1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <asm/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 if (ret != -EPIPE) { 83 dev_err(&dev->udev->dev, 84 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 85 uvc_query_name(query), cs, unit, ret, size); 86 return ret < 0 ? ret : -EPIPE; 87 } 88 89 /* Reuse data[0] to request the error code. */ 90 tmp = *(u8 *)data; 91 92 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 93 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 94 UVC_CTRL_CONTROL_TIMEOUT); 95 96 error = *(u8 *)data; 97 *(u8 *)data = tmp; 98 99 if (ret != 1) 100 return ret < 0 ? ret : -EPIPE; 101 102 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 103 104 switch (error) { 105 case 0: 106 /* Cannot happen - we received a STALL */ 107 return -EPIPE; 108 case 1: /* Not ready */ 109 return -EBUSY; 110 case 2: /* Wrong state */ 111 return -EACCES; 112 case 3: /* Power */ 113 return -EREMOTE; 114 case 4: /* Out of range */ 115 return -ERANGE; 116 case 5: /* Invalid unit */ 117 case 6: /* Invalid control */ 118 case 7: /* Invalid Request */ 119 /* 120 * The firmware has not properly implemented 121 * the control or there has been a HW error. 122 */ 123 return -EIO; 124 case 8: /* Invalid value within range */ 125 return -EINVAL; 126 default: /* reserved or unknown */ 127 break; 128 } 129 130 return -EPIPE; 131 } 132 133 static const struct usb_device_id elgato_cam_link_4k = { 134 USB_DEVICE(0x0fd9, 0x0066) 135 }; 136 137 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 138 struct uvc_streaming_control *ctrl) 139 { 140 const struct uvc_format *format = NULL; 141 const struct uvc_frame *frame = NULL; 142 unsigned int i; 143 144 /* 145 * The response of the Elgato Cam Link 4K is incorrect: The second byte 146 * contains bFormatIndex (instead of being the second byte of bmHint). 147 * The first byte is always zero. The third byte is always 1. 148 * 149 * The UVC 1.5 class specification defines the first five bits in the 150 * bmHint bitfield. The remaining bits are reserved and should be zero. 151 * Therefore a valid bmHint will be less than 32. 152 * 153 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 154 * MCU: 20.02.19, FPGA: 67 155 */ 156 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 157 ctrl->bmHint > 255) { 158 u8 corrected_format_index = ctrl->bmHint >> 8; 159 160 uvc_dbg(stream->dev, VIDEO, 161 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 162 ctrl->bmHint, ctrl->bFormatIndex, 163 1, corrected_format_index); 164 ctrl->bmHint = 1; 165 ctrl->bFormatIndex = corrected_format_index; 166 } 167 168 for (i = 0; i < stream->nformats; ++i) { 169 if (stream->formats[i].index == ctrl->bFormatIndex) { 170 format = &stream->formats[i]; 171 break; 172 } 173 } 174 175 if (format == NULL) 176 return; 177 178 for (i = 0; i < format->nframes; ++i) { 179 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) { 180 frame = &format->frames[i]; 181 break; 182 } 183 } 184 185 if (frame == NULL) 186 return; 187 188 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 189 (ctrl->dwMaxVideoFrameSize == 0 && 190 stream->dev->uvc_version < 0x0110)) 191 ctrl->dwMaxVideoFrameSize = 192 frame->dwMaxVideoFrameBufferSize; 193 194 /* 195 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 196 * compute the bandwidth on 16 bits and erroneously sign-extend it to 197 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 198 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 199 */ 200 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 201 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 202 203 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 204 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 205 stream->intf->num_altsetting > 1) { 206 u32 interval; 207 u32 bandwidth; 208 209 interval = (ctrl->dwFrameInterval > 100000) 210 ? ctrl->dwFrameInterval 211 : frame->dwFrameInterval[0]; 212 213 /* 214 * Compute a bandwidth estimation by multiplying the frame 215 * size by the number of video frames per second, divide the 216 * result by the number of USB frames (or micro-frames for 217 * high-speed devices) per second and add the UVC header size 218 * (assumed to be 12 bytes long). 219 */ 220 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 221 bandwidth *= 10000000 / interval + 1; 222 bandwidth /= 1000; 223 if (stream->dev->udev->speed == USB_SPEED_HIGH) 224 bandwidth /= 8; 225 bandwidth += 12; 226 227 /* 228 * The bandwidth estimate is too low for many cameras. Don't use 229 * maximum packet sizes lower than 1024 bytes to try and work 230 * around the problem. According to measurements done on two 231 * different camera models, the value is high enough to get most 232 * resolutions working while not preventing two simultaneous 233 * VGA streams at 15 fps. 234 */ 235 bandwidth = max_t(u32, bandwidth, 1024); 236 237 ctrl->dwMaxPayloadTransferSize = bandwidth; 238 } 239 } 240 241 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 242 { 243 /* 244 * Return the size of the video probe and commit controls, which depends 245 * on the protocol version. 246 */ 247 if (stream->dev->uvc_version < 0x0110) 248 return 26; 249 else if (stream->dev->uvc_version < 0x0150) 250 return 34; 251 else 252 return 48; 253 } 254 255 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 256 struct uvc_streaming_control *ctrl, int probe, u8 query) 257 { 258 u16 size = uvc_video_ctrl_size(stream); 259 u8 *data; 260 int ret; 261 262 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 263 query == UVC_GET_DEF) 264 return -EIO; 265 266 data = kmalloc(size, GFP_KERNEL); 267 if (data == NULL) 268 return -ENOMEM; 269 270 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 271 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 272 size, uvc_timeout_param); 273 274 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 275 /* 276 * Some cameras, mostly based on Bison Electronics chipsets, 277 * answer a GET_MIN or GET_MAX request with the wCompQuality 278 * field only. 279 */ 280 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 281 "compliance - GET_MIN/MAX(PROBE) incorrectly " 282 "supported. Enabling workaround.\n"); 283 memset(ctrl, 0, sizeof(*ctrl)); 284 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 285 ret = 0; 286 goto out; 287 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 288 /* 289 * Many cameras don't support the GET_DEF request on their 290 * video probe control. Warn once and return, the caller will 291 * fall back to GET_CUR. 292 */ 293 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 294 "compliance - GET_DEF(PROBE) not supported. " 295 "Enabling workaround.\n"); 296 ret = -EIO; 297 goto out; 298 } else if (ret != size) { 299 dev_err(&stream->intf->dev, 300 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 301 query, probe ? "probe" : "commit", ret, size); 302 ret = (ret == -EPROTO) ? -EPROTO : -EIO; 303 goto out; 304 } 305 306 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 307 ctrl->bFormatIndex = data[2]; 308 ctrl->bFrameIndex = data[3]; 309 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 310 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 311 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 312 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 313 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 314 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 315 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 316 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 317 318 if (size >= 34) { 319 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 320 ctrl->bmFramingInfo = data[30]; 321 ctrl->bPreferedVersion = data[31]; 322 ctrl->bMinVersion = data[32]; 323 ctrl->bMaxVersion = data[33]; 324 } else { 325 ctrl->dwClockFrequency = stream->dev->clock_frequency; 326 ctrl->bmFramingInfo = 0; 327 ctrl->bPreferedVersion = 0; 328 ctrl->bMinVersion = 0; 329 ctrl->bMaxVersion = 0; 330 } 331 332 /* 333 * Some broken devices return null or wrong dwMaxVideoFrameSize and 334 * dwMaxPayloadTransferSize fields. Try to get the value from the 335 * format and frame descriptors. 