xref: /openbmc/linux/drivers/media/usb/uvc/uvc_video.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      uvc_video.c  --  USB Video Class driver - Video handling
4  *
5  *      Copyright (C) 2005-2010
6  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <asm/unaligned.h>
22 
23 #include <media/v4l2-common.h>
24 
25 #include "uvcvideo.h"
26 
27 /* ------------------------------------------------------------------------
28  * UVC Controls
29  */
30 
31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
32 			u8 intfnum, u8 cs, void *data, u16 size,
33 			int timeout)
34 {
35 	u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
36 	unsigned int pipe;
37 
38 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
39 			      : usb_sndctrlpipe(dev->udev, 0);
40 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
41 
42 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
43 			unit << 8 | intfnum, data, size, timeout);
44 }
45 
46 static const char *uvc_query_name(u8 query)
47 {
48 	switch (query) {
49 	case UVC_SET_CUR:
50 		return "SET_CUR";
51 	case UVC_GET_CUR:
52 		return "GET_CUR";
53 	case UVC_GET_MIN:
54 		return "GET_MIN";
55 	case UVC_GET_MAX:
56 		return "GET_MAX";
57 	case UVC_GET_RES:
58 		return "GET_RES";
59 	case UVC_GET_LEN:
60 		return "GET_LEN";
61 	case UVC_GET_INFO:
62 		return "GET_INFO";
63 	case UVC_GET_DEF:
64 		return "GET_DEF";
65 	default:
66 		return "<invalid>";
67 	}
68 }
69 
70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
71 			u8 intfnum, u8 cs, void *data, u16 size)
72 {
73 	int ret;
74 	u8 error;
75 	u8 tmp;
76 
77 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 				UVC_CTRL_CONTROL_TIMEOUT);
79 	if (likely(ret == size))
80 		return 0;
81 
82 	dev_err(&dev->udev->dev,
83 		"Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
84 		uvc_query_name(query), cs, unit, ret, size);
85 
86 	if (ret != -EPIPE)
87 		return ret;
88 
89 	tmp = *(u8 *)data;
90 
91 	ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
92 			       UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
93 			       UVC_CTRL_CONTROL_TIMEOUT);
94 
95 	error = *(u8 *)data;
96 	*(u8 *)data = tmp;
97 
98 	if (ret != 1)
99 		return ret < 0 ? ret : -EPIPE;
100 
101 	uvc_dbg(dev, CONTROL, "Control error %u\n", error);
102 
103 	switch (error) {
104 	case 0:
105 		/* Cannot happen - we received a STALL */
106 		return -EPIPE;
107 	case 1: /* Not ready */
108 		return -EBUSY;
109 	case 2: /* Wrong state */
110 		return -EILSEQ;
111 	case 3: /* Power */
112 		return -EREMOTE;
113 	case 4: /* Out of range */
114 		return -ERANGE;
115 	case 5: /* Invalid unit */
116 	case 6: /* Invalid control */
117 	case 7: /* Invalid Request */
118 	case 8: /* Invalid value within range */
119 		return -EINVAL;
120 	default: /* reserved or unknown */
121 		break;
122 	}
123 
124 	return -EPIPE;
125 }
126 
127 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
128 	struct uvc_streaming_control *ctrl)
129 {
130 	static const struct usb_device_id elgato_cam_link_4k = {
131 		USB_DEVICE(0x0fd9, 0x0066)
132 	};
133 	struct uvc_format *format = NULL;
134 	struct uvc_frame *frame = NULL;
135 	unsigned int i;
136 
137 	/*
138 	 * The response of the Elgato Cam Link 4K is incorrect: The second byte
139 	 * contains bFormatIndex (instead of being the second byte of bmHint).
140 	 * The first byte is always zero. The third byte is always 1.
141 	 *
142 	 * The UVC 1.5 class specification defines the first five bits in the
143 	 * bmHint bitfield. The remaining bits are reserved and should be zero.
144 	 * Therefore a valid bmHint will be less than 32.
145 	 *
146 	 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
147 	 * MCU: 20.02.19, FPGA: 67
148 	 */
149 	if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
150 	    ctrl->bmHint > 255) {
151 		u8 corrected_format_index = ctrl->bmHint >> 8;
152 
153 		uvc_dbg(stream->dev, VIDEO,
154 			"Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
155 			ctrl->bmHint, ctrl->bFormatIndex,
156 			1, corrected_format_index);
157 		ctrl->bmHint = 1;
158 		ctrl->bFormatIndex = corrected_format_index;
159 	}
160 
161 	for (i = 0; i < stream->nformats; ++i) {
162 		if (stream->format[i].index == ctrl->bFormatIndex) {
163 			format = &stream->format[i];
164 			break;
165 		}
166 	}
167 
168 	if (format == NULL)
169 		return;
170 
171 	for (i = 0; i < format->nframes; ++i) {
172 		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
173 			frame = &format->frame[i];
174 			break;
175 		}
176 	}
177 
178 	if (frame == NULL)
179 		return;
180 
181 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
182 	     (ctrl->dwMaxVideoFrameSize == 0 &&
183 	      stream->dev->uvc_version < 0x0110))
184 		ctrl->dwMaxVideoFrameSize =
185 			frame->dwMaxVideoFrameBufferSize;
186 
187 	/* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
188 	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
189 	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
190 	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
191 	 */
192 	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
193 		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
194 
195 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
196 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
197 	    stream->intf->num_altsetting > 1) {
198 		u32 interval;
199 		u32 bandwidth;
200 
201 		interval = (ctrl->dwFrameInterval > 100000)
202 			 ? ctrl->dwFrameInterval
203 			 : frame->dwFrameInterval[0];
204 
205 		/* Compute a bandwidth estimation by multiplying the frame
206 		 * size by the number of video frames per second, divide the
207 		 * result by the number of USB frames (or micro-frames for
208 		 * high-speed devices) per second and add the UVC header size
209 		 * (assumed to be 12 bytes long).
210 		 */
211 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
212 		bandwidth *= 10000000 / interval + 1;
213 		bandwidth /= 1000;
214 		if (stream->dev->udev->speed == USB_SPEED_HIGH)
215 			bandwidth /= 8;
216 		bandwidth += 12;
217 
218 		/* The bandwidth estimate is too low for many cameras. Don't use
219 		 * maximum packet sizes lower than 1024 bytes to try and work
220 		 * around the problem. According to measurements done on two
221 		 * different camera models, the value is high enough to get most
222 		 * resolutions working while not preventing two simultaneous
223 		 * VGA streams at 15 fps.
224 		 */
225 		bandwidth = max_t(u32, bandwidth, 1024);
226 
227 		ctrl->dwMaxPayloadTransferSize = bandwidth;
228 	}
229 }
230 
231 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
232 {
233 	/*
234 	 * Return the size of the video probe and commit controls, which depends
235 	 * on the protocol version.
236 	 */
237 	if (stream->dev->uvc_version < 0x0110)
238 		return 26;
239 	else if (stream->dev->uvc_version < 0x0150)
240 		return 34;
241 	else
242 		return 48;
243 }
244 
245 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
246 	struct uvc_streaming_control *ctrl, int probe, u8 query)
247 {
248 	u16 size = uvc_video_ctrl_size(stream);
249 	u8 *data;
250 	int ret;
251 
252 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
253 			query == UVC_GET_DEF)
254 		return -EIO;
255 
256 	data = kmalloc(size, GFP_KERNEL);
257 	if (data == NULL)
258 		return -ENOMEM;
259 
260 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
261 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
262 		size, uvc_timeout_param);
263 
264 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
265 		/* Some cameras, mostly based on Bison Electronics chipsets,
266 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
267 		 * field only.
268 		 */
269 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
270 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
271 			"supported. Enabling workaround.\n");
272 		memset(ctrl, 0, sizeof(*ctrl));
273 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
274 		ret = 0;
275 		goto out;
276 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
277 		/* Many cameras don't support the GET_DEF request on their
278 		 * video probe control. Warn once and return, the caller will
279 		 * fall back to GET_CUR.
280 		 */
281 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
282 			"compliance - GET_DEF(PROBE) not supported. "
283 			"Enabling workaround.\n");
284 		ret = -EIO;
285 		goto out;
286 	} else if (ret != size) {
287 		dev_err(&stream->intf->dev,
288 			"Failed to query (%u) UVC %s control : %d (exp. %u).\n",
289 			query, probe ? "probe" : "commit", ret, size);
290 		ret = -EIO;
291 		goto out;
292 	}
293 
294 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
295 	ctrl->bFormatIndex = data[2];
296 	ctrl->bFrameIndex = data[3];
297 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
298 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
299 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
300 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
301 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
302 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
303 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
304 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
305 
306 	if (size >= 34) {
307 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
308 		ctrl->bmFramingInfo = data[30];
309 		ctrl->bPreferedVersion = data[31];
310 		ctrl->bMinVersion = data[32];
311 		ctrl->bMaxVersion = data[33];
312 	} else {
313 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
314 		ctrl->bmFramingInfo = 0;
315 		ctrl->bPreferedVersion = 0;
316 		ctrl->bMinVersion = 0;
317 		ctrl->bMaxVersion = 0;
318 	}
319 
320 	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
321 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
322 	 * format and frame descriptors.
