 size;
251 	int ret;
252 
253 	size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
254 	data = kzalloc(size, GFP_KERNEL);
255 	if (data == NULL)
256 		return -ENOMEM;
257 
258 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
259 	data[2] = ctrl->bFormatIndex;
260 	data[3] = ctrl->bFrameIndex;
261 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
262 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
263 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
264 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
265 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
266 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
267 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
268 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
269 
270 	if (size == 34) {
271 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
272 		data[30] = ctrl->bmFramingInfo;
273 		data[31] = ctrl->bPreferedVersion;
274 		data[32] = ctrl->bMinVersion;
275 		data[33] = ctrl->bMaxVersion;
276 	}
277 
278 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
279 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
280 		size, uvc_timeout_param);
281 	if (ret != size) {
282 		uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
283 			"%d (exp. %u).\n", probe ? "probe" : "commit",
284 			ret, size);
285 		ret = -EIO;
286 	}
287 
288 	kfree(data);
289 	return ret;
290 }
291 
292 int uvc_probe_video(struct uvc_streaming *stream,
293 	struct uvc_streaming_control *probe)
294 {
295 	struct uvc_streaming_control probe_min, probe_max;
296 	__u16 bandwidth;
297 	unsigned int i;
298 	int ret;
299 
300 	/* Perform probing. The device should adjust the requested values
301 	 * according to its capabilities. However, some devices, namely the
302 	 * first generation UVC Logitech webcams, don't implement the Video
303 	 * Probe control properly, and just return the needed bandwidth. For
304 	 * that reason, if the needed bandwidth exceeds the maximum available
305 	 * bandwidth, try to lower the quality.
306 	 */
307 	ret = uvc_set_video_ctrl(stream, probe, 1);
308 	if (ret < 0)
309 		goto done;
310 
311 	/* Get the minimum and maximum values for compression settings. */
312 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
313 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
314 		if (ret < 0)
315 			goto done;
316 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
317 		if (ret < 0)
318 			goto done;
319 
320 		probe->wCompQuality = probe_max.wCompQuality;
321 	}
322 
323 	for (i = 0; i < 2; ++i) {
324 		ret = uvc_set_video_ctrl(stream, probe, 1);
325 		if (ret < 0)
326 			goto done;
327 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
328 		if (ret < 0)
329 			goto done;
330 
331 		if (stream->intf->num_altsetting == 1)
332 			break;
333 
334 		bandwidth = probe->dwMaxPayloadTransferSize;
335 		if (bandwidth <= stream->maxpsize)
336 			break;
337 
338 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
339 			ret = -ENOSPC;
340 			goto done;
341 		}
342 
343 		/* TODO: negotiate compression parameters */
344 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
345 		probe->wPFrameRate = probe_min.wPFrameRate;
346 		probe->wCompQuality = probe_max.wCompQuality;
347 		probe->wCompWindowSize = probe_min.wCompWindowSize;
348 	}
349 
350 done:
351 	return ret;
352 }
353 
354 static int uvc_commit_video(struct uvc_streaming *stream,
355 			    struct uvc_streaming_control *probe)
356 {
357 	return uvc_set_video_ctrl(stream, probe, 0);
358 }
359 
360 /* -----------------------------------------------------------------------------
361  * Clocks and timestamps
362  */
363 
364 static void
365 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
366 		       const __u8 *data, int len)
367 {
368 	struct uvc_clock_sample *sample;
369 	unsigned int header_size;
370 	bool has_pts = false;
371 	bool has_scr = false;
372 	unsigned long flags;
373 	struct timespec ts;
374 	u16 host_sof;
375 	u16 dev_sof;
376 
377 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
378 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
379 		header_size = 12;
380 		has_pts = true;
381 		has_scr = true;
382 		break;
383 	case UVC_STREAM_PTS:
384 		header_size = 6;
385 		has_pts = true;
386 		break;
387 	case UVC_STREAM_SCR:
388 		header_size = 8;
389 		has_scr = true;
390 		break;
391 	default:
392 		header_size = 2;
393 		break;
394 	}
395 
396 	/* Check for invalid headers. */
397 	if (len < header_size)
398 		return;
399 
400 	/* Extract the timestamps:
401 	 *
402 	 * - store the frame PTS in the buffer structure
403 	 * - if the SCR field is present, retrieve the host SOF counter and
404 	 *   kernel timestamps and store them with the SCR STC and SOF fields
405 	 *   in the ring buffer
406 	 */
407 	if (has_pts && buf != NULL)
408 		buf->pts = get_unaligned_le32(&data[2]);
409 
410 	if (!has_scr)
411 		return;
412 
413 	/* To limit the amount of data, drop SCRs with an SOF identical to the
414 	 * previous one.
415 	 */
416 	dev_sof = get_unaligned_le16(&data[header_size - 2]);
417 	if (dev_sof == stream->clock.last_sof)
418 		return;
419 
420 	stream->clock.last_sof = dev_sof;
421 
422 	host_sof = usb_get_current_frame_number(stream->dev->udev);
423 	ktime_get_ts(&ts);
424 
425 	/* The UVC specification allows device implementations that can't obtain
426 	 * the USB frame number to keep their own frame counters as long as they
427 	 * match the size and frequency of the frame number associated with USB
428 	 * SOF tokens. The SOF values sent by such devices differ from the USB
429 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
430 	 * for to make timestamp recovery as accurate as possible.
431 	 *
432 	 * The offset is estimated the first time a device SOF value is received
433 	 * as the difference between the host and device SOF values. As the two
434 	 * SOF values can differ slightly due to transmission delays, consider
435 	 * that the offset is null if the difference is not higher than 10 ms
436 	 * (negative differences can not happen and are thus considered as an
437 	 * offset). The video commit control wDelay field should be used to
438 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
439 	 * devices don't report reliable wDelay values.
440 	 *
441 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
442 	 * the 8 LSBs of the delta are kept.