336 */ 337 uvc_fixup_video_ctrl(stream, ctrl); 338 ret = 0; 339 340 out: 341 kfree(data); 342 return ret; 343 } 344 345 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 346 struct uvc_streaming_control *ctrl, int probe) 347 { 348 u16 size = uvc_video_ctrl_size(stream); 349 u8 *data; 350 int ret; 351 352 data = kzalloc(size, GFP_KERNEL); 353 if (data == NULL) 354 return -ENOMEM; 355 356 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 357 data[2] = ctrl->bFormatIndex; 358 data[3] = ctrl->bFrameIndex; 359 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 360 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 361 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 362 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 363 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 364 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 365 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 366 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 367 368 if (size >= 34) { 369 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 370 data[30] = ctrl->bmFramingInfo; 371 data[31] = ctrl->bPreferedVersion; 372 data[32] = ctrl->bMinVersion; 373 data[33] = ctrl->bMaxVersion; 374 } 375 376 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 377 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 378 size, uvc_timeout_param); 379 if (ret != size) { 380 dev_err(&stream->intf->dev, 381 "Failed to set UVC %s control : %d (exp. %u).\n", 382 probe ? "probe" : "commit", ret, size); 383 ret = -EIO; 384 } 385 386 kfree(data); 387 return ret; 388 } 389 390 int uvc_probe_video(struct uvc_streaming *stream, 391 struct uvc_streaming_control *probe) 392 { 393 struct uvc_streaming_control probe_min, probe_max; 394 unsigned int i; 395 int ret; 396 397 /* 398 * Perform probing. The device should adjust the requested values 399 * according to its capabilities. However, some devices, namely the 400 * first generation UVC Logitech webcams, don't implement the Video 401 * Probe control properly, and just return the needed bandwidth. For 402 * that reason, if the needed bandwidth exceeds the maximum available 403 * bandwidth, try to lower the quality. 404 */ 405 ret = uvc_set_video_ctrl(stream, probe, 1); 406 if (ret < 0) 407 goto done; 408 409 /* Get the minimum and maximum values for compression settings. */ 410 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 411 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 412 if (ret < 0) 413 goto done; 414 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 415 if (ret < 0) 416 goto done; 417 418 probe->wCompQuality = probe_max.wCompQuality; 419 } 420 421 for (i = 0; i < 2; ++i) { 422 ret = uvc_set_video_ctrl(stream, probe, 1); 423 if (ret < 0) 424 goto done; 425 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 426 if (ret < 0) 427 goto done; 428 429 if (stream->intf->num_altsetting == 1) 430 break; 431 432 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize) 433 break; 434 435 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 436 ret = -ENOSPC; 437 goto done; 438 } 439 440 /* TODO: negotiate compression parameters */ 441 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 442 probe->wPFrameRate = probe_min.wPFrameRate; 443 probe->wCompQuality = probe_max.wCompQuality; 444 probe->wCompWindowSize = probe_min.wCompWindowSize; 445 } 446 447 done: 448 return ret; 449 } 450 451 static int uvc_commit_video(struct uvc_streaming *stream, 452 struct uvc_streaming_control *probe) 453 { 454 return uvc_set_video_ctrl(stream, probe, 0); 455 } 456 457 /* ----------------------------------------------------------------------------- 458 * Clocks and timestamps 459 */ 460 461 static inline ktime_t uvc_video_get_time(void) 462 { 463 if (uvc_clock_param == CLOCK_MONOTONIC) 464 return ktime_get(); 465 else 466 return ktime_get_real(); 467 } 468 469 static void 470 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 471 const u8 *data, int len) 472 { 473 struct uvc_clock_sample *sample; 474 unsigned int header_size; 475 bool has_pts = false; 476 bool has_scr = false; 477 unsigned long flags; 478 ktime_t time; 479 u16 host_sof; 480 u16 dev_sof; 481 482 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 483 case UVC_STREAM_PTS | UVC_STREAM_SCR: 484 header_size = 12; 485 has_pts = true; 486 has_scr = true; 487 break; 488 case UVC_STREAM_PTS: 489 header_size = 6; 490 has_pts = true; 491 break; 492 case UVC_STREAM_SCR: 493 header_size = 8; 494 has_scr = true; 495 break; 496 default: 497 header_size = 2; 498 break; 499 } 500 501 /* Check for invalid headers. */ 502 if (len < header_size) 503 return; 504 505 /* 506 * Extract the timestamps: 507 * 508 * - store the frame PTS in the buffer structure 509 * - if the SCR field is present, retrieve the host SOF counter and 510 * kernel timestamps and store them with the SCR STC and SOF fields 511 * in the ring buffer 512 */ 513 if (has_pts && buf != NULL) 514 buf->pts = get_unaligned_le32(&data[2]); 515 516 if (!has_scr) 517 return; 518 519 /* 520 * To limit the amount of data, drop SCRs with an SOF identical to the 521 * previous one. This filtering is also needed to support UVC 1.5, where 522 * all the data packets of the same frame contains the same SOF. In that 523 * case only the first one will match the host_sof. 524 */ 525 dev_sof = get_unaligned_le16(&data[header_size - 2]); 526 if (dev_sof == stream->clock.last_sof) 527 return; 528 529 stream->clock.last_sof = dev_sof; 530 531 host_sof = usb_get_current_frame_number(stream->dev->udev); 532 533 /* 534 * On some devices, like the Logitech C922, the device SOF does not run 535 * at a stable rate of 1kHz. For those devices use the host SOF instead. 536 * In the tests performed so far, this improves the timestamp precision. 537 * This is probably explained by a small packet handling jitter from the 538 * host, but the exact reason hasn't been fully determined. 539 */ 540 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF) 541 dev_sof = host_sof; 542 543 time = uvc_video_get_time(); 544 545 /* 546 * The UVC specification allows device implementations that can't obtain 547 * the USB frame number to keep their own frame counters as long as they 548 * match the size and frequency of the frame number associated with USB 549 * SOF tokens. The SOF values sent by such devices differ from the USB 550 * SOF tokens by a fixed offset that needs to be estimated and accounted 551 * for to make timestamp recovery as accurate as possible. 552 * 553 * The offset is estimated the first time a device SOF value is received 554 * as the difference between the host and device SOF values. As the two 555 * SOF values can differ slightly due to transmission delays, consider 556 * that the offset is null if the difference is not higher than 10 ms 557 * (negative differences can not happen and are thus considered as an 558 * offset). The video commit control wDelay field should be used to 559 * compute a dynamic threshold instead of using a fixed 10 ms value, but 560 * devices don't report reliable wDelay values. 561 * 562 * See uvc_video_clock_host_sof() for an explanation regarding why only 563 * the 8 LSBs of the delta are kept. 564 */ 565 if (stream->clock.sof_offset == (u16)-1) { 566 u16 delta_sof = (host_sof - dev_sof) & 255; 567 if (delta_sof >= 10) 568 stream->clock.sof_offset = delta_sof; 569 else 570 stream->clock.sof_offset = 0; 571 } 572 573 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 574 575 spin_lock_irqsave(&stream->clock.lock, flags); 576 577 sample = &stream->clock.samples[stream->clock.head]; 578 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 579 sample->dev_sof = dev_sof; 580 sample->host_sof = host_sof; 581 sample->host_time = time; 582 583 /* Update the sliding window head and count. */ 584 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 585 586 if (stream->clock.count < stream->clock.size) 587 stream->clock.count++; 588 589 spin_unlock_irqrestore(&stream->clock.lock, flags); 590 } 591 592 static void uvc_video_clock_reset(struct uvc_streaming *stream) 593 { 594 struct uvc_clock *clock = &stream->clock; 595 596 clock->head = 0; 597 clock->count = 0; 598 clock->last_sof = -1; 599 clock->sof_offset = -1; 600 } 601 602 static int uvc_video_clock_init(struct uvc_streaming *stream) 603 { 604 struct uvc_clock *clock = &stream->clock; 605 606 spin_lock_init(&clock->lock); 607 clock->size = 32; 608 609 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 610 GFP_KERNEL); 611 if (clock->samples == NULL) 612 return -ENOMEM; 613 614 uvc_video_clock_reset(stream); 615 616 return 0; 617 } 618 619 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 620 { 621 kfree(stream->clock.samples); 622 stream->clock.samples = NULL; 623 } 624 625 /* 626 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 627 * 628 * Host SOF counters reported by usb_get_current_frame_number() usually don't 629 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 630 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 631 * controller and its configuration. 632 * 633 * We thus need to recover the SOF value corresponding to the host frame number. 