1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 34 __u8 intfnum, __u8 cs, void *data, __u16 size, 35 int timeout) 36 { 37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(__u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 73 __u8 intfnum, __u8 cs, void *data, __u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 123 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 124 stream->intf->num_altsetting > 1) { 125 u32 interval; 126 u32 bandwidth; 127 128 interval = (ctrl->dwFrameInterval > 100000) 129 ? ctrl->dwFrameInterval 130 : frame->dwFrameInterval[0]; 131 132 /* Compute a bandwidth estimation by multiplying the frame 133 * size by the number of video frames per second, divide the 134 * result by the number of USB frames (or micro-frames for 135 * high-speed devices) per second and add the UVC header size 136 * (assumed to be 12 bytes long). 137 */ 138 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 139 bandwidth *= 10000000 / interval + 1; 140 bandwidth /= 1000; 141 if (stream->dev->udev->speed == USB_SPEED_HIGH) 142 bandwidth /= 8; 143 bandwidth += 12; 144 145 /* The bandwidth estimate is too low for many cameras. Don't use 146 * maximum packet sizes lower than 1024 bytes to try and work 147 * around the problem. According to measurements done on two 148 * different camera models, the value is high enough to get most 149 * resolutions working while not preventing two simultaneous 150 * VGA streams at 15 fps. 151 */ 152 bandwidth = max_t(u32, bandwidth, 1024); 153 154 ctrl->dwMaxPayloadTransferSize = bandwidth; 155 } 156 } 157 158 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 159 struct uvc_streaming_control *ctrl, int probe, __u8 query) 160 { 161 __u8 *data; 162 __u16 size; 163 int ret; 164 165 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 166 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 167 query == UVC_GET_DEF) 168 return -EIO; 169 170 data = kmalloc(size, GFP_KERNEL); 171 if (data == NULL) 172 return -ENOMEM; 173 174 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 175 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 176 size, uvc_timeout_param); 177 178 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 179 /* Some cameras, mostly based on Bison Electronics chipsets, 180 * answer a GET_MIN or GET_MAX request with the wCompQuality 181 * field only. 182 */ 183 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 184 "compliance - GET_MIN/MAX(PROBE) incorrectly " 185 "supported. Enabling workaround.\n"); 186 memset(ctrl, 0, sizeof *ctrl); 187 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 188 ret = 0; 189 goto out; 190 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 191 /* Many cameras don't support the GET_DEF request on their 192 * video probe control. Warn once and return, the caller will 193 * fall back to GET_CUR. 194 */ 195 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 196 "compliance - GET_DEF(PROBE) not supported. " 197 "Enabling workaround.\n"); 198 ret = -EIO; 199 goto out; 200 } else if (ret != size) { 201 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 202 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 203 ret, size); 204 ret = -EIO; 205 goto out; 206 } 207 208 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 209 ctrl->bFormatIndex = data[2]; 210 ctrl->bFrameIndex = data[3]; 211 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 212 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 213 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 214 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 215 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 216 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 217 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 218 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 219 220 if (size == 34) { 221 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 222 ctrl->bmFramingInfo = data[30]; 223 ctrl->bPreferedVersion = data[31]; 224 ctrl->bMinVersion = data[32]; 225 ctrl->bMaxVersion = data[33]; 226 } else { 227 ctrl->dwClockFrequency = stream->dev->clock_frequency; 228 ctrl->bmFramingInfo = 0; 229 ctrl->bPreferedVersion = 0; 230 ctrl->bMinVersion = 0; 231 ctrl->bMaxVersion = 0; 232 } 233 234 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 235 * dwMaxPayloadTransferSize fields. Try to get the value from the 236 * format and frame descriptors. 237 */ 238 uvc_fixup_video_ctrl(stream, ctrl); 239 ret = 0; 240 241 out: 242 kfree(data); 243 return ret; 244 } 245 246 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 247 struct uvc_streaming_control *ctrl, int probe) 248 { 249 __u8 *data; 250 __u16 size; 251 int ret; 252 253 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 254 data = kzalloc(size, GFP_KERNEL); 255 if (data == NULL) 256 return -ENOMEM; 257 258 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 259 data[2] = ctrl->bFormatIndex; 260 data[3] = ctrl->bFrameIndex; 261 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 262 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 263 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 264 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 265 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 266 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 267 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 268 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 269 270 if (size == 34) { 271 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 272 data[30] = ctrl->bmFramingInfo; 273 data[31] = ctrl->bPreferedVersion; 274 data[32] = ctrl->bMinVersion; 275 data[33] = ctrl->bMaxVersion; 276 } 277 278 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 279 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 280 size, uvc_timeout_param); 281 if (ret != size) { 282 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 283 "%d (exp. %u).\n", probe ? "probe" : "commit", 284 ret, size); 285 ret = -EIO; 286 } 287 288 kfree(data); 289 return ret; 290 } 291 292 int uvc_probe_video(struct uvc_streaming *stream, 293 struct uvc_streaming_control *probe) 294 { 295 struct uvc_streaming_control probe_min, probe_max; 296 __u16 bandwidth; 297 unsigned int i; 298 int ret; 299 300 /* Perform probing. The device should adjust the requested values 301 * according to its capabilities. However, some devices, namely the 302 * first generation UVC Logitech webcams, don't implement the Video 303 * Probe control properly, and just return the needed bandwidth. For 304 * that reason, if the needed bandwidth exceeds the maximum available 305 * bandwidth, try to lower the quality. 