323 	 */
324 	uvc_fixup_video_ctrl(stream, ctrl);
325 	ret = 0;
326 
327 out:
328 	kfree(data);
329 	return ret;
330 }
331 
332 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
333 	struct uvc_streaming_control *ctrl, int probe)
334 {
335 	u16 size = uvc_video_ctrl_size(stream);
336 	u8 *data;
337 	int ret;
338 
339 	data = kzalloc(size, GFP_KERNEL);
340 	if (data == NULL)
341 		return -ENOMEM;
342 
343 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
344 	data[2] = ctrl->bFormatIndex;
345 	data[3] = ctrl->bFrameIndex;
346 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
347 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
348 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
349 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
350 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
351 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
352 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
353 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
354 
355 	if (size >= 34) {
356 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
357 		data[30] = ctrl->bmFramingInfo;
358 		data[31] = ctrl->bPreferedVersion;
359 		data[32] = ctrl->bMinVersion;
360 		data[33] = ctrl->bMaxVersion;
361 	}
362 
363 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
364 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
365 		size, uvc_timeout_param);
366 	if (ret != size) {
367 		dev_err(&stream->intf->dev,
368 			"Failed to set UVC %s control : %d (exp. %u).\n",
369 			probe ? "probe" : "commit", ret, size);
370 		ret = -EIO;
371 	}
372 
373 	kfree(data);
374 	return ret;
375 }
376 
377 int uvc_probe_video(struct uvc_streaming *stream,
378 	struct uvc_streaming_control *probe)
379 {
380 	struct uvc_streaming_control probe_min, probe_max;
381 	u16 bandwidth;
382 	unsigned int i;
383 	int ret;
384 
385 	/* Perform probing. The device should adjust the requested values
386 	 * according to its capabilities. However, some devices, namely the
387 	 * first generation UVC Logitech webcams, don't implement the Video
388 	 * Probe control properly, and just return the needed bandwidth. For
389 	 * that reason, if the needed bandwidth exceeds the maximum available
390 	 * bandwidth, try to lower the quality.
391 	 */
392 	ret = uvc_set_video_ctrl(stream, probe, 1);
393 	if (ret < 0)
394 		goto done;
395 
396 	/* Get the minimum and maximum values for compression settings. */
397 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
398 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
399 		if (ret < 0)
400 			goto done;
401 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
402 		if (ret < 0)
403 			goto done;
404 
405 		probe->wCompQuality = probe_max.wCompQuality;
406 	}
407 
408 	for (i = 0; i < 2; ++i) {
409 		ret = uvc_set_video_ctrl(stream, probe, 1);
410 		if (ret < 0)
411 			goto done;
412 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
413 		if (ret < 0)
414 			goto done;
415 
416 		if (stream->intf->num_altsetting == 1)
417 			break;
418 
419 		bandwidth = probe->dwMaxPayloadTransferSize;
420 		if (bandwidth <= stream->maxpsize)
421 			break;
422 
423 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
424 			ret = -ENOSPC;
425 			goto done;
426 		}
427 
428 		/* TODO: negotiate compression parameters */
429 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
430 		probe->wPFrameRate = probe_min.wPFrameRate;
431 		probe->wCompQuality = probe_max.wCompQuality;
432 		probe->wCompWindowSize = probe_min.wCompWindowSize;
433 	}
434 
435 done:
436 	return ret;
437 }
438 
439 static int uvc_commit_video(struct uvc_streaming *stream,
440 			    struct uvc_streaming_control *probe)
441 {
442 	return uvc_set_video_ctrl(stream, probe, 0);
443 }
444 
445 /* -----------------------------------------------------------------------------
446  * Clocks and timestamps
447  */
448 
449 static inline ktime_t uvc_video_get_time(void)
450 {
451 	if (uvc_clock_param == CLOCK_MONOTONIC)
452 		return ktime_get();
453 	else
454 		return ktime_get_real();
455 }
456 
457 static void
458 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
459 		       const u8 *data, int len)
460 {
461 	struct uvc_clock_sample *sample;
462 	unsigned int header_size;
463 	bool has_pts = false;
464 	bool has_scr = false;
465 	unsigned long flags;
466 	ktime_t time;
467 	u16 host_sof;
468 	u16 dev_sof;
469 
470 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
471 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
472 		header_size = 12;
473 		has_pts = true;
474 		has_scr = true;
475 		break;
476 	case UVC_STREAM_PTS:
477 		header_size = 6;
478 		has_pts = true;
479 		break;
480 	case UVC_STREAM_SCR:
481 		header_size = 8;
482 		has_scr = true;
483 		break;
484 	default:
485 		header_size = 2;
486 		break;
487 	}
488 
489 	/* Check for invalid headers. */
490 	if (len < header_size)
491 		return;
492 
493 	/* Extract the timestamps:
494 	 *
495 	 * - store the frame PTS in the buffer structure
496 	 * - if the SCR field is present, retrieve the host SOF counter and
497 	 *   kernel timestamps and store them with the SCR STC and SOF fields
498 	 *   in the ring buffer
499 	 */
500 	if (has_pts && buf != NULL)
501 		buf->pts = get_unaligned_le32(&data[2]);
502 
503 	if (!has_scr)
504 		return;
505 
506 	/* To limit the amount of data, drop SCRs with an SOF identical to the
507 	 * previous one.
508 	 */
509 	dev_sof = get_unaligned_le16(&data[header_size - 2]);
510 	if (dev_sof == stream->clock.last_sof)
511 		return;
512 
513 	stream->clock.last_sof = dev_sof;
514 
515 	host_sof = usb_get_current_frame_number(stream->dev->udev);
516 	time = uvc_video_get_time();
517 
518 	/* The UVC specification allows device implementations that can't obtain
519 	 * the USB frame number to keep their own frame counters as long as they
520 	 * match the size and frequency of the frame number associated with USB
521 	 * SOF tokens. The SOF values sent by such devices differ from the USB
522 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
523 	 * for to make timestamp recovery as accurate as possible.
524 	 *
525 	 * The offset is estimated the first time a device SOF value is received
526 	 * as the difference between the host and device SOF values. As the two
527 	 * SOF values can differ slightly due to transmission delays, consider
528 	 * that the offset is null if the difference is not higher than 10 ms
529 	 * (negative differences can not happen and are thus considered as an
530 	 * offset). The video commit control wDelay field should be used to
531 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
532 	 * devices don't report reliable wDelay values.
533 	 *
534 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
535 	 * the 8 LSBs of the delta are kept.
536 	 */
537 	if (stream->clock.sof_offset == (u16)-1) {
538 		u16 delta_sof = (host_sof - dev_sof) & 255;
539 		if (delta_sof >= 10)
540 			stream->clock.sof_offset = delta_sof;
541 		else
542 			stream->clock.sof_offset = 0;
543 	}
544 
545 	dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
546 
547 	spin_lock_irqsave(&stream->clock.lock, flags);
548 
549 	sample = &stream->clock.samples[stream->clock.head];
550 	sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
551 	sample->dev_sof = dev_sof;
552 	sample->host_sof = host_sof;
553 	sample->host_time = time;
554 
555 	/* Update the sliding window head and count. */
556 	stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
557 
558 	if (stream->clock.count < stream->clock.size)
559 		stream->clock.count++;
560 
561 	spin_unlock_irqrestore(&stream->clock.lock, flags);
562 }
563 
564 static void uvc_video_clock_reset(struct uvc_streaming *stream)
565 {
566 	struct uvc_clock *clock = &stream->clock;
567 
568 	clock->head = 0;
569 	clock->count = 0;
570 	clock->last_sof = -1;
571 	clock->sof_offset = -1;
572 }
573 
574 static int uvc_video_clock_init(struct uvc_streaming *stream)
575 {
576 	struct uvc_clock *clock = &stream->clock;
577 
578 	spin_lock_init(&clock->lock);
579 	clock->size = 32;
580 
581 	clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
582 				       GFP_KERNEL);
583 	if (clock->samples == NULL)
584 		return -ENOMEM;
585 
586 	uvc_video_clock_reset(stream);
587 
588 	return 0;
589 }
590 
591 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
592 {
593 	kfree(stream->clock.samples);
594 	stream->clock.samples = NULL;
595 }
596 
597 /*
598  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
599  *
600  * Host SOF counters reported by usb_get_current_frame_number() usually don't
601  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
602  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
603  * controller and its configuration.
604  *
605  * We thus need to recover the SOF value corresponding to the host frame number.
606  * As the device and host frame numbers are sampled in a short interval, the
607  * difference between their values should be equal to a small delta plus an
608  * integer multiple of 256 caused by the host frame number limited precision.
609  *
610  * To obtain the recovered host SOF value, compute the small delta by masking
611  * the high bits of the host frame counter and device SOF difference and add it
612  * to the device SOF value.