634 * As the device and host frame numbers are sampled in a short interval, the 635 * difference between their values should be equal to a small delta plus an 636 * integer multiple of 256 caused by the host frame number limited precision. 637 * 638 * To obtain the recovered host SOF value, compute the small delta by masking 639 * the high bits of the host frame counter and device SOF difference and add it 640 * to the device SOF value. 641 */ 642 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 643 { 644 /* The delta value can be negative. */ 645 s8 delta_sof; 646 647 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 648 649 return (sample->dev_sof + delta_sof) & 2047; 650 } 651 652 /* 653 * uvc_video_clock_update - Update the buffer timestamp 654 * 655 * This function converts the buffer PTS timestamp to the host clock domain by 656 * going through the USB SOF clock domain and stores the result in the V4L2 657 * buffer timestamp field. 658 * 659 * The relationship between the device clock and the host clock isn't known. 660 * However, the device and the host share the common USB SOF clock which can be 661 * used to recover that relationship. 662 * 663 * The relationship between the device clock and the USB SOF clock is considered 664 * to be linear over the clock samples sliding window and is given by 665 * 666 * SOF = m * PTS + p 667 * 668 * Several methods to compute the slope (m) and intercept (p) can be used. As 669 * the clock drift should be small compared to the sliding window size, we 670 * assume that the line that goes through the points at both ends of the window 671 * is a good approximation. Naming those points P1 and P2, we get 672 * 673 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 674 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 675 * 676 * or 677 * 678 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 679 * 680 * to avoid losing precision in the division. Similarly, the host timestamp is 681 * computed with 682 * 683 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 684 * 685 * SOF values are coded on 11 bits by USB. We extend their precision with 16 686 * decimal bits, leading to a 11.16 coding. 687 * 688 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 689 * be normalized using the nominal device clock frequency reported through the 690 * UVC descriptors. 691 * 692 * Both the PTS/STC and SOF counters roll over, after a fixed but device 693 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 694 * sliding window size is smaller than the rollover period, differences computed 695 * on unsigned integers will produce the correct result. However, the p term in 696 * the linear relations will be miscomputed. 697 * 698 * To fix the issue, we subtract a constant from the PTS and STC values to bring 699 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 700 * the 32 bit range without any rollover. 701 * 702 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 703 * computed by (1) will never be smaller than 0. This offset is then compensated 704 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 705 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 706 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 707 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 708 * SOF value at the end of the sliding window. 709 * 710 * Finally we subtract a constant from the host timestamps to bring the first 711 * timestamp of the sliding window to 1s. 712 */ 713 void uvc_video_clock_update(struct uvc_streaming *stream, 714 struct vb2_v4l2_buffer *vbuf, 715 struct uvc_buffer *buf) 716 { 717 struct uvc_clock *clock = &stream->clock; 718 struct uvc_clock_sample *first; 719 struct uvc_clock_sample *last; 720 unsigned long flags; 721 u64 timestamp; 722 u32 delta_stc; 723 u32 y1, y2; 724 u32 x1, x2; 725 u32 mean; 726 u32 sof; 727 u64 y; 728 729 if (!uvc_hw_timestamps_param) 730 return; 731 732 /* 733 * We will get called from __vb2_queue_cancel() if there are buffers 734 * done but not dequeued by the user, but the sample array has already 735 * been released at that time. Just bail out in that case. 736 */ 737 if (!clock->samples) 738 return; 739 740 spin_lock_irqsave(&clock->lock, flags); 741 742 if (clock->count < clock->size) 743 goto done; 744 745 first = &clock->samples[clock->head]; 746 last = &clock->samples[(clock->head - 1) % clock->size]; 747 748 /* First step, PTS to SOF conversion. */ 749 delta_stc = buf->pts - (1UL << 31); 750 x1 = first->dev_stc - delta_stc; 751 x2 = last->dev_stc - delta_stc; 752 if (x1 == x2) 753 goto done; 754 755 y1 = (first->dev_sof + 2048) << 16; 756 y2 = (last->dev_sof + 2048) << 16; 757 if (y2 < y1) 758 y2 += 2048 << 16; 759 760 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 761 - (u64)y2 * (u64)x1; 762 y = div_u64(y, x2 - x1); 763 764 sof = y; 765 766 uvc_dbg(stream->dev, CLOCK, 767 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 768 stream->dev->name, buf->pts, 769 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 770 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 771 x1, x2, y1, y2, clock->sof_offset); 772 773 /* Second step, SOF to host clock conversion. */ 774 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 775 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 776 if (x2 < x1) 777 x2 += 2048 << 16; 778 if (x1 == x2) 779 goto done; 780 781 y1 = NSEC_PER_SEC; 782 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 783 784 /* 785 * Interpolated and host SOF timestamps can wrap around at slightly 786 * different times. Handle this by adding or removing 2048 to or from 787 * the computed SOF value to keep it close to the SOF samples mean 788 * value. 789 */ 790 mean = (x1 + x2) / 2; 791 if (mean - (1024 << 16) > sof) 792 sof += 2048 << 16; 793 else if (sof > mean + (1024 << 16)) 794 sof -= 2048 << 16; 795 796 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 797 - (u64)y2 * (u64)x1; 798 y = div_u64(y, x2 - x1); 799 800 timestamp = ktime_to_ns(first->host_time) + y - y1; 801 802 uvc_dbg(stream->dev, CLOCK, 803 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 804 stream->dev->name, 805 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 806 y, timestamp, vbuf->vb2_buf.timestamp, 807 x1, first->host_sof, first->dev_sof, 808 x2, last->host_sof, last->dev_sof, y1, y2); 809 810 /* Update the V4L2 buffer. */ 811 vbuf->vb2_buf.timestamp = timestamp; 812 813 done: 814 spin_unlock_irqrestore(&clock->lock, flags); 815 } 816 817 /* ------------------------------------------------------------------------ 818 * Stream statistics 819 */ 820 821 static void uvc_video_stats_decode(struct uvc_streaming *stream, 822 const u8 *data, int len) 823 { 824 unsigned int header_size; 825 bool has_pts = false; 826 bool has_scr = false; 827 u16 scr_sof; 828 u32 scr_stc; 829 u32 pts; 830 831 if (stream->stats.stream.nb_frames == 0 && 832 stream->stats.frame.nb_packets == 0) 833 stream->stats.stream.start_ts = ktime_get(); 834 835 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 836 case UVC_STREAM_PTS | UVC_STREAM_SCR: 837 header_size = 12; 838 has_pts = true; 839 has_scr = true; 840 break; 841 case UVC_STREAM_PTS: 842 header_size = 6; 843 has_pts = true; 844 break; 845 case UVC_STREAM_SCR: 846 header_size = 8; 847 has_scr = true; 848 break; 849 default: 850 header_size = 2; 851 break; 852 } 853 854 /* Check for invalid headers. */ 855 if (len < header_size || data[0] < header_size) { 856 stream->stats.frame.nb_invalid++; 857 return; 858 } 859 860 /* Extract the timestamps. */ 861 if (has_pts) 862 pts = get_unaligned_le32(&data[2]); 863 864 if (has_scr) { 865 scr_stc = get_unaligned_le32(&data[header_size - 6]); 866 scr_sof = get_unaligned_le16(&data[header_size - 2]); 867 } 868 869 /* Is PTS constant through the whole frame ? */ 870 if (has_pts && stream->stats.frame.nb_pts) { 871 if (stream->stats.frame.pts != pts) { 872 stream->stats.frame.nb_pts_diffs++; 873 stream->stats.frame.last_pts_diff = 874 stream->stats.frame.nb_packets; 875 } 876 } 877 878 if (has_pts) { 879 stream->stats.frame.nb_pts++; 880 stream->stats.frame.pts = pts; 881 } 882 883 /* 884 * Do all frames have a PTS in their first non-empty packet, or before 885 * their first empty packet ? 