306 */ 307 ret = uvc_set_video_ctrl(stream, probe, 1); 308 if (ret < 0) 309 goto done; 310 311 /* Get the minimum and maximum values for compression settings. */ 312 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 313 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 314 if (ret < 0) 315 goto done; 316 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 317 if (ret < 0) 318 goto done; 319 320 probe->wCompQuality = probe_max.wCompQuality; 321 } 322 323 for (i = 0; i < 2; ++i) { 324 ret = uvc_set_video_ctrl(stream, probe, 1); 325 if (ret < 0) 326 goto done; 327 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 328 if (ret < 0) 329 goto done; 330 331 if (stream->intf->num_altsetting == 1) 332 break; 333 334 bandwidth = probe->dwMaxPayloadTransferSize; 335 if (bandwidth <= stream->maxpsize) 336 break; 337 338 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 339 ret = -ENOSPC; 340 goto done; 341 } 342 343 /* TODO: negotiate compression parameters */ 344 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 345 probe->wPFrameRate = probe_min.wPFrameRate; 346 probe->wCompQuality = probe_max.wCompQuality; 347 probe->wCompWindowSize = probe_min.wCompWindowSize; 348 } 349 350 done: 351 return ret; 352 } 353 354 static int uvc_commit_video(struct uvc_streaming *stream, 355 struct uvc_streaming_control *probe) 356 { 357 return uvc_set_video_ctrl(stream, probe, 0); 358 } 359 360 /* ----------------------------------------------------------------------------- 361 * Clocks and timestamps 362 */ 363 364 static void 365 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 366 const __u8 *data, int len) 367 { 368 struct uvc_clock_sample *sample; 369 unsigned int header_size; 370 bool has_pts = false; 371 bool has_scr = false; 372 unsigned long flags; 373 struct timespec ts; 374 u16 host_sof; 375 u16 dev_sof; 376 377 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 378 case UVC_STREAM_PTS | UVC_STREAM_SCR: 379 header_size = 12; 380 has_pts = true; 381 has_scr = true; 382 break; 383 case UVC_STREAM_PTS: 384 header_size = 6; 385 has_pts = true; 386 break; 387 case UVC_STREAM_SCR: 388 header_size = 8; 389 has_scr = true; 390 break; 391 default: 392 header_size = 2; 393 break; 394 } 395 396 /* Check for invalid headers. */ 397 if (len < header_size) 398 return; 399 400 /* Extract the timestamps: 401 * 402 * - store the frame PTS in the buffer structure 403 * - if the SCR field is present, retrieve the host SOF counter and 404 * kernel timestamps and store them with the SCR STC and SOF fields 405 * in the ring buffer 406 */ 407 if (has_pts && buf != NULL) 408 buf->pts = get_unaligned_le32(&data[2]); 409 410 if (!has_scr) 411 return; 412 413 /* To limit the amount of data, drop SCRs with an SOF identical to the 414 * previous one. 415 */ 416 dev_sof = get_unaligned_le16(&data[header_size - 2]); 417 if (dev_sof == stream->clock.last_sof) 418 return; 419 420 stream->clock.last_sof = dev_sof; 421 422 host_sof = usb_get_current_frame_number(stream->dev->udev); 423 ktime_get_ts(&ts); 424 425 /* The UVC specification allows device implementations that can't obtain 426 * the USB frame number to keep their own frame counters as long as they 427 * match the size and frequency of the frame number associated with USB 428 * SOF tokens. The SOF values sent by such devices differ from the USB 429 * SOF tokens by a fixed offset that needs to be estimated and accounted 430 * for to make timestamp recovery as accurate as possible. 431 * 432 * The offset is estimated the first time a device SOF value is received 433 * as the difference between the host and device SOF values. As the two 434 * SOF values can differ slightly due to transmission delays, consider 435 * that the offset is null if the difference is not higher than 10 ms 436 * (negative differences can not happen and are thus considered as an 437 * offset). The video commit control wDelay field should be used to 438 * compute a dynamic threshold instead of using a fixed 10 ms value, but 439 * devices don't report reliable wDelay values. 440 * 441 * See uvc_video_clock_host_sof() for an explanation regarding why only 442 * the 8 LSBs of the delta are kept. 443 */ 444 if (stream->clock.sof_offset == (u16)-1) { 445 u16 delta_sof = (host_sof - dev_sof) & 255; 446 if (delta_sof >= 10) 447 stream->clock.sof_offset = delta_sof; 448 else 449 stream->clock.sof_offset = 0; 450 } 451 452 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 453 454 spin_lock_irqsave(&stream->clock.lock, flags); 455 456 sample = &stream->clock.samples[stream->clock.head]; 457 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 458 sample->dev_sof = dev_sof; 459 sample->host_sof = host_sof; 460 sample->host_ts = ts; 461 462 /* Update the sliding window head and count. */ 463 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 464 465 if (stream->clock.count < stream->clock.size) 466 stream->clock.count++; 467 468 spin_unlock_irqrestore(&stream->clock.lock, flags); 469 } 470 471 static void uvc_video_clock_reset(struct uvc_streaming *stream) 472 { 473 struct uvc_clock *clock = &stream->clock; 474 475 clock->head = 0; 476 clock->count = 0; 477 clock->last_sof = -1; 478 clock->sof_offset = -1; 479 } 480 481 static int uvc_video_clock_init(struct uvc_streaming *stream) 482 { 483 struct uvc_clock *clock = &stream->clock; 484 485 spin_lock_init(&clock->lock); 486 clock->size = 32; 487 488 clock->samples = kmalloc(clock->size * sizeof(*clock->samples), 489 GFP_KERNEL); 490 if (clock->samples == NULL) 491 return -ENOMEM; 492 493 uvc_video_clock_reset(stream); 494 495 return 0; 496 } 497 498 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 499 { 500 kfree(stream->clock.samples); 501 stream->clock.samples = NULL; 502 } 503 504 /* 505 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 506 * 507 * Host SOF counters reported by usb_get_current_frame_number() usually don't 508 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 509 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 510 * controller and its configuration. 511 * 512 * We thus need to recover the SOF value corresponding to the host frame number. 513 * As the device and host frame numbers are sampled in a short interval, the 514 * difference between their values should be equal to a small delta plus an 515 * integer multiple of 256 caused by the host frame number limited precision. 516 * 517 * To obtain the recovered host SOF value, compute the small delta by masking 518 * the high bits of the host frame counter and device SOF difference and add it 519 * to the device SOF value. 520 */ 521 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 522 { 523 /* The delta value can be negative. */ 524 s8 delta_sof; 525 526 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 527 528 return (sample->dev_sof + delta_sof) & 2047; 529 } 530 531 /* 532 * uvc_video_clock_update - Update the buffer timestamp 533 * 534 * This function converts the buffer PTS timestamp to the host clock domain by 535 * going through the USB SOF clock domain and stores the result in the V4L2 536 * buffer timestamp field. 537 * 538 * The relationship between the device clock and the host clock isn't known. 539 * However, the device and the host share the common USB SOF clock which can be 540 * used to recover that relationship. 