443 	 */
444 	if (stream->clock.sof_offset == (u16)-1) {
445 		u16 delta_sof = (host_sof - dev_sof) & 255;
446 		if (delta_sof >= 10)
447 			stream->clock.sof_offset = delta_sof;
448 		else
449 			stream->clock.sof_offset = 0;
450 	}
451 
452 	dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
453 
454 	spin_lock_irqsave(&stream->clock.lock, flags);
455 
456 	sample = &stream->clock.samples[stream->clock.head];
457 	sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
458 	sample->dev_sof = dev_sof;
459 	sample->host_sof = host_sof;
460 	sample->host_ts = ts;
461 
462 	/* Update the sliding window head and count. */
463 	stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
464 
465 	if (stream->clock.count < stream->clock.size)
466 		stream->clock.count++;
467 
468 	spin_unlock_irqrestore(&stream->clock.lock, flags);
469 }
470 
471 static void uvc_video_clock_reset(struct uvc_streaming *stream)
472 {
473 	struct uvc_clock *clock = &stream->clock;
474 
475 	clock->head = 0;
476 	clock->count = 0;
477 	clock->last_sof = -1;
478 	clock->sof_offset = -1;
479 }
480 
481 static int uvc_video_clock_init(struct uvc_streaming *stream)
482 {
483 	struct uvc_clock *clock = &stream->clock;
484 
485 	spin_lock_init(&clock->lock);
486 	clock->size = 32;
487 
488 	clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
489 				 GFP_KERNEL);
490 	if (clock->samples == NULL)
491 		return -ENOMEM;
492 
493 	uvc_video_clock_reset(stream);
494 
495 	return 0;
496 }
497 
498 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
499 {
500 	kfree(stream->clock.samples);
501 	stream->clock.samples = NULL;
502 }
503 
504 /*
505  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
506  *
507  * Host SOF counters reported by usb_get_current_frame_number() usually don't
508  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
509  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
510  * controller and its configuration.
511  *
512  * We thus need to recover the SOF value corresponding to the host frame number.
513  * As the device and host frame numbers are sampled in a short interval, the
514  * difference between their values should be equal to a small delta plus an
515  * integer multiple of 256 caused by the host frame number limited precision.
516  *
517  * To obtain the recovered host SOF value, compute the small delta by masking
518  * the high bits of the host frame counter and device SOF difference and add it
519  * to the device SOF value.
520  */
521 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
522 {
523 	/* The delta value can be negative. */
524 	s8 delta_sof;
525 
526 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
527 
528 	return (sample->dev_sof + delta_sof) & 2047;
529 }
530 
531 /*
532  * uvc_video_clock_update - Update the buffer timestamp
533  *
534  * This function converts the buffer PTS timestamp to the host clock domain by
535  * going through the USB SOF clock domain and stores the result in the V4L2
536  * buffer timestamp field.
537  *
538  * The relationship between the device clock and the host clock isn't known.
539  * However, the device and the host share the common USB SOF clock which can be
540  * used to recover that relationship.
541  *
542  * The relationship between the device clock and the USB SOF clock is considered
543  * to be linear over the clock samples sliding window and is given by
544  *
545  * SOF = m * PTS + p
546  *
547  * Several methods to compute the slope (m) and intercept (p) can be used. As
548  * the clock drift should be small compared to the sliding window size, we
549  * assume that the line that goes through the points at both ends of the window
550  * is a good approximation. Naming those points P1 and P2, we get
551  *
552  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
553  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
554  *
555  * or
556  *
557  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
558  *
559  * to avoid loosing precision in the division. Similarly, the host timestamp is
560  * computed with
561  *
562  * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
563  *
564  * SOF values are coded on 11 bits by USB. We extend their precision with 16
565  * decimal bits, leading to a 11.16 coding.
566  *
567  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
568  * be normalized using the nominal device clock frequency reported through the
569  * UVC descriptors.
570  *
571  * Both the PTS/STC and SOF counters roll over, after a fixed but device
572  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
573  * sliding window size is smaller than the rollover period, differences computed
574  * on unsigned integers will produce the correct result. However, the p term in
575  * the linear relations will be miscomputed.
576  *
577  * To fix the issue, we subtract a constant from the PTS and STC values to bring
578  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
579  * the 32 bit range without any rollover.
580  *
581  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
582  * computed by (1) will never be smaller than 0. This offset is then compensated
583  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
584  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
585  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
586  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
587  * SOF value at the end of the sliding window.
588  *
589  * Finally we subtract a constant from the host timestamps to bring the first
590  * timestamp of the sliding window to 1s.
591  */
592 void uvc_video_clock_update(struct uvc_streaming *stream,
593 			    struct v4l2_buffer *v4l2_buf,
594 			    struct uvc_buffer *buf)
595 {
596 	struct uvc_clock *clock = &stream->clock;
597 	struct uvc_clock_sample *first;
598 	struct uvc_clock_sample *last;
599 	unsigned long flags;
600 	struct timespec ts;
601 	u32 delta_stc;
602 	u32 y1, y2;
603 	u32 x1, x2;
604 	u32 mean;
605 	u32 sof;
606 	u32 div;
607 	u32 rem;
608 	u64 y;
609 
610 	spin_lock_irqsave(&clock->lock, flags);
611 
612 	if (clock->count < clock->size)
613 		goto done;
614 
615 	first = &clock->samples[clock->head];
616 	last = &clock->samples[(clock->head - 1) % clock->size];
617 
618 	/* First step, PTS to SOF conversion. */
619 	delta_stc = buf->pts - (1UL << 31);
620 	x1 = first->dev_stc - delta_stc;
621 	x2 = last->dev_stc - delta_stc;
622 	if (x1 == x2)
623 		goto done;
624 
625 	y1 = (first->dev_sof + 2048) << 16;
626 	y2 = (last->dev_sof + 2048) << 16;
627 	if (y2 < y1)
628 		y2 += 2048 << 16;
629 
630 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
631 	  - (u64)y2 * (u64)x1;
632 	y = div_u64(y, x2 - x1);
633 
634 	sof = y;
635 
636 	uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
637 		  "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
638 		  stream->dev->name, buf->pts,
639 		  y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
640 		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
641 		  x1, x2, y1, y2, clock->sof_offset);
642 
643 	/* Second step, SOF to host clock conversion. */
644 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
645 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
646 	if (x2 < x1)
647 		x2 += 2048 << 16;
648 	if (x1 == x2)
649 		goto done;
650 
651 	ts = timespec_sub(last->host_ts, first->host_ts);
652 	y1 = NSEC_PER_SEC;
653 	y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
654 
655 	/* Interpolated and host SOF timestamps can wrap around at slightly
656 	 * different times. Handle this by adding or removing 2048 to or from
657 	 * the computed SOF value to keep it close to the SOF samples mean
658 	 * value.