886 */ 887 if (stream->stats.frame.size == 0) { 888 if (len > header_size) 889 stream->stats.frame.has_initial_pts = has_pts; 890 if (len == header_size && has_pts) 891 stream->stats.frame.has_early_pts = true; 892 } 893 894 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 895 if (has_scr && stream->stats.frame.nb_scr) { 896 if (stream->stats.frame.scr_stc != scr_stc) 897 stream->stats.frame.nb_scr_diffs++; 898 } 899 900 if (has_scr) { 901 /* Expand the SOF counter to 32 bits and store its value. */ 902 if (stream->stats.stream.nb_frames > 0 || 903 stream->stats.frame.nb_scr > 0) 904 stream->stats.stream.scr_sof_count += 905 (scr_sof - stream->stats.stream.scr_sof) % 2048; 906 stream->stats.stream.scr_sof = scr_sof; 907 908 stream->stats.frame.nb_scr++; 909 stream->stats.frame.scr_stc = scr_stc; 910 stream->stats.frame.scr_sof = scr_sof; 911 912 if (scr_sof < stream->stats.stream.min_sof) 913 stream->stats.stream.min_sof = scr_sof; 914 if (scr_sof > stream->stats.stream.max_sof) 915 stream->stats.stream.max_sof = scr_sof; 916 } 917 918 /* Record the first non-empty packet number. */ 919 if (stream->stats.frame.size == 0 && len > header_size) 920 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 921 922 /* Update the frame size. */ 923 stream->stats.frame.size += len - header_size; 924 925 /* Update the packets counters. */ 926 stream->stats.frame.nb_packets++; 927 if (len <= header_size) 928 stream->stats.frame.nb_empty++; 929 930 if (data[1] & UVC_STREAM_ERR) 931 stream->stats.frame.nb_errors++; 932 } 933 934 static void uvc_video_stats_update(struct uvc_streaming *stream) 935 { 936 struct uvc_stats_frame *frame = &stream->stats.frame; 937 938 uvc_dbg(stream->dev, STATS, 939 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 940 stream->sequence, frame->first_data, 941 frame->nb_packets - frame->nb_empty, frame->nb_packets, 942 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 943 frame->has_early_pts ? "" : "!", 944 frame->has_initial_pts ? "" : "!", 945 frame->nb_scr_diffs, frame->nb_scr, 946 frame->pts, frame->scr_stc, frame->scr_sof); 947 948 stream->stats.stream.nb_frames++; 949 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 950 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 951 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 952 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 953 954 if (frame->has_early_pts) 955 stream->stats.stream.nb_pts_early++; 956 if (frame->has_initial_pts) 957 stream->stats.stream.nb_pts_initial++; 958 if (frame->last_pts_diff <= frame->first_data) 959 stream->stats.stream.nb_pts_constant++; 960 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 961 stream->stats.stream.nb_scr_count_ok++; 962 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 963 stream->stats.stream.nb_scr_diffs_ok++; 964 965 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 966 } 967 968 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 969 size_t size) 970 { 971 unsigned int scr_sof_freq; 972 unsigned int duration; 973 size_t count = 0; 974 975 /* 976 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 977 * frequency this will not overflow before more than 1h. 978 */ 979 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 980 stream->stats.stream.start_ts); 981 if (duration != 0) 982 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 983 / duration; 984 else 985 scr_sof_freq = 0; 986 987 count += scnprintf(buf + count, size - count, 988 "frames: %u\npackets: %u\nempty: %u\n" 989 "errors: %u\ninvalid: %u\n", 990 stream->stats.stream.nb_frames, 991 stream->stats.stream.nb_packets, 992 stream->stats.stream.nb_empty, 993 stream->stats.stream.nb_errors, 994 stream->stats.stream.nb_invalid); 995 count += scnprintf(buf + count, size - count, 996 "pts: %u early, %u initial, %u ok\n", 997 stream->stats.stream.nb_pts_early, 998 stream->stats.stream.nb_pts_initial, 999 stream->stats.stream.nb_pts_constant); 1000 count += scnprintf(buf + count, size - count, 1001 "scr: %u count ok, %u diff ok\n", 1002 stream->stats.stream.nb_scr_count_ok, 1003 stream->stats.stream.nb_scr_diffs_ok); 1004 count += scnprintf(buf + count, size - count, 1005 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 1006 stream->stats.stream.min_sof, 1007 stream->stats.stream.max_sof, 1008 scr_sof_freq / 1000, scr_sof_freq % 1000); 1009 1010 return count; 1011 } 1012 1013 static void uvc_video_stats_start(struct uvc_streaming *stream) 1014 { 1015 memset(&stream->stats, 0, sizeof(stream->stats)); 1016 stream->stats.stream.min_sof = 2048; 1017 } 1018 1019 static void uvc_video_stats_stop(struct uvc_streaming *stream) 1020 { 1021 stream->stats.stream.stop_ts = ktime_get(); 1022 } 1023 1024 /* ------------------------------------------------------------------------ 1025 * Video codecs 1026 */ 1027 1028 /* 1029 * Video payload decoding is handled by uvc_video_decode_start(), 1030 * uvc_video_decode_data() and uvc_video_decode_end(). 1031 * 1032 * uvc_video_decode_start is called with URB data at the start of a bulk or 1033 * isochronous payload. It processes header data and returns the header size 1034 * in bytes if successful. If an error occurs, it returns a negative error 1035 * code. The following error codes have special meanings. 1036 * 1037 * - EAGAIN informs the caller that the current video buffer should be marked 1038 * as done, and that the function should be called again with the same data 1039 * and a new video buffer. This is used when end of frame conditions can be 1040 * reliably detected at the beginning of the next frame only. 1041 * 1042 * If an error other than -EAGAIN is returned, the caller will drop the current 1043 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1044 * made until the next payload. -ENODATA can be used to drop the current 1045 * payload if no other error code is appropriate. 1046 * 1047 * uvc_video_decode_data is called for every URB with URB data. It copies the 1048 * data to the video buffer. 1049 * 1050 * uvc_video_decode_end is called with header data at the end of a bulk or 1051 * isochronous payload. It performs any additional header data processing and 1052 * returns 0 or a negative error code if an error occurred. As header data have 1053 * already been processed by uvc_video_decode_start, this functions isn't 1054 * required to perform sanity checks a second time. 1055 * 1056 * For isochronous transfers where a payload is always transferred in a single 1057 * URB, the three functions will be called in a row. 1058 * 1059 * To let the decoder process header data and update its internal state even 1060 * when no video buffer is available, uvc_video_decode_start must be prepared 1061 * to be called with a NULL buf parameter. uvc_video_decode_data and 1062 * uvc_video_decode_end will never be called with a NULL buffer. 1063 */ 1064 static int uvc_video_decode_start(struct uvc_streaming *stream, 1065 struct uvc_buffer *buf, const u8 *data, int len) 1066 { 1067 u8 fid; 1068 1069 /* 1070 * Sanity checks: 1071 * - packet must be at least 2 bytes long 1072 * - bHeaderLength value must be at least 2 bytes (see above) 1073 * - bHeaderLength value can't be larger than the packet size. 1074 */ 1075 if (len < 2 || data[0] < 2 || data[0] > len) { 1076 stream->stats.frame.nb_invalid++; 1077 return -EINVAL; 1078 } 1079 1080 fid = data[1] & UVC_STREAM_FID; 1081 1082 /* 1083 * Increase the sequence number regardless of any buffer states, so 1084 * that discontinuous sequence numbers always indicate lost frames. 1085 */ 1086 if (stream->last_fid != fid) { 1087 stream->sequence++; 1088 if (stream->sequence) 1089 uvc_video_stats_update(stream); 1090 } 1091 1092 uvc_video_clock_decode(stream, buf, data, len); 1093 uvc_video_stats_decode(stream, data, len); 1094 1095 /* 1096 * Store the payload FID bit and return immediately when the buffer is 1097 * NULL. 1098 */ 1099 if (buf == NULL) { 1100 stream->last_fid = fid; 1101 return -ENODATA; 1102 } 1103 1104 /* Mark the buffer as bad if the error bit is set. */ 1105 if (data[1] & UVC_STREAM_ERR) { 1106 uvc_dbg(stream->dev, FRAME, 1107 "Marking buffer as bad (error bit set)\n"); 1108 buf->error = 1; 1109 } 1110 1111 /* 1112 * Synchronize to the input stream by waiting for the FID bit to be 1113 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE. 1114 * stream->last_fid is initialized to -1, so the first isochronous 1115 * frame will always be in sync. 1116 * 1117 * If the device doesn't toggle the FID bit, invert stream->last_fid 1118 * when the EOF bit is set to force synchronisation on the next packet. 1119 */ 1120 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1121 if (fid == stream->last_fid) { 1122 uvc_dbg(stream->dev, FRAME, 1123 "Dropping payload (out of sync)\n"); 1124 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1125 (data[1] & UVC_STREAM_EOF)) 1126 stream->last_fid ^= UVC_STREAM_FID; 1127 return -ENODATA; 1128 } 1129 1130 buf->buf.field = V4L2_FIELD_NONE; 1131 buf->buf.sequence = stream->sequence; 1132 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1133 1134 /* TODO: Handle PTS and SCR. */ 1135 buf->state = UVC_BUF_STATE_ACTIVE; 1136 } 1137 1138 /* 1139 * Mark the buffer as done if we're at the beginning of a new frame. 