1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 34 u8 intfnum, u8 cs, void *data, u16 size, 35 int timeout) 36 { 37 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 73 u8 intfnum, u8 cs, void *data, u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 123 * compute the bandwidth on 16 bits and erroneously sign-extend it to 124 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 125 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 126 */ 127 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 128 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 129 130 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 131 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 132 stream->intf->num_altsetting > 1) { 133 u32 interval; 134 u32 bandwidth; 135 136 interval = (ctrl->dwFrameInterval > 100000) 137 ? ctrl->dwFrameInterval 138 : frame->dwFrameInterval[0]; 139 140 /* Compute a bandwidth estimation by multiplying the frame 141 * size by the number of video frames per second, divide the 142 * result by the number of USB frames (or micro-frames for 143 * high-speed devices) per second and add the UVC header size 144 * (assumed to be 12 bytes long). 145 */ 146 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 147 bandwidth *= 10000000 / interval + 1; 148 bandwidth /= 1000; 149 if (stream->dev->udev->speed == USB_SPEED_HIGH) 150 bandwidth /= 8; 151 bandwidth += 12; 152 153 /* The bandwidth estimate is too low for many cameras. Don't use 154 * maximum packet sizes lower than 1024 bytes to try and work 155 * around the problem. According to measurements done on two 156 * different camera models, the value is high enough to get most 157 * resolutions working while not preventing two simultaneous 158 * VGA streams at 15 fps. 159 */ 160 bandwidth = max_t(u32, bandwidth, 1024); 161 162 ctrl->dwMaxPayloadTransferSize = bandwidth; 163 } 164 } 165 166 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 167 { 168 /* 169 * Return the size of the video probe and commit controls, which depends 170 * on the protocol version. 171 */ 172 if (stream->dev->uvc_version < 0x0110) 173 return 26; 174 else if (stream->dev->uvc_version < 0x0150) 175 return 34; 176 else 177 return 48; 178 } 179 180 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 181 struct uvc_streaming_control *ctrl, int probe, u8 query) 182 { 183 u16 size = uvc_video_ctrl_size(stream); 184 u8 *data; 185 int ret; 186 187 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 188 query == UVC_GET_DEF) 189 return -EIO; 190 191 data = kmalloc(size, GFP_KERNEL); 192 if (data == NULL) 193 return -ENOMEM; 194 195 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 196 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 197 size, uvc_timeout_param); 198 199 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 200 /* Some cameras, mostly based on Bison Electronics chipsets, 201 * answer a GET_MIN or GET_MAX request with the wCompQuality 202 * field only. 203 */ 204 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 205 "compliance - GET_MIN/MAX(PROBE) incorrectly " 206 "supported. Enabling workaround.\n"); 207 memset(ctrl, 0, sizeof(*ctrl)); 208 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 209 ret = 0; 210 goto out; 211 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 212 /* Many cameras don't support the GET_DEF request on their 213 * video probe control. Warn once and return, the caller will 214 * fall back to GET_CUR. 215 */ 216 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 217 "compliance - GET_DEF(PROBE) not supported. " 218 "Enabling workaround.\n"); 219 ret = -EIO; 220 goto out; 221 } else if (ret != size) { 222 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 223 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 224 ret, size); 225 ret = -EIO; 226 goto out; 227 } 228 229 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 230 ctrl->bFormatIndex = data[2]; 231 ctrl->bFrameIndex = data[3]; 232 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 233 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 234 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 235 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 236 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 237 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 238 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 239 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 240 241 if (size >= 34) { 242 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 243 ctrl->bmFramingInfo = data[30]; 244 ctrl->bPreferedVersion = data[31]; 245 ctrl->bMinVersion = data[32]; 246 ctrl->bMaxVersion = data[33]; 247 } else { 248 ctrl->dwClockFrequency = stream->dev->clock_frequency; 249 ctrl->bmFramingInfo = 0; 250 ctrl->bPreferedVersion = 0; 251 ctrl->bMinVersion = 0; 252 ctrl->bMaxVersion = 0; 253 } 254 255 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 256 * dwMaxPayloadTransferSize fields. Try to get the value from the 257 * format and frame descriptors. 258 */ 259 uvc_fixup_video_ctrl(stream, ctrl); 260 ret = 0; 261 262 out: 263 kfree(data); 264 return ret; 265 } 266 267 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 268 struct uvc_streaming_control *ctrl, int probe) 269 { 270 u16 size = uvc_video_ctrl_size(stream); 271 u8 *data; 272 int ret; 273 274 data = kzalloc(size, GFP_KERNEL); 275 if (data == NULL) 276 return -ENOMEM; 277 278 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 279 data[2] = ctrl->bFormatIndex; 280 data[3] = ctrl->bFrameIndex; 281 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 282 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 283 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 284 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 285 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 286 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 287 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 288 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 289 290 if (size >= 34) { 291 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 292 data[30] = ctrl->bmFramingInfo; 293 data[31] = ctrl->bPreferedVersion; 294 data[32] = ctrl->bMinVersion; 295 data[33] = ctrl->bMaxVersion; 296 } 297 298 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 299 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 300 size, uvc_timeout_param); 301 if (ret != size) { 302 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 303 "%d (exp. %u).\n", probe ? "probe" : "commit", 304 ret, size); 305 ret = -EIO; 306 } 307 308 kfree(data); 309 return ret; 310 } 311 312 int uvc_probe_video(struct uvc_streaming *stream, 313 struct uvc_streaming_control *probe) 314 { 315 struct uvc_streaming_control probe_min, probe_max; 316 u16 bandwidth; 317 unsigned int i; 318 int ret; 319 320 /* Perform probing. The device should adjust the requested values 321 * according to its capabilities. However, some devices, namely the 322 * first generation UVC Logitech webcams, don't implement the Video 323 * Probe control properly, and just return the needed bandwidth. For 324 * that reason, if the needed bandwidth exceeds the maximum available 325 * bandwidth, try to lower the quality. 