659 	 */
660 	mean = (x1 + x2) / 2;
661 	if (mean - (1024 << 16) > sof)
662 		sof += 2048 << 16;
663 	else if (sof > mean + (1024 << 16))
664 		sof -= 2048 << 16;
665 
666 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
667 	  - (u64)y2 * (u64)x1;
668 	y = div_u64(y, x2 - x1);
669 
670 	div = div_u64_rem(y, NSEC_PER_SEC, &rem);
671 	ts.tv_sec = first->host_ts.tv_sec - 1 + div;
672 	ts.tv_nsec = first->host_ts.tv_nsec + rem;
673 	if (ts.tv_nsec >= NSEC_PER_SEC) {
674 		ts.tv_sec++;
675 		ts.tv_nsec -= NSEC_PER_SEC;
676 	}
677 
678 	uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
679 		  "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
680 		  stream->dev->name,
681 		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
682 		  y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
683 		  v4l2_buf->timestamp.tv_sec, v4l2_buf->timestamp.tv_usec,
684 		  x1, first->host_sof, first->dev_sof,
685 		  x2, last->host_sof, last->dev_sof, y1, y2);
686 
687 	/* Update the V4L2 buffer. */
688 	v4l2_buf->timestamp.tv_sec = ts.tv_sec;
689 	v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
690 
691 done:
692 	spin_unlock_irqrestore(&stream->clock.lock, flags);
693 }
694 
695 /* ------------------------------------------------------------------------
696  * Stream statistics
697  */
698 
699 static void uvc_video_stats_decode(struct uvc_streaming *stream,
700 		const __u8 *data, int len)
701 {
702 	unsigned int header_size;
703 	bool has_pts = false;
704 	bool has_scr = false;
705 	u16 uninitialized_var(scr_sof);
706 	u32 uninitialized_var(scr_stc);
707 	u32 uninitialized_var(pts);
708 
709 	if (stream->stats.stream.nb_frames == 0 &&
710 	    stream->stats.frame.nb_packets == 0)
711 		ktime_get_ts(&stream->stats.stream.start_ts);
712 
713 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
714 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
715 		header_size = 12;
716 		has_pts = true;
717 		has_scr = true;
718 		break;
719 	case UVC_STREAM_PTS:
720 		header_size = 6;
721 		has_pts = true;
722 		break;
723 	case UVC_STREAM_SCR:
724 		header_size = 8;
725 		has_scr = true;
726 		break;
727 	default:
728 		header_size = 2;
729 		break;
730 	}
731 
732 	/* Check for invalid headers. */
733 	if (len < header_size || data[0] < header_size) {
734 		stream->stats.frame.nb_invalid++;
735 		return;
736 	}
737 
738 	/* Extract the timestamps. */
739 	if (has_pts)
740 		pts = get_unaligned_le32(&data[2]);
741 
742 	if (has_scr) {
743 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
744 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
745 	}
746 
747 	/* Is PTS constant through the whole frame ? */
748 	if (has_pts && stream->stats.frame.nb_pts) {
749 		if (stream->stats.frame.pts != pts) {
750 			stream->stats.frame.nb_pts_diffs++;
751 			stream->stats.frame.last_pts_diff =
752 				stream->stats.frame.nb_packets;
753 		}
754 	}
755 
756 	if (has_pts) {
757 		stream->stats.frame.nb_pts++;
758 		stream->stats.frame.pts = pts;
759 	}
760 
761 	/* Do all frames have a PTS in their first non-empty packet, or before
762 	 * their first empty packet ?
763 	 */
764 	if (stream->stats.frame.size == 0) {
765 		if (len > header_size)
766 			stream->stats.frame.has_initial_pts = has_pts;
767 		if (len == header_size && has_pts)
768 			stream->stats.frame.has_early_pts = true;
769 	}
770 
771 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
772 	if (has_scr && stream->stats.frame.nb_scr) {
773 		if (stream->stats.frame.scr_stc != scr_stc)
774 			stream->stats.frame.nb_scr_diffs++;
775 	}
776 
777 	if (has_scr) {
778 		/* Expand the SOF counter to 32 bits and store its value. */
779 		if (stream->stats.stream.nb_frames > 0 ||
780 		    stream->stats.frame.nb_scr > 0)
781 			stream->stats.stream.scr_sof_count +=
782 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
783 		stream->stats.stream.scr_sof = scr_sof;
784 
785 		stream->stats.frame.nb_scr++;
786 		stream->stats.frame.scr_stc = scr_stc;
787 		stream->stats.frame.scr_sof = scr_sof;
788 
789 		if (scr_sof < stream->stats.stream.min_sof)
790 			stream->stats.stream.min_sof = scr_sof;
791 		if (scr_sof > stream->stats.stream.max_sof)
792 			stream->stats.stream.max_sof = scr_sof;
793 	}
794 
795 	/* Record the first non-empty packet number. */
796 	if (stream->stats.frame.size == 0 && len > header_size)
797 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
798 
799 	/* Update the frame size. */
800 	stream->stats.frame.size += len - header_size;
801 
802 	/* Update the packets counters. */
803 	stream->stats.frame.nb_packets++;
804 	if (len > header_size)
805 		stream->stats.frame.nb_empty++;
806 
807 	if (data[1] & UVC_STREAM_ERR)
808 		stream->stats.frame.nb_errors++;
809 }
810 
811 static void uvc_video_stats_update(struct uvc_streaming *stream)
812 {
813 	struct uvc_stats_frame *frame = &stream->stats.frame;
814 
815 	uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
816 		  "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
817 		  "last pts/stc/sof %u/%u/%u\n",
818 		  stream->sequence, frame->first_data,
819 		  frame->nb_packets - frame->nb_empty, frame->nb_packets,
820 		  frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
821 		  frame->has_early_pts ? "" : "!",
822 		  frame->has_initial_pts ? "" : "!",
823 		  frame->nb_scr_diffs, frame->nb_scr,
824 		  frame->pts, frame->scr_stc, frame->scr_sof);
825 
826 	stream->stats.stream.nb_frames++;
827 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
828 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
829 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
830 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
831 
832 	if (frame->has_early_pts)
833 		stream->stats.stream.nb_pts_early++;
834 	if (frame->has_initial_pts)
835 		stream->stats.stream.nb_pts_initial++;
836 	if (frame->last_pts_diff <= frame->first_data)
837 		stream->stats.stream.nb_pts_constant++;
838 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
839 		stream->stats.stream.nb_scr_count_ok++;
840 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
841 		stream->stats.stream.nb_scr_diffs_ok++;
842 
843 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
844 }
845 
846 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
847 			    size_t size)
848 {
849 	unsigned int scr_sof_freq;
850 	unsigned int duration;
851 	struct timespec ts;
852 	size_t count = 0;
853 
854 	ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
855 		  - stream->stats.stream.start_ts.tv_sec;
856 	ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
857 		   - stream->stats.stream.start_ts.tv_nsec;
858 	if (ts.tv_nsec < 0) {
859 		ts.tv_sec--;
860 		ts.tv_nsec += 1000000000;
861 	}
862 
863 	/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
864 	 * frequency this will not overflow before more than 1h.