1140 * End of frame detection is better implemented by checking the EOF 1141 * bit (FID bit toggling is delayed by one frame compared to the EOF 1142 * bit), but some devices don't set the bit at end of frame (and the 1143 * last payload can be lost anyway). We thus must check if the FID has 1144 * been toggled. 1145 * 1146 * stream->last_fid is initialized to -1, so the first isochronous 1147 * frame will never trigger an end of frame detection. 1148 * 1149 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1150 * as it doesn't make sense to return an empty buffer. This also 1151 * avoids detecting end of frame conditions at FID toggling if the 1152 * previous payload had the EOF bit set. 1153 */ 1154 if (fid != stream->last_fid && buf->bytesused != 0) { 1155 uvc_dbg(stream->dev, FRAME, 1156 "Frame complete (FID bit toggled)\n"); 1157 buf->state = UVC_BUF_STATE_READY; 1158 return -EAGAIN; 1159 } 1160 1161 stream->last_fid = fid; 1162 1163 return data[0]; 1164 } 1165 1166 static inline enum dma_data_direction uvc_stream_dir( 1167 struct uvc_streaming *stream) 1168 { 1169 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1170 return DMA_FROM_DEVICE; 1171 else 1172 return DMA_TO_DEVICE; 1173 } 1174 1175 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1176 { 1177 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1178 } 1179 1180 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1181 { 1182 /* Sync DMA. */ 1183 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1184 uvc_urb->sgt, 1185 uvc_stream_dir(uvc_urb->stream)); 1186 return usb_submit_urb(uvc_urb->urb, mem_flags); 1187 } 1188 1189 /* 1190 * uvc_video_decode_data_work: Asynchronous memcpy processing 1191 * 1192 * Copy URB data to video buffers in process context, releasing buffer 1193 * references and requeuing the URB when done. 1194 */ 1195 static void uvc_video_copy_data_work(struct work_struct *work) 1196 { 1197 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1198 unsigned int i; 1199 int ret; 1200 1201 for (i = 0; i < uvc_urb->async_operations; i++) { 1202 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1203 1204 memcpy(op->dst, op->src, op->len); 1205 1206 /* Release reference taken on this buffer. */ 1207 uvc_queue_buffer_release(op->buf); 1208 } 1209 1210 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1211 if (ret < 0) 1212 dev_err(&uvc_urb->stream->intf->dev, 1213 "Failed to resubmit video URB (%d).\n", ret); 1214 } 1215 1216 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1217 struct uvc_buffer *buf, const u8 *data, int len) 1218 { 1219 unsigned int active_op = uvc_urb->async_operations; 1220 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1221 unsigned int maxlen; 1222 1223 if (len <= 0) 1224 return; 1225 1226 maxlen = buf->length - buf->bytesused; 1227 1228 /* Take a buffer reference for async work. */ 1229 kref_get(&buf->ref); 1230 1231 op->buf = buf; 1232 op->src = data; 1233 op->dst = buf->mem + buf->bytesused; 1234 op->len = min_t(unsigned int, len, maxlen); 1235 1236 buf->bytesused += op->len; 1237 1238 /* Complete the current frame if the buffer size was exceeded. */ 1239 if (len > maxlen) { 1240 uvc_dbg(uvc_urb->stream->dev, FRAME, 1241 "Frame complete (overflow)\n"); 1242 buf->error = 1; 1243 buf->state = UVC_BUF_STATE_READY; 1244 } 1245 1246 uvc_urb->async_operations++; 1247 } 1248 1249 static void uvc_video_decode_end(struct uvc_streaming *stream, 1250 struct uvc_buffer *buf, const u8 *data, int len) 1251 { 1252 /* Mark the buffer as done if the EOF marker is set. */ 1253 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1254 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1255 if (data[0] == len) 1256 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1257 buf->state = UVC_BUF_STATE_READY; 1258 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1259 stream->last_fid ^= UVC_STREAM_FID; 1260 } 1261 } 1262 1263 /* 1264 * Video payload encoding is handled by uvc_video_encode_header() and 1265 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1266 * 1267 * uvc_video_encode_header is called at the start of a payload. It adds header 1268 * data to the transfer buffer and returns the header size. As the only known 1269 * UVC output device transfers a whole frame in a single payload, the EOF bit 1270 * is always set in the header. 1271 * 1272 * uvc_video_encode_data is called for every URB and copies the data from the 1273 * video buffer to the transfer buffer. 1274 */ 1275 static int uvc_video_encode_header(struct uvc_streaming *stream, 1276 struct uvc_buffer *buf, u8 *data, int len) 1277 { 1278 data[0] = 2; /* Header length */ 1279 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1280 | (stream->last_fid & UVC_STREAM_FID); 1281 return 2; 1282 } 1283 1284 static int uvc_video_encode_data(struct uvc_streaming *stream, 1285 struct uvc_buffer *buf, u8 *data, int len) 1286 { 1287 struct uvc_video_queue *queue = &stream->queue; 1288 unsigned int nbytes; 1289 void *mem; 1290 1291 /* Copy video data to the URB buffer. */ 1292 mem = buf->mem + queue->buf_used; 1293 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1294 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1295 nbytes); 1296 memcpy(data, mem, nbytes); 1297 1298 queue->buf_used += nbytes; 1299 1300 return nbytes; 1301 } 1302 1303 /* ------------------------------------------------------------------------ 1304 * Metadata 1305 */ 1306 1307 /* 1308 * Additionally to the payload headers we also want to provide the user with USB 1309 * Frame Numbers and system time values. The resulting buffer is thus composed 1310 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1311 * Number, and a copy of the payload header. 1312 * 1313 * Ideally we want to capture all payload headers for each frame. However, their 1314 * number is unknown and unbound. We thus drop headers that contain no vendor 1315 * data and that either contain no SCR value or an SCR value identical to the 1316 * previous header. 1317 */ 1318 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1319 struct uvc_buffer *meta_buf, 1320 const u8 *mem, unsigned int length) 1321 { 1322 struct uvc_meta_buf *meta; 1323 size_t len_std = 2; 1324 bool has_pts, has_scr; 1325 unsigned long flags; 1326 unsigned int sof; 1327 ktime_t time; 1328 const u8 *scr; 1329 1330 if (!meta_buf || length == 2) 1331 return; 1332 1333 if (meta_buf->length - meta_buf->bytesused < 1334 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1335 meta_buf->error = 1; 1336 return; 1337 } 1338 1339 has_pts = mem[1] & UVC_STREAM_PTS; 1340 has_scr = mem[1] & UVC_STREAM_SCR; 1341 1342 if (has_pts) { 1343 len_std += 4; 1344 scr = mem + 6; 1345 } else { 1346 scr = mem + 2; 1347 } 1348 1349 if (has_scr) 1350 len_std += 6; 1351 1352 if (stream->meta.format == V4L2_META_FMT_UVC) 1353 length = len_std; 1354 1355 if (length == len_std && (!has_scr || 1356 !memcmp(scr, stream->clock.last_scr, 6))) 1357 return; 1358 1359 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1360 local_irq_save(flags); 1361 time = uvc_video_get_time(); 1362 sof = usb_get_current_frame_number(stream->dev->udev); 1363 local_irq_restore(flags); 1364 put_unaligned(ktime_to_ns(time), &meta->ns); 1365 put_unaligned(sof, &meta->sof); 1366 1367 if (has_scr) 1368 memcpy(stream->clock.last_scr, scr, 6); 1369 1370 meta->length = mem[0]; 1371 meta->flags = mem[1]; 1372 memcpy(meta->buf, &mem[2], length - 2); 1373 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1374 1375 uvc_dbg(stream->dev, FRAME, 1376 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1377 __func__, ktime_to_ns(time), meta->sof, meta->length, 1378 meta->flags, 1379 has_pts ? *(u32 *)meta->buf : 0, 1380 has_scr ? *(u32 *)scr : 0, 1381 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1382 } 1383 1384 /* ------------------------------------------------------------------------ 1385 * URB handling 1386 */ 1387 1388 /* 1389 * Set error flag for incomplete buffer. 1390 */ 1391 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1392 struct uvc_buffer *buf) 1393 { 1394 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1395 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1396 buf->error = 1; 1397 } 1398 1399 /* 1400 * Completion handler for video URBs. 1401 */ 1402 1403 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1404 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1405 { 1406 uvc_video_validate_buffer(stream, *video_buf); 1407 1408 if (*meta_buf) { 1409 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1410 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1411 1412 vb2_meta->sequence = vb2_video->sequence; 1413 vb2_meta->field = vb2_video->field; 1414 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1415 1416 (*meta_buf)->state = UVC_BUF_STATE_READY; 1417 if (!