1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <asm/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 dev_err(&dev->udev->dev, 83 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 84 uvc_query_name(query), cs, unit, ret, size); 85 86 if (ret != -EPIPE) 87 return ret; 88 89 tmp = *(u8 *)data; 90 91 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 92 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 93 UVC_CTRL_CONTROL_TIMEOUT); 94 95 error = *(u8 *)data; 96 *(u8 *)data = tmp; 97 98 if (ret != 1) 99 return ret < 0 ? ret : -EPIPE; 100 101 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 102 103 switch (error) { 104 case 0: 105 /* Cannot happen - we received a STALL */ 106 return -EPIPE; 107 case 1: /* Not ready */ 108 return -EBUSY; 109 case 2: /* Wrong state */ 110 return -EILSEQ; 111 case 3: /* Power */ 112 return -EREMOTE; 113 case 4: /* Out of range */ 114 return -ERANGE; 115 case 5: /* Invalid unit */ 116 case 6: /* Invalid control */ 117 case 7: /* Invalid Request */ 118 case 8: /* Invalid value within range */ 119 return -EINVAL; 120 default: /* reserved or unknown */ 121 break; 122 } 123 124 return -EPIPE; 125 } 126 127 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 128 struct uvc_streaming_control *ctrl) 129 { 130 struct uvc_format *format = NULL; 131 struct uvc_frame *frame = NULL; 132 unsigned int i; 133 134 for (i = 0; i < stream->nformats; ++i) { 135 if (stream->format[i].index == ctrl->bFormatIndex) { 136 format = &stream->format[i]; 137 break; 138 } 139 } 140 141 if (format == NULL) 142 return; 143 144 for (i = 0; i < format->nframes; ++i) { 145 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 146 frame = &format->frame[i]; 147 break; 148 } 149 } 150 151 if (frame == NULL) 152 return; 153 154 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 155 (ctrl->dwMaxVideoFrameSize == 0 && 156 stream->dev->uvc_version < 0x0110)) 157 ctrl->dwMaxVideoFrameSize = 158 frame->dwMaxVideoFrameBufferSize; 159 160 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 161 * compute the bandwidth on 16 bits and erroneously sign-extend it to 162 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 163 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 164 */ 165 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 166 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 167 168 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 169 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 170 stream->intf->num_altsetting > 1) { 171 u32 interval; 172 u32 bandwidth; 173 174 interval = (ctrl->dwFrameInterval > 100000) 175 ? ctrl->dwFrameInterval 176 : frame->dwFrameInterval[0]; 177 178 /* Compute a bandwidth estimation by multiplying the frame 179 * size by the number of video frames per second, divide the 180 * result by the number of USB frames (or micro-frames for 181 * high-speed devices) per second and add the UVC header size 182 * (assumed to be 12 bytes long). 183 */ 184 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 185 bandwidth *= 10000000 / interval + 1; 186 bandwidth /= 1000; 187 if (stream->dev->udev->speed == USB_SPEED_HIGH) 188 bandwidth /= 8; 189 bandwidth += 12; 190 191 /* The bandwidth estimate is too low for many cameras. Don't use 192 * maximum packet sizes lower than 1024 bytes to try and work 193 * around the problem. According to measurements done on two 194 * different camera models, the value is high enough to get most 195 * resolutions working while not preventing two simultaneous 196 * VGA streams at 15 fps. 197 */ 198 bandwidth = max_t(u32, bandwidth, 1024); 199 200 ctrl->dwMaxPayloadTransferSize = bandwidth; 201 } 202 } 203 204 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 205 { 206 /* 207 * Return the size of the video probe and commit controls, which depends 208 * on the protocol version. 209 */ 210 if (stream->dev->uvc_version < 0x0110) 211 return 26; 212 else if (stream->dev->uvc_version < 0x0150) 213 return 34; 214 else 215 return 48; 216 } 217 218 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 219 struct uvc_streaming_control *ctrl, int probe, u8 query) 220 { 221 u16 size = uvc_video_ctrl_size(stream); 222 u8 *data; 223 int ret; 224 225 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 226 query == UVC_GET_DEF) 227 return -EIO; 228 229 data = kmalloc(size, GFP_KERNEL); 230 if (data == NULL) 231 return -ENOMEM; 232 233 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 234 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 235 size, uvc_timeout_param); 236 237 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 238 /* Some cameras, mostly based on Bison Electronics chipsets, 239 * answer a GET_MIN or GET_MAX request with the wCompQuality 240 * field only. 241 */ 242 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 243 "compliance - GET_MIN/MAX(PROBE) incorrectly " 244 "supported. Enabling workaround.\n"); 245 memset(ctrl, 0, sizeof(*ctrl)); 246 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 247 ret = 0; 248 goto out; 249 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 250 /* Many cameras don't support the GET_DEF request on their 251 * video probe control. Warn once and return, the caller will 252 * fall back to GET_CUR. 253 */ 254 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 255 "compliance - GET_DEF(PROBE) not supported. " 256 "Enabling workaround.\n"); 257 ret = -EIO; 258 goto out; 259 } else if (ret != size) { 260 dev_err(&stream->intf->dev, 261 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 262 query, probe ? "probe" : "commit", ret, size); 263 ret = -EIO; 264 goto out; 265 } 266 267 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 268 ctrl->bFormatIndex = data[2]; 269 ctrl->bFrameIndex = data[3]; 270 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 271 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 272 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 273 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 274 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 275 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 276 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 277 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 278 279 if (size >= 34) { 280 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 281 ctrl->bmFramingInfo = data[30]; 282 ctrl->bPreferedVersion = data[31]; 283 ctrl->bMinVersion = data[32]; 284 ctrl->bMaxVersion = data[33]; 285 } else { 286 ctrl->dwClockFrequency = stream->dev->clock_frequency; 287 ctrl->bmFramingInfo = 0; 288 ctrl->bPreferedVersion = 0; 289 ctrl->bMinVersion = 0; 290 ctrl->bMaxVersion = 0; 291 } 292 293 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 294 * dwMaxPayloadTransferSize fields. Try to get the value from the 295 * format and frame descriptors. 296 */ 297 uvc_fixup_video_ctrl(stream, ctrl); 298 ret = 0; 299 300 out: 301 kfree(data); 302 return ret; 303 } 304 305 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 306 struct uvc_streaming_control *ctrl, int probe) 307 { 308 u16 size = uvc_video_ctrl_size(stream); 309 u8 *data; 310 int ret; 311 312 data = kzalloc(size, GFP_KERNEL); 313 if (data == NULL) 314 return -ENOMEM; 315 316 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 317 data[2] = ctrl->bFormatIndex; 318 data[3] = ctrl->bFrameIndex; 319 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 320 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 321 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 322 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 323 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 324 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 325 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 326 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 327 328 if (size >= 34) { 329 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 330 data[30] = ctrl->bmFramingInfo; 331 data[31] = ctrl->bPreferedVersion; 332 data[32] = ctrl->bMinVersion; 333 data[33] = ctrl->bMaxVersion; 334 } 335 336 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 337 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 338 size, uvc_timeout_param); 339 if (ret != size) { 340 dev_err(&stream->intf->dev, 341 "Failed to set UVC %s control : %d (exp. %u).