326 */ 327 ret = uvc_set_video_ctrl(stream, probe, 1); 328 if (ret < 0) 329 goto done; 330 331 /* Get the minimum and maximum values for compression settings. */ 332 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 333 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 334 if (ret < 0) 335 goto done; 336 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 337 if (ret < 0) 338 goto done; 339 340 probe->wCompQuality = probe_max.wCompQuality; 341 } 342 343 for (i = 0; i < 2; ++i) { 344 ret = uvc_set_video_ctrl(stream, probe, 1); 345 if (ret < 0) 346 goto done; 347 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 348 if (ret < 0) 349 goto done; 350 351 if (stream->intf->num_altsetting == 1) 352 break; 353 354 bandwidth = probe->dwMaxPayloadTransferSize; 355 if (bandwidth <= stream->maxpsize) 356 break; 357 358 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 359 ret = -ENOSPC; 360 goto done; 361 } 362 363 /* TODO: negotiate compression parameters */ 364 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 365 probe->wPFrameRate = probe_min.wPFrameRate; 366 probe->wCompQuality = probe_max.wCompQuality; 367 probe->wCompWindowSize = probe_min.wCompWindowSize; 368 } 369 370 done: 371 return ret; 372 } 373 374 static int uvc_commit_video(struct uvc_streaming *stream, 375 struct uvc_streaming_control *probe) 376 { 377 return uvc_set_video_ctrl(stream, probe, 0); 378 } 379 380 /* ----------------------------------------------------------------------------- 381 * Clocks and timestamps 382 */ 383 384 static inline ktime_t uvc_video_get_time(void) 385 { 386 if (uvc_clock_param == CLOCK_MONOTONIC) 387 return ktime_get(); 388 else 389 return ktime_get_real(); 390 } 391 392 static void 393 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 394 const u8 *data, int len) 395 { 396 struct uvc_clock_sample *sample; 397 unsigned int header_size; 398 bool has_pts = false; 399 bool has_scr = false; 400 unsigned long flags; 401 ktime_t time; 402 u16 host_sof; 403 u16 dev_sof; 404 405 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 406 case UVC_STREAM_PTS | UVC_STREAM_SCR: 407 header_size = 12; 408 has_pts = true; 409 has_scr = true; 410 break; 411 case UVC_STREAM_PTS: 412 header_size = 6; 413 has_pts = true; 414 break; 415 case UVC_STREAM_SCR: 416 header_size = 8; 417 has_scr = true; 418 break; 419 default: 420 header_size = 2; 421 break; 422 } 423 424 /* Check for invalid headers. */ 425 if (len < header_size) 426 return; 427 428 /* Extract the timestamps: 429 * 430 * - store the frame PTS in the buffer structure 431 * - if the SCR field is present, retrieve the host SOF counter and 432 * kernel timestamps and store them with the SCR STC and SOF fields 433 * in the ring buffer 434 */ 435 if (has_pts && buf != NULL) 436 buf->pts = get_unaligned_le32(&data[2]); 437 438 if (!has_scr) 439 return; 440 441 /* To limit the amount of data, drop SCRs with an SOF identical to the 442 * previous one. 443 */ 444 dev_sof = get_unaligned_le16(&data[header_size - 2]); 445 if (dev_sof == stream->clock.last_sof) 446 return; 447 448 stream->clock.last_sof = dev_sof; 449 450 host_sof = usb_get_current_frame_number(stream->dev->udev); 451 time = uvc_video_get_time(); 452 453 /* The UVC specification allows device implementations that can't obtain 454 * the USB frame number to keep their own frame counters as long as they 455 * match the size and frequency of the frame number associated with USB 456 * SOF tokens. The SOF values sent by such devices differ from the USB 457 * SOF tokens by a fixed offset that needs to be estimated and accounted 458 * for to make timestamp recovery as accurate as possible. 459 * 460 * The offset is estimated the first time a device SOF value is received 461 * as the difference between the host and device SOF values. As the two 462 * SOF values can differ slightly due to transmission delays, consider 463 * that the offset is null if the difference is not higher than 10 ms 464 * (negative differences can not happen and are thus considered as an 465 * offset). The video commit control wDelay field should be used to 466 * compute a dynamic threshold instead of using a fixed 10 ms value, but 467 * devices don't report reliable wDelay values. 468 * 469 * See uvc_video_clock_host_sof() for an explanation regarding why only 470 * the 8 LSBs of the delta are kept. 471 */ 472 if (stream->clock.sof_offset == (u16)-1) { 473 u16 delta_sof = (host_sof - dev_sof) & 255; 474 if (delta_sof >= 10) 475 stream->clock.sof_offset = delta_sof; 476 else 477 stream->clock.sof_offset = 0; 478 } 479 480 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 481 482 spin_lock_irqsave(&stream->clock.lock, flags); 483 484 sample = &stream->clock.samples[stream->clock.head]; 485 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 486 sample->dev_sof = dev_sof; 487 sample->host_sof = host_sof; 488 sample->host_time = time; 489 490 /* Update the sliding window head and count. */ 491 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 492 493 if (stream->clock.count < stream->clock.size) 494 stream->clock.count++; 495 496 spin_unlock_irqrestore(&stream->clock.lock, flags); 497 } 498 499 static void uvc_video_clock_reset(struct uvc_streaming *stream) 500 { 501 struct uvc_clock *clock = &stream->clock; 502 503 clock->head = 0; 504 clock->count = 0; 505 clock->last_sof = -1; 506 clock->sof_offset = -1; 507 } 508 509 static int uvc_video_clock_init(struct uvc_streaming *stream) 510 { 511 struct uvc_clock *clock = &stream->clock; 512 513 spin_lock_init(&clock->lock); 514 clock->size = 32; 515 516 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 517 GFP_KERNEL); 518 if (clock->samples == NULL) 519 return -ENOMEM; 520 521 uvc_video_clock_reset(stream); 522 523 return 0; 524 } 525 526 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 527 { 528 kfree(stream->clock.samples); 529 stream->clock.samples = NULL; 530 } 531 532 /* 533 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 534 * 535 * Host SOF counters reported by usb_get_current_frame_number() usually don't 536 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 537 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 538 * controller and its configuration. 539 * 540 * We thus need to recover the SOF value corresponding to the host frame number. 541 * As the device and host frame numbers are sampled in a short interval, the 542 * difference between their values should be equal to a small delta plus an 543 * integer multiple of 256 caused by the host frame number limited precision. 544 * 545 * To obtain the recovered host SOF value, compute the small delta by masking 546 * the high bits of the host frame counter and device SOF difference and add it 547 * to the device SOF value. 548 */ 549 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 550 { 551 /* The delta value can be negative. */ 552 s8 delta_sof; 553 554 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 555 556 return (sample->dev_sof + delta_sof) & 2047; 557 } 558 559 /* 560 * uvc_video_clock_update - Update the buffer timestamp 561 * 562 * This function converts the buffer PTS timestamp to the host clock domain by 563 * going through the USB SOF clock domain and stores the result in the V4L2 564 * buffer timestamp field. 565 * 566 * The relationship between the device clock and the host clock isn't known. 567 * However, the device and the host share the common USB SOF clock which can be 568 * used to recover that relationship. 569 * 570 * The relationship between the device clock and the USB SOF clock is considered 571 * to be linear over the clock samples sliding window and is given by 572 * 573 * SOF = m * PTS + p 574 * 575 * Several methods to compute the slope (m) and intercept (p) can be used. As 576 * the clock drift should be small compared to the sliding window size, we 577 * assume that the line that goes through the points at both ends of the window 578 * is a good approximation. Naming those points P1 and P2, we get 579 * 580 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 581 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 582 * 583 * or 584 * 585 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 586 * 587 * to avoid losing precision in the division. Similarly, the host timestamp is 588 * computed with 589 * 590 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 591 * 592 * SOF values are coded on 11 bits by USB. We extend their precision with 16 593 * decimal bits, leading to a 11.16 coding. 