(*meta_buf)->error) 1418 (*meta_buf)->error = (*video_buf)->error; 1419 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1420 *meta_buf); 1421 } 1422 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1423 } 1424 1425 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1426 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1427 { 1428 struct urb *urb = uvc_urb->urb; 1429 struct uvc_streaming *stream = uvc_urb->stream; 1430 u8 *mem; 1431 int ret, i; 1432 1433 for (i = 0; i < urb->number_of_packets; ++i) { 1434 if (urb->iso_frame_desc[i].status < 0) { 1435 uvc_dbg(stream->dev, FRAME, 1436 "USB isochronous frame lost (%d)\n", 1437 urb->iso_frame_desc[i].status); 1438 /* Mark the buffer as faulty. */ 1439 if (buf != NULL) 1440 buf->error = 1; 1441 continue; 1442 } 1443 1444 /* Decode the payload header. */ 1445 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1446 do { 1447 ret = uvc_video_decode_start(stream, buf, mem, 1448 urb->iso_frame_desc[i].actual_length); 1449 if (ret == -EAGAIN) 1450 uvc_video_next_buffers(stream, &buf, &meta_buf); 1451 } while (ret == -EAGAIN); 1452 1453 if (ret < 0) 1454 continue; 1455 1456 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1457 1458 /* Decode the payload data. */ 1459 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1460 urb->iso_frame_desc[i].actual_length - ret); 1461 1462 /* Process the header again. */ 1463 uvc_video_decode_end(stream, buf, mem, 1464 urb->iso_frame_desc[i].actual_length); 1465 1466 if (buf->state == UVC_BUF_STATE_READY) 1467 uvc_video_next_buffers(stream, &buf, &meta_buf); 1468 } 1469 } 1470 1471 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1472 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1473 { 1474 struct urb *urb = uvc_urb->urb; 1475 struct uvc_streaming *stream = uvc_urb->stream; 1476 u8 *mem; 1477 int len, ret; 1478 1479 /* 1480 * Ignore ZLPs if they're not part of a frame, otherwise process them 1481 * to trigger the end of payload detection. 1482 */ 1483 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1484 return; 1485 1486 mem = urb->transfer_buffer; 1487 len = urb->actual_length; 1488 stream->bulk.payload_size += len; 1489 1490 /* 1491 * If the URB is the first of its payload, decode and save the 1492 * header. 1493 */ 1494 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1495 do { 1496 ret = uvc_video_decode_start(stream, buf, mem, len); 1497 if (ret == -EAGAIN) 1498 uvc_video_next_buffers(stream, &buf, &meta_buf); 1499 } while (ret == -EAGAIN); 1500 1501 /* If an error occurred skip the rest of the payload. */ 1502 if (ret < 0 || buf == NULL) { 1503 stream->bulk.skip_payload = 1; 1504 } else { 1505 memcpy(stream->bulk.header, mem, ret); 1506 stream->bulk.header_size = ret; 1507 1508 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1509 1510 mem += ret; 1511 len -= ret; 1512 } 1513 } 1514 1515 /* 1516 * The buffer queue might have been cancelled while a bulk transfer 1517 * was in progress, so we can reach here with buf equal to NULL. Make 1518 * sure buf is never dereferenced if NULL. 1519 */ 1520 1521 /* Prepare video data for processing. */ 1522 if (!stream->bulk.skip_payload && buf != NULL) 1523 uvc_video_decode_data(uvc_urb, buf, mem, len); 1524 1525 /* 1526 * Detect the payload end by a URB smaller than the maximum size (or 1527 * a payload size equal to the maximum) and process the header again. 1528 */ 1529 if (urb->actual_length < urb->transfer_buffer_length || 1530 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1531 if (!stream->bulk.skip_payload && buf != NULL) { 1532 uvc_video_decode_end(stream, buf, stream->bulk.header, 1533 stream->bulk.payload_size); 1534 if (buf->state == UVC_BUF_STATE_READY) 1535 uvc_video_next_buffers(stream, &buf, &meta_buf); 1536 } 1537 1538 stream->bulk.header_size = 0; 1539 stream->bulk.skip_payload = 0; 1540 stream->bulk.payload_size = 0; 1541 } 1542 } 1543 1544 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1545 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1546 { 1547 struct urb *urb = uvc_urb->urb; 1548 struct uvc_streaming *stream = uvc_urb->stream; 1549 1550 u8 *mem = urb->transfer_buffer; 1551 int len = stream->urb_size, ret; 1552 1553 if (buf == NULL) { 1554 urb->transfer_buffer_length = 0; 1555 return; 1556 } 1557 1558 /* If the URB is the first of its payload, add the header. */ 1559 if (stream->bulk.header_size == 0) { 1560 ret = uvc_video_encode_header(stream, buf, mem, len); 1561 stream->bulk.header_size = ret; 1562 stream->bulk.payload_size += ret; 1563 mem += ret; 1564 len -= ret; 1565 } 1566 1567 /* Process video data. */ 1568 ret = uvc_video_encode_data(stream, buf, mem, len); 1569 1570 stream->bulk.payload_size += ret; 1571 len -= ret; 1572 1573 if (buf->bytesused == stream->queue.buf_used || 1574 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1575 if (buf->bytesused == stream->queue.buf_used) { 1576 stream->queue.buf_used = 0; 1577 buf->state = UVC_BUF_STATE_READY; 1578 buf->buf.sequence = ++stream->sequence; 1579 uvc_queue_next_buffer(&stream->queue, buf); 1580 stream->last_fid ^= UVC_STREAM_FID; 1581 } 1582 1583 stream->bulk.header_size = 0; 1584 stream->bulk.payload_size = 0; 1585 } 1586 1587 urb->transfer_buffer_length = stream->urb_size - len; 1588 } 1589 1590 static void uvc_video_complete(struct urb *urb) 1591 { 1592 struct uvc_urb *uvc_urb = urb->context; 1593 struct uvc_streaming *stream = uvc_urb->stream; 1594 struct uvc_video_queue *queue = &stream->queue; 1595 struct uvc_video_queue *qmeta = &stream->meta.queue; 1596 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1597 struct uvc_buffer *buf = NULL; 1598 struct uvc_buffer *buf_meta = NULL; 1599 unsigned long flags; 1600 int ret; 1601 1602 switch (urb->status) { 1603 case 0: 1604 break; 1605 1606 default: 1607 dev_warn(&stream->intf->dev, 1608 "Non-zero status (%d) in video completion handler.\n", 1609 urb->status); 1610 fallthrough; 1611 case -ENOENT: /* usb_poison_urb() called. */ 1612 if (stream->frozen) 1613 return; 1614 fallthrough; 1615 case -ECONNRESET: /* usb_unlink_urb() called. */ 1616 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1617 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1618 if (vb2_qmeta) 1619 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1620 return; 1621 } 1622 1623 buf = uvc_queue_get_current_buffer(queue); 1624 1625 if (vb2_qmeta) { 1626 spin_lock_irqsave(&qmeta->irqlock, flags); 1627 if (!list_empty(&qmeta->irqqueue)) 1628 buf_meta = list_first_entry(&qmeta->irqqueue, 1629 struct uvc_buffer, queue); 1630 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1631 } 1632 1633 /* Re-initialise the URB async work. */ 1634 uvc_urb->async_operations = 0; 1635 1636 /* Sync DMA and invalidate vmap range. */ 1637 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1638 uvc_urb->sgt, uvc_stream_dir(stream)); 1639 invalidate_kernel_vmap_range(uvc_urb->buffer, 1640 uvc_urb->stream->urb_size); 1641 1642 /* 1643 * Process the URB headers, and optionally queue expensive memcpy tasks 1644 * to be deferred to a work queue. 1645 */ 1646 stream->decode(uvc_urb, buf, buf_meta); 1647 1648 /* If no async work is needed, resubmit the URB immediately. */ 1649 if (!uvc_urb->async_operations) { 1650 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1651 if (ret < 0) 1652 dev_err(&stream->intf->dev, 1653 "Failed to resubmit video URB (%d).\n", ret); 1654 return; 1655 } 1656 1657 queue_work(stream->async_wq, &uvc_urb->work); 1658 } 1659 1660 /* 1661 * Free transfer buffers. 1662 */ 1663 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1664 { 1665 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1666 struct uvc_urb *uvc_urb; 1667 1668 for_each_uvc_urb(uvc_urb, stream) { 1669 if (!uvc_urb->buffer) 1670 continue; 1671 1672 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1673 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1674 uvc_stream_dir(stream)); 1675 1676 uvc_urb->buffer = NULL; 1677 uvc_urb->sgt = NULL; 1678 } 1679 1680 stream->urb_size = 0; 1681 } 1682 1683 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1684 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1685 { 1686 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1687 1688 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1689 uvc_stream_dir(stream), 1690 gfp_flags, 0); 1691 if (!uvc_urb->sgt) 1692 return false; 1693 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1694 1695 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1696 uvc_urb->sgt); 1697 if (!uvc_urb->buffer) { 1698 dma_free_noncontiguous(dma_dev, stream->urb_size, 1699 uvc_urb->sgt, 1700 uvc_stream_dir(stream)); 1701 uvc_urb->sgt = NULL; 1702 return false; 1703 } 1704 1705 return true; 1706 } 1707 1708 /* 1709 * Allocate transfer buffers. This function can be called with buffers 1710 * already allocated when resuming from suspend, in which case it will 1711 * return without touching the buffers. 