1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 34 __u8 intfnum, __u8 cs, void *data, __u16 size, 35 int timeout) 36 { 37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(__u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 73 __u8 intfnum, __u8 cs, void *data, __u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 123 * compute the bandwidth on 16 bits and erroneously sign-extend it to 124 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 125 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 126 */ 127 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 128 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 129 130 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 131 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 132 stream->intf->num_altsetting > 1) { 133 u32 interval; 134 u32 bandwidth; 135 136 interval = (ctrl->dwFrameInterval > 100000) 137 ? ctrl->dwFrameInterval 138 : frame->dwFrameInterval[0]; 139 140 /* Compute a bandwidth estimation by multiplying the frame 141 * size by the number of video frames per second, divide the 142 * result by the number of USB frames (or micro-frames for 143 * high-speed devices) per second and add the UVC header size 144 * (assumed to be 12 bytes long). 145 */ 146 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 147 bandwidth *= 10000000 / interval + 1; 148 bandwidth /= 1000; 149 if (stream->dev->udev->speed == USB_SPEED_HIGH) 150 bandwidth /= 8; 151 bandwidth += 12; 152 153 /* The bandwidth estimate is too low for many cameras. Don't use 154 * maximum packet sizes lower than 1024 bytes to try and work 155 * around the problem. According to measurements done on two 156 * different camera models, the value is high enough to get most 157 * resolutions working while not preventing two simultaneous 158 * VGA streams at 15 fps. 159 */ 160 bandwidth = max_t(u32, bandwidth, 1024); 161 162 ctrl->dwMaxPayloadTransferSize = bandwidth; 163 } 164 } 165 166 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 167 struct uvc_streaming_control *ctrl, int probe, __u8 query) 168 { 169 __u8 *data; 170 __u16 size; 171 int ret; 172 173 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 174 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 175 query == UVC_GET_DEF) 176 return -EIO; 177 178 data = kmalloc(size, GFP_KERNEL); 179 if (data == NULL) 180 return -ENOMEM; 181 182 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 183 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 184 size, uvc_timeout_param); 185 186 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 187 /* Some cameras, mostly based on Bison Electronics chipsets, 188 * answer a GET_MIN or GET_MAX request with the wCompQuality 189 * field only. 190 */ 191 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 192 "compliance - GET_MIN/MAX(PROBE) incorrectly " 193 "supported. Enabling workaround.\n"); 194 memset(ctrl, 0, sizeof *ctrl); 195 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 196 ret = 0; 197 goto out; 198 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 199 /* Many cameras don't support the GET_DEF request on their 200 * video probe control. Warn once and return, the caller will 201 * fall back to GET_CUR. 202 */ 203 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 204 "compliance - GET_DEF(PROBE) not supported. " 205 "Enabling workaround.\n"); 206 ret = -EIO; 207 goto out; 208 } else if (ret != size) { 209 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 210 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 211 ret, size); 212 ret = -EIO; 213 goto out; 214 } 215 216 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 217 ctrl->bFormatIndex = data[2]; 218 ctrl->bFrameIndex = data[3]; 219 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 220 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 221 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 222 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 223 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 224 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 225 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 226 