594 * 595 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 596 * be normalized using the nominal device clock frequency reported through the 597 * UVC descriptors. 598 * 599 * Both the PTS/STC and SOF counters roll over, after a fixed but device 600 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 601 * sliding window size is smaller than the rollover period, differences computed 602 * on unsigned integers will produce the correct result. However, the p term in 603 * the linear relations will be miscomputed. 604 * 605 * To fix the issue, we subtract a constant from the PTS and STC values to bring 606 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 607 * the 32 bit range without any rollover. 608 * 609 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 610 * computed by (1) will never be smaller than 0. This offset is then compensated 611 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 612 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 613 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 614 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 615 * SOF value at the end of the sliding window. 616 * 617 * Finally we subtract a constant from the host timestamps to bring the first 618 * timestamp of the sliding window to 1s. 619 */ 620 void uvc_video_clock_update(struct uvc_streaming *stream, 621 struct vb2_v4l2_buffer *vbuf, 622 struct uvc_buffer *buf) 623 { 624 struct uvc_clock *clock = &stream->clock; 625 struct uvc_clock_sample *first; 626 struct uvc_clock_sample *last; 627 unsigned long flags; 628 u64 timestamp; 629 u32 delta_stc; 630 u32 y1, y2; 631 u32 x1, x2; 632 u32 mean; 633 u32 sof; 634 u64 y; 635 636 if (!uvc_hw_timestamps_param) 637 return; 638 639 spin_lock_irqsave(&clock->lock, flags); 640 641 if (clock->count < clock->size) 642 goto done; 643 644 first = &clock->samples[clock->head]; 645 last = &clock->samples[(clock->head - 1) % clock->size]; 646 647 /* First step, PTS to SOF conversion. */ 648 delta_stc = buf->pts - (1UL << 31); 649 x1 = first->dev_stc - delta_stc; 650 x2 = last->dev_stc - delta_stc; 651 if (x1 == x2) 652 goto done; 653 654 y1 = (first->dev_sof + 2048) << 16; 655 y2 = (last->dev_sof + 2048) << 16; 656 if (y2 < y1) 657 y2 += 2048 << 16; 658 659 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 660 - (u64)y2 * (u64)x1; 661 y = div_u64(y, x2 - x1); 662 663 sof = y; 664 665 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 666 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 667 stream->dev->name, buf->pts, 668 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 669 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 670 x1, x2, y1, y2, clock->sof_offset); 671 672 /* Second step, SOF to host clock conversion. */ 673 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 674 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 675 if (x2 < x1) 676 x2 += 2048 << 16; 677 if (x1 == x2) 678 goto done; 679 680 y1 = NSEC_PER_SEC; 681 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 682 683 /* Interpolated and host SOF timestamps can wrap around at slightly 684 * different times. Handle this by adding or removing 2048 to or from 685 * the computed SOF value to keep it close to the SOF samples mean 686 * value. 687 */ 688 mean = (x1 + x2) / 2; 689 if (mean - (1024 << 16) > sof) 690 sof += 2048 << 16; 691 else if (sof > mean + (1024 << 16)) 692 sof -= 2048 << 16; 693 694 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 695 - (u64)y2 * (u64)x1; 696 y = div_u64(y, x2 - x1); 697 698 timestamp = ktime_to_ns(first->host_time) + y - y1; 699 700 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 701 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 702 stream->dev->name, 703 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 704 y, timestamp, vbuf->vb2_buf.timestamp, 705 x1, first->host_sof, first->dev_sof, 706 x2, last->host_sof, last->dev_sof, y1, y2); 707 708 /* Update the V4L2 buffer. */ 709 vbuf->vb2_buf.timestamp = timestamp; 710 711 done: 712 spin_unlock_irqrestore(&clock->lock, flags); 713 } 714 715 /* ------------------------------------------------------------------------ 716 * Stream statistics 717 */ 718 719 static void uvc_video_stats_decode(struct uvc_streaming *stream, 720 const u8 *data, int len) 721 { 722 unsigned int header_size; 723 bool has_pts = false; 724 bool has_scr = false; 725 u16 uninitialized_var(scr_sof); 726 u32 uninitialized_var(scr_stc); 727 u32 uninitialized_var(pts); 728 729 if (stream->stats.stream.nb_frames == 0 && 730 stream->stats.frame.nb_packets == 0) 731 stream->stats.stream.start_ts = ktime_get(); 732 733 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 734 case UVC_STREAM_PTS | UVC_STREAM_SCR: 735 header_size = 12; 736 has_pts = true; 737 has_scr = true; 738 break; 739 case UVC_STREAM_PTS: 740 header_size = 6; 741 has_pts = true; 742 break; 743 case UVC_STREAM_SCR: 744 header_size = 8; 745 has_scr = true; 746 break; 747 default: 748 header_size = 2; 749 break; 750 } 751 752 /* Check for invalid headers. */ 753 if (len < header_size || data[0] < header_size) { 754 stream->stats.frame.nb_invalid++; 755 return; 756 } 757 758 /* Extract the timestamps. */ 759 if (has_pts) 760 pts = get_unaligned_le32(&data[2]); 761 762 if (has_scr) { 763 scr_stc = get_unaligned_le32(&data[header_size - 6]); 764 scr_sof = get_unaligned_le16(&data[header_size - 2]); 765 } 766 767 /* Is PTS constant through the whole frame ? */ 768 if (has_pts && stream->stats.frame.nb_pts) { 769 if (stream->stats.frame.pts != pts) { 770 stream->stats.frame.nb_pts_diffs++; 771 stream->stats.frame.last_pts_diff = 772 stream->stats.frame.nb_packets; 773 } 774 } 775 776 if (has_pts) { 777 stream->stats.frame.nb_pts++; 778 stream->stats.frame.pts = pts; 779 } 780 781 /* Do all frames have a PTS in their first non-empty packet, or before 782 * their first empty packet ? 783 */ 784 if (stream->stats.frame.size == 0) { 785 if (len > header_size) 786 stream->stats.frame.has_initial_pts = has_pts; 787 if (len == header_size && has_pts) 788 stream->stats.frame.has_early_pts = true; 789 } 790 791 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 792 if (has_scr && stream->stats.frame.nb_scr) { 793 if (stream->stats.frame.scr_stc != scr_stc) 794 stream->stats.frame.nb_scr_diffs++; 795 } 796 797 if (has_scr) { 798 /* Expand the SOF counter to 32 bits and store its value. */ 799 if (stream->stats.stream.nb_frames > 0 || 800 stream->stats.frame.nb_scr > 0) 801 stream->stats.stream.scr_sof_count += 802 (scr_sof - stream->stats.stream.scr_sof) % 2048; 803 stream->stats.stream.scr_sof = scr_sof; 804 805 stream->stats.frame.nb_scr++; 806 stream->stats.frame.scr_stc = scr_stc; 807 stream->stats.frame.scr_sof = scr_sof; 808 809 if (scr_sof < stream->stats.stream.min_sof) 810 stream->stats.stream.min_sof = scr_sof; 811 if (scr_sof > stream->stats.stream.max_sof) 812 stream->stats.stream.max_sof = scr_sof; 813 } 814 815 /* Record the first non-empty packet number. */ 816 if (stream->stats.frame.size == 0 && len > header_size) 817 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 818 819 /* Update the frame size. */ 820 stream->stats.frame.size += len - header_size; 821 822 /* Update the packets counters. */ 823 stream->stats.frame.nb_packets++; 824 if (len <= header_size) 825 stream->stats.frame.nb_empty++; 826 827 if (data[1] & UVC_STREAM_ERR) 828 stream->stats.frame.nb_errors++; 829 } 830 831 static void uvc_video_stats_update(struct uvc_streaming *stream) 832 { 833 struct uvc_stats_frame *frame = &stream->stats.frame; 834 835 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 836 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 837 "last pts/stc/sof %u/%u/%u\n", 838 stream->sequence, frame->first_data, 839 frame->nb_packets - frame->nb_empty, frame->nb_packets, 840 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 841 frame->has_early_pts ? "" : "!", 842 frame->has_initial_pts ? "" : "!", 843 frame->nb_scr_diffs, frame->nb_scr, 844 frame->pts, frame->scr_stc, frame->scr_sof); 845 846 stream->stats.stream.nb_frames++; 847 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 848 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 849 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 850 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 851 852 if (frame->has_early_pts) 853 stream->stats.stream.nb_pts_early++; 854 if (frame->has_initial_pts) 855 stream->stats.stream.nb_pts_initial++; 856 if (frame->last_pts_diff <= frame->first_data) 857 stream->stats.stream.nb_pts_constant++; 858 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 859 stream->stats.stream.nb_scr_count_ok++; 860 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 861 stream->stats.stream.nb_scr_diffs_ok++; 862 863 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 864 } 865 866 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 867 size_t size) 868 { 869 unsigned int scr_sof_freq; 870 unsigned int duration; 871 size_t count = 0; 872 873 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 874 * frequency this will not overflow before more than 1h. 875 */ 876 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 877 stream->stats.stream.start_ts); 878 if (duration != 0) 879 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 880 / duration; 881 else 882 scr_sof_freq = 0; 883 884 count += scnprintf(buf + count, size - count, 885 "frames: %u\npackets: %u\nempty: %u\n" 886 "errors: %u\ninvalid: %u\n", 887 stream->stats.stream.nb_frames, 888 stream->stats.stream.nb_packets, 889 stream->stats.stream.nb_empty, 890 stream->stats.stream.nb_errors, 891 stream->stats.stream.nb_invalid); 892 count += scnprintf(buf + count, size - count, 893 "pts: %u early, %u initial, %u ok\n", 894 stream->stats.stream.nb_pts_early, 895 stream->stats.stream.nb_pts_initial, 896 stream->stats.stream.nb_pts_constant); 897 count += scnprintf(buf + count, size - count, 898 "scr: %u count ok, %u diff ok\n", 899 stream->stats.stream.nb_scr_count_ok, 900 stream->stats.stream.nb_scr_diffs_ok); 901 count += scnprintf(buf + count, size - count, 902 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 903 stream->stats.stream.min_sof, 904 stream->stats.stream.max_sof, 905 scr_sof_freq / 1000, scr_sof_freq % 1000); 906 907 return count; 908 } 909 910 static void uvc_video_stats_start(struct uvc_streaming *stream) 911 { 912 memset(&stream->stats, 0, sizeof(stream->stats)); 913 stream->stats.stream.min_sof = 2048; 914 } 915 916 static void uvc_video_stats_stop(struct uvc_streaming *stream) 917 { 918 stream->stats.stream.stop_ts = ktime_get(); 919 } 920 921 /* ------------------------------------------------------------------------ 922 * Video codecs 923 */ 924 925 /* Video payload decoding is handled by uvc_video_decode_start(), 926 * uvc_video_decode_data() and uvc_video_decode_end(). 927 * 928 * uvc_video_decode_start is called with URB data at the start of a bulk or 929 * isochronous payload. It processes header data and returns the header size 930 * in bytes if successful. If an error occurs, it returns a negative error 931 * code. The following error codes have special meanings. 932 * 933 * - EAGAIN informs the caller that the current video buffer should be marked 934 * as done, and that the function should be called again with the same data 935 * and a new video buffer. This is used when end of frame conditions can be 936 * reliably detected at the beginning of the next frame only. 937 * 938 * If an error other than -EAGAIN is returned, the caller will drop the current 939 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 940 * made until the next payload. -ENODATA can be used to drop the current 941 * payload if no other error code is appropriate. 942 * 943 * uvc_video_decode_data is called for every URB with URB data. It copies the 944 * data to the video buffer. 945 * 946 * uvc_video_decode_end is called with header data at the end of a bulk or 947 * isochronous payload. It performs any additional header data processing and 948 * returns 0 or a negative error code if an error occurred. As header data have 949 * already been processed by uvc_video_decode_start, this functions isn't 950 * required to perform sanity checks a second time. 951 * 952 * For isochronous transfers where a payload is always transferred in a single 953 * URB, the three functions will be called in a row. 954 * 955 * To let the decoder process header data and update its internal state even 956 * when no video buffer is available, uvc_video_decode_start must be prepared 957 * to be called with a NULL buf parameter. uvc_video_decode_data and 958 * uvc_video_decode_end will never be called with a NULL buffer. 959 */ 960 static int uvc_video_decode_start(struct uvc_streaming *stream, 961 struct uvc_buffer *buf, const u8 *data, int len) 962 { 963 u8 fid; 964 965 /* Sanity checks: 966 * - packet must be at least 2 bytes long 967 * - bHeaderLength value must be at least 2 bytes (see above) 968 * - bHeaderLength value can't be larger than the packet size. 969 */ 970 if (len < 2 || data[0] < 2 || data[0] > len) { 971 stream->stats.frame.nb_invalid++; 972 return -EINVAL; 973 } 974 975 fid = data[1] & UVC_STREAM_FID; 976 977 /* Increase the sequence number regardless of any buffer states, so 978 * that discontinuous sequence numbers always indicate lost frames. 979 */ 980 if (stream->last_fid != fid) { 981 stream->sequence++; 982 if (stream->sequence) 983 uvc_video_stats_update(stream); 984 } 985 986 uvc_video_clock_decode(stream, buf, data, len); 987 uvc_video_stats_decode(stream, data, len); 988 989 /* Store the payload FID bit and return immediately when the buffer is 990 * NULL. 991 */ 992 if (buf == NULL) { 993 stream->last_fid = fid; 994 return -ENODATA; 995 } 996 997 /* Mark the buffer as bad if the error bit is set. */ 998 if (data[1] & UVC_STREAM_ERR) { 999 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1000 "set).\n"); 1001 buf->error = 1; 1002 } 1003 1004 /* Synchronize to the input stream by waiting for the FID bit to be 1005 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1006 * stream->last_fid is initialized to -1, so the first isochronous 1007 * frame will always be in sync. 1008 * 1009 * If the device doesn't toggle the FID bit, invert stream->last_fid 1010 * when the EOF bit is set to force synchronisation on the next packet. 1011 */ 1012 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1013 if (fid == stream->last_fid) { 1014 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1015 "sync).