1712 * 1713 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1714 * system is too low on memory try successively smaller numbers of packets 1715 * until allocation succeeds. 1716 * 1717 * Return the number of allocated packets on success or 0 when out of memory. 1718 */ 1719 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1720 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1721 { 1722 unsigned int npackets; 1723 unsigned int i; 1724 1725 /* Buffers are already allocated, bail out. */ 1726 if (stream->urb_size) 1727 return stream->urb_size / psize; 1728 1729 /* 1730 * Compute the number of packets. Bulk endpoints might transfer UVC 1731 * payloads across multiple URBs. 1732 */ 1733 npackets = DIV_ROUND_UP(size, psize); 1734 if (npackets > UVC_MAX_PACKETS) 1735 npackets = UVC_MAX_PACKETS; 1736 1737 /* Retry allocations until one succeed. */ 1738 for (; npackets > 1; npackets /= 2) { 1739 stream->urb_size = psize * npackets; 1740 1741 for (i = 0; i < UVC_URBS; ++i) { 1742 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1743 1744 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1745 uvc_free_urb_buffers(stream); 1746 break; 1747 } 1748 1749 uvc_urb->stream = stream; 1750 } 1751 1752 if (i == UVC_URBS) { 1753 uvc_dbg(stream->dev, VIDEO, 1754 "Allocated %u URB buffers of %ux%u bytes each\n", 1755 UVC_URBS, npackets, psize); 1756 return npackets; 1757 } 1758 } 1759 1760 uvc_dbg(stream->dev, VIDEO, 1761 "Failed to allocate URB buffers (%u bytes per packet)\n", 1762 psize); 1763 return 0; 1764 } 1765 1766 /* 1767 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1768 */ 1769 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1770 int free_buffers) 1771 { 1772 struct uvc_urb *uvc_urb; 1773 1774 uvc_video_stats_stop(stream); 1775 1776 /* 1777 * We must poison the URBs rather than kill them to ensure that even 1778 * after the completion handler returns, any asynchronous workqueues 1779 * will be prevented from resubmitting the URBs. 1780 */ 1781 for_each_uvc_urb(uvc_urb, stream) 1782 usb_poison_urb(uvc_urb->urb); 1783 1784 flush_workqueue(stream->async_wq); 1785 1786 for_each_uvc_urb(uvc_urb, stream) { 1787 usb_free_urb(uvc_urb->urb); 1788 uvc_urb->urb = NULL; 1789 } 1790 1791 if (free_buffers) 1792 uvc_free_urb_buffers(stream); 1793 } 1794 1795 /* 1796 * Compute the maximum number of bytes per interval for an endpoint. 1797 */ 1798 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep) 1799 { 1800 u16 psize; 1801 1802 switch (dev->speed) { 1803 case USB_SPEED_SUPER: 1804 case USB_SPEED_SUPER_PLUS: 1805 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1806 default: 1807 psize = usb_endpoint_maxp(&ep->desc); 1808 psize *= usb_endpoint_maxp_mult(&ep->desc); 1809 return psize; 1810 } 1811 } 1812 1813 /* 1814 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1815 * is given by the endpoint. 1816 */ 1817 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1818 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1819 { 1820 struct urb *urb; 1821 struct uvc_urb *uvc_urb; 1822 unsigned int npackets, i; 1823 u16 psize; 1824 u32 size; 1825 1826 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1827 size = stream->ctrl.dwMaxVideoFrameSize; 1828 1829 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1830 if (npackets == 0) 1831 return -ENOMEM; 1832 1833 size = npackets * psize; 1834 1835 for_each_uvc_urb(uvc_urb, stream) { 1836 urb = usb_alloc_urb(npackets, gfp_flags); 1837 if (urb == NULL) { 1838 uvc_video_stop_transfer(stream, 1); 1839 return -ENOMEM; 1840 } 1841 1842 urb->dev = stream->dev->udev; 1843 urb->context = uvc_urb; 1844 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1845 ep->desc.bEndpointAddress); 1846 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1847 urb->transfer_dma = uvc_urb->dma; 1848 urb->interval = ep->desc.bInterval; 1849 urb->transfer_buffer = uvc_urb->buffer; 1850 urb->complete = uvc_video_complete; 1851 urb->number_of_packets = npackets; 1852 urb->transfer_buffer_length = size; 1853 1854 for (i = 0; i < npackets; ++i) { 1855 urb->iso_frame_desc[i].offset = i * psize; 1856 urb->iso_frame_desc[i].length = psize; 1857 } 1858 1859 uvc_urb->urb = urb; 1860 } 1861 1862 return 0; 1863 } 1864 1865 /* 1866 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1867 * given by the endpoint. 1868 */ 1869 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1870 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1871 { 1872 struct urb *urb; 1873 struct uvc_urb *uvc_urb; 1874 unsigned int npackets, pipe; 1875 u16 psize; 1876 u32 size; 1877 1878 psize = usb_endpoint_maxp(&ep->desc); 1879 size = stream->ctrl.dwMaxPayloadTransferSize; 1880 stream->bulk.max_payload_size = size; 1881 1882 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1883 if (npackets == 0) 1884 return -ENOMEM; 1885 1886 size = npackets * psize; 1887 1888 if (usb_endpoint_dir_in(&ep->desc)) 1889 pipe = usb_rcvbulkpipe(stream->dev->udev, 1890 ep->desc.bEndpointAddress); 1891 else 1892 pipe = usb_sndbulkpipe(stream->dev->udev, 1893 ep->desc.bEndpointAddress); 1894 1895 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1896 size = 0; 1897 1898 for_each_uvc_urb(uvc_urb, stream) { 1899 urb = usb_alloc_urb(0, gfp_flags); 1900 if (urb == NULL) { 1901 uvc_video_stop_transfer(stream, 1); 1902 return -ENOMEM; 1903 } 1904 1905 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1906 size, uvc_video_complete, uvc_urb); 1907 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1908 urb->transfer_dma = uvc_urb->dma; 1909 1910 uvc_urb->urb = urb; 1911 } 1912 1913 return 0; 1914 } 1915 1916 /* 1917 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1918 */ 1919 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1920 gfp_t gfp_flags) 1921 { 1922 struct usb_interface *intf = stream->intf; 1923 struct usb_host_endpoint *ep; 1924 struct uvc_urb *uvc_urb; 1925 unsigned int i; 1926 int ret; 1927 1928 stream->sequence = -1; 1929 stream->last_fid = -1; 1930 stream->bulk.header_size = 0; 1931 stream->bulk.skip_payload = 0; 1932 stream->bulk.payload_size = 0; 1933 1934 uvc_video_stats_start(stream); 1935 1936 if (intf->num_altsetting > 1) { 1937 struct usb_host_endpoint *best_ep = NULL; 1938 unsigned int best_psize = UINT_MAX; 1939 unsigned int bandwidth; 1940 unsigned int altsetting; 1941 int intfnum = stream->intfnum; 1942 1943 /* Isochronous endpoint, select the alternate setting. */ 1944 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1945 1946 if (bandwidth == 0) { 1947 uvc_dbg(stream->dev, VIDEO, 1948 "Device requested null bandwidth, defaulting to lowest\n"); 1949 bandwidth = 1; 1950 } else { 1951 uvc_dbg(stream->dev, VIDEO, 1952 "Device requested %u B/frame bandwidth\n", 1953 bandwidth); 1954 } 1955 1956 for (i = 0; i < intf->num_altsetting; ++i) { 1957 struct usb_host_interface *alts; 1958 unsigned int psize; 1959 1960 alts = &intf->altsetting[i]; 1961 ep = uvc_find_endpoint(alts, 1962 stream->header.bEndpointAddress); 1963 if (ep == NULL) 1964 continue; 1965 1966 /* Check if the bandwidth is high enough. */ 1967 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1968 if (psize >= bandwidth && psize <= best_psize) { 1969 altsetting = alts->desc.bAlternateSetting; 1970 best_psize = psize; 1971 best_ep = ep; 1972 } 1973 } 1974 1975 if (best_ep == NULL) { 1976 uvc_dbg(stream->dev, VIDEO, 1977 "No fast enough alt setting for requested bandwidth\n"); 1978 return -EIO; 1979 } 1980 1981 uvc_dbg(stream->dev, VIDEO, 1982 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 1983 altsetting, best_psize); 1984 1985 /* 1986 * Some devices, namely the Logitech C910 and B910, are unable 1987 * to recover from a USB autosuspend, unless the alternate 1988 * setting of the streaming interface is toggled. 1989 */ 1990 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) { 1991 usb_set_interface(stream->dev->udev, intfnum, 1992 altsetting); 1993 usb_set_interface(stream->dev->udev, intfnum, 0); 1994 } 1995 1996 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1997 if (ret < 0) 1998 return ret; 1999 2000 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 2001 } else { 2002 /* Bulk endpoint, proceed to URB initialization. */ 2003 ep = uvc_find_endpoint(&intf->altsetting[0], 2004 stream->header.bEndpointAddress); 2005 if (ep == NULL) 2006 return -EIO; 2007 2008 /* Reject broken descriptors. */ 2009 if (usb_endpoint_maxp(&ep->desc) == 0) 2010 return -EIO; 2011 2012 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 2013 } 2014 2015 if (ret < 0) 2016 return ret; 2017 2018 /* Submit the URBs. */ 2019 for_each_uvc_urb(uvc_urb, stream) { 2020 ret = uvc_submit_urb(uvc_urb, gfp_flags); 2021 if (ret < 0) { 2022 dev_err(&stream->intf->dev, 2023 "Failed to submit URB %u (%d).