865 	 */
866 	duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
867 	if (duration != 0)
868 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
869 			     / duration;
870 	else
871 		scr_sof_freq = 0;
872 
873 	count += scnprintf(buf + count, size - count,
874 			   "frames:  %u\npackets: %u\nempty:   %u\n"
875 			   "errors:  %u\ninvalid: %u\n",
876 			   stream->stats.stream.nb_frames,
877 			   stream->stats.stream.nb_packets,
878 			   stream->stats.stream.nb_empty,
879 			   stream->stats.stream.nb_errors,
880 			   stream->stats.stream.nb_invalid);
881 	count += scnprintf(buf + count, size - count,
882 			   "pts: %u early, %u initial, %u ok\n",
883 			   stream->stats.stream.nb_pts_early,
884 			   stream->stats.stream.nb_pts_initial,
885 			   stream->stats.stream.nb_pts_constant);
886 	count += scnprintf(buf + count, size - count,
887 			   "scr: %u count ok, %u diff ok\n",
888 			   stream->stats.stream.nb_scr_count_ok,
889 			   stream->stats.stream.nb_scr_diffs_ok);
890 	count += scnprintf(buf + count, size - count,
891 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
892 			   stream->stats.stream.min_sof,
893 			   stream->stats.stream.max_sof,
894 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
895 
896 	return count;
897 }
898 
899 static void uvc_video_stats_start(struct uvc_streaming *stream)
900 {
901 	memset(&stream->stats, 0, sizeof(stream->stats));
902 	stream->stats.stream.min_sof = 2048;
903 }
904 
905 static void uvc_video_stats_stop(struct uvc_streaming *stream)
906 {
907 	ktime_get_ts(&stream->stats.stream.stop_ts);
908 }
909 
910 /* ------------------------------------------------------------------------
911  * Video codecs
912  */
913 
914 /* Video payload decoding is handled by uvc_video_decode_start(),
915  * uvc_video_decode_data() and uvc_video_decode_end().
916  *
917  * uvc_video_decode_start is called with URB data at the start of a bulk or
918  * isochronous payload. It processes header data and returns the header size
919  * in bytes if successful. If an error occurs, it returns a negative error
920  * code. The following error codes have special meanings.
921  *
922  * - EAGAIN informs the caller that the current video buffer should be marked
923  *   as done, and that the function should be called again with the same data
924  *   and a new video buffer. This is used when end of frame conditions can be
925  *   reliably detected at the beginning of the next frame only.
926  *
927  * If an error other than -EAGAIN is returned, the caller will drop the current
928  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
929  * made until the next payload. -ENODATA can be used to drop the current
930  * payload if no other error code is appropriate.
931  *
932  * uvc_video_decode_data is called for every URB with URB data. It copies the
933  * data to the video buffer.
934  *
935  * uvc_video_decode_end is called with header data at the end of a bulk or
936  * isochronous payload. It performs any additional header data processing and
937  * returns 0 or a negative error code if an error occurred. As header data have
938  * already been processed by uvc_video_decode_start, this functions isn't
939  * required to perform sanity checks a second time.
940  *
941  * For isochronous transfers where a payload is always transferred in a single
942  * URB, the three functions will be called in a row.
943  *
944  * To let the decoder process header data and update its internal state even
945  * when no video buffer is available, uvc_video_decode_start must be prepared
946  * to be called with a NULL buf parameter. uvc_video_decode_data and
947  * uvc_video_decode_end will never be called with a NULL buffer.
948  */
949 static int uvc_video_decode_start(struct uvc_streaming *stream,
950 		struct uvc_buffer *buf, const __u8 *data, int len)
951 {
952 	__u8 fid;
953 
954 	/* Sanity checks:
955 	 * - packet must be at least 2 bytes long
956 	 * - bHeaderLength value must be at least 2 bytes (see above)
957 	 * - bHeaderLength value can't be larger than the packet size.
958 	 */
959 	if (len < 2 || data[0] < 2 || data[0] > len) {
960 		stream->stats.frame.nb_invalid++;
961 		return -EINVAL;
962 	}
963 
964 	fid = data[1] & UVC_STREAM_FID;
965 
966 	/* Increase the sequence number regardless of any buffer states, so
967 	 * that discontinuous sequence numbers always indicate lost frames.
968 	 */
969 	if (stream->last_fid != fid) {
970 		stream->sequence++;
971 		if (stream->sequence)
972 			uvc_video_stats_update(stream);
973 	}
974 
975 	uvc_video_clock_decode(stream, buf, data, len);
976 	uvc_video_stats_decode(stream, data, len);
977 
978 	/* Store the payload FID bit and return immediately when the buffer is
979 	 * NULL.
980 	 */
981 	if (buf == NULL) {
982 		stream->last_fid = fid;
983 		return -ENODATA;
984 	}
985 
986 	/* Mark the buffer as bad if the error bit is set. */
987 	if (data[1] & UVC_STREAM_ERR) {
988 		uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
989 			  "set).\n");
990 		buf->error = 1;
991 	}
992 
993 	/* Synchronize to the input stream by waiting for the FID bit to be
994 	 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
995 	 * stream->last_fid is initialized to -1, so the first isochronous
996 	 * frame will always be in sync.
997 	 *
998 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
999 	 * when the EOF bit is set to force synchronisation on the next packet.
1000 	 */
1001 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1002 		struct timespec ts;
1003 
1004 		if (fid == stream->last_fid) {
1005 			uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1006 				"sync).\n");
1007 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1008 			    (data[1] & UVC_STREAM_EOF))
1009 				stream->last_fid ^= UVC_STREAM_FID;
1010 			return -ENODATA;
1011 		}
1012 
1013 		if (uvc_clock_param == CLOCK_MONOTONIC)
1014 			ktime_get_ts(&ts);
1015 		else
1016 			ktime_get_real_ts(&ts);
1017 
1018 		buf->buf.v4l2_buf.sequence = stream->sequence;
1019 		buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec;
1020 		buf->buf.v4l2_buf.timestamp.tv_usec =
1021 			ts.tv_nsec / NSEC_PER_USEC;
1022 
1023 		/* TODO: Handle PTS and SCR. */
1024 		buf->state = UVC_BUF_STATE_ACTIVE;
1025 	}
1026 
1027 	/* Mark the buffer as done if we're at the beginning of a new frame.
1028 	 * End of frame detection is better implemented by checking the EOF
1029 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1030 	 * bit), but some devices don't set the bit at end of frame (and the
1031 	 * last payload can be lost anyway). We thus must check if the FID has
1032 	 * been toggled.
1033 	 *
1034 	 * stream->last_fid is initialized to -1, so the first isochronous
1035 	 * frame will never trigger an end of frame detection.
1036 	 *
1037 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1038 	 * as it doesn't make sense to return an empty buffer. This also
1039 	 * avoids detecting end of frame conditions at FID toggling if the
1040 	 * previous payload had the EOF bit set.