\n", 342 probe ? "probe" : "commit", ret, size); 343 ret = -EIO; 344 } 345 346 kfree(data); 347 return ret; 348 } 349 350 int uvc_probe_video(struct uvc_streaming *stream, 351 struct uvc_streaming_control *probe) 352 { 353 struct uvc_streaming_control probe_min, probe_max; 354 u16 bandwidth; 355 unsigned int i; 356 int ret; 357 358 /* Perform probing. The device should adjust the requested values 359 * according to its capabilities. However, some devices, namely the 360 * first generation UVC Logitech webcams, don't implement the Video 361 * Probe control properly, and just return the needed bandwidth. For 362 * that reason, if the needed bandwidth exceeds the maximum available 363 * bandwidth, try to lower the quality. 364 */ 365 ret = uvc_set_video_ctrl(stream, probe, 1); 366 if (ret < 0) 367 goto done; 368 369 /* Get the minimum and maximum values for compression settings. */ 370 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 371 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 372 if (ret < 0) 373 goto done; 374 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 375 if (ret < 0) 376 goto done; 377 378 probe->wCompQuality = probe_max.wCompQuality; 379 } 380 381 for (i = 0; i < 2; ++i) { 382 ret = uvc_set_video_ctrl(stream, probe, 1); 383 if (ret < 0) 384 goto done; 385 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 386 if (ret < 0) 387 goto done; 388 389 if (stream->intf->num_altsetting == 1) 390 break; 391 392 bandwidth = probe->dwMaxPayloadTransferSize; 393 if (bandwidth <= stream->maxpsize) 394 break; 395 396 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 397 ret = -ENOSPC; 398 goto done; 399 } 400 401 /* TODO: negotiate compression parameters */ 402 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 403 probe->wPFrameRate = probe_min.wPFrameRate; 404 probe->wCompQuality = probe_max.wCompQuality; 405 probe->wCompWindowSize = probe_min.wCompWindowSize; 406 } 407 408 done: 409 return ret; 410 } 411 412 static int uvc_commit_video(struct uvc_streaming *stream, 413 struct uvc_streaming_control *probe) 414 { 415 return uvc_set_video_ctrl(stream, probe, 0); 416 } 417 418 /* ----------------------------------------------------------------------------- 419 * Clocks and timestamps 420 */ 421 422 static inline ktime_t uvc_video_get_time(void) 423 { 424 if (uvc_clock_param == CLOCK_MONOTONIC) 425 return ktime_get(); 426 else 427 return ktime_get_real(); 428 } 429 430 static void 431 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 432 const u8 *data, int len) 433 { 434 struct uvc_clock_sample *sample; 435 unsigned int header_size; 436 bool has_pts = false; 437 bool has_scr = false; 438 unsigned long flags; 439 ktime_t time; 440 u16 host_sof; 441 u16 dev_sof; 442 443 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 444 case UVC_STREAM_PTS | UVC_STREAM_SCR: 445 header_size = 12; 446 has_pts = true; 447 has_scr = true; 448 break; 449 case UVC_STREAM_PTS: 450 header_size = 6; 451 has_pts = true; 452 break; 453 case UVC_STREAM_SCR: 454 header_size = 8; 455 has_scr = true; 456 break; 457 default: 458 header_size = 2; 459 break; 460 } 461 462 /* Check for invalid headers. */ 463 if (len < header_size) 464 return; 465 466 /* Extract the timestamps: 467 * 468 * - store the frame PTS in the buffer structure 469 * - if the SCR field is present, retrieve the host SOF counter and 470 * kernel timestamps and store them with the SCR STC and SOF fields 471 * in the ring buffer 472 */ 473 if (has_pts && buf != NULL) 474 buf->pts = get_unaligned_le32(&data[2]); 475 476 if (!has_scr) 477 return; 478 479 /* To limit the amount of data, drop SCRs with an SOF identical to the 480 * previous one. 481 */ 482 dev_sof = get_unaligned_le16(&data[header_size - 2]); 483 if (dev_sof == stream->clock.last_sof) 484 return; 485 486 stream->clock.last_sof = dev_sof; 487 488 host_sof = usb_get_current_frame_number(stream->dev->udev); 489 time = uvc_video_get_time(); 490 491 /* The UVC specification allows device implementations that can't obtain 492 * the USB frame number to keep their own frame counters as long as they 493 * match the size and frequency of the frame number associated with USB 494 * SOF tokens. The SOF values sent by such devices differ from the USB 495 * SOF tokens by a fixed offset that needs to be estimated and accounted 496 * for to make timestamp recovery as accurate as possible. 497 * 498 * The offset is estimated the first time a device SOF value is received 499 * as the difference between the host and device SOF values. As the two 500 * SOF values can differ slightly due to transmission delays, consider 501 * that the offset is null if the difference is not higher than 10 ms 502 * (negative differences can not happen and are thus considered as an 503 * offset). The video commit control wDelay field should be used to 504 * compute a dynamic threshold instead of using a fixed 10 ms value, but 505 * devices don't report reliable wDelay values. 506 * 507 * See uvc_video_clock_host_sof() for an explanation regarding why only 508 * the 8 LSBs of the delta are kept. 509 */ 510 if (stream->clock.sof_offset == (u16)-1) { 511 u16 delta_sof = (host_sof - dev_sof) & 255; 512 if (delta_sof >= 10) 513 stream->clock.sof_offset = delta_sof; 514 else 515 stream->clock.sof_offset = 0; 516 } 517 518 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 519 520 spin_lock_irqsave(&stream->clock.lock, flags); 521 522 sample = &stream->clock.samples[stream->clock.head]; 523 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 524 sample->dev_sof = dev_sof; 525 sample->host_sof = host_sof; 526 sample->host_time = time; 527 528 /* Update the sliding window head and count. */ 529 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 530 531 if (stream->clock.count < stream->clock.size) 532 stream->clock.count++; 533 534 spin_unlock_irqrestore(&stream->clock.lock, flags); 535 } 536 537 static void uvc_video_clock_reset(struct uvc_streaming *stream) 538 { 539 struct uvc_clock *clock = &stream->clock; 540 541 clock->head = 0; 542 clock->count = 0; 543 clock->last_sof = -1; 544 clock->sof_offset = -1; 545 } 546 547 static int uvc_video_clock_init(struct uvc_streaming *stream) 548 { 549 struct uvc_clock *clock = &stream->clock; 550 551 spin_lock_init(&clock->lock); 552 clock->size = 32; 553 554 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 555 GFP_KERNEL); 556 if (clock->samples == NULL) 557 return -ENOMEM; 558 559 uvc_video_clock_reset(stream); 560 561 return 0; 562 } 563 564 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 565 { 566 kfree(stream->clock.samples); 567 stream->clock.samples = NULL; 568 } 569 570 /* 571 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 572 * 573 * Host SOF counters reported by usb_get_current_frame_number() usually don't 574 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 575 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 576 * controller and its configuration. 577 * 578 * We thus need to recover the SOF value corresponding to the host frame number. 579 * As the device and host frame numbers are sampled in a short interval, the 580 * difference between their values should be equal to a small delta plus an 581 * integer multiple of 256 caused by the host frame number limited precision. 582 * 583 * To obtain the recovered host SOF value, compute the small delta by masking 584 * the high bits of the host frame counter and device SOF difference and add it 585 * to the device SOF value. 586 */ 587 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 588 { 589 /* The delta value can be negative. */ 590 s8 delta_sof; 591 592 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 593 594 return (sample->dev_sof + delta_sof) & 2047; 595 } 596 597 /* 598 * uvc_video_clock_update - Update the buffer timestamp 599 * 600 * This function converts the buffer PTS timestamp to the host clock domain by 601 * going through the USB SOF clock domain and stores the result in the V4L2 602 * buffer timestamp field. 603 * 604 * The relationship between the device clock and the host clock isn't known. 605 * However, the device and the host share the common USB SOF clock which can be 606 * used to recover that relationship. 