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 227 228 if (size == 34) { 229 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 230 ctrl->bmFramingInfo = data[30]; 231 ctrl->bPreferedVersion = data[31]; 232 ctrl->bMinVersion = data[32]; 233 ctrl->bMaxVersion = data[33]; 234 } else { 235 ctrl->dwClockFrequency = stream->dev->clock_frequency; 236 ctrl->bmFramingInfo = 0; 237 ctrl->bPreferedVersion = 0; 238 ctrl->bMinVersion = 0; 239 ctrl->bMaxVersion = 0; 240 } 241 242 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 243 * dwMaxPayloadTransferSize fields. Try to get the value from the 244 * format and frame descriptors. 245 */ 246 uvc_fixup_video_ctrl(stream, ctrl); 247 ret = 0; 248 249 out: 250 kfree(data); 251 return ret; 252 } 253 254 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 255 struct uvc_streaming_control *ctrl, int probe) 256 { 257 __u8 *data; 258 __u16 size; 259 int ret; 260 261 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 262 data = kzalloc(size, GFP_KERNEL); 263 if (data == NULL) 264 return -ENOMEM; 265 266 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 267 data[2] = ctrl->bFormatIndex; 268 data[3] = ctrl->bFrameIndex; 269 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 270 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 271 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 272 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 273 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 274 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 275 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 276 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 277 278 if (size == 34) { 279 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 280 data[30] = ctrl->bmFramingInfo; 281 data[31] = ctrl->bPreferedVersion; 282 data[32] = ctrl->bMinVersion; 283 data[33] = ctrl->bMaxVersion; 284 } 285 286 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 287 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 288 size, uvc_timeout_param); 289 if (ret != size) { 290 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 291 "%d (exp. %u).\n", probe ? "probe" : "commit", 292 ret, size); 293 ret = -EIO; 294 } 295 296 kfree(data); 297 return ret; 298 } 299 300 int uvc_probe_video(struct uvc_streaming *stream, 301 struct uvc_streaming_control *probe) 302 { 303 struct uvc_streaming_control probe_min, probe_max; 304 __u16 bandwidth; 305 unsigned int i; 306 int ret; 307 308 /* Perform probing. The device should adjust the requested values 309 * according to its capabilities. However, some devices, namely the 310 * first generation UVC Logitech webcams, don't implement the Video 311 * Probe control properly, and just return the needed bandwidth. For 312 * that reason, if the needed bandwidth exceeds the maximum available 313 * bandwidth, try to lower the quality. 314 */ 315 ret = uvc_set_video_ctrl(stream, probe, 1); 316 if (ret < 0) 317 goto done; 318 319 /* Get the minimum and maximum values for compression settings. */ 320 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 321 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 322 if (ret < 0) 323 goto done; 324 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 325 if (ret < 0) 326 goto done; 327 328 probe->wCompQuality = probe_max.wCompQuality; 329 } 330 331 for (i = 0; i < 2; ++i) { 332 ret = uvc_set_video_ctrl(stream, probe, 1); 333 if (ret < 0) 334 goto done; 335 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 336 if (ret < 0) 337 goto done; 338 339 if (stream->intf->num_altsetting == 1) 340 break; 341 342 bandwidth = probe->dwMaxPayloadTransferSize; 343 if (bandwidth <= stream->maxpsize) 344 break; 345 346 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 347 ret = -ENOSPC; 348 goto done; 349 } 350 351 /* TODO: negotiate compression parameters */ 352 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 353 probe->wPFrameRate = probe_min.wPFrameRate; 354 probe->wCompQuality = probe_max.wCompQuality; 355 probe->wCompWindowSize = probe_min.wCompWindowSize; 356 } 357 358 done: 359 return ret; 360 } 361 362 static int uvc_commit_video(struct uvc_streaming *stream, 363 struct uvc_streaming_control *probe) 364 { 365 return uvc_set_video_ctrl(stream, probe, 0); 366 } 367 368 /* ----------------------------------------------------------------------------- 369 * Clocks and timestamps 370 */ 371 372 static inline ktime_t uvc_video_get_time(void) 373 { 374 if (uvc_clock_param == CLOCK_MONOTONIC) 375 return ktime_get(); 376 else 377 return ktime_get_real(); 378 } 379 380 static void 381 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 382 const __u8 *data, int len) 383 { 384 struct uvc_clock_sample *sample; 385 unsigned int header_size; 386 bool has_pts = false; 387 bool has_scr = false; 388 unsigned long flags; 389 ktime_t time; 390 u16 host_sof; 391 u16 dev_sof; 392 393 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 394 case UVC_STREAM_PTS | UVC_STREAM_SCR: 395 header_size = 12; 396 has_pts = true; 397 has_scr = true; 398 break; 399 case UVC_STREAM_PTS: 400 header_size = 6; 401 has_pts = true; 402 break; 403 case UVC_STREAM_SCR: 404 header_size = 8; 405 has_scr = true; 406 break; 407 default: 408 header_size = 2; 409 break; 410 } 411 412 /* Check for invalid headers. */ 413 if (len < header_size) 414 return; 415 416 /* Extract the timestamps: 417 * 418 * - store the frame PTS in the buffer structure 419 * - if the SCR field is present, retrieve the host SOF counter and 420 * kernel timestamps and store them with the SCR STC and SOF fields 421 * in the ring buffer 422 */ 423 if (has_pts && buf != NULL) 424 buf->pts = get_unaligned_le32(&data[2]); 425 426 if (!has_scr) 427 return; 428 429 /* To limit the amount of data, drop SCRs with an SOF identical to the 430 * previous one. 431 */ 432 dev_sof = get_unaligned_le16(&data[header_size - 2]); 433 if (dev_sof == stream->clock.last_sof) 434 return; 435 436 stream->clock.last_sof = dev_sof; 437 438 host_sof = usb_get_current_frame_number(stream->dev->udev); 439 time = uvc_video_get_time(); 440 441 /* The UVC specification allows device implementations that can't obtain 442 * the USB frame number to keep their own frame counters as long as they 443 * match the size and frequency of the frame number associated with USB 444 * SOF tokens. The SOF values sent by such devices differ from the USB 445 * SOF tokens by a fixed offset that needs to be estimated and accounted 446 * for to make timestamp recovery as accurate as possible. 447 * 448 * The offset is estimated the first time a device SOF value is received 449 * as the difference between the host and device SOF values. As the two 450 * SOF values can differ slightly due to transmission delays, consider 451 * that the offset is null if the difference is not higher than 10 ms 452 * (negative differences can not happen and are thus considered as an 453 * offset). The video commit control wDelay field should be used to 454 * compute a dynamic threshold instead of using a fixed 10 ms value, but 455 * devices don't report reliable wDelay values. 456 * 457 * See uvc_video_clock_host_sof() for an explanation regarding why only 458 * the 8 LSBs of the delta are kept. 459 */ 460 if (stream->clock.sof_offset == (u16)-1) { 461 u16 delta_sof = (host_sof - dev_sof) & 255; 462 if (delta_sof >= 10) 463 stream->clock.sof_offset = delta_sof; 464 else 465 stream->clock.sof_offset = 0; 466 } 467 468 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 469 470 spin_lock_irqsave(&stream->clock.lock, flags); 471 472 sample = &stream->clock.samples[stream->clock.head]; 473 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 474 sample->dev_sof = dev_sof; 475 sample->host_sof = host_sof; 476 sample->host_time = time; 477 478 /* Update the sliding window head and count. */ 479 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 480 481 if (stream->clock.count < stream->clock.size) 482 stream->clock.count++; 483 484 spin_unlock_irqrestore(&stream->clock.lock, flags); 485 } 486 487 static void uvc_video_clock_reset(struct uvc_streaming *stream) 488 { 489 struct uvc_clock *clock = &stream->clock; 490 491 clock->head = 0; 492 clock->count = 0; 493 clock->last_sof = -1; 494 clock->sof_offset = -1; 495 } 496 497 static int uvc_video_clock_init(struct