1041 	 */
1042 	if (fid != stream->last_fid && buf->bytesused != 0) {
1043 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1044 				"toggled).\n");
1045 		buf->state = UVC_BUF_STATE_READY;
1046 		return -EAGAIN;
1047 	}
1048 
1049 	stream->last_fid = fid;
1050 
1051 	return data[0];
1052 }
1053 
1054 static void uvc_video_decode_data(struct uvc_streaming *stream,
1055 		struct uvc_buffer *buf, const __u8 *data, int len)
1056 {
1057 	unsigned int maxlen, nbytes;
1058 	void *mem;
1059 
1060 	if (len <= 0)
1061 		return;
1062 
1063 	/* Copy the video data to the buffer. */
1064 	maxlen = buf->length - buf->bytesused;
1065 	mem = buf->mem + buf->bytesused;
1066 	nbytes = min((unsigned int)len, maxlen);
1067 	memcpy(mem, data, nbytes);
1068 	buf->bytesused += nbytes;
1069 
1070 	/* Complete the current frame if the buffer size was exceeded. */
1071 	if (len > maxlen) {
1072 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1073 		buf->state = UVC_BUF_STATE_READY;
1074 	}
1075 }
1076 
1077 static void uvc_video_decode_end(struct uvc_streaming *stream,
1078 		struct uvc_buffer *buf, const __u8 *data, int len)
1079 {
1080 	/* Mark the buffer as done if the EOF marker is set. */
1081 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1082 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1083 		if (data[0] == len)
1084 			uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1085 		buf->state = UVC_BUF_STATE_READY;
1086 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1087 			stream->last_fid ^= UVC_STREAM_FID;
1088 	}
1089 }
1090 
1091 /* Video payload encoding is handled by uvc_video_encode_header() and
1092  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1093  *
1094  * uvc_video_encode_header is called at the start of a payload. It adds header
1095  * data to the transfer buffer and returns the header size. As the only known
1096  * UVC output device transfers a whole frame in a single payload, the EOF bit
1097  * is always set in the header.
1098  *
1099  * uvc_video_encode_data is called for every URB and copies the data from the
1100  * video buffer to the transfer buffer.
1101  */
1102 static int uvc_video_encode_header(struct uvc_streaming *stream,
1103 		struct uvc_buffer *buf, __u8 *data, int len)
1104 {
1105 	data[0] = 2;	/* Header length */
1106 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1107 		| (stream->last_fid & UVC_STREAM_FID);
1108 	return 2;
1109 }
1110 
1111 static int uvc_video_encode_data(struct uvc_streaming *stream,
1112 		struct uvc_buffer *buf, __u8 *data, int len)
1113 {
1114 	struct uvc_video_queue *queue = &stream->queue;
1115 	unsigned int nbytes;
1116 	void *mem;
1117 
1118 	/* Copy video data to the URB buffer. */
1119 	mem = buf->mem + queue->buf_used;
1120 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1121 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1122 			nbytes);
1123 	memcpy(data, mem, nbytes);
1124 
1125 	queue->buf_used += nbytes;
1126 
1127 	return nbytes;
1128 }
1129 
1130 /* ------------------------------------------------------------------------
1131  * URB handling
1132  */
1133 
1134 /*
1135  * Completion handler for video URBs.
1136  */
1137 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1138 	struct uvc_buffer *buf)
1139 {
1140 	u8 *mem;
1141 	int ret, i;
1142 
1143 	for (i = 0; i < urb->number_of_packets; ++i) {
1144 		if (urb->iso_frame_desc[i].status < 0) {
1145 			uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1146 				"lost (%d).\n", urb->iso_frame_desc[i].status);
1147 			/* Mark the buffer as faulty. */
1148 			if (buf != NULL)
1149 				buf->error = 1;
1150 			continue;
1151 		}
1152 
1153 		/* Decode the payload header. */
1154 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1155 		do {
1156 			ret = uvc_video_decode_start(stream, buf, mem,
1157 				urb->iso_frame_desc[i].actual_length);
1158 			if (ret == -EAGAIN)
1159 				buf = uvc_queue_next_buffer(&stream->queue,
1160 							    buf);
1161 		} while (ret == -EAGAIN);
1162 
1163 		if (ret < 0)
1164 			continue;
1165 
1166 		/* Decode the payload data. */
1167 		uvc_video_decode_data(stream, buf, mem + ret,
1168 			urb->iso_frame_desc[i].actual_length - ret);
1169 
1170 		/* Process the header again. */
1171 		uvc_video_decode_end(stream, buf, mem,
1172 			urb->iso_frame_desc[i].actual_length);
1173 
1174 		if (buf->state == UVC_BUF_STATE_READY) {
1175 			if (buf->length != buf->bytesused &&
1176 			    !(stream->cur_format->flags &
1177 			      UVC_FMT_FLAG_COMPRESSED))
1178 				buf->error = 1;
1179 
1180 			buf = uvc_queue_next_buffer(&stream->queue, buf);
1181 		}
1182 	}
1183 }
1184 
1185 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1186 	struct uvc_buffer *buf)
1187 {
1188 	u8 *mem;
1189 	int len, ret;
1190 
1191 	/*
1192 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1193 	 * to trigger the end of payload detection.
1194 	 */
1195 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1196 		return;
1197 
1198 	mem = urb->transfer_buffer;
1199 	len = urb->actual_length;
1200 	stream->bulk.payload_size += len;
1201 
1202 	/* If the URB is the first of its payload, decode and save the
1203 	 * header.
1204 	 */
1205 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1206 		do {
1207 			ret = uvc_video_decode_start(stream, buf, mem, len);
1208 			if (ret == -EAGAIN)
1209 				buf = uvc_queue_next_buffer(&stream->queue,
1210 							    buf);
1211 		} while (ret == -EAGAIN);
1212 
1213 		/* If an error occurred skip the rest of the payload. */
1214 		if (ret < 0 || buf == NULL) {
1215 			stream->bulk.skip_payload = 1;
1216 		} else {
1217 			memcpy(stream->bulk.header, mem, ret);
1218 			stream->bulk.header_size = ret;
1219 
1220 			mem += ret;
1221 			len -= ret;
1222 		}
1223 	}
1224 
1225 	/* The buffer queue might have been cancelled while a bulk transfer
1226 	 * was in progress, so we can reach here with buf equal to NULL. Make
1227 	 * sure buf is never dereferenced if NULL.
1228 	 */
1229 
1230 	/* Process video data. */
1231 	if (!stream->bulk.skip_payload && buf != NULL)
1232 		uvc_video_decode_data(stream, buf, mem, len);
1233 
1234 	/* Detect the payload end by a URB smaller than the maximum size (or
1235 	 * a payload size equal to the maximum) and process the header again.