607 * 608 * The relationship between the device clock and the USB SOF clock is considered 609 * to be linear over the clock samples sliding window and is given by 610 * 611 * SOF = m * PTS + p 612 * 613 * Several methods to compute the slope (m) and intercept (p) can be used. As 614 * the clock drift should be small compared to the sliding window size, we 615 * assume that the line that goes through the points at both ends of the window 616 * is a good approximation. Naming those points P1 and P2, we get 617 * 618 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 619 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 620 * 621 * or 622 * 623 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 624 * 625 * to avoid losing precision in the division. Similarly, the host timestamp is 626 * computed with 627 * 628 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 629 * 630 * SOF values are coded on 11 bits by USB. We extend their precision with 16 631 * decimal bits, leading to a 11.16 coding. 632 * 633 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 634 * be normalized using the nominal device clock frequency reported through the 635 * UVC descriptors. 636 * 637 * Both the PTS/STC and SOF counters roll over, after a fixed but device 638 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 639 * sliding window size is smaller than the rollover period, differences computed 640 * on unsigned integers will produce the correct result. However, the p term in 641 * the linear relations will be miscomputed. 642 * 643 * To fix the issue, we subtract a constant from the PTS and STC values to bring 644 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 645 * the 32 bit range without any rollover. 646 * 647 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 648 * computed by (1) will never be smaller than 0. This offset is then compensated 649 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 650 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 651 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 652 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 653 * SOF value at the end of the sliding window. 654 * 655 * Finally we subtract a constant from the host timestamps to bring the first 656 * timestamp of the sliding window to 1s. 657 */ 658 void uvc_video_clock_update(struct uvc_streaming *stream, 659 struct vb2_v4l2_buffer *vbuf, 660 struct uvc_buffer *buf) 661 { 662 struct uvc_clock *clock = &stream->clock; 663 struct uvc_clock_sample *first; 664 struct uvc_clock_sample *last; 665 unsigned long flags; 666 u64 timestamp; 667 u32 delta_stc; 668 u32 y1, y2; 669 u32 x1, x2; 670 u32 mean; 671 u32 sof; 672 u64 y; 673 674 if (!uvc_hw_timestamps_param) 675 return; 676 677 /* 678 * We will get called from __vb2_queue_cancel() if there are buffers 679 * done but not dequeued by the user, but the sample array has already 680 * been released at that time. Just bail out in that case. 681 */ 682 if (!clock->samples) 683 return; 684 685 spin_lock_irqsave(&clock->lock, flags); 686 687 if (clock->count < clock->size) 688 goto done; 689 690 first = &clock->samples[clock->head]; 691 last = &clock->samples[(clock->head - 1) % clock->size]; 692 693 /* First step, PTS to SOF conversion. */ 694 delta_stc = buf->pts - (1UL << 31); 695 x1 = first->dev_stc - delta_stc; 696 x2 = last->dev_stc - delta_stc; 697 if (x1 == x2) 698 goto done; 699 700 y1 = (first->dev_sof + 2048) << 16; 701 y2 = (last->dev_sof + 2048) << 16; 702 if (y2 < y1) 703 y2 += 2048 << 16; 704 705 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 706 - (u64)y2 * (u64)x1; 707 y = div_u64(y, x2 - x1); 708 709 sof = y; 710 711 uvc_dbg(stream->dev, CLOCK, 712 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 713 stream->dev->name, buf->pts, 714 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 715 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 716 x1, x2, y1, y2, clock->sof_offset); 717 718 /* Second step, SOF to host clock conversion. */ 719 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 720 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 721 if (x2 < x1) 722 x2 += 2048 << 16; 723 if (x1 == x2) 724 goto done; 725 726 y1 = NSEC_PER_SEC; 727 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 728 729 /* Interpolated and host SOF timestamps can wrap around at slightly 730 * different times. Handle this by adding or removing 2048 to or from 731 * the computed SOF value to keep it close to the SOF samples mean 732 * value. 733 */ 734 mean = (x1 + x2) / 2; 735 if (mean - (1024 << 16) > sof) 736 sof += 2048 << 16; 737 else if (sof > mean + (1024 << 16)) 738 sof -= 2048 << 16; 739 740 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 741 - (u64)y2 * (u64)x1; 742 y = div_u64(y, x2 - x1); 743 744 timestamp = ktime_to_ns(first->host_time) + y - y1; 745 746 uvc_dbg(stream->dev, CLOCK, 747 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 748 stream->dev->name, 749 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 750 y, timestamp, vbuf->vb2_buf.timestamp, 751 x1, first->host_sof, first->dev_sof, 752 x2, last->host_sof, last->dev_sof, y1, y2); 753 754 /* Update the V4L2 buffer. */ 755 vbuf->vb2_buf.timestamp = timestamp; 756 757 done: 758 spin_unlock_irqrestore(&clock->lock, flags); 759 } 760 761 /* ------------------------------------------------------------------------ 762 * Stream statistics 763 */ 764 765 static void uvc_video_stats_decode(struct uvc_streaming *stream, 766 const u8 *data, int len) 767 { 768 unsigned int header_size; 769 bool has_pts = false; 770 bool has_scr = false; 771 u16 scr_sof; 772 u32 scr_stc; 773 u32 pts; 774 775 if (stream->stats.stream.nb_frames == 0 && 776 stream->stats.frame.nb_packets == 0) 777 stream->stats.stream.start_ts = ktime_get(); 778 779 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 780 case UVC_STREAM_PTS | UVC_STREAM_SCR: 781 header_size = 12; 782 has_pts = true; 783 has_scr = true; 784 break; 785 case UVC_STREAM_PTS: 786 header_size = 6; 787 has_pts = true; 788 break; 789 case UVC_STREAM_SCR: 790 header_size = 8; 791 has_scr = true; 792 break; 793 default: 794 header_size = 2; 795 break; 796 } 797 798 /* Check for invalid headers. */ 799 if (len < header_size || data[0] < header_size) { 800 stream->stats.frame.nb_invalid++; 801 return; 802 } 803 804 /* Extract the timestamps. */ 805 if (has_pts) 806 pts = get_unaligned_le32(&data[2]); 807 808 if (has_scr) { 809 scr_stc = get_unaligned_le32(&data[header_size - 6]); 810 scr_sof = get_unaligned_le16(&data[header_size - 2]); 811 } 812 813 /* Is PTS constant through the whole frame ? */ 814 if (has_pts && stream->stats.frame.nb_pts) { 815 if (stream->stats.frame.pts != pts) { 816 stream->stats.frame.nb_pts_diffs++; 817 stream->stats.frame.last_pts_diff = 818 stream->stats.frame.nb_packets; 819 } 820 } 821 822 if (has_pts) { 823 stream->stats.frame.nb_pts++; 824 stream->stats.frame.pts = pts; 825 } 826 827 /* Do all frames have a PTS in their first non-empty packet, or before 828 * their first empty packet ? 829 */ 830 if (stream->stats.frame.size == 0) { 831 if (len > header_size) 832 stream->stats.frame.has_initial_pts = has_pts; 833 if (len == header_size && has_pts) 834 stream->stats.frame.has_early_pts = true; 835 } 836 837 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 838 if (has_scr && stream->stats.frame.nb_scr) { 839 if (stream->stats.frame.scr_stc != scr_stc) 840 stream->stats.frame.nb_scr_diffs++; 841 } 842 843 if (has_scr) { 844 /* Expand the SOF counter to 32 bits and store its value. */ 845 if (stream->stats.stream.nb_frames > 0 || 846 stream->stats.frame.nb_scr > 0) 847 stream->stats.stream.scr_sof_count += 848 (scr_sof - stream->stats.stream.scr_sof) % 2048; 849 stream->stats.stream.scr_sof = scr_sof; 850 851 stream->stats.frame.nb_scr++; 852 stream->stats.frame.scr_stc = scr_stc; 853 stream->stats.frame.scr_sof = scr_sof; 854 855 if (scr_sof < stream->stats.stream.min_sof) 856 stream->stats.stream.min_sof = scr_sof; 857 if (scr_sof > stream->stats.stream.max_sof) 858 stream->stats.stream.max_sof = scr_sof; 859 } 860 861 /* Record the first non-empty packet number. */ 862 if (stream->stats.frame.size == 0 && len > header_size) 863 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 864 865 /* Update the frame size. */ 866 stream->stats.frame.size += len - header_size; 867 868 /* Update