541 * 542 * The relationship between the device clock and the USB SOF clock is considered 543 * to be linear over the clock samples sliding window and is given by 544 * 545 * SOF = m * PTS + p 546 * 547 * Several methods to compute the slope (m) and intercept (p) can be used. As 548 * the clock drift should be small compared to the sliding window size, we 549 * assume that the line that goes through the points at both ends of the window 550 * is a good approximation. Naming those points P1 and P2, we get 551 * 552 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 553 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 554 * 555 * or 556 * 557 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 558 * 559 * to avoid losing precision in the division. Similarly, the host timestamp is 560 * computed with 561 * 562 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 563 * 564 * SOF values are coded on 11 bits by USB. We extend their precision with 16 565 * decimal bits, leading to a 11.16 coding. 566 * 567 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 568 * be normalized using the nominal device clock frequency reported through the 569 * UVC descriptors. 570 * 571 * Both the PTS/STC and SOF counters roll over, after a fixed but device 572 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 573 * sliding window size is smaller than the rollover period, differences computed 574 * on unsigned integers will produce the correct result. However, the p term in 575 * the linear relations will be miscomputed. 576 * 577 * To fix the issue, we subtract a constant from the PTS and STC values to bring 578 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 579 * the 32 bit range without any rollover. 580 * 581 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 582 * computed by (1) will never be smaller than 0. This offset is then compensated 583 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 584 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 585 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 586 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 587 * SOF value at the end of the sliding window. 588 * 589 * Finally we subtract a constant from the host timestamps to bring the first 590 * timestamp of the sliding window to 1s. 591 */ 592 void uvc_video_clock_update(struct uvc_streaming *stream, 593 struct v4l2_buffer *v4l2_buf, 594 struct uvc_buffer *buf) 595 { 596 struct uvc_clock *clock = &stream->clock; 597 struct uvc_clock_sample *first; 598 struct uvc_clock_sample *last; 599 unsigned long flags; 600 struct timespec ts; 601 u32 delta_stc; 602 u32 y1, y2; 603 u32 x1, x2; 604 u32 mean; 605 u32 sof; 606 u32 div; 607 u32 rem; 608 u64 y; 609 610 spin_lock_irqsave(&clock->lock, flags); 611 612 if (clock->count < clock->size) 613 goto done; 614 615 first = &clock->samples[clock->head]; 616 last = &clock->samples[(clock->head - 1) % clock->size]; 617 618 /* First step, PTS to SOF conversion. */ 619 delta_stc = buf->pts - (1UL << 31); 620 x1 = first->dev_stc - delta_stc; 621 x2 = last->dev_stc - delta_stc; 622 if (x1 == x2) 623 goto done; 624 625 y1 = (first->dev_sof + 2048) << 16; 626 y2 = (last->dev_sof + 2048) << 16; 627 if (y2 < y1) 628 y2 += 2048 << 16; 629 630 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 631 - (u64)y2 * (u64)x1; 632 y = div_u64(y, x2 - x1); 633 634 sof = y; 635 636 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 637 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 638 stream->dev->name, buf->pts, 639 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 640 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 641 x1, x2, y1, y2, clock->sof_offset); 642 643 /* Second step, SOF to host clock conversion. */ 644 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 645 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 646 if (x2 < x1) 647 x2 += 2048 << 16; 648 if (x1 == x2) 649 goto done; 650 651 ts = timespec_sub(last->host_ts, first->host_ts); 652 y1 = NSEC_PER_SEC; 653 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec; 654 655 /* Interpolated and host SOF timestamps can wrap around at slightly 656 * different times. Handle this by adding or removing 2048 to or from 657 * the computed SOF value to keep it close to the SOF samples mean 658 * value. 659 */ 660 mean = (x1 + x2) / 2; 661 if (mean - (1024 << 16) > sof) 662 sof += 2048 << 16; 663 else if (sof > mean + (1024 << 16)) 664 sof -= 2048 << 16; 665 666 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 667 - (u64)y2 * (u64)x1; 668 y = div_u64(y, x2 - x1); 669 670 div = div_u64_rem(y, NSEC_PER_SEC, &rem); 671 ts.tv_sec = first->host_ts.tv_sec - 1 + div; 672 ts.tv_nsec = first->host_ts.tv_nsec + rem; 673 if (ts.tv_nsec >= NSEC_PER_SEC) { 674 ts.tv_sec++; 675 ts.tv_nsec -= NSEC_PER_SEC; 676 } 677 678 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu " 679 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 680 stream->dev->name, 681 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 682 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC, 683 v4l2_buf->timestamp.tv_sec, 684 (unsigned long)v4l2_buf->timestamp.tv_usec, 685 x1, first->host_sof, first->dev_sof, 686 x2, last->host_sof, last->dev_sof, y1, y2); 687 688 /* Update the V4L2 buffer. */ 689 v4l2_buf->timestamp.tv_sec = ts.tv_sec; 690 v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC; 691 692 done: 693 spin_unlock_irqrestore(&stream->clock.lock, flags); 694 } 695 696 /* ------------------------------------------------------------------------ 697 * Stream statistics 698 */ 699 700 static void uvc_video_stats_decode(struct uvc_streaming *stream, 701 const __u8 *data, int len) 702 { 703 unsigned int header_size; 704 bool has_pts = false; 705 bool has_scr = false; 706 u16 uninitialized_var(scr_sof); 707 u32 uninitialized_var(scr_stc); 708 u32 uninitialized_var(pts); 709 710 if (stream->stats.stream.nb_frames == 0 && 711 stream->stats.frame.nb_packets == 0) 712 ktime_get_ts(&stream->stats.stream.start_ts); 713 714 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 715 case UVC_STREAM_PTS | UVC_STREAM_SCR: 716 header_size = 12; 717 has_pts = true; 718 has_scr = true; 719 break; 720 case UVC_STREAM_PTS: 721 header_size = 6; 722 has_pts = true; 723 break; 724 case UVC_STREAM_SCR: 725 header_size = 8; 726 has_scr = true; 727 break; 728 default: 729 header_size = 2; 730 break; 731 } 732 733 /* Check for invalid headers. */ 734 if (len < header_size || data[0] < header_size) { 735 stream->stats.frame.nb_invalid++; 736 return; 737 } 738 739 /* Extract the timestamps. */ 740 if (has_pts) 741 pts = get_unaligned_le32(&data[2]); 742 743 if (has_scr) { 744 scr_stc = get_unaligned_le32(&data[header_size - 6]); 745 scr_sof = get_unaligned_le16(&data[header_size - 2]); 746 } 747 748 /* Is PTS constant through the whole frame ? */ 749 if (has_pts && stream->stats.frame.nb_pts) { 750 if (stream->stats.frame.pts != pts) { 751 stream->stats.frame.nb_pts_diffs++; 752 stream->stats.frame.last_pts_diff = 753 stream->stats.frame.nb_packets; 754 } 755 } 756 757 if (has_pts) { 758 stream->stats.frame.nb_pts++; 759 stream->stats.frame.pts = pts; 760 } 761 762 /* Do all frames have a PTS in their first non-empty packet, or before 763 * their first empty packet ? 