\n", 2024 uvc_urb_index(uvc_urb), ret); 2025 uvc_video_stop_transfer(stream, 1); 2026 return ret; 2027 } 2028 } 2029 2030 /* 2031 * The Logitech C920 temporarily forgets that it should not be adjusting 2032 * Exposure Absolute during init so restore controls to stored values. 2033 */ 2034 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 2035 uvc_ctrl_restore_values(stream->dev); 2036 2037 return 0; 2038 } 2039 2040 /* -------------------------------------------------------------------------- 2041 * Suspend/resume 2042 */ 2043 2044 /* 2045 * Stop streaming without disabling the video queue. 2046 * 2047 * To let userspace applications resume without trouble, we must not touch the 2048 * video buffers in any way. We mark the device as frozen to make sure the URB 2049 * completion handler won't try to cancel the queue when we kill the URBs. 2050 */ 2051 int uvc_video_suspend(struct uvc_streaming *stream) 2052 { 2053 if (!uvc_queue_streaming(&stream->queue)) 2054 return 0; 2055 2056 stream->frozen = 1; 2057 uvc_video_stop_transfer(stream, 0); 2058 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2059 return 0; 2060 } 2061 2062 /* 2063 * Reconfigure the video interface and restart streaming if it was enabled 2064 * before suspend. 2065 * 2066 * If an error occurs, disable the video queue. This will wake all pending 2067 * buffers, making sure userspace applications are notified of the problem 2068 * instead of waiting forever. 2069 */ 2070 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2071 { 2072 int ret; 2073 2074 /* 2075 * If the bus has been reset on resume, set the alternate setting to 0. 2076 * This should be the default value, but some devices crash or otherwise 2077 * misbehave if they don't receive a SET_INTERFACE request before any 2078 * other video control request. 2079 */ 2080 if (reset) 2081 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2082 2083 stream->frozen = 0; 2084 2085 uvc_video_clock_reset(stream); 2086 2087 if (!uvc_queue_streaming(&stream->queue)) 2088 return 0; 2089 2090 ret = uvc_commit_video(stream, &stream->ctrl); 2091 if (ret < 0) 2092 return ret; 2093 2094 return uvc_video_start_transfer(stream, GFP_NOIO); 2095 } 2096 2097 /* ------------------------------------------------------------------------ 2098 * Video device 2099 */ 2100 2101 /* 2102 * Initialize the UVC video device by switching to alternate setting 0 and 2103 * retrieve the default format. 2104 * 2105 * Some cameras (namely the Fuji Finepix) set the format and frame 2106 * indexes to zero. The UVC standard doesn't clearly make this a spec 2107 * violation, so try to silently fix the values if possible. 2108 * 2109 * This function is called before registering the device with V4L. 2110 */ 2111 int uvc_video_init(struct uvc_streaming *stream) 2112 { 2113 struct uvc_streaming_control *probe = &stream->ctrl; 2114 const struct uvc_format *format = NULL; 2115 const struct uvc_frame *frame = NULL; 2116 struct uvc_urb *uvc_urb; 2117 unsigned int i; 2118 int ret; 2119 2120 if (stream->nformats == 0) { 2121 dev_info(&stream->intf->dev, 2122 "No supported video formats found.\n"); 2123 return -EINVAL; 2124 } 2125 2126 atomic_set(&stream->active, 0); 2127 2128 /* 2129 * Alternate setting 0 should be the default, yet the XBox Live Vision 2130 * Cam (and possibly other devices) crash or otherwise misbehave if 2131 * they don't receive a SET_INTERFACE request before any other video 2132 * control request. 2133 */ 2134 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2135 2136 /* 2137 * Set the streaming probe control with default streaming parameters 2138 * retrieved from the device. Webcams that don't support GET_DEF 2139 * requests on the probe control will just keep their current streaming 2140 * parameters. 2141 */ 2142 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2143 uvc_set_video_ctrl(stream, probe, 1); 2144 2145 /* 2146 * Initialize the streaming parameters with the probe control current 2147 * value. This makes sure SET_CUR requests on the streaming commit 2148 * control will always use values retrieved from a successful GET_CUR 2149 * request on the probe control, as required by the UVC specification. 2150 */ 2151 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2152 2153 /* 2154 * Elgato Cam Link 4k can be in a stalled state if the resolution of 2155 * the external source has changed while the firmware initializes. 2156 * Once in this state, the device is useless until it receives a 2157 * USB reset. It has even been observed that the stalled state will 2158 * continue even after unplugging the device. 2159 */ 2160 if (ret == -EPROTO && 2161 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) { 2162 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n"); 2163 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n"); 2164 usb_reset_device(stream->dev->udev); 2165 } 2166 2167 if (ret < 0) 2168 return ret; 2169 2170 /* 2171 * Check if the default format descriptor exists. Use the first 2172 * available format otherwise. 2173 */ 2174 for (i = stream->nformats; i > 0; --i) { 2175 format = &stream->formats[i-1]; 2176 if (format->index == probe->bFormatIndex) 2177 break; 2178 } 2179 2180 if (format->nframes == 0) { 2181 dev_info(&stream->intf->dev, 2182 "No frame descriptor found for the default format.\n"); 2183 return -EINVAL; 2184 } 2185 2186 /* 2187 * Zero bFrameIndex might be correct. Stream-based formats (including 2188 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2189 * descriptor with bFrameIndex set to zero. If the default frame 2190 * descriptor is not found, use the first available frame. 2191 */ 2192 for (i = format->nframes; i > 0; --i) { 2193 frame = &format->frames[i-1]; 2194 if (frame->bFrameIndex == probe->bFrameIndex) 2195 break; 2196 } 2197 2198 probe->bFormatIndex = format->index; 2199 probe->bFrameIndex = frame->bFrameIndex; 2200 2201 stream->def_format = format; 2202 stream->cur_format = format; 2203 stream->cur_frame = frame; 2204 2205 /* Select the video decoding function */ 2206 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2207 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2208 stream->decode = uvc_video_decode_isight; 2209 else if (stream->intf->num_altsetting > 1) 2210 stream->decode = uvc_video_decode_isoc; 2211 else 2212 stream->decode = uvc_video_decode_bulk; 2213 } else { 2214 if (stream->intf->num_altsetting == 1) 2215 stream->decode = uvc_video_encode_bulk; 2216 else { 2217 dev_info(&stream->intf->dev, 2218 "Isochronous endpoints are not supported for video output devices.\n"); 2219 return -EINVAL; 2220 } 2221 } 2222 2223 /* Prepare asynchronous work items. */ 2224 for_each_uvc_urb(uvc_urb, stream) 2225 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2226 2227 return 0; 2228 } 2229 2230 int uvc_video_start_streaming(struct uvc_streaming *stream) 2231 { 2232 int ret; 2233 2234 ret = uvc_video_clock_init(stream); 2235 if (ret < 0) 2236 return ret; 2237 2238 /* Commit the streaming parameters. */ 2239 ret = uvc_commit_video(stream, &stream->ctrl); 2240 if (ret < 0) 2241 goto error_commit; 2242 2243 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2244 if (ret < 0) 2245 goto error_video; 2246 2247 return 0; 2248 2249 error_video: 2250 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2251 error_commit: 2252 uvc_video_clock_cleanup(stream); 2253 2254 return ret; 2255 } 2256 2257 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2258 { 2259 uvc_video_stop_transfer(stream, 1); 2260 2261 if (stream->intf->num_altsetting > 1) { 2262 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2263 } else { 2264 /* 2265 * UVC doesn't specify how to inform a bulk-based device 2266 * when the video stream is stopped. Windows sends a 2267 * CLEAR_FEATURE(HALT) request to the video streaming 2268 * bulk endpoint, mimic the same behaviour. 2269 */ 2270 unsigned int epnum = stream->header.bEndpointAddress 2271 & USB_ENDPOINT_NUMBER_MASK; 2272 unsigned int dir = stream->header.bEndpointAddress 2273 & USB_ENDPOINT_DIR_MASK; 2274 unsigned int pipe; 2275 2276 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2277 usb_clear_halt(stream->dev->udev, pipe); 2278 } 2279 2280 uvc_video_clock_cleanup(stream); 2281 } 2282