the packets counters. */ 869 stream->stats.frame.nb_packets++; 870 if (len <= header_size) 871 stream->stats.frame.nb_empty++; 872 873 if (data[1] & UVC_STREAM_ERR) 874 stream->stats.frame.nb_errors++; 875 } 876 877 static void uvc_video_stats_update(struct uvc_streaming *stream) 878 { 879 struct uvc_stats_frame *frame = &stream->stats.frame; 880 881 uvc_dbg(stream->dev, STATS, 882 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 883 stream->sequence, frame->first_data, 884 frame->nb_packets - frame->nb_empty, frame->nb_packets, 885 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 886 frame->has_early_pts ? "" : "!", 887 frame->has_initial_pts ? "" : "!", 888 frame->nb_scr_diffs, frame->nb_scr, 889 frame->pts, frame->scr_stc, frame->scr_sof); 890 891 stream->stats.stream.nb_frames++; 892 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 893 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 894 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 895 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 896 897 if (frame->has_early_pts) 898 stream->stats.stream.nb_pts_early++; 899 if (frame->has_initial_pts) 900 stream->stats.stream.nb_pts_initial++; 901 if (frame->last_pts_diff <= frame->first_data) 902 stream->stats.stream.nb_pts_constant++; 903 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 904 stream->stats.stream.nb_scr_count_ok++; 905 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 906 stream->stats.stream.nb_scr_diffs_ok++; 907 908 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 909 } 910 911 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 912 size_t size) 913 { 914 unsigned int scr_sof_freq; 915 unsigned int duration; 916 size_t count = 0; 917 918 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 919 * frequency this will not overflow before more than 1h. 920 */ 921 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 922 stream->stats.stream.start_ts); 923 if (duration != 0) 924 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 925 / duration; 926 else 927 scr_sof_freq = 0; 928 929 count += scnprintf(buf + count, size - count, 930 "frames: %u\npackets: %u\nempty: %u\n" 931 "errors: %u\ninvalid: %u\n", 932 stream->stats.stream.nb_frames, 933 stream->stats.stream.nb_packets, 934 stream->stats.stream.nb_empty, 935 stream->stats.stream.nb_errors, 936 stream->stats.stream.nb_invalid); 937 count += scnprintf(buf + count, size - count, 938 "pts: %u early, %u initial, %u ok\n", 939 stream->stats.stream.nb_pts_early, 940 stream->stats.stream.nb_pts_initial, 941 stream->stats.stream.nb_pts_constant); 942 count += scnprintf(buf + count, size - count, 943 "scr: %u count ok, %u diff ok\n", 944 stream->stats.stream.nb_scr_count_ok, 945 stream->stats.stream.nb_scr_diffs_ok); 946 count += scnprintf(buf + count, size - count, 947 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 948 stream->stats.stream.min_sof, 949 stream->stats.stream.max_sof, 950 scr_sof_freq / 1000, scr_sof_freq % 1000); 951 952 return count; 953 } 954 955 static void uvc_video_stats_start(struct uvc_streaming *stream) 956 { 957 memset(&stream->stats, 0, sizeof(stream->stats)); 958 stream->stats.stream.min_sof = 2048; 959 } 960 961 static void uvc_video_stats_stop(struct uvc_streaming *stream) 962 { 963 stream->stats.stream.stop_ts = ktime_get(); 964 } 965 966 /* ------------------------------------------------------------------------ 967 * Video codecs 968 */ 969 970 /* Video payload decoding is handled by uvc_video_decode_start(), 971 * uvc_video_decode_data() and uvc_video_decode_end(). 972 * 973 * uvc_video_decode_start is called with URB data at the start of a bulk or 974 * isochronous payload. It processes header data and returns the header size 975 * in bytes if successful. If an error occurs, it returns a negative error 976 * code. The following error codes have special meanings. 977 * 978 * - EAGAIN informs the caller that the current video buffer should be marked 979 * as done, and that the function should be called again with the same data 980 * and a new video buffer. This is used when end of frame conditions can be 981 * reliably detected at the beginning of the next frame only. 982 * 983 * If an error other than -EAGAIN is returned, the caller will drop the current 984 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 985 * made until the next payload. -ENODATA can be used to drop the current 986 * payload if no other error code is appropriate. 987 * 988 * uvc_video_decode_data is called for every URB with URB data. It copies the 989 * data to the video buffer. 990 * 991 * uvc_video_decode_end is called with header data at the end of a bulk or 992 * isochronous payload. It performs any additional header data processing and 993 * returns 0 or a negative error code if an error occurred. As header data have 994 * already been processed by uvc_video_decode_start, this functions isn't 995 * required to perform sanity checks a second time. 996 * 997 * For isochronous transfers where a payload is always transferred in a single 998 * URB, the three functions will be called in a row. 999 * 1000 * To let the decoder process header data and update its internal state even 1001 * when no video buffer is available, uvc_video_decode_start must be prepared 1002 * to be called with a NULL buf parameter. uvc_video_decode_data and 1003 * uvc_video_decode_end will never be called with a NULL buffer. 1004 */ 1005 static int uvc_video_decode_start(struct uvc_streaming *stream, 1006 struct uvc_buffer *buf, const u8 *data, int len) 1007 { 1008 u8 fid; 1009 1010 /* Sanity checks: 1011 * - packet must be at least 2 bytes long 1012 * - bHeaderLength value must be at least 2 bytes (see above) 1013 * - bHeaderLength value can't be larger than the packet size. 1014 */ 1015 if (len < 2 || data[0] < 2 || data[0] > len) { 1016 stream->stats.frame.nb_invalid++; 1017 return -EINVAL; 1018 } 1019 1020 fid = data[1] & UVC_STREAM_FID; 1021 1022 /* Increase the sequence number regardless of any buffer states, so 1023 * that discontinuous sequence numbers always indicate lost frames. 1024 */ 1025 if (stream->last_fid != fid) { 1026 stream->sequence++; 1027 if (stream->sequence) 1028 uvc_video_stats_update(stream); 1029 } 1030 1031 uvc_video_clock_decode(stream, buf, data, len); 1032 uvc_video_stats_decode(stream, data, len); 1033 1034 /* Store the payload FID bit and return immediately when the buffer is 1035 * NULL. 1036 */ 1037 if (buf == NULL) { 1038 stream->last_fid = fid; 1039 return -ENODATA; 1040 } 1041 1042 /* Mark the buffer as bad if the error bit is set. */ 1043 if (data[1] & UVC_STREAM_ERR) { 1044 uvc_dbg(stream->dev, FRAME, 1045 "Marking buffer as bad (error bit set)\n"); 1046 buf->error = 1; 1047 } 1048 1049 /* Synchronize to the input stream by waiting for the FID bit to be 1050 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1051 * stream->last_fid is initialized to -1, so the first isochronous 1052 * frame will always be in sync. 1053 * 1054 * If the device doesn't toggle the FID bit, invert stream->last_fid 1055 * when the EOF bit is set to force synchronisation on the next packet. 1056 */ 1057 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1058 if (fid == stream->last_fid) { 1059 uvc_dbg(stream->dev, FRAME, 1060 "Dropping payload (out of sync)\n"); 1061 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1062 (data[1] & UVC_STREAM_EOF)) 1063 stream->last_fid ^= UVC_STREAM_FID; 1064 return -ENODATA; 1065 } 1066 1067 buf->buf.field = V4L2_FIELD_NONE; 1068 buf->buf.sequence = stream->sequence; 1069 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1070 1071 /* TODO: Handle PTS and SCR. */ 1072 buf->state = UVC_BUF_STATE_ACTIVE; 1073 } 1074 1075 /* Mark the buffer as done if we're at the beginning of a new frame. 1076 * End of frame detection is better implemented by checking the EOF 1077 * bit (FID bit toggling is delayed by one frame compared to the EOF 1078 * bit), but some devices don't set the bit at end of frame (and the 1079 * last payload can be lost anyway). We thus must check if the FID has 1080 * been toggled. 1081 * 1082 * stream->last_fid is initialized to -1, so the first isochronous 1083 * frame will never trigger an end of frame detection. 