764 */ 765 if (stream->stats.frame.size == 0) { 766 if (len > header_size) 767 stream->stats.frame.has_initial_pts = has_pts; 768 if (len == header_size && has_pts) 769 stream->stats.frame.has_early_pts = true; 770 } 771 772 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 773 if (has_scr && stream->stats.frame.nb_scr) { 774 if (stream->stats.frame.scr_stc != scr_stc) 775 stream->stats.frame.nb_scr_diffs++; 776 } 777 778 if (has_scr) { 779 /* Expand the SOF counter to 32 bits and store its value. */ 780 if (stream->stats.stream.nb_frames > 0 || 781 stream->stats.frame.nb_scr > 0) 782 stream->stats.stream.scr_sof_count += 783 (scr_sof - stream->stats.stream.scr_sof) % 2048; 784 stream->stats.stream.scr_sof = scr_sof; 785 786 stream->stats.frame.nb_scr++; 787 stream->stats.frame.scr_stc = scr_stc; 788 stream->stats.frame.scr_sof = scr_sof; 789 790 if (scr_sof < stream->stats.stream.min_sof) 791 stream->stats.stream.min_sof = scr_sof; 792 if (scr_sof > stream->stats.stream.max_sof) 793 stream->stats.stream.max_sof = scr_sof; 794 } 795 796 /* Record the first non-empty packet number. */ 797 if (stream->stats.frame.size == 0 && len > header_size) 798 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 799 800 /* Update the frame size. */ 801 stream->stats.frame.size += len - header_size; 802 803 /* Update the packets counters. */ 804 stream->stats.frame.nb_packets++; 805 if (len > header_size) 806 stream->stats.frame.nb_empty++; 807 808 if (data[1] & UVC_STREAM_ERR) 809 stream->stats.frame.nb_errors++; 810 } 811 812 static void uvc_video_stats_update(struct uvc_streaming *stream) 813 { 814 struct uvc_stats_frame *frame = &stream->stats.frame; 815 816 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 817 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 818 "last pts/stc/sof %u/%u/%u\n", 819 stream->sequence, frame->first_data, 820 frame->nb_packets - frame->nb_empty, frame->nb_packets, 821 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 822 frame->has_early_pts ? "" : "!", 823 frame->has_initial_pts ? "" : "!", 824 frame->nb_scr_diffs, frame->nb_scr, 825 frame->pts, frame->scr_stc, frame->scr_sof); 826 827 stream->stats.stream.nb_frames++; 828 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 829 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 830 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 831 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 832 833 if (frame->has_early_pts) 834 stream->stats.stream.nb_pts_early++; 835 if (frame->has_initial_pts) 836 stream->stats.stream.nb_pts_initial++; 837 if (frame->last_pts_diff <= frame->first_data) 838 stream->stats.stream.nb_pts_constant++; 839 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 840 stream->stats.stream.nb_scr_count_ok++; 841 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 842 stream->stats.stream.nb_scr_diffs_ok++; 843 844 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 845 } 846 847 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 848 size_t size) 849 { 850 unsigned int scr_sof_freq; 851 unsigned int duration; 852 struct timespec ts; 853 size_t count = 0; 854 855 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec 856 - stream->stats.stream.start_ts.tv_sec; 857 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec 858 - stream->stats.stream.start_ts.tv_nsec; 859 if (ts.tv_nsec < 0) { 860 ts.tv_sec--; 861 ts.tv_nsec += 1000000000; 862 } 863 864 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 865 * frequency this will not overflow before more than 1h. 866 */ 867 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000; 868 if (duration != 0) 869 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 870 / duration; 871 else 872 scr_sof_freq = 0; 873 874 count += scnprintf(buf + count, size - count, 875 "frames: %u\npackets: %u\nempty: %u\n" 876 "errors: %u\ninvalid: %u\n", 877 stream->stats.stream.nb_frames, 878 stream->stats.stream.nb_packets, 879 stream->stats.stream.nb_empty, 880 stream->stats.stream.nb_errors, 881 stream->stats.stream.nb_invalid); 882 count += scnprintf(buf + count, size - count, 883 "pts: %u early, %u initial, %u ok\n", 884 stream->stats.stream.nb_pts_early, 885 stream->stats.stream.nb_pts_initial, 886 stream->stats.stream.nb_pts_constant); 887 count += scnprintf(buf + count, size - count, 888 "scr: %u count ok, %u diff ok\n", 889 stream->stats.stream.nb_scr_count_ok, 890 stream->stats.stream.nb_scr_diffs_ok); 891 count += scnprintf(buf + count, size - count, 892 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 893 stream->stats.stream.min_sof, 894 stream->stats.stream.max_sof, 895 scr_sof_freq / 1000, scr_sof_freq % 1000); 896 897 return count; 898 } 899 900 static void uvc_video_stats_start(struct uvc_streaming *stream) 901 { 902 memset(&stream->stats, 0, sizeof(stream->stats)); 903 stream->stats.stream.min_sof = 2048; 904 } 905 906 static void uvc_video_stats_stop(struct uvc_streaming *stream) 907 { 908 ktime_get_ts(&stream->stats.stream.stop_ts); 909 } 910 911 /* ------------------------------------------------------------------------ 912 * Video codecs 913 */ 914 915 /* Video payload decoding is handled by uvc_video_decode_start(), 916 * uvc_video_decode_data() and uvc_video_decode_end(). 917 * 918 * uvc_video_decode_start is called with URB data at the start of a bulk or 919 * isochronous payload. It processes header data and returns the header size 920 * in bytes if successful. If an error occurs, it returns a negative error 921 * code. The following error codes have special meanings. 922 * 923 * - EAGAIN informs the caller that the current video buffer should be marked 924 * as done, and that the function should be called again with the same data 925 * and a new video buffer. This is used when end of frame conditions can be 926 * reliably detected at the beginning of the next frame only. 927 * 928 * If an error other than -EAGAIN is returned, the caller will drop the current 929 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 930 * made until the next payload. -ENODATA can be used to drop the current 931 * payload if no other error code is appropriate. 932 * 933 * uvc_video_decode_data is called for every URB with URB data. It copies the 934 * data to the video buffer. 935 * 936 * uvc_video_decode_end is called with header data at the end of a bulk or 937 * isochronous payload. It performs any additional header data processing and 938 * returns 0 or a negative error code if an error occurred. As header data have 939 * already been processed by uvc_video_decode_start, this functions isn't 940 * required to perform sanity checks a second time. 941 * 942 * For isochronous transfers where a payload is always transferred in a single 943 * URB, the three functions will be called in a row. 944 * 945 * To let the decoder process header data and update its internal state even 946 * when no video buffer is available, uvc_video_decode_start must be prepared 947 * to be called with a NULL buf parameter. uvc_video_decode_data and 948 * uvc_video_decode_end will never be called with a NULL buffer. 