1236 	 */
1237 	if (urb->actual_length < urb->transfer_buffer_length ||
1238 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1239 		if (!stream->bulk.skip_payload && buf != NULL) {
1240 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1241 				stream->bulk.payload_size);
1242 			if (buf->state == UVC_BUF_STATE_READY)
1243 				buf = uvc_queue_next_buffer(&stream->queue,
1244 							    buf);
1245 		}
1246 
1247 		stream->bulk.header_size = 0;
1248 		stream->bulk.skip_payload = 0;
1249 		stream->bulk.payload_size = 0;
1250 	}
1251 }
1252 
1253 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1254 	struct uvc_buffer *buf)
1255 {
1256 	u8 *mem = urb->transfer_buffer;
1257 	int len = stream->urb_size, ret;
1258 
1259 	if (buf == NULL) {
1260 		urb->transfer_buffer_length = 0;
1261 		return;
1262 	}
1263 
1264 	/* If the URB is the first of its payload, add the header. */
1265 	if (stream->bulk.header_size == 0) {
1266 		ret = uvc_video_encode_header(stream, buf, mem, len);
1267 		stream->bulk.header_size = ret;
1268 		stream->bulk.payload_size += ret;
1269 		mem += ret;
1270 		len -= ret;
1271 	}
1272 
1273 	/* Process video data. */
1274 	ret = uvc_video_encode_data(stream, buf, mem, len);
1275 
1276 	stream->bulk.payload_size += ret;
1277 	len -= ret;
1278 
1279 	if (buf->bytesused == stream->queue.buf_used ||
1280 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1281 		if (buf->bytesused == stream->queue.buf_used) {
1282 			stream->queue.buf_used = 0;
1283 			buf->state = UVC_BUF_STATE_READY;
1284 			buf->buf.v4l2_buf.sequence = ++stream->sequence;
1285 			uvc_queue_next_buffer(&stream->queue, buf);
1286 			stream->last_fid ^= UVC_STREAM_FID;
1287 		}
1288 
1289 		stream->bulk.header_size = 0;
1290 		stream->bulk.payload_size = 0;
1291 	}
1292 
1293 	urb->transfer_buffer_length = stream->urb_size - len;
1294 }
1295 
1296 static void uvc_video_complete(struct urb *urb)
1297 {
1298 	struct uvc_streaming *stream = urb->context;
1299 	struct uvc_video_queue *queue = &stream->queue;
1300 	struct uvc_buffer *buf = NULL;
1301 	unsigned long flags;
1302 	int ret;
1303 
1304 	switch (urb->status) {
1305 	case 0:
1306 		break;
1307 
1308 	default:
1309 		uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1310 			"completion handler.\n", urb->status);
1311 
1312 	case -ENOENT:		/* usb_kill_urb() called. */
1313 		if (stream->frozen)
1314 			return;
1315 
1316 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1317 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1318 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1319 		return;
1320 	}
1321 
1322 	spin_lock_irqsave(&queue->irqlock, flags);
1323 	if (!list_empty(&queue->irqqueue))
1324 		buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1325 				       queue);
1326 	spin_unlock_irqrestore(&queue->irqlock, flags);
1327 
1328 	stream->decode(urb, stream, buf);
1329 
1330 	if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1331 		uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1332 			ret);
1333 	}
1334 }
1335 
1336 /*
1337  * Free transfer buffers.
1338  */
1339 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1340 {
1341 	unsigned int i;
1342 
1343 	for (i = 0; i < UVC_URBS; ++i) {
1344 		if (stream->urb_buffer[i]) {
1345 #ifndef CONFIG_DMA_NONCOHERENT
1346 			usb_free_coherent(stream->dev->udev, stream->urb_size,
1347 				stream->urb_buffer[i], stream->urb_dma[i]);
1348 #else
1349 			kfree(stream->urb_buffer[i]);
1350 #endif
1351 			stream->urb_buffer[i] = NULL;
1352 		}
1353 	}
1354 
1355 	stream->urb_size = 0;
1356 }
1357 
1358 /*
1359  * Allocate transfer buffers. This function can be called with buffers
1360  * already allocated when resuming from suspend, in which case it will
1361  * return without touching the buffers.
1362  *
1363  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1364  * system is too low on memory try successively smaller numbers of packets
1365  * until allocation succeeds.
1366  *
1367  * Return the number of allocated packets on success or 0 when out of memory.
1368  */
1369 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1370 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1371 {
1372 	unsigned int npackets;
1373 	unsigned int i;
1374 
1375 	/* Buffers are already allocated, bail out. */
1376 	if (stream->urb_size)
1377 		return stream->urb_size / psize;
1378 
1379 	/* Compute the number of packets. Bulk endpoints might transfer UVC
1380 	 * payloads across multiple URBs.
1381 	 */
1382 	npackets = DIV_ROUND_UP(size, psize);
1383 	if (npackets > UVC_MAX_PACKETS)
1384 		npackets = UVC_MAX_PACKETS;
1385 
1386 	/* Retry allocations until one succeed. */
1387 	for (; npackets > 1; npackets /= 2) {
1388 		for (i = 0; i < UVC_URBS; ++i) {
1389 			stream->urb_size = psize * npackets;
1390 #ifndef CONFIG_DMA_NONCOHERENT
1391 			stream->urb_buffer[i] = usb_alloc_coherent(
1392 				stream->dev->udev, stream->urb_size,
1393 				gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1394 #else
1395 			stream->urb_buffer[i] =
1396 			    kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1397 #endif
1398 			if (!stream->urb_buffer[i]) {
1399 				uvc_free_urb_buffers(stream);
1400 				break;
1401 			}
1402 		}
1403 
1404 		if (i == UVC_URBS) {
1405 			uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1406 				"of %ux%u bytes each.\n", UVC_URBS, npackets,
1407 				psize);
1408 			return npackets;
1409 		}
1410 	}
1411 
1412 	uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1413 		"per packet).\n", psize);
1414 	return 0;
1415 }
1416 
1417 /*
1418  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1419  */
1420 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1421 {
1422 	struct urb *urb;
1423 	unsigned int i;
1424 
1425 	uvc_video_stats_stop(stream);
1426 
1427 	for (i = 0; i < UVC_URBS; ++i) {
1428 		urb = stream->urb[i];
1429 		if (urb == NULL)
1430 			continue;
1431 
1432 		usb_kill_urb(urb);
1433 		usb_free_urb(urb);
1434 		stream->urb[i] = NULL;
1435 	}
1436 
1437 	if (free_buffers)
1438 		uvc_free_urb_buffers(stream);
1439 }
1440 
1441 /*
1442  * Compute the maximum number of bytes per interval for an endpoint.
1443  */
1444 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1445 					 struct usb_host_endpoint *ep)
1446 {
1447 	u16 psize;
1448 
1449 	switch (dev->speed) {
1450 	case USB_SPEED_SUPER:
1451 		return ep->ss_ep_comp.wBytesPerInterval;
1452 	case USB_SPEED_HIGH:
1453 		psize = usb_endpoint_maxp(&ep->desc);
1454 		return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
1455 	default:
1456 		psize = usb_endpoint_maxp(&ep->desc);
1457 		return psize & 0x07ff;
1458 	}
1459 }
1460 
1461 /*
1462  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1463  * is given by the endpoint.