uvc_streaming *stream) 498 { 499 struct uvc_clock *clock = &stream->clock; 500 501 spin_lock_init(&clock->lock); 502 clock->size = 32; 503 504 clock->samples = kmalloc(clock->size * sizeof(*clock->samples), 505 GFP_KERNEL); 506 if (clock->samples == NULL) 507 return -ENOMEM; 508 509 uvc_video_clock_reset(stream); 510 511 return 0; 512 } 513 514 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 515 { 516 kfree(stream->clock.samples); 517 stream->clock.samples = NULL; 518 } 519 520 /* 521 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 522 * 523 * Host SOF counters reported by usb_get_current_frame_number() usually don't 524 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 525 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 526 * controller and its configuration. 527 * 528 * We thus need to recover the SOF value corresponding to the host frame number. 529 * As the device and host frame numbers are sampled in a short interval, the 530 * difference between their values should be equal to a small delta plus an 531 * integer multiple of 256 caused by the host frame number limited precision. 532 * 533 * To obtain the recovered host SOF value, compute the small delta by masking 534 * the high bits of the host frame counter and device SOF difference and add it 535 * to the device SOF value. 536 */ 537 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 538 { 539 /* The delta value can be negative. */ 540 s8 delta_sof; 541 542 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 543 544 return (sample->dev_sof + delta_sof) & 2047; 545 } 546 547 /* 548 * uvc_video_clock_update - Update the buffer timestamp 549 * 550 * This function converts the buffer PTS timestamp to the host clock domain by 551 * going through the USB SOF clock domain and stores the result in the V4L2 552 * buffer timestamp field. 553 * 554 * The relationship between the device clock and the host clock isn't known. 555 * However, the device and the host share the common USB SOF clock which can be 556 * used to recover that relationship. 557 * 558 * The relationship between the device clock and the USB SOF clock is considered 559 * to be linear over the clock samples sliding window and is given by 560 * 561 * SOF = m * PTS + p 562 * 563 * Several methods to compute the slope (m) and intercept (p) can be used. As 564 * the clock drift should be small compared to the sliding window size, we 565 * assume that the line that goes through the points at both ends of the window 566 * is a good approximation. Naming those points P1 and P2, we get 567 * 568 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 569 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 570 * 571 * or 572 * 573 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 574 * 575 * to avoid losing precision in the division. Similarly, the host timestamp is 576 * computed with 577 * 578 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 579 * 580 * SOF values are coded on 11 bits by USB. We extend their precision with 16 581 * decimal bits, leading to a 11.16 coding. 582 * 583 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 584 * be normalized using the nominal device clock frequency reported through the 585 * UVC descriptors. 586 * 587 * Both the PTS/STC and SOF counters roll over, after a fixed but device 588 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 589 * sliding window size is smaller than the rollover period, differences computed 590 * on unsigned integers will produce the correct result. However, the p term in 591 * the linear relations will be miscomputed. 592 * 593 * To fix the issue, we subtract a constant from the PTS and STC values to bring 594 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 595 * the 32 bit range without any rollover. 596 * 597 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 598 * computed by (1) will never be smaller than 0. This offset is then compensated 599 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 600 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 601 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 602 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 603 * SOF value at the end of the sliding window. 