\n"); 1016 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1017 (data[1] & UVC_STREAM_EOF)) 1018 stream->last_fid ^= UVC_STREAM_FID; 1019 return -ENODATA; 1020 } 1021 1022 buf->buf.field = V4L2_FIELD_NONE; 1023 buf->buf.sequence = stream->sequence; 1024 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1025 1026 /* TODO: Handle PTS and SCR. */ 1027 buf->state = UVC_BUF_STATE_ACTIVE; 1028 } 1029 1030 /* Mark the buffer as done if we're at the beginning of a new frame. 1031 * End of frame detection is better implemented by checking the EOF 1032 * bit (FID bit toggling is delayed by one frame compared to the EOF 1033 * bit), but some devices don't set the bit at end of frame (and the 1034 * last payload can be lost anyway). We thus must check if the FID has 1035 * been toggled. 1036 * 1037 * stream->last_fid is initialized to -1, so the first isochronous 1038 * frame will never trigger an end of frame detection. 1039 * 1040 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1041 * as it doesn't make sense to return an empty buffer. This also 1042 * avoids detecting end of frame conditions at FID toggling if the 1043 * previous payload had the EOF bit set. 1044 */ 1045 if (fid != stream->last_fid && buf->bytesused != 0) { 1046 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1047 "toggled).\n"); 1048 buf->state = UVC_BUF_STATE_READY; 1049 return -EAGAIN; 1050 } 1051 1052 stream->last_fid = fid; 1053 1054 return data[0]; 1055 } 1056 1057 static void uvc_video_decode_data(struct uvc_streaming *stream, 1058 struct uvc_buffer *buf, const u8 *data, int len) 1059 { 1060 unsigned int maxlen, nbytes; 1061 void *mem; 1062 1063 if (len <= 0) 1064 return; 1065 1066 /* Copy the video data to the buffer. */ 1067 maxlen = buf->length - buf->bytesused; 1068 mem = buf->mem + buf->bytesused; 1069 nbytes = min((unsigned int)len, maxlen); 1070 memcpy(mem, data, nbytes); 1071 buf->bytesused += nbytes; 1072 1073 /* Complete the current frame if the buffer size was exceeded. */ 1074 if (len > maxlen) { 1075 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1076 buf->error = 1; 1077 buf->state = UVC_BUF_STATE_READY; 1078 } 1079 } 1080 1081 static void uvc_video_decode_end(struct uvc_streaming *stream, 1082 struct uvc_buffer *buf, const u8 *data, int len) 1083 { 1084 /* Mark the buffer as done if the EOF marker is set. */ 1085 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1086 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1087 if (data[0] == len) 1088 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1089 buf->state = UVC_BUF_STATE_READY; 1090 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1091 stream->last_fid ^= UVC_STREAM_FID; 1092 } 1093 } 1094 1095 /* Video payload encoding is handled by uvc_video_encode_header() and 1096 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1097 * 1098 * uvc_video_encode_header is called at the start of a payload. It adds header 1099 * data to the transfer buffer and returns the header size. As the only known 1100 * UVC output device transfers a whole frame in a single payload, the EOF bit 1101 * is always set in the header. 1102 * 1103 * uvc_video_encode_data is called for every URB and copies the data from the 1104 * video buffer to the transfer buffer. 1105 */ 1106 static int uvc_video_encode_header(struct uvc_streaming *stream, 1107 struct uvc_buffer *buf, u8 *data, int len) 1108 { 1109 data[0] = 2; /* Header length */ 1110 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1111 | (stream->last_fid & UVC_STREAM_FID); 1112 return 2; 1113 } 1114 1115 static int uvc_video_encode_data(struct uvc_streaming *stream, 1116 struct uvc_buffer *buf, u8 *data, int len) 1117 { 1118 struct uvc_video_queue *queue = &stream->queue; 1119 unsigned int nbytes; 1120 void *mem; 1121 1122 /* Copy video data to the URB buffer. */ 1123 mem = buf->mem + queue->buf_used; 1124 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1125 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1126 nbytes); 1127 memcpy(data, mem, nbytes); 1128 1129 queue->buf_used += nbytes; 1130 1131 return nbytes; 1132 } 1133 1134 /* ------------------------------------------------------------------------ 1135 * Metadata 1136 */ 1137 1138 /* 1139 * Additionally to the payload headers we also want to provide the user with USB 1140 * Frame Numbers and system time values. The resulting buffer is thus composed 1141 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1142 * Number, and a copy of the payload header. 1143 * 1144 * Ideally we want to capture all payload headers for each frame. However, their 1145 * number is unknown and unbound. We thus drop headers that contain no vendor 1146 * data and that either contain no SCR value or an SCR value identical to the 1147 * previous header. 1148 */ 1149 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1150 struct uvc_buffer *meta_buf, 1151 const u8 *mem, unsigned int length) 1152 { 1153 struct uvc_meta_buf *meta; 1154 size_t len_std = 2; 1155 bool has_pts, has_scr; 1156 unsigned long flags; 1157 unsigned int sof; 1158 ktime_t time; 1159 const u8 *scr; 1160 1161 if (!meta_buf || length == 2) 1162 return; 1163 1164 if (meta_buf->length - meta_buf->bytesused < 1165 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1166 meta_buf->error = 1; 1167 return; 1168 } 1169 1170 has_pts = mem[1] & UVC_STREAM_PTS; 1171 has_scr = mem[1] & UVC_STREAM_SCR; 1172 1173 if (has_pts) { 1174 len_std += 4; 1175 scr = mem + 6; 1176 } else { 1177 scr = mem + 2; 1178 } 1179 1180 if (has_scr) 1181 len_std += 6; 1182 1183 if (stream->meta.format == V4L2_META_FMT_UVC) 1184 length = len_std; 1185 1186 if (length == len_std && (!has_scr || 1187 !memcmp(scr, stream->clock.last_scr, 6))) 1188 return; 1189 1190 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1191 local_irq_save(flags); 1192 time = uvc_video_get_time(); 1193 sof = usb_get_current_frame_number(stream->dev->udev); 1194 local_irq_restore(flags); 1195 put_unaligned(ktime_to_ns(time), &meta->ns); 1196 put_unaligned(sof, &meta->sof); 1197 1198 if (has_scr) 1199 memcpy(stream->clock.last_scr, scr, 6); 1200 1201 memcpy(&meta->length, mem, length); 1202 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1203 1204 uvc_trace(UVC_TRACE_FRAME, 1205 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1206 __func__, ktime_to_ns(time), meta->sof, meta->length, 1207 meta->flags, 1208 has_pts ? *(u32 *)meta->buf : 0, 1209 has_scr ? *(u32 *)scr : 0, 1210 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1211 } 1212 1213 /* ------------------------------------------------------------------------ 1214 * URB handling 1215 */ 1216 1217 /* 1218 * Set error flag for incomplete buffer. 1219 */ 1220 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1221 struct uvc_buffer *buf) 1222 { 1223 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1224 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1225 buf->error = 1; 1226 } 1227 1228 /* 1229 * Completion handler for video URBs. 1230 */ 1231 1232 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1233 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1234 { 1235 if (*meta_buf) { 1236 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1237 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1238 1239 vb2_meta->sequence = vb2_video->sequence; 1240 vb2_meta->field = vb2_video->field; 1241 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1242 1243 (*meta_buf)->state = UVC_BUF_STATE_READY; 1244 if (!(*meta_buf)->error) 1245 (*meta_buf)->error = (*video_buf)->error; 1246 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1247 *meta_buf); 1248 } 1249 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1250 } 1251 1252 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1253 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1254 { 1255 u8 *mem; 1256 int ret, i; 1257 1258 for (i = 0; i < urb->number_of_packets; ++i) { 1259 if (urb->iso_frame_desc[i].status < 0) { 1260 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1261 "lost (%d).