1464  */
1465 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1466 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1467 {
1468 	struct urb *urb;
1469 	unsigned int npackets, i, j;
1470 	u16 psize;
1471 	u32 size;
1472 
1473 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1474 	size = stream->ctrl.dwMaxVideoFrameSize;
1475 
1476 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1477 	if (npackets == 0)
1478 		return -ENOMEM;
1479 
1480 	size = npackets * psize;
1481 
1482 	for (i = 0; i < UVC_URBS; ++i) {
1483 		urb = usb_alloc_urb(npackets, gfp_flags);
1484 		if (urb == NULL) {
1485 			uvc_uninit_video(stream, 1);
1486 			return -ENOMEM;
1487 		}
1488 
1489 		urb->dev = stream->dev->udev;
1490 		urb->context = stream;
1491 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1492 				ep->desc.bEndpointAddress);
1493 #ifndef CONFIG_DMA_NONCOHERENT
1494 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1495 		urb->transfer_dma = stream->urb_dma[i];
1496 #else
1497 		urb->transfer_flags = URB_ISO_ASAP;
1498 #endif
1499 		urb->interval = ep->desc.bInterval;
1500 		urb->transfer_buffer = stream->urb_buffer[i];
1501 		urb->complete = uvc_video_complete;
1502 		urb->number_of_packets = npackets;
1503 		urb->transfer_buffer_length = size;
1504 
1505 		for (j = 0; j < npackets; ++j) {
1506 			urb->iso_frame_desc[j].offset = j * psize;
1507 			urb->iso_frame_desc[j].length = psize;
1508 		}
1509 
1510 		stream->urb[i] = urb;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1518  * given by the endpoint.
1519  */
1520 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1521 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1522 {
1523 	struct urb *urb;
1524 	unsigned int npackets, pipe, i;
1525 	u16 psize;
1526 	u32 size;
1527 
1528 	psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
1529 	size = stream->ctrl.dwMaxPayloadTransferSize;
1530 	stream->bulk.max_payload_size = size;
1531 
1532 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1533 	if (npackets == 0)
1534 		return -ENOMEM;
1535 
1536 	size = npackets * psize;
1537 
1538 	if (usb_endpoint_dir_in(&ep->desc))
1539 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1540 				       ep->desc.bEndpointAddress);
1541 	else
1542 		pipe = usb_sndbulkpipe(stream->dev->udev,
1543 				       ep->desc.bEndpointAddress);
1544 
1545 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1546 		size = 0;
1547 
1548 	for (i = 0; i < UVC_URBS; ++i) {
1549 		urb = usb_alloc_urb(0, gfp_flags);
1550 		if (urb == NULL) {
1551 			uvc_uninit_video(stream, 1);
1552 			return -ENOMEM;
1553 		}
1554 
1555 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1556 			stream->urb_buffer[i], size, uvc_video_complete,
1557 			stream);
1558 #ifndef CONFIG_DMA_NONCOHERENT
1559 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1560 		urb->transfer_dma = stream->urb_dma[i];
1561 #endif
1562 
1563 		stream->urb[i] = urb;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1571  */
1572 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1573 {
1574 	struct usb_interface *intf = stream->intf;
1575 	struct usb_host_endpoint *ep;
1576 	unsigned int i;
1577 	int ret;
1578 
1579 	stream->sequence = -1;
1580 	stream->last_fid = -1;
1581 	stream->bulk.header_size = 0;
1582 	stream->bulk.skip_payload = 0;
1583 	stream->bulk.payload_size = 0;
1584 
1585 	uvc_video_stats_start(stream);
1586 
1587 	if (intf->num_altsetting > 1) {
1588 		struct usb_host_endpoint *best_ep = NULL;
1589 		unsigned int best_psize = UINT_MAX;
1590 		unsigned int bandwidth;
1591 		unsigned int uninitialized_var(altsetting);
1592 		int intfnum = stream->intfnum;
1593 
1594 		/* Isochronous endpoint, select the alternate setting. */
1595 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1596 
1597 		if (bandwidth == 0) {
1598 			uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1599 				"bandwidth, defaulting to lowest.\n");
1600 			bandwidth = 1;
1601 		} else {
1602 			uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1603 				"B/frame bandwidth.\n", bandwidth);
1604 		}
1605 
1606 		for (i = 0; i < intf->num_altsetting; ++i) {
1607 			struct usb_host_interface *alts;
1608 			unsigned int psize;
1609 
1610 			alts = &intf->altsetting[i];
1611 			ep = uvc_find_endpoint(alts,
1612 				stream->header.bEndpointAddress);
1613 			if (ep == NULL)
1614 				continue;
1615 
1616 			/* Check if the bandwidth is high enough. */
1617 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1618 			if (psize >= bandwidth && psize <= best_psize) {
1619 				altsetting = alts->desc.bAlternateSetting;
1620 				best_psize = psize;
1621 				best_ep = ep;
1622 			}
1623 		}
1624 
1625 		if (best_ep == NULL) {
1626 			uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1627 				"for requested bandwidth.\n");
1628 			return -EIO;
1629 		}
1630 
1631 		uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1632 			"(%u B/frame bandwidth).\n", altsetting, best_psize);
1633 
1634 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1635 		if (ret < 0)
1636 			return ret;
1637 
1638 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1639 	} else {
1640 		/* Bulk endpoint, proceed to URB initialization. */
1641 		ep = uvc_find_endpoint(&intf->altsetting[0],
1642 				stream->header.bEndpointAddress);
1643 		if (ep == NULL)
1644 			return -EIO;
1645 
1646 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1647 	}
1648 
1649 	if (ret < 0)
1650 		return ret;
1651 
1652 	/* Submit the URBs. */
1653 	for (i = 0; i < UVC_URBS; ++i) {
1654 		ret = usb_submit_urb(stream->urb[i], gfp_flags);
1655 		if (ret < 0) {
1656 			uvc_printk(KERN_ERR, "Failed to submit URB %u "
1657 					"(%d).\n", i, ret);
1658 			uvc_uninit_video(stream, 1);
1659 			return ret;
1660 		}
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 /* --------------------------------------------------------------------------
1667  * Suspend/resume
1668  */
1669 
1670 /*
1671  * Stop streaming without disabling the video queue.
1672  *
1673  * To let userspace applications resume without trouble, we must not touch the
1674  * video buffers in any way. We mark the device as frozen to make sure the URB
1675  * completion handler won't try to cancel the queue when we kill the URBs.