949 */ 950 static int uvc_video_decode_start(struct uvc_streaming *stream, 951 struct uvc_buffer *buf, const __u8 *data, int len) 952 { 953 __u8 fid; 954 955 /* Sanity checks: 956 * - packet must be at least 2 bytes long 957 * - bHeaderLength value must be at least 2 bytes (see above) 958 * - bHeaderLength value can't be larger than the packet size. 959 */ 960 if (len < 2 || data[0] < 2 || data[0] > len) { 961 stream->stats.frame.nb_invalid++; 962 return -EINVAL; 963 } 964 965 fid = data[1] & UVC_STREAM_FID; 966 967 /* Increase the sequence number regardless of any buffer states, so 968 * that discontinuous sequence numbers always indicate lost frames. 969 */ 970 if (stream->last_fid != fid) { 971 stream->sequence++; 972 if (stream->sequence) 973 uvc_video_stats_update(stream); 974 } 975 976 uvc_video_clock_decode(stream, buf, data, len); 977 uvc_video_stats_decode(stream, data, len); 978 979 /* Store the payload FID bit and return immediately when the buffer is 980 * NULL. 981 */ 982 if (buf == NULL) { 983 stream->last_fid = fid; 984 return -ENODATA; 985 } 986 987 /* Mark the buffer as bad if the error bit is set. */ 988 if (data[1] & UVC_STREAM_ERR) { 989 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 990 "set).\n"); 991 buf->error = 1; 992 } 993 994 /* Synchronize to the input stream by waiting for the FID bit to be 995 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 996 * stream->last_fid is initialized to -1, so the first isochronous 997 * frame will always be in sync. 998 * 999 * If the device doesn't toggle the FID bit, invert stream->last_fid 1000 * when the EOF bit is set to force synchronisation on the next packet. 1001 */ 1002 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1003 struct timespec ts; 1004 1005 if (fid == stream->last_fid) { 1006 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1007 "sync).\n"); 1008 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1009 (data[1] & UVC_STREAM_EOF)) 1010 stream->last_fid ^= UVC_STREAM_FID; 1011 return -ENODATA; 1012 } 1013 1014 if (uvc_clock_param == CLOCK_MONOTONIC) 1015 ktime_get_ts(&ts); 1016 else 1017 ktime_get_real_ts(&ts); 1018 1019 buf->buf.v4l2_buf.sequence = stream->sequence; 1020 buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec; 1021 buf->buf.v4l2_buf.timestamp.tv_usec = 1022 ts.tv_nsec / NSEC_PER_USEC; 1023 1024 /* TODO: Handle PTS and SCR. */ 1025 buf->state = UVC_BUF_STATE_ACTIVE; 1026 } 1027 1028 /* Mark the buffer as done if we're at the beginning of a new frame. 1029 * End of frame detection is better implemented by checking the EOF 1030 * bit (FID bit toggling is delayed by one frame compared to the EOF 1031 * bit), but some devices don't set the bit at end of frame (and the 1032 * last payload can be lost anyway). We thus must check if the FID has 1033 * been toggled. 1034 * 1035 * stream->last_fid is initialized to -1, so the first isochronous 1036 * frame will never trigger an end of frame detection. 1037 * 1038 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1039 * as it doesn't make sense to return an empty buffer. This also 1040 * avoids detecting end of frame conditions at FID toggling if the 1041 * previous payload had the EOF bit set. 1042 */ 1043 if (fid != stream->last_fid && buf->bytesused != 0) { 1044 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1045 "toggled).\n"); 1046 buf->state = UVC_BUF_STATE_READY; 1047 return -EAGAIN; 1048 } 1049 1050 stream->last_fid = fid; 1051 1052 return data[0]; 1053 } 1054 1055 static void uvc_video_decode_data(struct uvc_streaming *stream, 1056 struct uvc_buffer *buf, const __u8 *data, int len) 1057 { 1058 unsigned int maxlen, nbytes; 1059 void *mem; 1060 1061 if (len <= 0) 1062 return; 1063 1064 /* Copy the video data to the buffer. */ 1065 maxlen = buf->length - buf->bytesused; 1066 mem = buf->mem + buf->bytesused; 1067 nbytes = min((unsigned int)len, maxlen); 1068 memcpy(mem, data, nbytes); 1069 buf->bytesused += nbytes; 1070 1071 /* Complete the current frame if the buffer size was exceeded. */ 1072 if (len > maxlen) { 1073 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1074 buf->state = UVC_BUF_STATE_READY; 1075 } 1076 } 1077 1078 static void uvc_video_decode_end(struct uvc_streaming *stream, 1079 struct uvc_buffer *buf, const __u8 *data, int len) 1080 { 1081 /* Mark the buffer as done if the EOF marker is set. */ 1082 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1083 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1084 if (data[0] == len) 1085 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1086 buf->state = UVC_BUF_STATE_READY; 1087 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1088 stream->last_fid ^= UVC_STREAM_FID; 1089 } 1090 } 1091 1092 /* Video payload encoding is handled by uvc_video_encode_header() and 1093 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1094 * 1095 * uvc_video_encode_header is called at the start of a payload. It adds header 1096 * data to the transfer buffer and returns the header size. As the only known 1097 * UVC output device transfers a whole frame in a single payload, the EOF bit 1098 * is always set in the header. 1099 * 1100 * uvc_video_encode_data is called for every URB and copies the data from the 1101 * video buffer to the transfer buffer. 1102 */ 1103 static int uvc_video_encode_header(struct uvc_streaming *stream, 1104 struct uvc_buffer *buf, __u8 *data, int len) 1105 { 1106 data[0] = 2; /* Header length */ 1107 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1108 | (stream->last_fid & UVC_STREAM_FID); 1109 return 2; 1110 } 1111 1112 static int uvc_video_encode_data(struct uvc_streaming *stream, 1113 struct uvc_buffer *buf, __u8 *data, int len) 1114 { 1115 struct uvc_video_queue *queue = &stream->queue; 1116 unsigned int nbytes; 1117 void *mem; 1118 1119 /* Copy video data to the URB buffer. */ 1120 mem = buf->mem + queue->buf_used; 1121 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1122 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1123 nbytes); 1124 memcpy(data, mem, nbytes); 1125 1126 queue->buf_used += nbytes; 1127 1128 return nbytes; 1129 } 1130 1131 /* ------------------------------------------------------------------------ 1132 * URB handling 1133 */ 1134 1135 /* 1136 * Completion handler for video URBs. 1137 */ 1138 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1139 struct uvc_buffer *buf) 1140 { 1141 u8 *mem; 1142 int ret, i; 1143 1144 for (i = 0; i < urb->number_of_packets; ++i) { 1145 if (urb->iso_frame_desc[i].status < 0) { 1146 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1147 "lost (%d).\n", urb->iso_frame_desc[i].status); 1148 /* Mark the buffer as faulty. */ 1149 if (buf != NULL) 1150 buf->error = 1; 1151 continue; 1152 } 1153 1154 /* Decode the payload header. */ 1155 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1156 do { 1157 ret = uvc_video_decode_start(stream, buf, mem, 1158 urb->iso_frame_desc[i].actual_length); 1159 if (ret == -EAGAIN) 1160 buf = uvc_queue_next_buffer(&stream->queue, 1161 buf); 1162 } while (ret == -EAGAIN); 1163 1164 if (ret < 0) 1165 continue; 1166 1167 /* Decode the payload data. */ 1168 uvc_video_decode_data(stream, buf, mem + ret, 1169 urb->iso_frame_desc[i].actual_length - ret); 1170 1171 /* Process the header again. */ 1172 uvc_video_decode_end(stream, buf, mem, 1173 urb->iso_frame_desc[i].actual_length); 1174 1175 if (buf->state == UVC_BUF_STATE_READY) { 1176 if (buf->length != buf->bytesused && 1177 !