\n", urb->iso_frame_desc[i].status); 1262 /* Mark the buffer as faulty. */ 1263 if (buf != NULL) 1264 buf->error = 1; 1265 continue; 1266 } 1267 1268 /* Decode the payload header. */ 1269 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1270 do { 1271 ret = uvc_video_decode_start(stream, buf, mem, 1272 urb->iso_frame_desc[i].actual_length); 1273 if (ret == -EAGAIN) { 1274 uvc_video_validate_buffer(stream, buf); 1275 uvc_video_next_buffers(stream, &buf, &meta_buf); 1276 } 1277 } while (ret == -EAGAIN); 1278 1279 if (ret < 0) 1280 continue; 1281 1282 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1283 1284 /* Decode the payload data. */ 1285 uvc_video_decode_data(stream, buf, mem + ret, 1286 urb->iso_frame_desc[i].actual_length - ret); 1287 1288 /* Process the header again. */ 1289 uvc_video_decode_end(stream, buf, mem, 1290 urb->iso_frame_desc[i].actual_length); 1291 1292 if (buf->state == UVC_BUF_STATE_READY) { 1293 uvc_video_validate_buffer(stream, buf); 1294 uvc_video_next_buffers(stream, &buf, &meta_buf); 1295 } 1296 } 1297 } 1298 1299 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1300 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1301 { 1302 u8 *mem; 1303 int len, ret; 1304 1305 /* 1306 * Ignore ZLPs if they're not part of a frame, otherwise process them 1307 * to trigger the end of payload detection. 1308 */ 1309 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1310 return; 1311 1312 mem = urb->transfer_buffer; 1313 len = urb->actual_length; 1314 stream->bulk.payload_size += len; 1315 1316 /* If the URB is the first of its payload, decode and save the 1317 * header. 1318 */ 1319 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1320 do { 1321 ret = uvc_video_decode_start(stream, buf, mem, len); 1322 if (ret == -EAGAIN) 1323 uvc_video_next_buffers(stream, &buf, &meta_buf); 1324 } while (ret == -EAGAIN); 1325 1326 /* If an error occurred skip the rest of the payload. */ 1327 if (ret < 0 || buf == NULL) { 1328 stream->bulk.skip_payload = 1; 1329 } else { 1330 memcpy(stream->bulk.header, mem, ret); 1331 stream->bulk.header_size = ret; 1332 1333 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1334 1335 mem += ret; 1336 len -= ret; 1337 } 1338 } 1339 1340 /* The buffer queue might have been cancelled while a bulk transfer 1341 * was in progress, so we can reach here with buf equal to NULL. Make 1342 * sure buf is never dereferenced if NULL. 1343 */ 1344 1345 /* Process video data. */ 1346 if (!stream->bulk.skip_payload && buf != NULL) 1347 uvc_video_decode_data(stream, buf, mem, len); 1348 1349 /* Detect the payload end by a URB smaller than the maximum size (or 1350 * a payload size equal to the maximum) and process the header again. 1351 */ 1352 if (urb->actual_length < urb->transfer_buffer_length || 1353 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1354 if (!stream->bulk.skip_payload && buf != NULL) { 1355 uvc_video_decode_end(stream, buf, stream->bulk.header, 1356 stream->bulk.payload_size); 1357 if (buf->state == UVC_BUF_STATE_READY) 1358 uvc_video_next_buffers(stream, &buf, &meta_buf); 1359 } 1360 1361 stream->bulk.header_size = 0; 1362 stream->bulk.skip_payload = 0; 1363 stream->bulk.payload_size = 0; 1364 } 1365 } 1366 1367 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1368 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1369 { 1370 u8 *mem = urb->transfer_buffer; 1371 int len = stream->urb_size, ret; 1372 1373 if (buf == NULL) { 1374 urb->transfer_buffer_length = 0; 1375 return; 1376 } 1377 1378 /* If the URB is the first of its payload, add the header. */ 1379 if (stream->bulk.header_size == 0) { 1380 ret = uvc_video_encode_header(stream, buf, mem, len); 1381 stream->bulk.header_size = ret; 1382 stream->bulk.payload_size += ret; 1383 mem += ret; 1384 len -= ret; 1385 } 1386 1387 /* Process video data. */ 1388 ret = uvc_video_encode_data(stream, buf, mem, len); 1389 1390 stream->bulk.payload_size += ret; 1391 len -= ret; 1392 1393 if (buf->bytesused == stream->queue.buf_used || 1394 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1395 if (buf->bytesused == stream->queue.buf_used) { 1396 stream->queue.buf_used = 0; 1397 buf->state = UVC_BUF_STATE_READY; 1398 buf->buf.sequence = ++stream->sequence; 1399 uvc_queue_next_buffer(&stream->queue, buf); 1400 stream->last_fid ^= UVC_STREAM_FID; 1401 } 1402 1403 stream->bulk.header_size = 0; 1404 stream->bulk.payload_size = 0; 1405 } 1406 1407 urb->transfer_buffer_length = stream->urb_size - len; 1408 } 1409 1410 static void uvc_video_complete(struct urb *urb) 1411 { 1412 struct uvc_streaming *stream = urb->context; 1413 struct uvc_video_queue *queue = &stream->queue; 1414 struct uvc_video_queue *qmeta = &stream->meta.queue; 1415 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1416 struct uvc_buffer *buf = NULL; 1417 struct uvc_buffer *buf_meta = NULL; 1418 unsigned long flags; 1419 int ret; 1420 1421 switch (urb->status) { 1422 case 0: 1423 break; 1424 1425 default: 1426 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1427 "completion handler.\n", urb->status); 1428 /* fall through */ 1429 case -ENOENT: /* usb_kill_urb() called. */ 1430 if (stream->frozen) 1431 return; 1432 /* fall through */ 1433 case -ECONNRESET: /* usb_unlink_urb() called. */ 1434 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1435 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1436 if (vb2_qmeta) 1437 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1438 return; 1439 } 1440 1441 spin_lock_irqsave(&queue->irqlock, flags); 1442 if (!list_empty(&queue->irqqueue)) 1443 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1444 queue); 1445 spin_unlock_irqrestore(&queue->irqlock, flags); 1446 1447 if (vb2_qmeta) { 1448 spin_lock_irqsave(&qmeta->irqlock, flags); 1449 if (!list_empty(&qmeta->irqqueue)) 1450 buf_meta = list_first_entry(&qmeta->irqqueue, 1451 struct uvc_buffer, queue); 1452 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1453 } 1454 1455 stream->decode(urb, stream, buf, buf_meta); 1456 1457 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1458 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1459 ret); 1460 } 1461 } 1462 1463 /* 1464 * Free transfer buffers. 1465 */ 1466 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1467 { 1468 unsigned int i; 1469 1470 for (i = 0; i < UVC_URBS; ++i) { 1471 if (stream->urb_buffer[i]) { 1472 #ifndef CONFIG_DMA_NONCOHERENT 1473 usb_free_coherent(stream->dev->udev, stream->urb_size, 1474 stream->urb_buffer[i], stream->urb_dma[i]); 1475 #else 1476 kfree(stream->urb_buffer[i]); 1477 #endif 1478 stream->urb_buffer[i] = NULL; 1479 } 1480 } 1481 1482 stream->urb_size = 0; 1483 } 1484 1485 /* 1486 * Allocate transfer buffers. This function can be called with buffers 1487 * already allocated when resuming from suspend, in which case it will 1488 * return without touching the buffers. 1489 * 1490 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1491 * system is too low on memory try successively smaller numbers of packets 1492 * until allocation succeeds. 1493 * 1494 * Return the number of allocated packets on success or 0 when out of memory. 