613  */
614 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
615 {
616 	/* The delta value can be negative. */
617 	s8 delta_sof;
618 
619 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
620 
621 	return (sample->dev_sof + delta_sof) & 2047;
622 }
623 
624 /*
625  * uvc_video_clock_update - Update the buffer timestamp
626  *
627  * This function converts the buffer PTS timestamp to the host clock domain by
628  * going through the USB SOF clock domain and stores the result in the V4L2
629  * buffer timestamp field.
630  *
631  * The relationship between the device clock and the host clock isn't known.
632  * However, the device and the host share the common USB SOF clock which can be
633  * used to recover that relationship.
634  *
635  * The relationship between the device clock and the USB SOF clock is considered
636  * to be linear over the clock samples sliding window and is given by
637  *
638  * SOF = m * PTS + p
639  *
640  * Several methods to compute the slope (m) and intercept (p) can be used. As
641  * the clock drift should be small compared to the sliding window size, we
642  * assume that the line that goes through the points at both ends of the window
643  * is a good approximation. Naming those points P1 and P2, we get
644  *
645  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
646  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
647  *
648  * or
649  *
650  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
651  *
652  * to avoid losing precision in the division. Similarly, the host timestamp is
653  * computed with
654  *
655  * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
656  *
657  * SOF values are coded on 11 bits by USB. We extend their precision with 16
658  * decimal bits, leading to a 11.16 coding.
659  *
660  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
661  * be normalized using the nominal device clock frequency reported through the
662  * UVC descriptors.
663  *
664  * Both the PTS/STC and SOF counters roll over, after a fixed but device
665  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
666  * sliding window size is smaller than the rollover period, differences computed
667  * on unsigned integers will produce the correct result. However, the p term in
668  * the linear relations will be miscomputed.
669  *
670  * To fix the issue, we subtract a constant from the PTS and STC values to bring
671  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
672  * the 32 bit range without any rollover.
673  *
674  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
675  * computed by (1) will never be smaller than 0. This offset is then compensated
676  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
677  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
678  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
679  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
680  * SOF value at the end of the sliding window.
681  *
682  * Finally we subtract a constant from the host timestamps to bring the first
683  * timestamp of the sliding window to 1s.
684  */
685 void uvc_video_clock_update(struct uvc_streaming *stream,
686 			    struct vb2_v4l2_buffer *vbuf,
687 			    struct uvc_buffer *buf)
688 {
689 	struct uvc_clock *clock = &stream->clock;
690 	struct uvc_clock_sample *first;
691 	struct uvc_clock_sample *last;
692 	unsigned long flags;
693 	u64 timestamp;
694 	u32 delta_stc;
695 	u32 y1, y2;
696 	u32 x1, x2;
697 	u32 mean;
698 	u32 sof;
699 	u64 y;
700 
701 	if (!uvc_hw_timestamps_param)
702 		return;
703 
704 	/*
705 	 * We will get called from __vb2_queue_cancel() if there are buffers
706 	 * done but not dequeued by the user, but the sample array has already
707 	 * been released at that time. Just bail out in that case.
708 	 */
709 	if (!clock->samples)
710 		return;
711 
712 	spin_lock_irqsave(&clock->lock, flags);
713 
714 	if (clock->count < clock->size)
715 		goto done;
716 
717 	first = &clock->samples[clock->head];
718 	last = &clock->samples[(clock->head - 1) % clock->size];
719 
720 	/* First step, PTS to SOF conversion. */
721 	delta_stc = buf->pts - (1UL << 31);
722 	x1 = first->dev_stc - delta_stc;
723 	x2 = last->dev_stc - delta_stc;
724 	if (x1 == x2)
725 		goto done;
726 
727 	y1 = (first->dev_sof + 2048) << 16;
728 	y2 = (last->dev_sof + 2048) << 16;
729 	if (y2 < y1)
730 		y2 += 2048 << 16;
731 
732 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
733 	  - (u64)y2 * (u64)x1;
734 	y = div_u64(y, x2 - x1);
735 
736 	sof = y;
737 
738 	uvc_dbg(stream->dev, CLOCK,
739 		"%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
740 		stream->dev->name, buf->pts,
741 		y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
742 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
743 		x1, x2, y1, y2, clock->sof_offset);
744 
745 	/* Second step, SOF to host clock conversion. */
746 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
747 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
748 	if (x2 < x1)
749 		x2 += 2048 << 16;
750 	if (x1 == x2)
751 		goto done;
752 
753 	y1 = NSEC_PER_SEC;
754 	y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
755 
756 	/* Interpolated and host SOF timestamps can wrap around at slightly
757 	 * different times. Handle this by adding or removing 2048 to or from
758 	 * the computed SOF value to keep it close to the SOF samples mean
759 	 * value.
760 	 */
761 	mean = (x1 + x2) / 2;
762 	if (mean - (1024 << 16) > sof)
763 		sof += 2048 << 16;
764 	else if (sof > mean + (1024 << 16))
765 		sof -= 2048 << 16;
766 
767 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
768 	  - (u64)y2 * (u64)x1;
769 	y = div_u64(y, x2 - x1);
770 
771 	timestamp = ktime_to_ns(first->host_time) + y - y1;
772 
773 	uvc_dbg(stream->dev, CLOCK,
774 		"%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
775 		stream->dev->name,
776 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
777 		y, timestamp, vbuf->vb2_buf.timestamp,
778 		x1, first->host_sof, first->dev_sof,
779 		x2, last->host_sof, last->dev_sof, y1, y2);
780 
781 	/* Update the V4L2 buffer. */
782 	vbuf->vb2_buf.timestamp = timestamp;
783 
784 done:
785 	spin_unlock_irqrestore(&clock->lock, flags);
786 }
787 
788 /* ------------------------------------------------------------------------
789  * Stream statistics
790  */
791 
792 static void uvc_video_stats_decode(struct uvc_streaming *stream,
793 		const u8 *data, int len)
794 {
795 	unsigned int header_size;
796 	bool has_pts = false;
797 	bool has_scr = false;
798 	u16 scr_sof;
799 	u32 scr_stc;
800 	u32 pts;
801 
802 	if (stream->stats.stream.nb_frames == 0 &&
803 	    stream->stats.frame.nb_packets == 0)
804 		stream->stats.stream.start_ts = ktime_get();
805 
806 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
807 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
808 		header_size = 12;
809 		has_pts = true;
810 		has_scr = true;
811 		break;
812 	case UVC_STREAM_PTS:
813 		header_size = 6;
814 		has_pts = true;
815 		break;
816 	case UVC_STREAM_SCR:
817 		header_size = 8;
818 		has_scr = true;
819 		break;
820 	default:
821 		header_size = 2;
822 		break;
823 	}
824 
825 	/* Check for invalid headers. */
826 	if (len < header_size || data[0] < header_size) {
827 		stream->stats.frame.nb_invalid++;
828 		return;
829 	}
830 
831 	/* Extract the timestamps. */
832 	if (has_pts)
833 		pts = get_unaligned_le32(&data[2]);
834 
835 	if (has_scr) {
836 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
837 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
838 	}
839 
840 	/* Is PTS constant through the whole frame ? */
841 	if (has_pts && stream->stats.frame.nb_pts) {
842 		if (stream->stats.frame.pts != pts) {
843 			stream->stats.frame.nb_pts_diffs++;
844 			stream->stats.frame.last_pts_diff =
845 				stream->stats.frame.nb_packets;
846 		}
847 	}
848 
849 	if (has_pts) {
850 		stream->stats.frame.nb_pts++;
851 		stream->stats.frame.pts = pts;
852 	}
853 
854 	/* Do all frames have a PTS in their first non-empty packet, or before
855 	 * their first empty packet ?