1676  */
1677 int uvc_video_suspend(struct uvc_streaming *stream)
1678 {
1679 	if (!uvc_queue_streaming(&stream->queue))
1680 		return 0;
1681 
1682 	stream->frozen = 1;
1683 	uvc_uninit_video(stream, 0);
1684 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1685 	return 0;
1686 }
1687 
1688 /*
1689  * Reconfigure the video interface and restart streaming if it was enabled
1690  * before suspend.
1691  *
1692  * If an error occurs, disable the video queue. This will wake all pending
1693  * buffers, making sure userspace applications are notified of the problem
1694  * instead of waiting forever.
1695  */
1696 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1697 {
1698 	int ret;
1699 
1700 	/* If the bus has been reset on resume, set the alternate setting to 0.
1701 	 * This should be the default value, but some devices crash or otherwise
1702 	 * misbehave if they don't receive a SET_INTERFACE request before any
1703 	 * other video control request.
1704 	 */
1705 	if (reset)
1706 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1707 
1708 	stream->frozen = 0;
1709 
1710 	uvc_video_clock_reset(stream);
1711 
1712 	ret = uvc_commit_video(stream, &stream->ctrl);
1713 	if (ret < 0) {
1714 		uvc_queue_enable(&stream->queue, 0);
1715 		return ret;
1716 	}
1717 
1718 	if (!uvc_queue_streaming(&stream->queue))
1719 		return 0;
1720 
1721 	ret = uvc_init_video(stream, GFP_NOIO);
1722 	if (ret < 0)
1723 		uvc_queue_enable(&stream->queue, 0);
1724 
1725 	return ret;
1726 }
1727 
1728 /* ------------------------------------------------------------------------
1729  * Video device
1730  */
1731 
1732 /*
1733  * Initialize the UVC video device by switching to alternate setting 0 and
1734  * retrieve the default format.
1735  *
1736  * Some cameras (namely the Fuji Finepix) set the format and frame
1737  * indexes to zero. The UVC standard doesn't clearly make this a spec
1738  * violation, so try to silently fix the values if possible.
1739  *
1740  * This function is called before registering the device with V4L.
1741  */
1742 int uvc_video_init(struct uvc_streaming *stream)
1743 {
1744 	struct uvc_streaming_control *probe = &stream->ctrl;
1745 	struct uvc_format *format = NULL;
1746 	struct uvc_frame *frame = NULL;
1747 	unsigned int i;
1748 	int ret;
1749 
1750 	if (stream->nformats == 0) {
1751 		uvc_printk(KERN_INFO, "No supported video formats found.\n");
1752 		return -EINVAL;
1753 	}
1754 
1755 	atomic_set(&stream->active, 0);
1756 
1757 	/* Initialize the video buffers queue. */
1758 	ret = uvc_queue_init(&stream->queue, stream->type, !uvc_no_drop_param);
1759 	if (ret)
1760 		return ret;
1761 
1762 	/* Alternate setting 0 should be the default, yet the XBox Live Vision
1763 	 * Cam (and possibly other devices) crash or otherwise misbehave if
1764 	 * they don't receive a SET_INTERFACE request before any other video
1765 	 * control request.
1766 	 */
1767 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1768 
1769 	/* Set the streaming probe control with default streaming parameters
1770 	 * retrieved from the device. Webcams that don't suport GET_DEF
1771 	 * requests on the probe control will just keep their current streaming
1772 	 * parameters.
1773 	 */
1774 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1775 		uvc_set_video_ctrl(stream, probe, 1);
1776 
1777 	/* Initialize the streaming parameters with the probe control current
1778 	 * value. This makes sure SET_CUR requests on the streaming commit
1779 	 * control will always use values retrieved from a successful GET_CUR
1780 	 * request on the probe control, as required by the UVC specification.
1781 	 */
1782 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1783 	if (ret < 0)
1784 		return ret;
1785 
1786 	/* Check if the default format descriptor exists. Use the first
1787 	 * available format otherwise.
1788 	 */
1789 	for (i = stream->nformats; i > 0; --i) {
1790 		format = &stream->format[i-1];
1791 		if (format->index == probe->bFormatIndex)
1792 			break;
1793 	}
1794 
1795 	if (format->nframes == 0) {
1796 		uvc_printk(KERN_INFO, "No frame descriptor found for the "
1797 			"default format.\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	/* Zero bFrameIndex might be correct. Stream-based formats (including
1802 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1803 	 * descriptor with bFrameIndex set to zero. If the default frame
1804 	 * descriptor is not found, use the first available frame.
1805 	 */
1806 	for (i = format->nframes; i > 0; --i) {
1807 		frame = &format->frame[i-1];
1808 		if (frame->bFrameIndex == probe->bFrameIndex)
1809 			break;
1810 	}
1811 
1812 	probe->bFormatIndex = format->index;
1813 	probe->bFrameIndex = frame->bFrameIndex;
1814 
1815 	stream->def_format = format;
1816 	stream->cur_format = format;
1817 	stream->cur_frame = frame;
1818 
1819 	/* Select the video decoding function */
1820 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1821 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1822 			stream->decode = uvc_video_decode_isight;
1823 		else if (stream->intf->num_altsetting > 1)
1824 			stream->decode = uvc_video_decode_isoc;
1825 		else
1826 			stream->decode = uvc_video_decode_bulk;
1827 	} else {
1828 		if (stream->intf->num_altsetting == 1)
1829 			stream->decode = uvc_video_encode_bulk;
1830 		else {
1831 			uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1832 				"supported for video output devices.\n");
1833 			return -EINVAL;
1834 		}
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Enable or disable the video stream.
1842  */
1843 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1844 {
1845 	int ret;
1846 
1847 	if (!enable) {
1848 		uvc_uninit_video(stream, 1);
1849 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1850 		uvc_queue_enable(&stream->queue, 0);
1851 		uvc_video_clock_cleanup(stream);
1852 		return 0;
1853 	}
1854 
1855 	ret = uvc_video_clock_init(stream);
1856 	if (ret < 0)
1857 		return ret;
1858 
1859 	ret = uvc_queue_enable(&stream->queue, 1);
1860 	if (ret < 0)
1861 		goto error_queue;
1862 
1863 	/* Commit the streaming parameters. */
1864 	ret = uvc_commit_video(stream, &stream->ctrl);
1865 	if (ret < 0)
1866 		goto error_commit;
1867 
1868 	ret = uvc_init_video(stream, GFP_KERNEL);
1869 	if (ret < 0)
1870 		goto error_video;
1871 
1872 	return 0;
1873 
1874 error_video:
1875 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1876 error_commit:
1877 	uvc_queue_enable(&stream->queue, 0);
1878 error_queue:
1879 	uvc_video_clock_cleanup(stream);
1880 
1881 	return ret;
1882 }
1883