1495 */ 1496 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1497 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1498 { 1499 unsigned int npackets; 1500 unsigned int i; 1501 1502 /* Buffers are already allocated, bail out. */ 1503 if (stream->urb_size) 1504 return stream->urb_size / psize; 1505 1506 /* Compute the number of packets. Bulk endpoints might transfer UVC 1507 * payloads across multiple URBs. 1508 */ 1509 npackets = DIV_ROUND_UP(size, psize); 1510 if (npackets > UVC_MAX_PACKETS) 1511 npackets = UVC_MAX_PACKETS; 1512 1513 /* Retry allocations until one succeed. */ 1514 for (; npackets > 1; npackets /= 2) { 1515 for (i = 0; i < UVC_URBS; ++i) { 1516 stream->urb_size = psize * npackets; 1517 #ifndef CONFIG_DMA_NONCOHERENT 1518 stream->urb_buffer[i] = usb_alloc_coherent( 1519 stream->dev->udev, stream->urb_size, 1520 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1521 #else 1522 stream->urb_buffer[i] = 1523 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1524 #endif 1525 if (!stream->urb_buffer[i]) { 1526 uvc_free_urb_buffers(stream); 1527 break; 1528 } 1529 } 1530 1531 if (i == UVC_URBS) { 1532 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1533 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1534 psize); 1535 return npackets; 1536 } 1537 } 1538 1539 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1540 "per packet).\n", psize); 1541 return 0; 1542 } 1543 1544 /* 1545 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1546 */ 1547 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1548 { 1549 struct urb *urb; 1550 unsigned int i; 1551 1552 uvc_video_stats_stop(stream); 1553 1554 for (i = 0; i < UVC_URBS; ++i) { 1555 urb = stream->urb[i]; 1556 if (urb == NULL) 1557 continue; 1558 1559 usb_kill_urb(urb); 1560 usb_free_urb(urb); 1561 stream->urb[i] = NULL; 1562 } 1563 1564 if (free_buffers) 1565 uvc_free_urb_buffers(stream); 1566 } 1567 1568 /* 1569 * Compute the maximum number of bytes per interval for an endpoint. 1570 */ 1571 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1572 struct usb_host_endpoint *ep) 1573 { 1574 u16 psize; 1575 u16 mult; 1576 1577 switch (dev->speed) { 1578 case USB_SPEED_SUPER: 1579 case USB_SPEED_SUPER_PLUS: 1580 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1581 case USB_SPEED_HIGH: 1582 psize = usb_endpoint_maxp(&ep->desc); 1583 mult = usb_endpoint_maxp_mult(&ep->desc); 1584 return psize * mult; 1585 case USB_SPEED_WIRELESS: 1586 psize = usb_endpoint_maxp(&ep->desc); 1587 return psize; 1588 default: 1589 psize = usb_endpoint_maxp(&ep->desc); 1590 return psize; 1591 } 1592 } 1593 1594 /* 1595 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1596 * is given by the endpoint. 1597 */ 1598 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1599 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1600 { 1601 struct urb *urb; 1602 unsigned int npackets, i, j; 1603 u16 psize; 1604 u32 size; 1605 1606 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1607 size = stream->ctrl.dwMaxVideoFrameSize; 1608 1609 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1610 if (npackets == 0) 1611 return -ENOMEM; 1612 1613 size = npackets * psize; 1614 1615 for (i = 0; i < UVC_URBS; ++i) { 1616 urb = usb_alloc_urb(npackets, gfp_flags); 1617 if (urb == NULL) { 1618 uvc_uninit_video(stream, 1); 1619 return -ENOMEM; 1620 } 1621 1622 urb->dev = stream->dev->udev; 1623 urb->context = stream; 1624 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1625 ep->desc.bEndpointAddress); 1626 #ifndef CONFIG_DMA_NONCOHERENT 1627 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1628 urb->transfer_dma = stream->urb_dma[i]; 1629 #else 1630 urb->transfer_flags = URB_ISO_ASAP; 1631 #endif 1632 urb->interval = ep->desc.bInterval; 1633 urb->transfer_buffer = stream->urb_buffer[i]; 1634 urb->complete = uvc_video_complete; 1635 urb->number_of_packets = npackets; 1636 urb->transfer_buffer_length = size; 1637 1638 for (j = 0; j < npackets; ++j) { 1639 urb->iso_frame_desc[j].offset = j * psize; 1640 urb->iso_frame_desc[j].length = psize; 1641 } 1642 1643 stream->urb[i] = urb; 1644 } 1645 1646 return 0; 1647 } 1648 1649 /* 1650 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1651 * given by the endpoint. 1652 */ 1653 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1654 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1655 { 1656 struct urb *urb; 1657 unsigned int npackets, pipe, i; 1658 u16 psize; 1659 u32 size; 1660 1661 psize = usb_endpoint_maxp(&ep->desc); 1662 size = stream->ctrl.dwMaxPayloadTransferSize; 1663 stream->bulk.max_payload_size = size; 1664 1665 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1666 if (npackets == 0) 1667 return -ENOMEM; 1668 1669 size = npackets * psize; 1670 1671 if (usb_endpoint_dir_in(&ep->desc)) 1672 pipe = usb_rcvbulkpipe(stream->dev->udev, 1673 ep->desc.bEndpointAddress); 1674 else 1675 pipe = usb_sndbulkpipe(stream->dev->udev, 1676 ep->desc.bEndpointAddress); 1677 1678 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1679 size = 0; 1680 1681 for (i = 0; i < UVC_URBS; ++i) { 1682 urb = usb_alloc_urb(0, gfp_flags); 1683 if (urb == NULL) { 1684 uvc_uninit_video(stream, 1); 1685 return -ENOMEM; 1686 } 1687 1688 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1689 stream->urb_buffer[i], size, uvc_video_complete, 1690 stream); 1691 #ifndef CONFIG_DMA_NONCOHERENT 1692 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1693 urb->transfer_dma = stream->urb_dma[i]; 1694 #endif 1695 1696 stream->urb[i] = urb; 1697 } 1698 1699 return 0; 1700 } 1701 1702 /* 1703 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1704 */ 1705 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1706 { 1707 struct usb_interface *intf = stream->intf; 1708 struct usb_host_endpoint *ep; 1709 unsigned int i; 1710 int ret; 1711 1712 stream->sequence = -1; 1713 stream->last_fid = -1; 1714 stream->bulk.header_size = 0; 1715 stream->bulk.skip_payload = 0; 1716 stream->bulk.payload_size = 0; 1717 1718 uvc_video_stats_start(stream); 1719 1720 if (intf->num_altsetting > 1) { 1721 struct usb_host_endpoint *best_ep = NULL; 1722 unsigned int best_psize = UINT_MAX; 1723 unsigned int bandwidth; 1724 unsigned int uninitialized_var(altsetting); 1725 int intfnum = stream->intfnum; 1726 1727 /* Isochronous endpoint, select the alternate setting. */ 1728 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1729 1730 if (bandwidth == 0) { 1731 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1732 "bandwidth, defaulting to lowest.\n"); 1733 bandwidth = 1; 1734 } else { 1735 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1736 "B/frame bandwidth.\n", bandwidth); 1737 } 1738 1739 for (i = 0; i < intf->num_altsetting; ++i) { 1740 struct usb_host_interface *alts; 1741 unsigned int psize; 1742 1743 alts = &intf->altsetting[i]; 1744 ep = uvc_find_endpoint(alts, 1745 stream->header.bEndpointAddress); 1746 if (ep == NULL) 1747 continue; 1748 1749 /* Check if the bandwidth is high enough. */ 1750 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1751 if (psize >= bandwidth && psize <= best_psize) { 1752 altsetting = alts->desc.bAlternateSetting; 1753 best_psize = psize; 1754 best_ep = ep; 1755 } 1756 } 1757 1758 if (best_ep == NULL) { 1759 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1760 "for requested bandwidth.\n"); 1761 return -EIO; 1762 } 1763 1764 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1765 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1766 1767 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1768 if (ret < 0) 1769 return ret; 1770 1771 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1772 } else { 1773 /* Bulk endpoint, proceed to URB initialization. */ 1774 ep = uvc_find_endpoint(&intf->altsetting[0], 1775 stream->header.bEndpointAddress); 1776 if (ep == NULL) 1777 return -EIO; 1778 1779 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1780 } 1781 1782 if (ret < 0) 1783 return ret; 1784 1785 /* Submit the URBs. */ 1786 for (i = 0; i < UVC_URBS; ++i) { 1787 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1788 if (ret < 0) { 1789 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1790 "(%d).