856 	 */
857 	if (stream->stats.frame.size == 0) {
858 		if (len > header_size)
859 			stream->stats.frame.has_initial_pts = has_pts;
860 		if (len == header_size && has_pts)
861 			stream->stats.frame.has_early_pts = true;
862 	}
863 
864 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
865 	if (has_scr && stream->stats.frame.nb_scr) {
866 		if (stream->stats.frame.scr_stc != scr_stc)
867 			stream->stats.frame.nb_scr_diffs++;
868 	}
869 
870 	if (has_scr) {
871 		/* Expand the SOF counter to 32 bits and store its value. */
872 		if (stream->stats.stream.nb_frames > 0 ||
873 		    stream->stats.frame.nb_scr > 0)
874 			stream->stats.stream.scr_sof_count +=
875 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
876 		stream->stats.stream.scr_sof = scr_sof;
877 
878 		stream->stats.frame.nb_scr++;
879 		stream->stats.frame.scr_stc = scr_stc;
880 		stream->stats.frame.scr_sof = scr_sof;
881 
882 		if (scr_sof < stream->stats.stream.min_sof)
883 			stream->stats.stream.min_sof = scr_sof;
884 		if (scr_sof > stream->stats.stream.max_sof)
885 			stream->stats.stream.max_sof = scr_sof;
886 	}
887 
888 	/* Record the first non-empty packet number. */
889 	if (stream->stats.frame.size == 0 && len > header_size)
890 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
891 
892 	/* Update the frame size. */
893 	stream->stats.frame.size += len - header_size;
894 
895 	/* Update the packets counters. */
896 	stream->stats.frame.nb_packets++;
897 	if (len <= header_size)
898 		stream->stats.frame.nb_empty++;
899 
900 	if (data[1] & UVC_STREAM_ERR)
901 		stream->stats.frame.nb_errors++;
902 }
903 
904 static void uvc_video_stats_update(struct uvc_streaming *stream)
905 {
906 	struct uvc_stats_frame *frame = &stream->stats.frame;
907 
908 	uvc_dbg(stream->dev, STATS,
909 		"frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
910 		stream->sequence, frame->first_data,
911 		frame->nb_packets - frame->nb_empty, frame->nb_packets,
912 		frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
913 		frame->has_early_pts ? "" : "!",
914 		frame->has_initial_pts ? "" : "!",
915 		frame->nb_scr_diffs, frame->nb_scr,
916 		frame->pts, frame->scr_stc, frame->scr_sof);
917 
918 	stream->stats.stream.nb_frames++;
919 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
920 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
921 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
922 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
923 
924 	if (frame->has_early_pts)
925 		stream->stats.stream.nb_pts_early++;
926 	if (frame->has_initial_pts)
927 		stream->stats.stream.nb_pts_initial++;
928 	if (frame->last_pts_diff <= frame->first_data)
929 		stream->stats.stream.nb_pts_constant++;
930 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
931 		stream->stats.stream.nb_scr_count_ok++;
932 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
933 		stream->stats.stream.nb_scr_diffs_ok++;
934 
935 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
936 }
937 
938 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
939 			    size_t size)
940 {
941 	unsigned int scr_sof_freq;
942 	unsigned int duration;
943 	size_t count = 0;
944 
945 	/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
946 	 * frequency this will not overflow before more than 1h.
947 	 */
948 	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
949 				  stream->stats.stream.start_ts);
950 	if (duration != 0)
951 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
952 			     / duration;
953 	else
954 		scr_sof_freq = 0;
955 
956 	count += scnprintf(buf + count, size - count,
957 			   "frames:  %u\npackets: %u\nempty:   %u\n"
958 			   "errors:  %u\ninvalid: %u\n",
959 			   stream->stats.stream.nb_frames,
960 			   stream->stats.stream.nb_packets,
961 			   stream->stats.stream.nb_empty,
962 			   stream->stats.stream.nb_errors,
963 			   stream->stats.stream.nb_invalid);
964 	count += scnprintf(buf + count, size - count,
965 			   "pts: %u early, %u initial, %u ok\n",
966 			   stream->stats.stream.nb_pts_early,
967 			   stream->stats.stream.nb_pts_initial,
968 			   stream->stats.stream.nb_pts_constant);
969 	count += scnprintf(buf + count, size - count,
970 			   "scr: %u count ok, %u diff ok\n",
971 			   stream->stats.stream.nb_scr_count_ok,
972 			   stream->stats.stream.nb_scr_diffs_ok);
973 	count += scnprintf(buf + count, size - count,
974 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
975 			   stream->stats.stream.min_sof,
976 			   stream->stats.stream.max_sof,
977 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
978 
979 	return count;
980 }
981 
982 static void uvc_video_stats_start(struct uvc_streaming *stream)
983 {
984 	memset(&stream->stats, 0, sizeof(stream->stats));
985 	stream->stats.stream.min_sof = 2048;
986 }
987 
988 static void uvc_video_stats_stop(struct uvc_streaming *stream)
989 {
990 	stream->stats.stream.stop_ts = ktime_get();
991 }
992 
993 /* ------------------------------------------------------------------------
994  * Video codecs
995  */
996 
997 /* Video payload decoding is handled by uvc_video_decode_start(),
998  * uvc_video_decode_data() and uvc_video_decode_end().
999  *
1000  * uvc_video_decode_start is called with URB data at the start of a bulk or
1001  * isochronous payload. It processes header data and returns the header size
1002  * in bytes if successful. If an error occurs, it returns a negative error
1003  * code. The following error codes have special meanings.
1004  *
1005  * - EAGAIN informs the caller that the current video buffer should be marked
1006  *   as done, and that the function should be called again with the same data
1007  *   and a new video buffer. This is used when end of frame conditions can be
1008  *   reliably detected at the beginning of the next frame only.
1009  *
1010  * If an error other than -EAGAIN is returned, the caller will drop the current
1011  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1012  * made until the next payload. -ENODATA can be used to drop the current
1013  * payload if no other error code is appropriate.
1014  *
1015  * uvc_video_decode_data is called for every URB with URB data. It copies the
1016  * data to the video buffer.
1017  *
1018  * uvc_video_decode_end is called with header data at the end of a bulk or
1019  * isochronous payload. It performs any additional header data processing and
1020  * returns 0 or a negative error code if an error occurred. As header data have
1021  * already been processed by uvc_video_decode_start, this functions isn't
1022  * required to perform sanity checks a second time.
1023  *
1024  * For isochronous transfers where a payload is always transferred in a single
1025  * URB, the three functions will be called in a row.
1026  *
1027  * To let the decoder process header data and update its internal state even
1028  * when no video buffer is available, uvc_video_decode_start must be prepared
1029  * to be called with a NULL buf parameter. uvc_video_decode_data and
1030  * uvc_video_decode_end will never be called with a NULL buffer.
1031  */
1032 static int uvc_video_decode_start(struct uvc_streaming *stream,
1033 		struct uvc_buffer *buf, const u8 *data, int len)
1034 {
1035 	u8 fid;
1036 
1037 	/* Sanity checks:
1038 	 * - packet must be at least 2 bytes long
1039 	 * - bHeaderLength value must be at least 2 bytes (see above)
1040 	 * - bHeaderLength value can't be larger than the packet size.
1041 	 */
1042 	if (len < 2 || data[0] < 2 || data[0] > len) {
1043 		stream->stats.frame.nb_invalid++;
1044 		return -EINVAL;
1045 	}
1046 
1047 	fid = data[1] & UVC_STREAM_FID;
1048 
1049 	/* Increase the sequence number regardless of any buffer states, so
1050 	 * that discontinuous sequence numbers always indicate lost frames.
1051 	 */
1052 	if (stream->last_fid != fid) {
1053 		stream->sequence++;
1054 		if (stream->sequence)
1055 			uvc_video_stats_update(stream);
1056 	}
1057 
1058 	uvc_video_clock_decode(stream, buf, data, len);
1059 	uvc_video_stats_decode(stream, data, len);
1060 
1061 	/* Store the payload FID bit and return immediately when the buffer is
1062 	 * NULL.
1063 	 */
1064 	if (buf == NULL) {
1065 		stream->last_fid = fid;
1066 		return -ENODATA;
1067 	}
1068 
1069 	/* Mark the buffer as bad if the error bit is set. */
1070 	if (data[1] & UVC_STREAM_ERR) {
1071 		uvc_dbg(stream->dev, FRAME,
1072 			"Marking buffer as bad (error bit set)\n");
1073 		buf->error = 1;
1074 	}
1075 
1076 	/* Synchronize to the input stream by waiting for the FID bit to be
1077 	 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1078 	 * stream->last_fid is initialized to -1, so the first isochronous
1079 	 * frame will always be in sync.
1080 	 *
1081 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
1082 	 * when the EOF bit is set to force synchronisation on the next packet.
1083 	 */
1084 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1085 		if (fid == stream->last_fid) {
1086 			uvc_dbg(stream->dev, FRAME,
1087 				"Dropping payload (out of sync)\n");
1088 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1089 			    (data[1] & UVC_STREAM_EOF))
1090 				stream->last_fid ^= UVC_STREAM_FID;
1091 			return -ENODATA;
1092 		}
1093 
1094 		buf->buf.field = V4L2_FIELD_NONE;
1095 		buf->buf.sequence = stream->sequence;
1096 		buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1097 
1098 		/* TODO: Handle PTS and SCR. */
1099 		buf->state = UVC_BUF_STATE_ACTIVE;
1100 	}
1101 
1102 	/* Mark the buffer as done if we're at the beginning of a new frame.
1103 	 * End of frame detection is better implemented by checking the EOF
1104 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1105 	 * bit), but some devices don't set the bit at end of frame (and the
1106 	 * last payload can be lost anyway). We thus must check if the FID has
1107 	 * been toggled.
1108 	 *
1109 	 * stream->last_fid is initialized to -1, so the first isochronous
1110 	 * frame will never trigger an end of frame detection.
1111 	 *
1112 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1113 	 * as it doesn't make sense to return an empty buffer. This also
1114 	 * avoids detecting end of frame conditions at FID toggling if the
1115 	 * previous payload had the EOF bit set.