1084 * 1085 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1086 * as it doesn't make sense to return an empty buffer. This also 1087 * avoids detecting end of frame conditions at FID toggling if the 1088 * previous payload had the EOF bit set. 1089 */ 1090 if (fid != stream->last_fid && buf->bytesused != 0) { 1091 uvc_dbg(stream->dev, FRAME, 1092 "Frame complete (FID bit toggled)\n"); 1093 buf->state = UVC_BUF_STATE_READY; 1094 return -EAGAIN; 1095 } 1096 1097 stream->last_fid = fid; 1098 1099 return data[0]; 1100 } 1101 1102 static inline enum dma_data_direction uvc_stream_dir( 1103 struct uvc_streaming *stream) 1104 { 1105 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1106 return DMA_FROM_DEVICE; 1107 else 1108 return DMA_TO_DEVICE; 1109 } 1110 1111 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1112 { 1113 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1114 } 1115 1116 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1117 { 1118 /* Sync DMA. */ 1119 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1120 uvc_urb->sgt, 1121 uvc_stream_dir(uvc_urb->stream)); 1122 return usb_submit_urb(uvc_urb->urb, mem_flags); 1123 } 1124 1125 /* 1126 * uvc_video_decode_data_work: Asynchronous memcpy processing 1127 * 1128 * Copy URB data to video buffers in process context, releasing buffer 1129 * references and requeuing the URB when done. 1130 */ 1131 static void uvc_video_copy_data_work(struct work_struct *work) 1132 { 1133 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1134 unsigned int i; 1135 int ret; 1136 1137 for (i = 0; i < uvc_urb->async_operations; i++) { 1138 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1139 1140 memcpy(op->dst, op->src, op->len); 1141 1142 /* Release reference taken on this buffer. */ 1143 uvc_queue_buffer_release(op->buf); 1144 } 1145 1146 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1147 if (ret < 0) 1148 dev_err(&uvc_urb->stream->intf->dev, 1149 "Failed to resubmit video URB (%d).\n", ret); 1150 } 1151 1152 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1153 struct uvc_buffer *buf, const u8 *data, int len) 1154 { 1155 unsigned int active_op = uvc_urb->async_operations; 1156 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1157 unsigned int maxlen; 1158 1159 if (len <= 0) 1160 return; 1161 1162 maxlen = buf->length - buf->bytesused; 1163 1164 /* Take a buffer reference for async work. */ 1165 kref_get(&buf->ref); 1166 1167 op->buf = buf; 1168 op->src = data; 1169 op->dst = buf->mem + buf->bytesused; 1170 op->len = min_t(unsigned int, len, maxlen); 1171 1172 buf->bytesused += op->len; 1173 1174 /* Complete the current frame if the buffer size was exceeded. */ 1175 if (len > maxlen) { 1176 uvc_dbg(uvc_urb->stream->dev, FRAME, 1177 "Frame complete (overflow)\n"); 1178 buf->error = 1; 1179 buf->state = UVC_BUF_STATE_READY; 1180 } 1181 1182 uvc_urb->async_operations++; 1183 } 1184 1185 static void uvc_video_decode_end(struct uvc_streaming *stream, 1186 struct uvc_buffer *buf, const u8 *data, int len) 1187 { 1188 /* Mark the buffer as done if the EOF marker is set. */ 1189 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1190 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1191 if (data[0] == len) 1192 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1193 buf->state = UVC_BUF_STATE_READY; 1194 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1195 stream->last_fid ^= UVC_STREAM_FID; 1196 } 1197 } 1198 1199 /* Video payload encoding is handled by uvc_video_encode_header() and 1200 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1201 * 1202 * uvc_video_encode_header is called at the start of a payload. It adds header 1203 * data to the transfer buffer and returns the header size. As the only known 1204 * UVC output device transfers a whole frame in a single payload, the EOF bit 1205 * is always set in the header. 1206 * 1207 * uvc_video_encode_data is called for every URB and copies the data from the 1208 * video buffer to the transfer buffer. 1209 */ 1210 static int uvc_video_encode_header(struct uvc_streaming *stream, 1211 struct uvc_buffer *buf, u8 *data, int len) 1212 { 1213 data[0] = 2; /* Header length */ 1214 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1215 | (stream->last_fid & UVC_STREAM_FID); 1216 return 2; 1217 } 1218 1219 static int uvc_video_encode_data(struct uvc_streaming *stream, 1220 struct uvc_buffer *buf, u8 *data, int len) 1221 { 1222 struct uvc_video_queue *queue = &stream->queue; 1223 unsigned int nbytes; 1224 void *mem; 1225 1226 /* Copy video data to the URB buffer. */ 1227 mem = buf->mem + queue->buf_used; 1228 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1229 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1230 nbytes); 1231 memcpy(data, mem, nbytes); 1232 1233 queue->buf_used += nbytes; 1234 1235 return nbytes; 1236 } 1237 1238 /* ------------------------------------------------------------------------ 1239 * Metadata 1240 */ 1241 1242 /* 1243 * Additionally to the payload headers we also want to provide the user with USB 1244 * Frame Numbers and system time values. The resulting buffer is thus composed 1245 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1246 * Number, and a copy of the payload header. 1247 * 1248 * Ideally we want to capture all payload headers for each frame. However, their 1249 * number is unknown and unbound. We thus drop headers that contain no vendor 1250 * data and that either contain no SCR value or an SCR value identical to the 1251 * previous header. 1252 */ 1253 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1254 struct uvc_buffer *meta_buf, 1255 const u8 *mem, unsigned int length) 1256 { 1257 struct uvc_meta_buf *meta; 1258 size_t len_std = 2; 1259 bool has_pts, has_scr; 1260 unsigned long flags; 1261 unsigned int sof; 1262 ktime_t time; 1263 const u8 *scr; 1264 1265 if (!meta_buf || length == 2) 1266 return; 1267 1268 if (meta_buf->length - meta_buf->bytesused < 1269 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1270 meta_buf->error = 1; 1271 return; 1272 } 1273 1274 has_pts = mem[1] & UVC_STREAM_PTS; 1275 has_scr = mem[1] & UVC_STREAM_SCR; 1276 1277 if (has_pts) { 1278 len_std += 4; 1279 scr = mem + 6; 1280 } else { 1281 scr = mem + 2; 1282 } 1283 1284 if (has_scr) 1285 len_std += 6; 1286 1287 if (stream->meta.format == V4L2_META_FMT_UVC) 1288 length = len_std; 1289 1290 if (length == len_std && (!has_scr || 1291 !memcmp(scr, stream->clock.last_scr, 6))) 1292 return; 1293 1294 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1295 local_irq_save(flags); 1296 time = uvc_video_get_time(); 1297 sof = usb_get_current_frame_number(stream->dev->udev); 1298 local_irq_restore(flags); 1299 put_unaligned(ktime_to_ns(time), &meta->ns); 1300 put_unaligned(sof, &meta->sof); 1301 1302 if (has_scr) 1303 memcpy(stream->clock.last_scr, scr, 6); 1304 1305 memcpy(&meta->length, mem, length); 1306 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1307 1308 uvc_dbg(stream->dev, FRAME, 1309 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1310 __func__, ktime_to_ns(time), meta->sof, meta->length, 1311 meta->flags, 1312 has_pts ? *(u32 *)meta->buf : 0, 1313 has_scr ? *(u32 *)scr : 0, 1314 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1315 } 1316 1317 /* ------------------------------------------------------------------------ 1318 * URB handling 1319 */ 1320 1321 /* 1322 * Set error flag for incomplete buffer. 1323 */ 1324 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1325 struct uvc_buffer *buf) 1326 { 1327 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1328 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1329 buf->error = 1; 1330 } 1331 1332 /* 1333 * Completion handler for video URBs. 1334 */ 1335 1336 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1337 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1338 { 1339 uvc_video_validate_buffer(stream, *video_buf); 1340 1341 if (*meta_buf) { 1342 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1343 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1344 1345 vb2_meta->sequence = vb2_video->sequence; 1346 vb2_meta->field = vb2_video->field; 1347 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1348 1349 (*meta_buf)->state = UVC_BUF_STATE_READY; 1350 if (!