(stream->cur_format->flags & 1178 UVC_FMT_FLAG_COMPRESSED)) 1179 buf->error = 1; 1180 1181 buf = uvc_queue_next_buffer(&stream->queue, buf); 1182 } 1183 } 1184 } 1185 1186 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1187 struct uvc_buffer *buf) 1188 { 1189 u8 *mem; 1190 int len, ret; 1191 1192 /* 1193 * Ignore ZLPs if they're not part of a frame, otherwise process them 1194 * to trigger the end of payload detection. 1195 */ 1196 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1197 return; 1198 1199 mem = urb->transfer_buffer; 1200 len = urb->actual_length; 1201 stream->bulk.payload_size += len; 1202 1203 /* If the URB is the first of its payload, decode and save the 1204 * header. 1205 */ 1206 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1207 do { 1208 ret = uvc_video_decode_start(stream, buf, mem, len); 1209 if (ret == -EAGAIN) 1210 buf = uvc_queue_next_buffer(&stream->queue, 1211 buf); 1212 } while (ret == -EAGAIN); 1213 1214 /* If an error occurred skip the rest of the payload. */ 1215 if (ret < 0 || buf == NULL) { 1216 stream->bulk.skip_payload = 1; 1217 } else { 1218 memcpy(stream->bulk.header, mem, ret); 1219 stream->bulk.header_size = ret; 1220 1221 mem += ret; 1222 len -= ret; 1223 } 1224 } 1225 1226 /* The buffer queue might have been cancelled while a bulk transfer 1227 * was in progress, so we can reach here with buf equal to NULL. Make 1228 * sure buf is never dereferenced if NULL. 1229 */ 1230 1231 /* Process video data. */ 1232 if (!stream->bulk.skip_payload && buf != NULL) 1233 uvc_video_decode_data(stream, buf, mem, len); 1234 1235 /* Detect the payload end by a URB smaller than the maximum size (or 1236 * a payload size equal to the maximum) and process the header again. 1237 */ 1238 if (urb->actual_length < urb->transfer_buffer_length || 1239 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1240 if (!stream->bulk.skip_payload && buf != NULL) { 1241 uvc_video_decode_end(stream, buf, stream->bulk.header, 1242 stream->bulk.payload_size); 1243 if (buf->state == UVC_BUF_STATE_READY) 1244 buf = uvc_queue_next_buffer(&stream->queue, 1245 buf); 1246 } 1247 1248 stream->bulk.header_size = 0; 1249 stream->bulk.skip_payload = 0; 1250 stream->bulk.payload_size = 0; 1251 } 1252 } 1253 1254 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1255 struct uvc_buffer *buf) 1256 { 1257 u8 *mem = urb->transfer_buffer; 1258 int len = stream->urb_size, ret; 1259 1260 if (buf == NULL) { 1261 urb->transfer_buffer_length = 0; 1262 return; 1263 } 1264 1265 /* If the URB is the first of its payload, add the header. */ 1266 if (stream->bulk.header_size == 0) { 1267 ret = uvc_video_encode_header(stream, buf, mem, len); 1268 stream->bulk.header_size = ret; 1269 stream->bulk.payload_size += ret; 1270 mem += ret; 1271 len -= ret; 1272 } 1273 1274 /* Process video data. */ 1275 ret = uvc_video_encode_data(stream, buf, mem, len); 1276 1277 stream->bulk.payload_size += ret; 1278 len -= ret; 1279 1280 if (buf->bytesused == stream->queue.buf_used || 1281 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1282 if (buf->bytesused == stream->queue.buf_used) { 1283 stream->queue.buf_used = 0; 1284 buf->state = UVC_BUF_STATE_READY; 1285 buf->buf.v4l2_buf.sequence = ++stream->sequence; 1286 uvc_queue_next_buffer(&stream->queue, buf); 1287 stream->last_fid ^= UVC_STREAM_FID; 1288 } 1289 1290 stream->bulk.header_size = 0; 1291 stream->bulk.payload_size = 0; 1292 } 1293 1294 urb->transfer_buffer_length = stream->urb_size - len; 1295 } 1296 1297 static void uvc_video_complete(struct urb *urb) 1298 { 1299 struct uvc_streaming *stream = urb->context; 1300 struct uvc_video_queue *queue = &stream->queue; 1301 struct uvc_buffer *buf = NULL; 1302 unsigned long flags; 1303 int ret; 1304 1305 switch (urb->status) { 1306 case 0: 1307 break; 1308 1309 default: 1310 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1311 "completion handler.\n", urb->status); 1312 1313 case -ENOENT: /* usb_kill_urb() called. */ 1314 if (stream->frozen) 1315 return; 1316 1317 case -ECONNRESET: /* usb_unlink_urb() called. */ 1318 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1319 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1320 return; 1321 } 1322 1323 spin_lock_irqsave(&queue->irqlock, flags); 1324 if (!list_empty(&queue->irqqueue)) 1325 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1326 queue); 1327 spin_unlock_irqrestore(&queue->irqlock, flags); 1328 1329 stream->decode(urb, stream, buf); 1330 1331 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1332 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1333 ret); 1334 } 1335 } 1336 1337 /* 1338 * Free transfer buffers. 1339 */ 1340 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1341 { 1342 unsigned int i; 1343 1344 for (i = 0; i < UVC_URBS; ++i) { 1345 if (stream->urb_buffer[i]) { 1346 #ifndef CONFIG_DMA_NONCOHERENT 1347 usb_free_coherent(stream->dev->udev, stream->urb_size, 1348 stream->urb_buffer[i], stream->urb_dma[i]); 1349 #else 1350 kfree(stream->urb_buffer[i]); 1351 #endif 1352 stream->urb_buffer[i] = NULL; 1353 } 1354 } 1355 1356 stream->urb_size = 0; 1357 } 1358 1359 /* 1360 * Allocate transfer buffers. This function can be called with buffers 1361 * already allocated when resuming from suspend, in which case it will 1362 * return without touching the buffers. 1363 * 1364 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1365 * system is too low on memory try successively smaller numbers of packets 1366 * until allocation succeeds. 1367 * 1368 * Return the number of allocated packets on success or 0 when out of memory. 1369 */ 1370 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1371 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1372 { 1373 unsigned int npackets; 1374 unsigned int i; 1375 1376 /* Buffers are already allocated, bail out. */ 1377 if (stream->urb_size) 1378 return stream->urb_size / psize; 1379 1380 /* Compute the number of packets. Bulk endpoints might transfer UVC 1381 * payloads across multiple URBs. 1382 */ 1383 npackets = DIV_ROUND_UP(size, psize); 1384 if (npackets > UVC_MAX_PACKETS) 1385 npackets = UVC_MAX_PACKETS; 1386 1387 /* Retry allocations until one succeed. */ 1388 for (; npackets > 1; npackets /= 2) { 1389 for (i = 0; i < UVC_URBS; ++i) { 1390 stream->urb_size = psize * npackets; 1391 #ifndef CONFIG_DMA_NONCOHERENT 1392 stream->urb_buffer[i] = usb_alloc_coherent( 1393 stream->dev->udev, stream->urb_size, 1394 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1395 #else 1396 stream->urb_buffer[i] = 1397 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1398 #endif 1399 if (!stream->urb_buffer[i]) { 1400 uvc_free_urb_buffers(stream); 1401 break; 1402 } 1403 } 1404 1405 if (i == UVC_URBS) { 1406 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1407 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1408 psize); 1409 return npackets; 1410 } 1411 } 1412 1413 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1414 "per packet).