1116 	 */
1117 	if (fid != stream->last_fid && buf->bytesused != 0) {
1118 		uvc_dbg(stream->dev, FRAME,
1119 			"Frame complete (FID bit toggled)\n");
1120 		buf->state = UVC_BUF_STATE_READY;
1121 		return -EAGAIN;
1122 	}
1123 
1124 	stream->last_fid = fid;
1125 
1126 	return data[0];
1127 }
1128 
1129 static inline enum dma_data_direction uvc_stream_dir(
1130 				struct uvc_streaming *stream)
1131 {
1132 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1133 		return DMA_FROM_DEVICE;
1134 	else
1135 		return DMA_TO_DEVICE;
1136 }
1137 
1138 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1139 {
1140 	return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1141 }
1142 
1143 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1144 {
1145 	/* Sync DMA. */
1146 	dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1147 				    uvc_urb->sgt,
1148 				    uvc_stream_dir(uvc_urb->stream));
1149 	return usb_submit_urb(uvc_urb->urb, mem_flags);
1150 }
1151 
1152 /*
1153  * uvc_video_decode_data_work: Asynchronous memcpy processing
1154  *
1155  * Copy URB data to video buffers in process context, releasing buffer
1156  * references and requeuing the URB when done.
1157  */
1158 static void uvc_video_copy_data_work(struct work_struct *work)
1159 {
1160 	struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1161 	unsigned int i;
1162 	int ret;
1163 
1164 	for (i = 0; i < uvc_urb->async_operations; i++) {
1165 		struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1166 
1167 		memcpy(op->dst, op->src, op->len);
1168 
1169 		/* Release reference taken on this buffer. */
1170 		uvc_queue_buffer_release(op->buf);
1171 	}
1172 
1173 	ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1174 	if (ret < 0)
1175 		dev_err(&uvc_urb->stream->intf->dev,
1176 			"Failed to resubmit video URB (%d).\n", ret);
1177 }
1178 
1179 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1180 		struct uvc_buffer *buf, const u8 *data, int len)
1181 {
1182 	unsigned int active_op = uvc_urb->async_operations;
1183 	struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1184 	unsigned int maxlen;
1185 
1186 	if (len <= 0)
1187 		return;
1188 
1189 	maxlen = buf->length - buf->bytesused;
1190 
1191 	/* Take a buffer reference for async work. */
1192 	kref_get(&buf->ref);
1193 
1194 	op->buf = buf;
1195 	op->src = data;
1196 	op->dst = buf->mem + buf->bytesused;
1197 	op->len = min_t(unsigned int, len, maxlen);
1198 
1199 	buf->bytesused += op->len;
1200 
1201 	/* Complete the current frame if the buffer size was exceeded. */
1202 	if (len > maxlen) {
1203 		uvc_dbg(uvc_urb->stream->dev, FRAME,
1204 			"Frame complete (overflow)\n");
1205 		buf->error = 1;
1206 		buf->state = UVC_BUF_STATE_READY;
1207 	}
1208 
1209 	uvc_urb->async_operations++;
1210 }
1211 
1212 static void uvc_video_decode_end(struct uvc_streaming *stream,
1213 		struct uvc_buffer *buf, const u8 *data, int len)
1214 {
1215 	/* Mark the buffer as done if the EOF marker is set. */
1216 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1217 		uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1218 		if (data[0] == len)
1219 			uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1220 		buf->state = UVC_BUF_STATE_READY;
1221 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1222 			stream->last_fid ^= UVC_STREAM_FID;
1223 	}
1224 }
1225 
1226 /* Video payload encoding is handled by uvc_video_encode_header() and
1227  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1228  *
1229  * uvc_video_encode_header is called at the start of a payload. It adds header
1230  * data to the transfer buffer and returns the header size. As the only known
1231  * UVC output device transfers a whole frame in a single payload, the EOF bit
1232  * is always set in the header.
1233  *
1234  * uvc_video_encode_data is called for every URB and copies the data from the
1235  * video buffer to the transfer buffer.
1236  */
1237 static int uvc_video_encode_header(struct uvc_streaming *stream,
1238 		struct uvc_buffer *buf, u8 *data, int len)
1239 {
1240 	data[0] = 2;	/* Header length */
1241 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1242 		| (stream->last_fid & UVC_STREAM_FID);
1243 	return 2;
1244 }
1245 
1246 static int uvc_video_encode_data(struct uvc_streaming *stream,
1247 		struct uvc_buffer *buf, u8 *data, int len)
1248 {
1249 	struct uvc_video_queue *queue = &stream->queue;
1250 	unsigned int nbytes;
1251 	void *mem;
1252 
1253 	/* Copy video data to the URB buffer. */
1254 	mem = buf->mem + queue->buf_used;
1255 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1256 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1257 			nbytes);
1258 	memcpy(data, mem, nbytes);
1259 
1260 	queue->buf_used += nbytes;
1261 
1262 	return nbytes;
1263 }
1264 
1265 /* ------------------------------------------------------------------------
1266  * Metadata
1267  */
1268 
1269 /*
1270  * Additionally to the payload headers we also want to provide the user with USB
1271  * Frame Numbers and system time values. The resulting buffer is thus composed
1272  * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1273  * Number, and a copy of the payload header.
1274  *
1275  * Ideally we want to capture all payload headers for each frame. However, their
1276  * number is unknown and unbound. We thus drop headers that contain no vendor
1277  * data and that either contain no SCR value or an SCR value identical to the
1278  * previous header.
1279  */
1280 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1281 				  struct uvc_buffer *meta_buf,
1282 				  const u8 *mem, unsigned int length)
1283 {
1284 	struct uvc_meta_buf *meta;
1285 	size_t len_std = 2;
1286 	bool has_pts, has_scr;
1287 	unsigned long flags;
1288 	unsigned int sof;
1289 	ktime_t time;
1290 	const u8 *scr;
1291 
1292 	if (!meta_buf || length == 2)
1293 		return;
1294 
1295 	if (meta_buf->length - meta_buf->bytesused <
1296 	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1297 		meta_buf->error = 1;
1298 		return;
1299 	}
1300 
1301 	has_pts = mem[1] & UVC_STREAM_PTS;
1302 	has_scr = mem[1] & UVC_STREAM_SCR;
1303 
1304 	if (has_pts) {
1305 		len_std += 4;
1306 		scr = mem + 6;
1307 	} else {
1308 		scr = mem + 2;
1309 	}
1310 
1311 	if (has_scr)
1312 		len_std += 6;
1313 
1314 	if (stream->meta.format == V4L2_META_FMT_UVC)
1315 		length = len_std;
1316 
1317 	if (length == len_std && (!has_scr ||
1318 				  !memcmp(scr, stream->clock.last_scr, 6)))
1319 		return;
1320 
1321 	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1322 	local_irq_save(flags);
1323 	time = uvc_video_get_time();
1324 	sof = usb_get_current_frame_number(stream->dev->udev);
1325 	local_irq_restore(flags);
1326 	put_unaligned(ktime_to_ns(time), &meta->ns);
1327 	put_unaligned(sof, &meta->sof);
1328 
1329 	if (has_scr)
1330 		memcpy(stream->clock.last_scr, scr, 6);
1331 
1332 	memcpy(&meta->length, mem, length);
1333 	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1334 
1335 	uvc_dbg(stream->dev, FRAME,
1336 		"%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1337 		__func__, ktime_to_ns(time), meta->sof, meta->length,
1338 		meta->flags,
1339 		has_pts ? *(u32 *)meta->buf : 0,
1340 		has_scr ? *(u32 *)scr : 0,
1341 		has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1342 }
1343 
1344 /* ------------------------------------------------------------------------
1345  * URB handling
1346  */
1347 
1348 /*
1349  * Set error flag for incomplete buffer.
1350  */
1351 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1352 				      struct uvc_buffer *buf)
1353 {
1354 	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1355 	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1356 		buf->error = 1;
1357 }
1358 
1359 /*
1360  * Completion handler for video URBs.