(*meta_buf)->error) 1351 (*meta_buf)->error = (*video_buf)->error; 1352 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1353 *meta_buf); 1354 } 1355 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1356 } 1357 1358 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1359 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1360 { 1361 struct urb *urb = uvc_urb->urb; 1362 struct uvc_streaming *stream = uvc_urb->stream; 1363 u8 *mem; 1364 int ret, i; 1365 1366 for (i = 0; i < urb->number_of_packets; ++i) { 1367 if (urb->iso_frame_desc[i].status < 0) { 1368 uvc_dbg(stream->dev, FRAME, 1369 "USB isochronous frame lost (%d)\n", 1370 urb->iso_frame_desc[i].status); 1371 /* Mark the buffer as faulty. */ 1372 if (buf != NULL) 1373 buf->error = 1; 1374 continue; 1375 } 1376 1377 /* Decode the payload header. */ 1378 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1379 do { 1380 ret = uvc_video_decode_start(stream, buf, mem, 1381 urb->iso_frame_desc[i].actual_length); 1382 if (ret == -EAGAIN) 1383 uvc_video_next_buffers(stream, &buf, &meta_buf); 1384 } while (ret == -EAGAIN); 1385 1386 if (ret < 0) 1387 continue; 1388 1389 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1390 1391 /* Decode the payload data. */ 1392 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1393 urb->iso_frame_desc[i].actual_length - ret); 1394 1395 /* Process the header again. */ 1396 uvc_video_decode_end(stream, buf, mem, 1397 urb->iso_frame_desc[i].actual_length); 1398 1399 if (buf->state == UVC_BUF_STATE_READY) 1400 uvc_video_next_buffers(stream, &buf, &meta_buf); 1401 } 1402 } 1403 1404 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1405 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1406 { 1407 struct urb *urb = uvc_urb->urb; 1408 struct uvc_streaming *stream = uvc_urb->stream; 1409 u8 *mem; 1410 int len, ret; 1411 1412 /* 1413 * Ignore ZLPs if they're not part of a frame, otherwise process them 1414 * to trigger the end of payload detection. 1415 */ 1416 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1417 return; 1418 1419 mem = urb->transfer_buffer; 1420 len = urb->actual_length; 1421 stream->bulk.payload_size += len; 1422 1423 /* If the URB is the first of its payload, decode and save the 1424 * header. 1425 */ 1426 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1427 do { 1428 ret = uvc_video_decode_start(stream, buf, mem, len); 1429 if (ret == -EAGAIN) 1430 uvc_video_next_buffers(stream, &buf, &meta_buf); 1431 } while (ret == -EAGAIN); 1432 1433 /* If an error occurred skip the rest of the payload. */ 1434 if (ret < 0 || buf == NULL) { 1435 stream->bulk.skip_payload = 1; 1436 } else { 1437 memcpy(stream->bulk.header, mem, ret); 1438 stream->bulk.header_size = ret; 1439 1440 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1441 1442 mem += ret; 1443 len -= ret; 1444 } 1445 } 1446 1447 /* The buffer queue might have been cancelled while a bulk transfer 1448 * was in progress, so we can reach here with buf equal to NULL. Make 1449 * sure buf is never dereferenced if NULL. 1450 */ 1451 1452 /* Prepare video data for processing. */ 1453 if (!stream->bulk.skip_payload && buf != NULL) 1454 uvc_video_decode_data(uvc_urb, buf, mem, len); 1455 1456 /* Detect the payload end by a URB smaller than the maximum size (or 1457 * a payload size equal to the maximum) and process the header again. 1458 */ 1459 if (urb->actual_length < urb->transfer_buffer_length || 1460 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1461 if (!stream->bulk.skip_payload && buf != NULL) { 1462 uvc_video_decode_end(stream, buf, stream->bulk.header, 1463 stream->bulk.payload_size); 1464 if (buf->state == UVC_BUF_STATE_READY) 1465 uvc_video_next_buffers(stream, &buf, &meta_buf); 1466 } 1467 1468 stream->bulk.header_size = 0; 1469 stream->bulk.skip_payload = 0; 1470 stream->bulk.payload_size = 0; 1471 } 1472 } 1473 1474 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1475 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1476 { 1477 struct urb *urb = uvc_urb->urb; 1478 struct uvc_streaming *stream = uvc_urb->stream; 1479 1480 u8 *mem = urb->transfer_buffer; 1481 int len = stream->urb_size, ret; 1482 1483 if (buf == NULL) { 1484 urb->transfer_buffer_length = 0; 1485 return; 1486 } 1487 1488 /* If the URB is the first of its payload, add the header. */ 1489 if (stream->bulk.header_size == 0) { 1490 ret = uvc_video_encode_header(stream, buf, mem, len); 1491 stream->bulk.header_size = ret; 1492 stream->bulk.payload_size += ret; 1493 mem += ret; 1494 len -= ret; 1495 } 1496 1497 /* Process video data. */ 1498 ret = uvc_video_encode_data(stream, buf, mem, len); 1499 1500 stream->bulk.payload_size += ret; 1501 len -= ret; 1502 1503 if (buf->bytesused == stream->queue.buf_used || 1504 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1505 if (buf->bytesused == stream->queue.buf_used) { 1506 stream->queue.buf_used = 0; 1507 buf->state = UVC_BUF_STATE_READY; 1508 buf->buf.sequence = ++stream->sequence; 1509 uvc_queue_next_buffer(&stream->queue, buf); 1510 stream->last_fid ^= UVC_STREAM_FID; 1511 } 1512 1513 stream->bulk.header_size = 0; 1514 stream->bulk.payload_size = 0; 1515 } 1516 1517 urb->transfer_buffer_length = stream->urb_size - len; 1518 } 1519 1520 static void uvc_video_complete(struct urb *urb) 1521 { 1522 struct uvc_urb *uvc_urb = urb->context; 1523 struct uvc_streaming *stream = uvc_urb->stream; 1524 struct uvc_video_queue *queue = &stream->queue; 1525 struct uvc_video_queue *qmeta = &stream->meta.queue; 1526 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1527 struct uvc_buffer *buf = NULL; 1528 struct uvc_buffer *buf_meta = NULL; 1529 unsigned long flags; 1530 int ret; 1531 1532 switch (urb->status) { 1533 case 0: 1534 break; 1535 1536 default: 1537 dev_warn(&stream->intf->dev, 1538 "Non-zero status (%d) in video completion handler.\n", 1539 urb->status); 1540 fallthrough; 1541 case -ENOENT: /* usb_poison_urb() called. */ 1542 if (stream->frozen) 1543 return; 1544 fallthrough; 1545 case -ECONNRESET: /* usb_unlink_urb() called. */ 1546 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1547 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1548 if (vb2_qmeta) 1549 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1550 return; 1551 } 1552 1553 buf = uvc_queue_get_current_buffer(queue); 1554 1555 if (vb2_qmeta) { 1556 spin_lock_irqsave(&qmeta->irqlock, flags); 1557 if (!list_empty(&qmeta->irqqueue)) 1558 buf_meta = list_first_entry(&qmeta->irqqueue, 1559 struct uvc_buffer, queue); 1560 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1561 } 1562 1563 /* Re-initialise the URB async work. */ 1564 uvc_urb->async_operations = 0; 1565 1566 /* Sync DMA and invalidate vmap range. */ 1567 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1568 uvc_urb->sgt, uvc_stream_dir(stream)); 1569 invalidate_kernel_vmap_range(uvc_urb->buffer, 1570 uvc_urb->stream->urb_size); 1571 1572 /* 1573 * Process the URB headers, and optionally queue expensive memcpy tasks 1574 * to be deferred to a work queue. 1575 */ 1576 stream->decode(uvc_urb, buf, buf_meta); 1577 1578 /* If no async work is needed, resubmit the URB immediately. */ 1579 if (!uvc_urb->async_operations) { 1580 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1581 if (ret < 0) 1582 dev_err(&stream->intf->dev, 1583 "Failed to resubmit video URB (%d).\n", ret); 1584 return; 1585 } 1586 1587 queue_work(stream->async_wq, &uvc_urb->work); 1588 } 1589 1590 /* 1591 * Free transfer buffers. 1592 */ 1593 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1594 { 1595 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1596 struct uvc_urb *uvc_urb; 1597 1598 for_each_uvc_urb(uvc_urb, stream) { 1599 if (!uvc_urb->buffer) 1600 continue; 1601 1602 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1603 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1604 uvc_stream_dir(stream)); 1605 1606 uvc_urb->buffer = NULL; 1607 uvc_urb->sgt = NULL; 1608 } 1609 1610 stream->urb_size = 0; 1611 } 1612 1613 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1614 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1615 { 1616 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1617 1618 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1619 uvc_stream_dir(stream), 1620 gfp_flags, 0); 1621 if (!uvc_urb->sgt) 1622 return false; 1623 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1624 1625 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1626 uvc_urb->sgt); 1627 if (!uvc_urb->buffer) { 1628 dma_free_noncontiguous(dma_dev, stream->urb_size, 1629 uvc_urb->sgt, 1630 uvc_stream_dir(stream)); 1631 uvc_urb->sgt = NULL; 1632 return false; 1633 } 1634 1635 return true; 1636 } 1637 1638 /* 1639 * Allocate transfer buffers. This function can be called with buffers 1640 * already allocated when resuming from suspend, in which case it will 1641 * return without touching the buffers. 