\n", psize); 1415 return 0; 1416 } 1417 1418 /* 1419 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1420 */ 1421 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1422 { 1423 struct urb *urb; 1424 unsigned int i; 1425 1426 uvc_video_stats_stop(stream); 1427 1428 for (i = 0; i < UVC_URBS; ++i) { 1429 urb = stream->urb[i]; 1430 if (urb == NULL) 1431 continue; 1432 1433 usb_kill_urb(urb); 1434 usb_free_urb(urb); 1435 stream->urb[i] = NULL; 1436 } 1437 1438 if (free_buffers) 1439 uvc_free_urb_buffers(stream); 1440 } 1441 1442 /* 1443 * Compute the maximum number of bytes per interval for an endpoint. 1444 */ 1445 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1446 struct usb_host_endpoint *ep) 1447 { 1448 u16 psize; 1449 1450 switch (dev->speed) { 1451 case USB_SPEED_SUPER: 1452 return ep->ss_ep_comp.wBytesPerInterval; 1453 case USB_SPEED_HIGH: 1454 psize = usb_endpoint_maxp(&ep->desc); 1455 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3)); 1456 case USB_SPEED_WIRELESS: 1457 psize = usb_endpoint_maxp(&ep->desc); 1458 return psize; 1459 default: 1460 psize = usb_endpoint_maxp(&ep->desc); 1461 return psize & 0x07ff; 1462 } 1463 } 1464 1465 /* 1466 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1467 * is given by the endpoint. 1468 */ 1469 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1470 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1471 { 1472 struct urb *urb; 1473 unsigned int npackets, i, j; 1474 u16 psize; 1475 u32 size; 1476 1477 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1478 size = stream->ctrl.dwMaxVideoFrameSize; 1479 1480 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1481 if (npackets == 0) 1482 return -ENOMEM; 1483 1484 size = npackets * psize; 1485 1486 for (i = 0; i < UVC_URBS; ++i) { 1487 urb = usb_alloc_urb(npackets, gfp_flags); 1488 if (urb == NULL) { 1489 uvc_uninit_video(stream, 1); 1490 return -ENOMEM; 1491 } 1492 1493 urb->dev = stream->dev->udev; 1494 urb->context = stream; 1495 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1496 ep->desc.bEndpointAddress); 1497 #ifndef CONFIG_DMA_NONCOHERENT 1498 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1499 urb->transfer_dma = stream->urb_dma[i]; 1500 #else 1501 urb->transfer_flags = URB_ISO_ASAP; 1502 #endif 1503 urb->interval = ep->desc.bInterval; 1504 urb->transfer_buffer = stream->urb_buffer[i]; 1505 urb->complete = uvc_video_complete; 1506 urb->number_of_packets = npackets; 1507 urb->transfer_buffer_length = size; 1508 1509 for (j = 0; j < npackets; ++j) { 1510 urb->iso_frame_desc[j].offset = j * psize; 1511 urb->iso_frame_desc[j].length = psize; 1512 } 1513 1514 stream->urb[i] = urb; 1515 } 1516 1517 return 0; 1518 } 1519 1520 /* 1521 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1522 * given by the endpoint. 1523 */ 1524 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1525 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1526 { 1527 struct urb *urb; 1528 unsigned int npackets, pipe, i; 1529 u16 psize; 1530 u32 size; 1531 1532 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff; 1533 size = stream->ctrl.dwMaxPayloadTransferSize; 1534 stream->bulk.max_payload_size = size; 1535 1536 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1537 if (npackets == 0) 1538 return -ENOMEM; 1539 1540 size = npackets * psize; 1541 1542 if (usb_endpoint_dir_in(&ep->desc)) 1543 pipe = usb_rcvbulkpipe(stream->dev->udev, 1544 ep->desc.bEndpointAddress); 1545 else 1546 pipe = usb_sndbulkpipe(stream->dev->udev, 1547 ep->desc.bEndpointAddress); 1548 1549 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1550 size = 0; 1551 1552 for (i = 0; i < UVC_URBS; ++i) { 1553 urb = usb_alloc_urb(0, gfp_flags); 1554 if (urb == NULL) { 1555 uvc_uninit_video(stream, 1); 1556 return -ENOMEM; 1557 } 1558 1559 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1560 stream->urb_buffer[i], size, uvc_video_complete, 1561 stream); 1562 #ifndef CONFIG_DMA_NONCOHERENT 1563 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1564 urb->transfer_dma = stream->urb_dma[i]; 1565 #endif 1566 1567 stream->urb[i] = urb; 1568 } 1569 1570 return 0; 1571 } 1572 1573 /* 1574 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1575 */ 1576 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1577 { 1578 struct usb_interface *intf = stream->intf; 1579 struct usb_host_endpoint *ep; 1580 unsigned int i; 1581 int ret; 1582 1583 stream->sequence = -1; 1584 stream->last_fid = -1; 1585 stream->bulk.header_size = 0; 1586 stream->bulk.skip_payload = 0; 1587 stream->bulk.payload_size = 0; 1588 1589 uvc_video_stats_start(stream); 1590 1591 if (intf->num_altsetting > 1) { 1592 struct usb_host_endpoint *best_ep = NULL; 1593 unsigned int best_psize = UINT_MAX; 1594 unsigned int bandwidth; 1595 unsigned int uninitialized_var(altsetting); 1596 int intfnum = stream->intfnum; 1597 1598 /* Isochronous endpoint, select the alternate setting. */ 1599 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1600 1601 if (bandwidth == 0) { 1602 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1603 "bandwidth, defaulting to lowest.\n"); 1604 bandwidth = 1; 1605 } else { 1606 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1607 "B/frame bandwidth.\n", bandwidth); 1608 } 1609 1610 for (i = 0; i < intf->num_altsetting; ++i) { 1611 struct usb_host_interface *alts; 1612 unsigned int psize; 1613 1614 alts = &intf->altsetting[i]; 1615 ep = uvc_find_endpoint(alts, 1616 stream->header.bEndpointAddress); 1617 if (ep == NULL) 1618 continue; 1619 1620 /* Check if the bandwidth is high enough. */ 1621 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1622 if (psize >= bandwidth && psize <= best_psize) { 1623 altsetting = alts->desc.bAlternateSetting; 1624 best_psize = psize; 1625 best_ep = ep; 1626 } 1627 } 1628 1629 if (best_ep == NULL) { 1630 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1631 "for requested bandwidth.\n"); 1632 return -EIO; 1633 } 1634 1635 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1636 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1637 1638 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1639 if (ret < 0) 1640 return ret; 1641 1642 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1643 } else { 1644 /* Bulk endpoint, proceed to URB initialization. */ 1645 ep = uvc_find_endpoint(&intf->altsetting[0], 1646 stream->header.bEndpointAddress); 1647 if (ep == NULL) 1648 return -EIO; 1649 1650 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1651 } 1652 1653 if (ret < 0) 1654 return ret; 1655 1656 /* Submit the URBs. */ 1657 for (i = 0; i < UVC_URBS; ++i) { 1658 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1659 if (ret < 0) { 1660 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1661 "(%d).\n", i, ret); 1662 uvc_uninit_video(stream, 1); 1663 return ret; 1664 } 1665 } 1666 1667 return 0; 1668 } 1669 1670 /* -------------------------------------------------------------------------- 1671 * Suspend/resume 1672 */ 1673 1674 /* 1675 * Stop streaming without disabling the video queue. 