1361  */
1362 
1363 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1364 		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1365 {
1366 	uvc_video_validate_buffer(stream, *video_buf);
1367 
1368 	if (*meta_buf) {
1369 		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1370 		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1371 
1372 		vb2_meta->sequence = vb2_video->sequence;
1373 		vb2_meta->field = vb2_video->field;
1374 		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1375 
1376 		(*meta_buf)->state = UVC_BUF_STATE_READY;
1377 		if (!(*meta_buf)->error)
1378 			(*meta_buf)->error = (*video_buf)->error;
1379 		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1380 						  *meta_buf);
1381 	}
1382 	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1383 }
1384 
1385 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1386 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1387 {
1388 	struct urb *urb = uvc_urb->urb;
1389 	struct uvc_streaming *stream = uvc_urb->stream;
1390 	u8 *mem;
1391 	int ret, i;
1392 
1393 	for (i = 0; i < urb->number_of_packets; ++i) {
1394 		if (urb->iso_frame_desc[i].status < 0) {
1395 			uvc_dbg(stream->dev, FRAME,
1396 				"USB isochronous frame lost (%d)\n",
1397 				urb->iso_frame_desc[i].status);
1398 			/* Mark the buffer as faulty. */
1399 			if (buf != NULL)
1400 				buf->error = 1;
1401 			continue;
1402 		}
1403 
1404 		/* Decode the payload header. */
1405 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1406 		do {
1407 			ret = uvc_video_decode_start(stream, buf, mem,
1408 				urb->iso_frame_desc[i].actual_length);
1409 			if (ret == -EAGAIN)
1410 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1411 		} while (ret == -EAGAIN);
1412 
1413 		if (ret < 0)
1414 			continue;
1415 
1416 		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1417 
1418 		/* Decode the payload data. */
1419 		uvc_video_decode_data(uvc_urb, buf, mem + ret,
1420 			urb->iso_frame_desc[i].actual_length - ret);
1421 
1422 		/* Process the header again. */
1423 		uvc_video_decode_end(stream, buf, mem,
1424 			urb->iso_frame_desc[i].actual_length);
1425 
1426 		if (buf->state == UVC_BUF_STATE_READY)
1427 			uvc_video_next_buffers(stream, &buf, &meta_buf);
1428 	}
1429 }
1430 
1431 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1432 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1433 {
1434 	struct urb *urb = uvc_urb->urb;
1435 	struct uvc_streaming *stream = uvc_urb->stream;
1436 	u8 *mem;
1437 	int len, ret;
1438 
1439 	/*
1440 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1441 	 * to trigger the end of payload detection.
1442 	 */
1443 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1444 		return;
1445 
1446 	mem = urb->transfer_buffer;
1447 	len = urb->actual_length;
1448 	stream->bulk.payload_size += len;
1449 
1450 	/* If the URB is the first of its payload, decode and save the
1451 	 * header.
1452 	 */
1453 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1454 		do {
1455 			ret = uvc_video_decode_start(stream, buf, mem, len);
1456 			if (ret == -EAGAIN)
1457 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1458 		} while (ret == -EAGAIN);
1459 
1460 		/* If an error occurred skip the rest of the payload. */
1461 		if (ret < 0 || buf == NULL) {
1462 			stream->bulk.skip_payload = 1;
1463 		} else {
1464 			memcpy(stream->bulk.header, mem, ret);
1465 			stream->bulk.header_size = ret;
1466 
1467 			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1468 
1469 			mem += ret;
1470 			len -= ret;
1471 		}
1472 	}
1473 
1474 	/* The buffer queue might have been cancelled while a bulk transfer
1475 	 * was in progress, so we can reach here with buf equal to NULL. Make
1476 	 * sure buf is never dereferenced if NULL.
1477 	 */
1478 
1479 	/* Prepare video data for processing. */
1480 	if (!stream->bulk.skip_payload && buf != NULL)
1481 		uvc_video_decode_data(uvc_urb, buf, mem, len);
1482 
1483 	/* Detect the payload end by a URB smaller than the maximum size (or
1484 	 * a payload size equal to the maximum) and process the header again.
1485 	 */
1486 	if (urb->actual_length < urb->transfer_buffer_length ||
1487 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1488 		if (!stream->bulk.skip_payload && buf != NULL) {
1489 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1490 				stream->bulk.payload_size);
1491 			if (buf->state == UVC_BUF_STATE_READY)
1492 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1493 		}
1494 
1495 		stream->bulk.header_size = 0;
1496 		stream->bulk.skip_payload = 0;
1497 		stream->bulk.payload_size = 0;
1498 	}
1499 }
1500 
1501 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1502 	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1503 {
1504 	struct urb *urb = uvc_urb->urb;
1505 	struct uvc_streaming *stream = uvc_urb->stream;
1506 
1507 	u8 *mem = urb->transfer_buffer;
1508 	int len = stream->urb_size, ret;
1509 
1510 	if (buf == NULL) {
1511 		urb->transfer_buffer_length = 0;
1512 		return;
1513 	}
1514 
1515 	/* If the URB is the first of its payload, add the header. */
1516 	if (stream->bulk.header_size == 0) {
1517 		ret = uvc_video_encode_header(stream, buf, mem, len);
1518 		stream->bulk.header_size = ret;
1519 		stream->bulk.payload_size += ret;
1520 		mem += ret;
1521 		len -= ret;
1522 	}
1523 
1524 	/* Process video data. */
1525 	ret = uvc_video_encode_data(stream, buf, mem, len);
1526 
1527 	stream->bulk.payload_size += ret;
1528 	len -= ret;
1529 
1530 	if (buf->bytesused == stream->queue.buf_used ||
1531 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1532 		if (buf->bytesused == stream->queue.buf_used) {
1533 			stream->queue.buf_used = 0;
1534 			buf->state = UVC_BUF_STATE_READY;
1535 			buf->buf.sequence = ++stream->sequence;
1536 			uvc_queue_next_buffer(&stream->queue, buf);
1537 			stream->last_fid ^= UVC_STREAM_FID;
1538 		}
1539 
1540 		stream->bulk.header_size = 0;
1541 		stream->bulk.payload_size = 0;
1542 	}
1543 
1544 	urb->transfer_buffer_length = stream->urb_size - len;
1545 }
1546 
1547 static void uvc_video_complete(struct urb *urb)
1548 {
1549 	struct uvc_urb *uvc_urb = urb->context;
1550 	struct uvc_streaming *stream = uvc_urb->stream;
1551 	struct uvc_video_queue *queue = &stream->queue;
1552 	struct uvc_video_queue *qmeta = &stream->meta.queue;
1553 	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1554 	struct uvc_buffer *buf = NULL;
1555 	struct uvc_buffer *buf_meta = NULL;
1556 	unsigned long flags;
1557 	int ret;
1558 
1559 	switch (urb->status) {
1560 	case 0:
1561 		break;
1562 
1563 	default:
1564 		dev_warn(&stream->intf->dev,
1565 			 "Non-zero status (%d) in video completion handler.\n",
1566 			 urb->status);
1567 		fallthrough;
1568 	case -ENOENT:		/* usb_poison_urb() called. */
1569 		if (stream->frozen)
1570 			return;
1571 		fallthrough;
1572 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1573 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1574 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1575 		if (vb2_qmeta)
1576 			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1577 		return;
1578 	}
1579 
1580 	buf = uvc_queue_get_current_buffer(queue);
1581 
1582 	if (vb2_qmeta) {
1583 		spin_lock_irqsave(&qmeta->irqlock, flags);
1584 		if (!list_empty(&qmeta->irqqueue))
1585 			buf_meta = list_first_entry(&qmeta->irqqueue,
1586 						    struct uvc_buffer, queue);
1587 		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1588 	}
1589 
1590 	/* Re-initialise the URB async work. */
1591 	uvc_urb->async_operations = 0;
1592 
1593 	/* Sync DMA and invalidate vmap range. */
1594 	dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1595 				 uvc_urb->sgt, uvc_stream_dir(stream));
1596 	invalidate_kernel_vmap_range(uvc_urb->buffer,
1597 				     uvc_urb->stream->urb_size);
1598 
1599 	/*
1600 	 * Process the URB headers, and optionally queue expensive memcpy tasks
1601 	 * to be deferred to a work queue.
1602 	 */
1603 	stream->decode(uvc_urb, buf, buf_meta);
1604 
1605 	/* If no async work is needed, resubmit the URB immediately. */
1606 	if (!uvc_urb->async_operations) {
1607 		ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1608 		if (ret < 0)
1609 			dev_err(&stream->intf->dev,
1610 				"Failed to resubmit video URB (%d).\n", ret);
1611 		return;
1612 	}
1613 
1614 	queue_work(stream->async_wq, &uvc_urb->work);
1615 }
1616 
1617 /*
1618  * Free transfer buffers.
1619  */
1620 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1621 {
1622 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1623 	struct uvc_urb *uvc_urb;
1624 
1625 	for_each_uvc_urb(uvc_urb, stream) {
1626 		if (!uvc_urb->buffer)
1627 			continue;
1628 
1629 		dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1630 		dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1631 				       uvc_stream_dir(stream));
1632 
1633 		uvc_urb->buffer = NULL;
1634 		uvc_urb->sgt = NULL;
1635 	}
1636 
1637 	stream->urb_size = 0;
1638 }
1639 
1640 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1641 				 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1642 {
1643 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1644 
1645 	uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1646 					       uvc_stream_dir(stream),
1647 					       gfp_flags, 0);
1648 	if (!uvc_urb->sgt)
1649 		return false;
1650 	uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1651 
1652 	uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1653 						 uvc_urb->sgt);
1654 	if (!uvc_urb->buffer) {
1655 		dma_free_noncontiguous(dma_dev, stream->urb_size,
1656 				       uvc_urb->sgt,
1657 				       uvc_stream_dir(stream));
1658 		uvc_urb->sgt = NULL;
1659 		return false;
1660 	}
1661 
1662 	return true;
1663 }
1664 
1665 /*
1666  * Allocate transfer buffers. This function can be called with buffers
1667  * already allocated when resuming from suspend, in which case it will
1668  * return without touching the buffers.