1642 * 1643 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1644 * system is too low on memory try successively smaller numbers of packets 1645 * until allocation succeeds. 1646 * 1647 * Return the number of allocated packets on success or 0 when out of memory. 1648 */ 1649 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1650 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1651 { 1652 unsigned int npackets; 1653 unsigned int i; 1654 1655 /* Buffers are already allocated, bail out. */ 1656 if (stream->urb_size) 1657 return stream->urb_size / psize; 1658 1659 /* Compute the number of packets. Bulk endpoints might transfer UVC 1660 * payloads across multiple URBs. 1661 */ 1662 npackets = DIV_ROUND_UP(size, psize); 1663 if (npackets > UVC_MAX_PACKETS) 1664 npackets = UVC_MAX_PACKETS; 1665 1666 /* Retry allocations until one succeed. */ 1667 for (; npackets > 1; npackets /= 2) { 1668 stream->urb_size = psize * npackets; 1669 1670 for (i = 0; i < UVC_URBS; ++i) { 1671 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1672 1673 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1674 uvc_free_urb_buffers(stream); 1675 break; 1676 } 1677 1678 uvc_urb->stream = stream; 1679 } 1680 1681 if (i == UVC_URBS) { 1682 uvc_dbg(stream->dev, VIDEO, 1683 "Allocated %u URB buffers of %ux%u bytes each\n", 1684 UVC_URBS, npackets, psize); 1685 return npackets; 1686 } 1687 } 1688 1689 uvc_dbg(stream->dev, VIDEO, 1690 "Failed to allocate URB buffers (%u bytes per packet)\n", 1691 psize); 1692 return 0; 1693 } 1694 1695 /* 1696 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1697 */ 1698 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1699 int free_buffers) 1700 { 1701 struct uvc_urb *uvc_urb; 1702 1703 uvc_video_stats_stop(stream); 1704 1705 /* 1706 * We must poison the URBs rather than kill them to ensure that even 1707 * after the completion handler returns, any asynchronous workqueues 1708 * will be prevented from resubmitting the URBs. 1709 */ 1710 for_each_uvc_urb(uvc_urb, stream) 1711 usb_poison_urb(uvc_urb->urb); 1712 1713 flush_workqueue(stream->async_wq); 1714 1715 for_each_uvc_urb(uvc_urb, stream) { 1716 usb_free_urb(uvc_urb->urb); 1717 uvc_urb->urb = NULL; 1718 } 1719 1720 if (free_buffers) 1721 uvc_free_urb_buffers(stream); 1722 } 1723 1724 /* 1725 * Compute the maximum number of bytes per interval for an endpoint. 1726 */ 1727 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1728 struct usb_host_endpoint *ep) 1729 { 1730 u16 psize; 1731 u16 mult; 1732 1733 switch (dev->speed) { 1734 case USB_SPEED_SUPER: 1735 case USB_SPEED_SUPER_PLUS: 1736 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1737 case USB_SPEED_HIGH: 1738 psize = usb_endpoint_maxp(&ep->desc); 1739 mult = usb_endpoint_maxp_mult(&ep->desc); 1740 return psize * mult; 1741 case USB_SPEED_WIRELESS: 1742 psize = usb_endpoint_maxp(&ep->desc); 1743 return psize; 1744 default: 1745 psize = usb_endpoint_maxp(&ep->desc); 1746 return psize; 1747 } 1748 } 1749 1750 /* 1751 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1752 * is given by the endpoint. 1753 */ 1754 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1755 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1756 { 1757 struct urb *urb; 1758 struct uvc_urb *uvc_urb; 1759 unsigned int npackets, i; 1760 u16 psize; 1761 u32 size; 1762 1763 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1764 size = stream->ctrl.dwMaxVideoFrameSize; 1765 1766 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1767 if (npackets == 0) 1768 return -ENOMEM; 1769 1770 size = npackets * psize; 1771 1772 for_each_uvc_urb(uvc_urb, stream) { 1773 urb = usb_alloc_urb(npackets, gfp_flags); 1774 if (urb == NULL) { 1775 uvc_video_stop_transfer(stream, 1); 1776 return -ENOMEM; 1777 } 1778 1779 urb->dev = stream->dev->udev; 1780 urb->context = uvc_urb; 1781 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1782 ep->desc.bEndpointAddress); 1783 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1784 urb->transfer_dma = uvc_urb->dma; 1785 urb->interval = ep->desc.bInterval; 1786 urb->transfer_buffer = uvc_urb->buffer; 1787 urb->complete = uvc_video_complete; 1788 urb->number_of_packets = npackets; 1789 urb->transfer_buffer_length = size; 1790 1791 for (i = 0; i < npackets; ++i) { 1792 urb->iso_frame_desc[i].offset = i * psize; 1793 urb->iso_frame_desc[i].length = psize; 1794 } 1795 1796 uvc_urb->urb = urb; 1797 } 1798 1799 return 0; 1800 } 1801 1802 /* 1803 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1804 * given by the endpoint. 1805 */ 1806 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1807 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1808 { 1809 struct urb *urb; 1810 struct uvc_urb *uvc_urb; 1811 unsigned int npackets, pipe; 1812 u16 psize; 1813 u32 size; 1814 1815 psize = usb_endpoint_maxp(&ep->desc); 1816 size = stream->ctrl.dwMaxPayloadTransferSize; 1817 stream->bulk.max_payload_size = size; 1818 1819 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1820 if (npackets == 0) 1821 return -ENOMEM; 1822 1823 size = npackets * psize; 1824 1825 if (usb_endpoint_dir_in(&ep->desc)) 1826 pipe = usb_rcvbulkpipe(stream->dev->udev, 1827 ep->desc.bEndpointAddress); 1828 else 1829 pipe = usb_sndbulkpipe(stream->dev->udev, 1830 ep->desc.bEndpointAddress); 1831 1832 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1833 size = 0; 1834 1835 for_each_uvc_urb(uvc_urb, stream) { 1836 urb = usb_alloc_urb(0, gfp_flags); 1837 if (urb == NULL) { 1838 uvc_video_stop_transfer(stream, 1); 1839 return -ENOMEM; 1840 } 1841 1842 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1843 size, uvc_video_complete, uvc_urb); 1844 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1845 urb->transfer_dma = uvc_urb->dma; 1846 1847 uvc_urb->urb = urb; 1848 } 1849 1850 return 0; 1851 } 1852 1853 /* 1854 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1855 */ 1856 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1857 gfp_t gfp_flags) 1858 { 1859 struct usb_interface *intf = stream->intf; 1860 struct usb_host_endpoint *ep; 1861 struct uvc_urb *uvc_urb; 1862 unsigned int i; 1863 int ret; 1864 1865 stream->sequence = -1; 1866 stream->last_fid = -1; 1867 stream->bulk.header_size = 0; 1868 stream->bulk.skip_payload = 0; 1869 stream->bulk.payload_size = 0; 1870 1871 uvc_video_stats_start(stream); 1872 1873 if (intf->num_altsetting > 1) { 1874 struct usb_host_endpoint *best_ep = NULL; 1875 unsigned int best_psize = UINT_MAX; 1876 unsigned int bandwidth; 1877 unsigned int altsetting; 1878 int intfnum = stream->intfnum; 1879 1880 /* Isochronous endpoint, select the alternate setting. */ 1881 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1882 1883 if (bandwidth == 0) { 1884 uvc_dbg(stream->dev, VIDEO, 1885 "Device requested null bandwidth, defaulting to lowest\n"); 1886 bandwidth = 1; 1887 } else { 1888 uvc_dbg(stream->dev, VIDEO, 1889 "Device requested %u B/frame bandwidth\n", 1890 bandwidth); 1891 } 1892 1893 for (i = 0; i < intf->num_altsetting; ++i) { 1894 struct usb_host_interface *alts; 1895 unsigned int psize; 1896 1897 alts = &intf->altsetting[i]; 1898 ep = uvc_find_endpoint(alts, 1899 stream->header.bEndpointAddress); 1900 if (ep == NULL) 1901 continue; 1902 1903 /* Check if the bandwidth is high enough. */ 1904 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1905 if (psize >= bandwidth && psize <= best_psize) { 1906 altsetting = alts->desc.bAlternateSetting; 1907 best_psize = psize; 1908 best_ep = ep; 1909 } 1910 } 1911 1912 if (best_ep == NULL) { 1913 uvc_dbg(stream->dev, VIDEO, 1914 "No fast enough alt setting for requested bandwidth\n"); 1915 return -EIO; 1916 } 1917 1918 uvc_dbg(stream->dev, VIDEO, 1919 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 1920 altsetting, best_psize); 1921 1922 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1923 if (ret < 0) 1924 return ret; 1925 1926 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1927 } else { 1928 /* Bulk endpoint, proceed to URB initialization. */ 1929 ep = uvc_find_endpoint(&intf->altsetting[0], 1930 stream->header.bEndpointAddress); 1931 if (ep == NULL) 1932 return -EIO; 1933 1934 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1935 } 1936 1937 if (ret < 0) 1938 return ret; 1939 1940 /* Submit the URBs. */ 1941 for_each_uvc_urb(uvc_urb, stream) { 1942 ret = uvc_submit_urb(uvc_urb, gfp_flags); 1943 if (ret < 0) { 1944 dev_err(&stream->intf->dev, 1945 "Failed to submit URB %u (%d).