\n", i, ret); 1791 uvc_uninit_video(stream, 1); 1792 return ret; 1793 } 1794 } 1795 1796 /* The Logitech C920 temporarily forgets that it should not be adjusting 1797 * Exposure Absolute during init so restore controls to stored values. 1798 */ 1799 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1800 uvc_ctrl_restore_values(stream->dev); 1801 1802 return 0; 1803 } 1804 1805 /* -------------------------------------------------------------------------- 1806 * Suspend/resume 1807 */ 1808 1809 /* 1810 * Stop streaming without disabling the video queue. 1811 * 1812 * To let userspace applications resume without trouble, we must not touch the 1813 * video buffers in any way. We mark the device as frozen to make sure the URB 1814 * completion handler won't try to cancel the queue when we kill the URBs. 1815 */ 1816 int uvc_video_suspend(struct uvc_streaming *stream) 1817 { 1818 if (!uvc_queue_streaming(&stream->queue)) 1819 return 0; 1820 1821 stream->frozen = 1; 1822 uvc_uninit_video(stream, 0); 1823 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1824 return 0; 1825 } 1826 1827 /* 1828 * Reconfigure the video interface and restart streaming if it was enabled 1829 * before suspend. 1830 * 1831 * If an error occurs, disable the video queue. This will wake all pending 1832 * buffers, making sure userspace applications are notified of the problem 1833 * instead of waiting forever. 1834 */ 1835 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1836 { 1837 int ret; 1838 1839 /* If the bus has been reset on resume, set the alternate setting to 0. 1840 * This should be the default value, but some devices crash or otherwise 1841 * misbehave if they don't receive a SET_INTERFACE request before any 1842 * other video control request. 1843 */ 1844 if (reset) 1845 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1846 1847 stream->frozen = 0; 1848 1849 uvc_video_clock_reset(stream); 1850 1851 if (!uvc_queue_streaming(&stream->queue)) 1852 return 0; 1853 1854 ret = uvc_commit_video(stream, &stream->ctrl); 1855 if (ret < 0) 1856 return ret; 1857 1858 return uvc_init_video(stream, GFP_NOIO); 1859 } 1860 1861 /* ------------------------------------------------------------------------ 1862 * Video device 1863 */ 1864 1865 /* 1866 * Initialize the UVC video device by switching to alternate setting 0 and 1867 * retrieve the default format. 1868 * 1869 * Some cameras (namely the Fuji Finepix) set the format and frame 1870 * indexes to zero. The UVC standard doesn't clearly make this a spec 1871 * violation, so try to silently fix the values if possible. 1872 * 1873 * This function is called before registering the device with V4L. 1874 */ 1875 int uvc_video_init(struct uvc_streaming *stream) 1876 { 1877 struct uvc_streaming_control *probe = &stream->ctrl; 1878 struct uvc_format *format = NULL; 1879 struct uvc_frame *frame = NULL; 1880 unsigned int i; 1881 int ret; 1882 1883 if (stream->nformats == 0) { 1884 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1885 return -EINVAL; 1886 } 1887 1888 atomic_set(&stream->active, 0); 1889 1890 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1891 * Cam (and possibly other devices) crash or otherwise misbehave if 1892 * they don't receive a SET_INTERFACE request before any other video 1893 * control request. 1894 */ 1895 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1896 1897 /* Set the streaming probe control with default streaming parameters 1898 * retrieved from the device. Webcams that don't suport GET_DEF 1899 * requests on the probe control will just keep their current streaming 1900 * parameters. 1901 */ 1902 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1903 uvc_set_video_ctrl(stream, probe, 1); 1904 1905 /* Initialize the streaming parameters with the probe control current 1906 * value. This makes sure SET_CUR requests on the streaming commit 1907 * control will always use values retrieved from a successful GET_CUR 1908 * request on the probe control, as required by the UVC specification. 1909 */ 1910 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1911 if (ret < 0) 1912 return ret; 1913 1914 /* Check if the default format descriptor exists. Use the first 1915 * available format otherwise. 1916 */ 1917 for (i = stream->nformats; i > 0; --i) { 1918 format = &stream->format[i-1]; 1919 if (format->index == probe->bFormatIndex) 1920 break; 1921 } 1922 1923 if (format->nframes == 0) { 1924 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1925 "default format.\n"); 1926 return -EINVAL; 1927 } 1928 1929 /* Zero bFrameIndex might be correct. Stream-based formats (including 1930 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1931 * descriptor with bFrameIndex set to zero. If the default frame 1932 * descriptor is not found, use the first available frame. 1933 */ 1934 for (i = format->nframes; i > 0; --i) { 1935 frame = &format->frame[i-1]; 1936 if (frame->bFrameIndex == probe->bFrameIndex) 1937 break; 1938 } 1939 1940 probe->bFormatIndex = format->index; 1941 probe->bFrameIndex = frame->bFrameIndex; 1942 1943 stream->def_format = format; 1944 stream->cur_format = format; 1945 stream->cur_frame = frame; 1946 1947 /* Select the video decoding function */ 1948 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1949 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1950 stream->decode = uvc_video_decode_isight; 1951 else if (stream->intf->num_altsetting > 1) 1952 stream->decode = uvc_video_decode_isoc; 1953 else 1954 stream->decode = uvc_video_decode_bulk; 1955 } else { 1956 if (stream->intf->num_altsetting == 1) 1957 stream->decode = uvc_video_encode_bulk; 1958 else { 1959 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1960 "supported for video output devices.\n"); 1961 return -EINVAL; 1962 } 1963 } 1964 1965 return 0; 1966 } 1967 1968 /* 1969 * Enable or disable the video stream. 1970 */ 1971 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1972 { 1973 int ret; 1974 1975 if (!enable) { 1976 uvc_uninit_video(stream, 1); 1977 if (stream->intf->num_altsetting > 1) { 1978 usb_set_interface(stream->dev->udev, 1979 stream->intfnum, 0); 1980 } else { 1981 /* UVC doesn't specify how to inform a bulk-based device 1982 * when the video stream is stopped. Windows sends a 1983 * CLEAR_FEATURE(HALT) request to the video streaming 1984 * bulk endpoint, mimic the same behaviour. 1985 */ 1986 unsigned int epnum = stream->header.bEndpointAddress 1987 & USB_ENDPOINT_NUMBER_MASK; 1988 unsigned int dir = stream->header.bEndpointAddress 1989 & USB_ENDPOINT_DIR_MASK; 1990 unsigned int pipe; 1991 1992 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 1993 usb_clear_halt(stream->dev->udev, pipe); 1994 } 1995 1996 uvc_video_clock_cleanup(stream); 1997 return 0; 1998 } 1999 2000 ret = uvc_video_clock_init(stream); 2001 if (ret < 0) 2002 return ret; 2003 2004 /* Commit the streaming parameters. */ 2005 ret = uvc_commit_video(stream, &stream->ctrl); 2006 if (ret < 0) 2007 goto error_commit; 2008 2009 ret = uvc_init_video(stream, GFP_KERNEL); 2010 if (ret < 0) 2011 goto error_video; 2012 2013 return 0; 2014 2015 error_video: 2016 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2017 error_commit: 2018 uvc_video_clock_cleanup(stream); 2019 2020 return ret; 2021 } 2022