1669  *
1670  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1671  * system is too low on memory try successively smaller numbers of packets
1672  * until allocation succeeds.
1673  *
1674  * Return the number of allocated packets on success or 0 when out of memory.
1675  */
1676 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1677 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1678 {
1679 	unsigned int npackets;
1680 	unsigned int i;
1681 
1682 	/* Buffers are already allocated, bail out. */
1683 	if (stream->urb_size)
1684 		return stream->urb_size / psize;
1685 
1686 	/* Compute the number of packets. Bulk endpoints might transfer UVC
1687 	 * payloads across multiple URBs.
1688 	 */
1689 	npackets = DIV_ROUND_UP(size, psize);
1690 	if (npackets > UVC_MAX_PACKETS)
1691 		npackets = UVC_MAX_PACKETS;
1692 
1693 	/* Retry allocations until one succeed. */
1694 	for (; npackets > 1; npackets /= 2) {
1695 		stream->urb_size = psize * npackets;
1696 
1697 		for (i = 0; i < UVC_URBS; ++i) {
1698 			struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1699 
1700 			if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1701 				uvc_free_urb_buffers(stream);
1702 				break;
1703 			}
1704 
1705 			uvc_urb->stream = stream;
1706 		}
1707 
1708 		if (i == UVC_URBS) {
1709 			uvc_dbg(stream->dev, VIDEO,
1710 				"Allocated %u URB buffers of %ux%u bytes each\n",
1711 				UVC_URBS, npackets, psize);
1712 			return npackets;
1713 		}
1714 	}
1715 
1716 	uvc_dbg(stream->dev, VIDEO,
1717 		"Failed to allocate URB buffers (%u bytes per packet)\n",
1718 		psize);
1719 	return 0;
1720 }
1721 
1722 /*
1723  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1724  */
1725 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1726 				    int free_buffers)
1727 {
1728 	struct uvc_urb *uvc_urb;
1729 
1730 	uvc_video_stats_stop(stream);
1731 
1732 	/*
1733 	 * We must poison the URBs rather than kill them to ensure that even
1734 	 * after the completion handler returns, any asynchronous workqueues
1735 	 * will be prevented from resubmitting the URBs.
1736 	 */
1737 	for_each_uvc_urb(uvc_urb, stream)
1738 		usb_poison_urb(uvc_urb->urb);
1739 
1740 	flush_workqueue(stream->async_wq);
1741 
1742 	for_each_uvc_urb(uvc_urb, stream) {
1743 		usb_free_urb(uvc_urb->urb);
1744 		uvc_urb->urb = NULL;
1745 	}
1746 
1747 	if (free_buffers)
1748 		uvc_free_urb_buffers(stream);
1749 }
1750 
1751 /*
1752  * Compute the maximum number of bytes per interval for an endpoint.
1753  */
1754 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1755 					 struct usb_host_endpoint *ep)
1756 {
1757 	u16 psize;
1758 	u16 mult;
1759 
1760 	switch (dev->speed) {
1761 	case USB_SPEED_SUPER:
1762 	case USB_SPEED_SUPER_PLUS:
1763 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1764 	case USB_SPEED_HIGH:
1765 		psize = usb_endpoint_maxp(&ep->desc);
1766 		mult = usb_endpoint_maxp_mult(&ep->desc);
1767 		return psize * mult;
1768 	case USB_SPEED_WIRELESS:
1769 		psize = usb_endpoint_maxp(&ep->desc);
1770 		return psize;
1771 	default:
1772 		psize = usb_endpoint_maxp(&ep->desc);
1773 		return psize;
1774 	}
1775 }
1776 
1777 /*
1778  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1779  * is given by the endpoint.
1780  */
1781 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1782 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1783 {
1784 	struct urb *urb;
1785 	struct uvc_urb *uvc_urb;
1786 	unsigned int npackets, i;
1787 	u16 psize;
1788 	u32 size;
1789 
1790 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1791 	size = stream->ctrl.dwMaxVideoFrameSize;
1792 
1793 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1794 	if (npackets == 0)
1795 		return -ENOMEM;
1796 
1797 	size = npackets * psize;
1798 
1799 	for_each_uvc_urb(uvc_urb, stream) {
1800 		urb = usb_alloc_urb(npackets, gfp_flags);
1801 		if (urb == NULL) {
1802 			uvc_video_stop_transfer(stream, 1);
1803 			return -ENOMEM;
1804 		}
1805 
1806 		urb->dev = stream->dev->udev;
1807 		urb->context = uvc_urb;
1808 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1809 				ep->desc.bEndpointAddress);
1810 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1811 		urb->transfer_dma = uvc_urb->dma;
1812 		urb->interval = ep->desc.bInterval;
1813 		urb->transfer_buffer = uvc_urb->buffer;
1814 		urb->complete = uvc_video_complete;
1815 		urb->number_of_packets = npackets;
1816 		urb->transfer_buffer_length = size;
1817 
1818 		for (i = 0; i < npackets; ++i) {
1819 			urb->iso_frame_desc[i].offset = i * psize;
1820 			urb->iso_frame_desc[i].length = psize;
1821 		}
1822 
1823 		uvc_urb->urb = urb;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /*
1830  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1831  * given by the endpoint.
1832  */
1833 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1834 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1835 {
1836 	struct urb *urb;
1837 	struct uvc_urb *uvc_urb;
1838 	unsigned int npackets, pipe;
1839 	u16 psize;
1840 	u32 size;
1841 
1842 	psize = usb_endpoint_maxp(&ep->desc);
1843 	size = stream->ctrl.dwMaxPayloadTransferSize;
1844 	stream->bulk.max_payload_size = size;
1845 
1846 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1847 	if (npackets == 0)
1848 		return -ENOMEM;
1849 
1850 	size = npackets * psize;
1851 
1852 	if (usb_endpoint_dir_in(&ep->desc))
1853 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1854 				       ep->desc.bEndpointAddress);
1855 	else
1856 		pipe = usb_sndbulkpipe(stream->dev->udev,
1857 				       ep->desc.bEndpointAddress);
1858 
1859 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1860 		size = 0;
1861 
1862 	for_each_uvc_urb(uvc_urb, stream) {
1863 		urb = usb_alloc_urb(0, gfp_flags);
1864 		if (urb == NULL) {
1865 			uvc_video_stop_transfer(stream, 1);
1866 			return -ENOMEM;
1867 		}
1868 
1869 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,	uvc_urb->buffer,
1870 				  size, uvc_video_complete, uvc_urb);
1871 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1872 		urb->transfer_dma = uvc_urb->dma;
1873 
1874 		uvc_urb->urb = urb;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1882  */
1883 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1884 				    gfp_t gfp_flags)
1885 {
1886 	struct usb_interface *intf = stream->intf;
1887 	struct usb_host_endpoint *ep;
1888 	struct uvc_urb *uvc_urb;
1889 	unsigned int i;
1890 	int ret;
1891 
1892 	stream->sequence = -1;
1893 	stream->last_fid = -1;
1894 	stream->bulk.header_size = 0;
1895 	stream->bulk.skip_payload = 0;
1896 	stream->bulk.payload_size = 0;
1897 
1898 	uvc_video_stats_start(stream);
1899 
1900 	if (intf->num_altsetting > 1) {
1901 		struct usb_host_endpoint *best_ep = NULL;
1902 		unsigned int best_psize = UINT_MAX;
1903 		unsigned int bandwidth;
1904 		unsigned int altsetting;
1905 		int intfnum = stream->intfnum;
1906 
1907 		/* Isochronous endpoint, select the alternate setting. */
1908 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1909 
1910 		if (bandwidth == 0) {
1911 			uvc_dbg(stream->dev, VIDEO,
1912 				"Device requested null bandwidth, defaulting to lowest\n");
1913 			bandwidth = 1;
1914 		} else {
1915 			uvc_dbg(stream->dev, VIDEO,
1916 				"Device requested %u B/frame bandwidth\n",
1917 				bandwidth);
1918 		}
1919 
1920 		for (i = 0; i < intf->num_altsetting; ++i) {
1921 			struct usb_host_interface *alts;
1922 			unsigned int psize;
1923 
1924 			alts = &intf->altsetting[i];
1925 			ep = uvc_find_endpoint(alts,
1926 				stream->header.bEndpointAddress);
1927 			if (ep == NULL)
1928 				continue;
1929 
1930 			/* Check if the bandwidth is high enough. */
1931 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1932 			if (psize >= bandwidth && psize <= best_psize) {
1933 				altsetting = alts->desc.bAlternateSetting;
1934 				best_psize = psize;
1935 				best_ep = ep;
1936 			}
1937 		}
1938 
1939 		if (best_ep == NULL) {
1940 			uvc_dbg(stream->dev, VIDEO,
1941 				"No fast enough alt setting for requested bandwidth\n");
1942 			return -EIO;
1943 		}
1944 
1945 		uvc_dbg(stream->dev, VIDEO,
1946 			"Selecting alternate setting %u (%u B/frame bandwidth)\n",
1947 			altsetting, best_psize);
1948 
1949 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1950 		if (ret < 0)
1951 			return ret;
1952 
1953 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1954 	} else {
1955 		/* Bulk endpoint, proceed to URB initialization. */
1956 		ep = uvc_find_endpoint(&intf->altsetting[0],
1957 				stream->header.bEndpointAddress);
1958 		if (ep == NULL)
1959 			return -EIO;
1960 
1961 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1962 	}
1963 
1964 	if (ret < 0)
1965 		return ret;
1966 
1967 	/* Submit the URBs. */
1968 	for_each_uvc_urb(uvc_urb, stream) {
1969 		ret = uvc_submit_urb(uvc_urb, gfp_flags);
1970 		if (ret < 0) {
1971 			dev_err(&stream->intf->dev,
1972 				"Failed to submit URB %u (%d).\n",
1973 				uvc_urb_index(uvc_urb), ret);
1974 			uvc_video_stop_transfer(stream, 1);
1975 			return ret;
1976 		}
1977 	}
1978 
1979 	/* The Logitech C920 temporarily forgets that it should not be adjusting
1980 	 * Exposure Absolute during init so restore controls to stored values.