1676 * 1677 * To let userspace applications resume without trouble, we must not touch the 1678 * video buffers in any way. We mark the device as frozen to make sure the URB 1679 * completion handler won't try to cancel the queue when we kill the URBs. 1680 */ 1681 int uvc_video_suspend(struct uvc_streaming *stream) 1682 { 1683 if (!uvc_queue_streaming(&stream->queue)) 1684 return 0; 1685 1686 stream->frozen = 1; 1687 uvc_uninit_video(stream, 0); 1688 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1689 return 0; 1690 } 1691 1692 /* 1693 * Reconfigure the video interface and restart streaming if it was enabled 1694 * before suspend. 1695 * 1696 * If an error occurs, disable the video queue. This will wake all pending 1697 * buffers, making sure userspace applications are notified of the problem 1698 * instead of waiting forever. 1699 */ 1700 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1701 { 1702 int ret; 1703 1704 /* If the bus has been reset on resume, set the alternate setting to 0. 1705 * This should be the default value, but some devices crash or otherwise 1706 * misbehave if they don't receive a SET_INTERFACE request before any 1707 * other video control request. 1708 */ 1709 if (reset) 1710 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1711 1712 stream->frozen = 0; 1713 1714 uvc_video_clock_reset(stream); 1715 1716 ret = uvc_commit_video(stream, &stream->ctrl); 1717 if (ret < 0) { 1718 uvc_queue_enable(&stream->queue, 0); 1719 return ret; 1720 } 1721 1722 if (!uvc_queue_streaming(&stream->queue)) 1723 return 0; 1724 1725 ret = uvc_init_video(stream, GFP_NOIO); 1726 if (ret < 0) 1727 uvc_queue_enable(&stream->queue, 0); 1728 1729 return ret; 1730 } 1731 1732 /* ------------------------------------------------------------------------ 1733 * Video device 1734 */ 1735 1736 /* 1737 * Initialize the UVC video device by switching to alternate setting 0 and 1738 * retrieve the default format. 1739 * 1740 * Some cameras (namely the Fuji Finepix) set the format and frame 1741 * indexes to zero. The UVC standard doesn't clearly make this a spec 1742 * violation, so try to silently fix the values if possible. 1743 * 1744 * This function is called before registering the device with V4L. 1745 */ 1746 int uvc_video_init(struct uvc_streaming *stream) 1747 { 1748 struct uvc_streaming_control *probe = &stream->ctrl; 1749 struct uvc_format *format = NULL; 1750 struct uvc_frame *frame = NULL; 1751 unsigned int i; 1752 int ret; 1753 1754 if (stream->nformats == 0) { 1755 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1756 return -EINVAL; 1757 } 1758 1759 atomic_set(&stream->active, 0); 1760 1761 /* Initialize the video buffers queue. */ 1762 ret = uvc_queue_init(&stream->queue, stream->type, !uvc_no_drop_param); 1763 if (ret) 1764 return ret; 1765 1766 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1767 * Cam (and possibly other devices) crash or otherwise misbehave if 1768 * they don't receive a SET_INTERFACE request before any other video 1769 * control request. 1770 */ 1771 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1772 1773 /* Set the streaming probe control with default streaming parameters 1774 * retrieved from the device. Webcams that don't suport GET_DEF 1775 * requests on the probe control will just keep their current streaming 1776 * parameters. 1777 */ 1778 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1779 uvc_set_video_ctrl(stream, probe, 1); 1780 1781 /* Initialize the streaming parameters with the probe control current 1782 * value. This makes sure SET_CUR requests on the streaming commit 1783 * control will always use values retrieved from a successful GET_CUR 1784 * request on the probe control, as required by the UVC specification. 1785 */ 1786 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1787 if (ret < 0) 1788 return ret; 1789 1790 /* Check if the default format descriptor exists. Use the first 1791 * available format otherwise. 1792 */ 1793 for (i = stream->nformats; i > 0; --i) { 1794 format = &stream->format[i-1]; 1795 if (format->index == probe->bFormatIndex) 1796 break; 1797 } 1798 1799 if (format->nframes == 0) { 1800 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1801 "default format.\n"); 1802 return -EINVAL; 1803 } 1804 1805 /* Zero bFrameIndex might be correct. Stream-based formats (including 1806 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1807 * descriptor with bFrameIndex set to zero. If the default frame 1808 * descriptor is not found, use the first available frame. 1809 */ 1810 for (i = format->nframes; i > 0; --i) { 1811 frame = &format->frame[i-1]; 1812 if (frame->bFrameIndex == probe->bFrameIndex) 1813 break; 1814 } 1815 1816 probe->bFormatIndex = format->index; 1817 probe->bFrameIndex = frame->bFrameIndex; 1818 1819 stream->def_format = format; 1820 stream->cur_format = format; 1821 stream->cur_frame = frame; 1822 1823 /* Select the video decoding function */ 1824 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1825 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1826 stream->decode = uvc_video_decode_isight; 1827 else if (stream->intf->num_altsetting > 1) 1828 stream->decode = uvc_video_decode_isoc; 1829 else 1830 stream->decode = uvc_video_decode_bulk; 1831 } else { 1832 if (stream->intf->num_altsetting == 1) 1833 stream->decode = uvc_video_encode_bulk; 1834 else { 1835 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1836 "supported for video output devices.\n"); 1837 return -EINVAL; 1838 } 1839 } 1840 1841 return 0; 1842 } 1843 1844 /* 1845 * Enable or disable the video stream. 1846 */ 1847 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1848 { 1849 int ret; 1850 1851 if (!enable) { 1852 uvc_uninit_video(stream, 1); 1853 if (stream->intf->num_altsetting > 1) { 1854 usb_set_interface(stream->dev->udev, 1855 stream->intfnum, 0); 1856 } else { 1857 /* UVC doesn't specify how to inform a bulk-based device 1858 * when the video stream is stopped. Windows sends a 1859 * CLEAR_FEATURE(HALT) request to the video streaming 1860 * bulk endpoint, mimic the same behaviour. 1861 */ 1862 unsigned int epnum = stream->header.bEndpointAddress 1863 & USB_ENDPOINT_NUMBER_MASK; 1864 unsigned int dir = stream->header.bEndpointAddress 1865 & USB_ENDPOINT_DIR_MASK; 1866 unsigned int pipe; 1867 1868 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 1869 usb_clear_halt(stream->dev->udev, pipe); 1870 } 1871 1872 uvc_queue_enable(&stream->queue, 0); 1873 uvc_video_clock_cleanup(stream); 1874 return 0; 1875 } 1876 1877 ret = uvc_video_clock_init(stream); 1878 if (ret < 0) 1879 return ret; 1880 1881 ret = uvc_queue_enable(&stream->queue, 1); 1882 if (ret < 0) 1883 goto error_queue; 1884 1885 /* Commit the streaming parameters. */ 1886 ret = uvc_commit_video(stream, &stream->ctrl); 1887 if (ret < 0) 1888 goto error_commit; 1889 1890 ret = uvc_init_video(stream, GFP_KERNEL); 1891 if (ret < 0) 1892 goto error_video; 1893 1894 return 0; 1895 1896 error_video: 1897 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1898 error_commit: 1899 uvc_queue_enable(&stream->queue, 0); 1900 error_queue: 1901 uvc_video_clock_cleanup(stream); 1902 1903 return ret; 1904 } 1905