\n", 1946 uvc_urb_index(uvc_urb), ret); 1947 uvc_video_stop_transfer(stream, 1); 1948 return ret; 1949 } 1950 } 1951 1952 /* The Logitech C920 temporarily forgets that it should not be adjusting 1953 * Exposure Absolute during init so restore controls to stored values. 1954 */ 1955 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1956 uvc_ctrl_restore_values(stream->dev); 1957 1958 return 0; 1959 } 1960 1961 /* -------------------------------------------------------------------------- 1962 * Suspend/resume 1963 */ 1964 1965 /* 1966 * Stop streaming without disabling the video queue. 1967 * 1968 * To let userspace applications resume without trouble, we must not touch the 1969 * video buffers in any way. We mark the device as frozen to make sure the URB 1970 * completion handler won't try to cancel the queue when we kill the URBs. 1971 */ 1972 int uvc_video_suspend(struct uvc_streaming *stream) 1973 { 1974 if (!uvc_queue_streaming(&stream->queue)) 1975 return 0; 1976 1977 stream->frozen = 1; 1978 uvc_video_stop_transfer(stream, 0); 1979 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1980 return 0; 1981 } 1982 1983 /* 1984 * Reconfigure the video interface and restart streaming if it was enabled 1985 * before suspend. 1986 * 1987 * If an error occurs, disable the video queue. This will wake all pending 1988 * buffers, making sure userspace applications are notified of the problem 1989 * instead of waiting forever. 1990 */ 1991 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1992 { 1993 int ret; 1994 1995 /* If the bus has been reset on resume, set the alternate setting to 0. 1996 * This should be the default value, but some devices crash or otherwise 1997 * misbehave if they don't receive a SET_INTERFACE request before any 1998 * other video control request. 1999 */ 2000 if (reset) 2001 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2002 2003 stream->frozen = 0; 2004 2005 uvc_video_clock_reset(stream); 2006 2007 if (!uvc_queue_streaming(&stream->queue)) 2008 return 0; 2009 2010 ret = uvc_commit_video(stream, &stream->ctrl); 2011 if (ret < 0) 2012 return ret; 2013 2014 return uvc_video_start_transfer(stream, GFP_NOIO); 2015 } 2016 2017 /* ------------------------------------------------------------------------ 2018 * Video device 2019 */ 2020 2021 /* 2022 * Initialize the UVC video device by switching to alternate setting 0 and 2023 * retrieve the default format. 2024 * 2025 * Some cameras (namely the Fuji Finepix) set the format and frame 2026 * indexes to zero. The UVC standard doesn't clearly make this a spec 2027 * violation, so try to silently fix the values if possible. 2028 * 2029 * This function is called before registering the device with V4L. 2030 */ 2031 int uvc_video_init(struct uvc_streaming *stream) 2032 { 2033 struct uvc_streaming_control *probe = &stream->ctrl; 2034 struct uvc_format *format = NULL; 2035 struct uvc_frame *frame = NULL; 2036 struct uvc_urb *uvc_urb; 2037 unsigned int i; 2038 int ret; 2039 2040 if (stream->nformats == 0) { 2041 dev_info(&stream->intf->dev, 2042 "No supported video formats found.\n"); 2043 return -EINVAL; 2044 } 2045 2046 atomic_set(&stream->active, 0); 2047 2048 /* Alternate setting 0 should be the default, yet the XBox Live Vision 2049 * Cam (and possibly other devices) crash or otherwise misbehave if 2050 * they don't receive a SET_INTERFACE request before any other video 2051 * control request. 2052 */ 2053 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2054 2055 /* Set the streaming probe control with default streaming parameters 2056 * retrieved from the device. Webcams that don't support GET_DEF 2057 * requests on the probe control will just keep their current streaming 2058 * parameters. 2059 */ 2060 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2061 uvc_set_video_ctrl(stream, probe, 1); 2062 2063 /* Initialize the streaming parameters with the probe control current 2064 * value. This makes sure SET_CUR requests on the streaming commit 2065 * control will always use values retrieved from a successful GET_CUR 2066 * request on the probe control, as required by the UVC specification. 2067 */ 2068 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2069 if (ret < 0) 2070 return ret; 2071 2072 /* Check if the default format descriptor exists. Use the first 2073 * available format otherwise. 2074 */ 2075 for (i = stream->nformats; i > 0; --i) { 2076 format = &stream->format[i-1]; 2077 if (format->index == probe->bFormatIndex) 2078 break; 2079 } 2080 2081 if (format->nframes == 0) { 2082 dev_info(&stream->intf->dev, 2083 "No frame descriptor found for the default format.\n"); 2084 return -EINVAL; 2085 } 2086 2087 /* Zero bFrameIndex might be correct. Stream-based formats (including 2088 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2089 * descriptor with bFrameIndex set to zero. If the default frame 2090 * descriptor is not found, use the first available frame. 2091 */ 2092 for (i = format->nframes; i > 0; --i) { 2093 frame = &format->frame[i-1]; 2094 if (frame->bFrameIndex == probe->bFrameIndex) 2095 break; 2096 } 2097 2098 probe->bFormatIndex = format->index; 2099 probe->bFrameIndex = frame->bFrameIndex; 2100 2101 stream->def_format = format; 2102 stream->cur_format = format; 2103 stream->cur_frame = frame; 2104 2105 /* Select the video decoding function */ 2106 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2107 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2108 stream->decode = uvc_video_decode_isight; 2109 else if (stream->intf->num_altsetting > 1) 2110 stream->decode = uvc_video_decode_isoc; 2111 else 2112 stream->decode = uvc_video_decode_bulk; 2113 } else { 2114 if (stream->intf->num_altsetting == 1) 2115 stream->decode = uvc_video_encode_bulk; 2116 else { 2117 dev_info(&stream->intf->dev, 2118 "Isochronous endpoints are not supported for video output devices.\n"); 2119 return -EINVAL; 2120 } 2121 } 2122 2123 /* Prepare asynchronous work items. */ 2124 for_each_uvc_urb(uvc_urb, stream) 2125 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2126 2127 return 0; 2128 } 2129 2130 int uvc_video_start_streaming(struct uvc_streaming *stream) 2131 { 2132 int ret; 2133 2134 ret = uvc_video_clock_init(stream); 2135 if (ret < 0) 2136 return ret; 2137 2138 /* Commit the streaming parameters. */ 2139 ret = uvc_commit_video(stream, &stream->ctrl); 2140 if (ret < 0) 2141 goto error_commit; 2142 2143 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2144 if (ret < 0) 2145 goto error_video; 2146 2147 return 0; 2148 2149 error_video: 2150 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2151 error_commit: 2152 uvc_video_clock_cleanup(stream); 2153 2154 return ret; 2155 } 2156 2157 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2158 { 2159 uvc_video_stop_transfer(stream, 1); 2160 2161 if (stream->intf->num_altsetting > 1) { 2162 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2163 } else { 2164 /* UVC doesn't specify how to inform a bulk-based device 2165 * when the video stream is stopped. Windows sends a 2166 * CLEAR_FEATURE(HALT) request to the video streaming 2167 * bulk endpoint, mimic the same behaviour. 2168 */ 2169 unsigned int epnum = stream->header.bEndpointAddress 2170 & USB_ENDPOINT_NUMBER_MASK; 2171 unsigned int dir = stream->header.bEndpointAddress 2172 & USB_ENDPOINT_DIR_MASK; 2173 unsigned int pipe; 2174 2175 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2176 usb_clear_halt(stream->dev->udev, pipe); 2177 } 2178 2179 uvc_video_clock_cleanup(stream); 2180 } 2181