1981 	 */
1982 	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1983 		uvc_ctrl_restore_values(stream->dev);
1984 
1985 	return 0;
1986 }
1987 
1988 /* --------------------------------------------------------------------------
1989  * Suspend/resume
1990  */
1991 
1992 /*
1993  * Stop streaming without disabling the video queue.
1994  *
1995  * To let userspace applications resume without trouble, we must not touch the
1996  * video buffers in any way. We mark the device as frozen to make sure the URB
1997  * completion handler won't try to cancel the queue when we kill the URBs.
1998  */
1999 int uvc_video_suspend(struct uvc_streaming *stream)
2000 {
2001 	if (!uvc_queue_streaming(&stream->queue))
2002 		return 0;
2003 
2004 	stream->frozen = 1;
2005 	uvc_video_stop_transfer(stream, 0);
2006 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2007 	return 0;
2008 }
2009 
2010 /*
2011  * Reconfigure the video interface and restart streaming if it was enabled
2012  * before suspend.
2013  *
2014  * If an error occurs, disable the video queue. This will wake all pending
2015  * buffers, making sure userspace applications are notified of the problem
2016  * instead of waiting forever.
2017  */
2018 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2019 {
2020 	int ret;
2021 
2022 	/* If the bus has been reset on resume, set the alternate setting to 0.
2023 	 * This should be the default value, but some devices crash or otherwise
2024 	 * misbehave if they don't receive a SET_INTERFACE request before any
2025 	 * other video control request.
2026 	 */
2027 	if (reset)
2028 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2029 
2030 	stream->frozen = 0;
2031 
2032 	uvc_video_clock_reset(stream);
2033 
2034 	if (!uvc_queue_streaming(&stream->queue))
2035 		return 0;
2036 
2037 	ret = uvc_commit_video(stream, &stream->ctrl);
2038 	if (ret < 0)
2039 		return ret;
2040 
2041 	return uvc_video_start_transfer(stream, GFP_NOIO);
2042 }
2043 
2044 /* ------------------------------------------------------------------------
2045  * Video device
2046  */
2047 
2048 /*
2049  * Initialize the UVC video device by switching to alternate setting 0 and
2050  * retrieve the default format.
2051  *
2052  * Some cameras (namely the Fuji Finepix) set the format and frame
2053  * indexes to zero. The UVC standard doesn't clearly make this a spec
2054  * violation, so try to silently fix the values if possible.
2055  *
2056  * This function is called before registering the device with V4L.
2057  */
2058 int uvc_video_init(struct uvc_streaming *stream)
2059 {
2060 	struct uvc_streaming_control *probe = &stream->ctrl;
2061 	struct uvc_format *format = NULL;
2062 	struct uvc_frame *frame = NULL;
2063 	struct uvc_urb *uvc_urb;
2064 	unsigned int i;
2065 	int ret;
2066 
2067 	if (stream->nformats == 0) {
2068 		dev_info(&stream->intf->dev,
2069 			 "No supported video formats found.\n");
2070 		return -EINVAL;
2071 	}
2072 
2073 	atomic_set(&stream->active, 0);
2074 
2075 	/* Alternate setting 0 should be the default, yet the XBox Live Vision
2076 	 * Cam (and possibly other devices) crash or otherwise misbehave if
2077 	 * they don't receive a SET_INTERFACE request before any other video
2078 	 * control request.
2079 	 */
2080 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2081 
2082 	/* Set the streaming probe control with default streaming parameters
2083 	 * retrieved from the device. Webcams that don't support GET_DEF
2084 	 * requests on the probe control will just keep their current streaming
2085 	 * parameters.
2086 	 */
2087 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2088 		uvc_set_video_ctrl(stream, probe, 1);
2089 
2090 	/* Initialize the streaming parameters with the probe control current
2091 	 * value. This makes sure SET_CUR requests on the streaming commit
2092 	 * control will always use values retrieved from a successful GET_CUR
2093 	 * request on the probe control, as required by the UVC specification.
2094 	 */
2095 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2096 	if (ret < 0)
2097 		return ret;
2098 
2099 	/* Check if the default format descriptor exists. Use the first
2100 	 * available format otherwise.
2101 	 */
2102 	for (i = stream->nformats; i > 0; --i) {
2103 		format = &stream->format[i-1];
2104 		if (format->index == probe->bFormatIndex)
2105 			break;
2106 	}
2107 
2108 	if (format->nframes == 0) {
2109 		dev_info(&stream->intf->dev,
2110 			 "No frame descriptor found for the default format.\n");
2111 		return -EINVAL;
2112 	}
2113 
2114 	/* Zero bFrameIndex might be correct. Stream-based formats (including
2115 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2116 	 * descriptor with bFrameIndex set to zero. If the default frame
2117 	 * descriptor is not found, use the first available frame.
2118 	 */
2119 	for (i = format->nframes; i > 0; --i) {
2120 		frame = &format->frame[i-1];
2121 		if (frame->bFrameIndex == probe->bFrameIndex)
2122 			break;
2123 	}
2124 
2125 	probe->bFormatIndex = format->index;
2126 	probe->bFrameIndex = frame->bFrameIndex;
2127 
2128 	stream->def_format = format;
2129 	stream->cur_format = format;
2130 	stream->cur_frame = frame;
2131 
2132 	/* Select the video decoding function */
2133 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2134 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2135 			stream->decode = uvc_video_decode_isight;
2136 		else if (stream->intf->num_altsetting > 1)
2137 			stream->decode = uvc_video_decode_isoc;
2138 		else
2139 			stream->decode = uvc_video_decode_bulk;
2140 	} else {
2141 		if (stream->intf->num_altsetting == 1)
2142 			stream->decode = uvc_video_encode_bulk;
2143 		else {
2144 			dev_info(&stream->intf->dev,
2145 				 "Isochronous endpoints are not supported for video output devices.\n");
2146 			return -EINVAL;
2147 		}
2148 	}
2149 
2150 	/* Prepare asynchronous work items. */
2151 	for_each_uvc_urb(uvc_urb, stream)
2152 		INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2153 
2154 	return 0;
2155 }
2156 
2157 int uvc_video_start_streaming(struct uvc_streaming *stream)
2158 {
2159 	int ret;
2160 
2161 	ret = uvc_video_clock_init(stream);
2162 	if (ret < 0)
2163 		return ret;
2164 
2165 	/* Commit the streaming parameters. */
2166 	ret = uvc_commit_video(stream, &stream->ctrl);
2167 	if (ret < 0)
2168 		goto error_commit;
2169 
2170 	ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2171 	if (ret < 0)
2172 		goto error_video;
2173 
2174 	return 0;
2175 
2176 error_video:
2177 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2178 error_commit:
2179 	uvc_video_clock_cleanup(stream);
2180 
2181 	return ret;
2182 }
2183 
2184 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2185 {
2186 	uvc_video_stop_transfer(stream, 1);
2187 
2188 	if (stream->intf->num_altsetting > 1) {
2189 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2190 	} else {
2191 		/* UVC doesn't specify how to inform a bulk-based device
2192 		 * when the video stream is stopped. Windows sends a
2193 		 * CLEAR_FEATURE(HALT) request to the video streaming
2194 		 * bulk endpoint, mimic the same behaviour.
2195 		 */
2196 		unsigned int epnum = stream->header.bEndpointAddress
2197 				   & USB_ENDPOINT_NUMBER_MASK;
2198 		unsigned int dir = stream->header.bEndpointAddress
2199 				 & USB_ENDPOINT_DIR_MASK;
2200 		unsigned int pipe;
2201 
2202 		pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2203 		usb_clear_halt(stream->dev->udev, pipe);
2204 	}
2205 
2206 	uvc_video_clock_cleanup(stream);
2207 }
2208