604 * 605 * Finally we subtract a constant from the host timestamps to bring the first 606 * timestamp of the sliding window to 1s. 607 */ 608 void uvc_video_clock_update(struct uvc_streaming *stream, 609 struct vb2_v4l2_buffer *vbuf, 610 struct uvc_buffer *buf) 611 { 612 struct uvc_clock *clock = &stream->clock; 613 struct uvc_clock_sample *first; 614 struct uvc_clock_sample *last; 615 unsigned long flags; 616 u64 timestamp; 617 u32 delta_stc; 618 u32 y1, y2; 619 u32 x1, x2; 620 u32 mean; 621 u32 sof; 622 u64 y; 623 624 if (!uvc_hw_timestamps_param) 625 return; 626 627 spin_lock_irqsave(&clock->lock, flags); 628 629 if (clock->count < clock->size) 630 goto done; 631 632 first = &clock->samples[clock->head]; 633 last = &clock->samples[(clock->head - 1) % clock->size]; 634 635 /* First step, PTS to SOF conversion. */ 636 delta_stc = buf->pts - (1UL << 31); 637 x1 = first->dev_stc - delta_stc; 638 x2 = last->dev_stc - delta_stc; 639 if (x1 == x2) 640 goto done; 641 642 y1 = (first->dev_sof + 2048) << 16; 643 y2 = (last->dev_sof + 2048) << 16; 644 if (y2 < y1) 645 y2 += 2048 << 16; 646 647 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 648 - (u64)y2 * (u64)x1; 649 y = div_u64(y, x2 - x1); 650 651 sof = y; 652 653 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 654 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 655 stream->dev->name, buf->pts, 656 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 657 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 658 x1, x2, y1, y2, clock->sof_offset); 659 660 /* Second step, SOF to host clock conversion. */ 661 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 662 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 663 if (x2 < x1) 664 x2 += 2048 << 16; 665 if (x1 == x2) 666 goto done; 667 668 y1 = NSEC_PER_SEC; 669 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 670 671 /* Interpolated and host SOF timestamps can wrap around at slightly 672 * different times. Handle this by adding or removing 2048 to or from 673 * the computed SOF value to keep it close to the SOF samples mean 674 * value. 675 */ 676 mean = (x1 + x2) / 2; 677 if (mean - (1024 << 16) > sof) 678 sof += 2048 << 16; 679 else if (sof > mean + (1024 << 16)) 680 sof -= 2048 << 16; 681 682 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 683 - (u64)y2 * (u64)x1; 684 y = div_u64(y, x2 - x1); 685 686 timestamp = ktime_to_ns(first->host_time) + y - y1; 687 688 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 689 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 690 stream->dev->name, 691 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 692 y, timestamp, vbuf->vb2_buf.timestamp, 693 x1, first->host_sof, first->dev_sof, 694 x2, last->host_sof, last->dev_sof, y1, y2); 695 696 /* Update the V4L2 buffer. */ 697 vbuf->vb2_buf.timestamp = timestamp; 698 699 done: 700 spin_unlock_irqrestore(&clock->lock, flags); 701 } 702 703 /* ------------------------------------------------------------------------ 704 * Stream statistics 705 */ 706 707 static void uvc_video_stats_decode(struct uvc_streaming *stream, 708 const __u8 *data, int len) 709 { 710 unsigned int header_size; 711 bool has_pts = false; 712 bool has_scr = false; 713 u16 uninitialized_var(scr_sof); 714 u32 uninitialized_var(scr_stc); 715 u32 uninitialized_var(pts); 716 717 if (stream->stats.stream.nb_frames == 0 && 718 stream->stats.frame.nb_packets == 0) 719 stream->stats.stream.start_ts = ktime_get(); 720 721 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 722 case UVC_STREAM_PTS | UVC_STREAM_SCR: 723 header_size = 12; 724 has_pts = true; 725 has_scr = true; 726 break; 727 case UVC_STREAM_PTS: 728 header_size = 6; 729 has_pts = true; 730 break; 731 case UVC_STREAM_SCR: 732 header_size = 8; 733 has_scr = true; 734 break; 735 default: 736 header_size = 2; 737 break; 738 } 739 740 /* Check for invalid headers. */ 741 if (len < header_size || data[0] < header_size) { 742 stream->stats.frame.nb_invalid++; 743 return; 744 } 745 746 /* Extract the timestamps. */ 747 if (has_pts) 748 pts = get_unaligned_le32(&data[2]); 749 750 if (has_scr) { 751 scr_stc = get_unaligned_le32(&data[header_size - 6]); 752 scr_sof = get_unaligned_le16(&data[header_size - 2]); 753 } 754 755 /* Is PTS constant through the whole frame ? */ 756 if (has_pts && stream->stats.frame.nb_pts) { 757 if (stream->stats.frame.pts != pts) { 758 stream->stats.frame.nb_pts_diffs++; 759 stream->stats.frame.last_pts_diff = 760 stream->stats.frame.nb_packets; 761 } 762 } 763 764 if (has_pts) { 765 stream->stats.frame.nb_pts++; 766 stream->stats.frame.pts = pts; 767 } 768 769 /* Do all frames have a PTS in their first non-empty packet, or before 770 * their first empty packet ? 771 */ 772 if (stream->stats.frame.size == 0) { 773 if (len > header_size) 774 stream->stats.frame.has_initial_pts = has_pts; 775 if (len == header_size && has_pts) 776 stream->stats.frame.has_early_pts = true; 777 } 778 779 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 780 if (has_scr && stream->stats.frame.nb_scr) { 781 if (stream->stats.frame.scr_stc != scr_stc) 782 stream->stats.frame.nb_scr_diffs++; 783 } 784 785 if (has_scr) { 786 /* Expand the SOF counter to 32 bits and store its value. */ 787 if (stream->stats.stream.nb_frames > 0 || 788 stream->stats.frame.nb_scr > 0) 789 stream->stats.stream.scr_sof_count += 790 (scr_sof - stream->stats.stream.scr_sof) % 2048; 791 stream->stats.stream.scr_sof = scr_sof; 792 793 stream->stats.frame.nb_scr++; 794 stream->stats.frame.scr_stc = scr_stc; 795 stream->stats.frame.scr_sof = scr_sof; 796 797 if (scr_sof < stream->stats.stream.min_sof) 798 stream->stats.stream.min_sof = scr_sof; 799 if (scr_sof > stream->stats.stream.max_sof) 800 stream->stats.stream.max_sof = scr_sof; 801 } 802 803 /* Record the first non-empty packet number. */ 804 if (stream->stats.frame.size == 0 && len > header_size) 805 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 806 807 /* Update the frame size. */ 808 stream->stats.frame.size += len - header_size; 809 810 /* Update the packets counters. */ 811 stream->stats.frame.nb_packets++; 812 if (len <= header_size) 813 stream->stats.frame.nb_empty++; 814 815 if (data[1] & UVC_STREAM_ERR) 816 stream->stats.frame.nb_errors++; 817 } 818 819 static void uvc_video_stats_update(struct uvc_streaming *stream) 820 { 821 struct uvc_stats_frame *frame = &stream->stats.frame; 822 823 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 824 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 825 "last pts/stc/sof %u/%u/%u\n", 826 stream->sequence, frame->first_data, 827 frame->nb_packets - frame->nb_empty, frame->nb_packets, 828 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 829 frame->has_early_pts ? "" : "!", 830 frame->has_initial_pts ? "" : "!", 831 frame->nb_scr_diffs, frame->nb_scr, 832 frame->pts, frame->scr_stc, frame->scr_sof); 833 834 stream->stats.stream.nb_frames++; 835 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 836 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 837 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 838 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 839 840 if (frame->has_early_pts) 841 stream->stats.stream.nb_pts_early++; 842 if (frame->has_initial_pts) 843 stream->stats.stream.nb_pts_initial++; 844 if (frame->last_pts_diff <= frame->first_data) 845 stream->stats.stream.nb_pts_constant++; 846 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 847 stream->stats.stream.nb_scr_count_ok++; 848 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 849 stream->stats.stream.nb_scr_diffs_ok++; 850 851 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 852 } 853 854 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 855 size_t size) 856 { 857 unsigned int scr_sof_freq; 858 unsigned int duration; 859 size_t count = 0; 860 861 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 862 * frequency this will not overflow before more than 1h. 863 */ 864 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 865 stream->stats.stream.start_ts); 866 if (duration != 0) 867 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 868 / duration; 869 else 870 scr_sof_freq = 0; 871 872 count += scnprintf(buf + count, size - count, 873 "frames: %u\npackets: %u\nempty: %u\n" 874 "errors: %u\ninvalid: %u\n", 875 stream->stats.stream.nb_frames, 876 stream->stats.stream.nb_packets, 877 stream->stats.stream.nb_empty, 878 stream->stats.stream.nb_errors, 879 stream->stats.stream.nb_invalid); 880 count += scnprintf(buf + count, size - count, 881 "pts: %u early, %u initial, %u ok\n", 882 stream->stats.stream.nb_pts_early, 883 stream->stats.stream.nb_pts_initial, 884 stream->stats.stream.nb_pts_constant); 885 count += scnprintf(buf + count, size - count, 886 "scr: %u count ok, %u diff ok\n", 887 stream->stats.stream.nb_scr_count_ok, 888 stream->stats.stream.nb_scr_diffs_ok); 889 count += scnprintf(buf + count, size - count, 890 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 891 stream->stats.stream.min_sof, 892 stream->stats.stream.max_sof, 893 scr_sof_freq / 1000, scr_sof_freq % 1000); 894 895 return count; 896 } 897 898 static void uvc_video_stats_start(struct uvc_streaming *stream) 899 { 900 memset(&stream->stats, 0, sizeof(stream->stats)); 901 stream->stats.stream.min_sof = 2048; 902 } 903 904 static void uvc_video_stats_stop(struct uvc_streaming *stream) 905 { 906 stream->stats.stream.stop_ts = ktime_get(); 907 } 908 909 /* ------------------------------------------------------------------------ 910 * Video codecs 911 */ 912 913 /* Video payload decoding is handled by uvc_video_decode_start(), 914 * uvc_video_decode_data() and uvc_video_decode_end(). 915 * 916 * uvc_video_decode_start is called with URB data at the start of a bulk or 917 * isochronous payload. It processes header data and returns the header size 918 * in bytes if successful. If an error occurs, it returns a negative error 919 * code. The following error codes have special meanings. 920 * 921 * - EAGAIN informs the caller that the current video buffer should be marked 922 * as done, and that the function should be called again with the same data 923 * and a new video buffer. This is used when end of frame conditions can be 924 * reliably detected at the beginning of the next frame only. 925 * 926 * If an error other than -EAGAIN is returned, the caller will drop the current 927 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 928 * made until the next payload. -ENODATA can be used to drop the current 929 * payload if no other error code is appropriate. 930 * 931 * uvc_video_decode_data is called for every URB with URB data. It copies the 932 * data to the video buffer. 933 * 934 * uvc_video_decode_end is called with header data at the end of a bulk or 935 * isochronous payload. It performs any additional header data processing and 936 * returns 0 or a negative error code if an error occurred. As header data have 937 * already been processed by uvc_video_decode_start, this functions isn't 938 * required to perform sanity checks a second time. 939 * 940 * For isochronous transfers where a payload is always transferred in a single 941 * URB, the three functions will be called in a row. 942 * 943 * To let the decoder process header data and update its internal state even 944 * when no video buffer is available, uvc_video_decode_start must be prepared 945 * to be called with a NULL buf parameter. uvc_video_decode_data and 946 * uvc_video_decode_end will never be called with a NULL buffer. 947 */ 948 static int uvc_video_decode_start(struct uvc_streaming *stream, 949 struct uvc_buffer *buf, const __u8 *data, int len) 950 { 951 __u8 fid; 952 953 /* Sanity checks: 954 * - packet must be at least 2 bytes long 955 * - bHeaderLength value must be at least 2 bytes (see above) 956 * - bHeaderLength value can't be larger than the packet size. 957 */ 958 if (len < 2 || data[0] < 2 || data[0] > len) { 959 stream->stats.frame.nb_invalid++; 960 return -EINVAL; 961 } 962 963 fid = data[1] & UVC_STREAM_FID; 964 965 /* Increase the sequence number regardless of any buffer states, so 966 * that discontinuous sequence numbers always indicate lost frames. 967 */ 968 if (stream->last_fid != fid) { 969 stream->sequence++; 970 if (stream->sequence) 971 uvc_video_stats_update(stream); 972 } 973 974 uvc_video_clock_decode(stream, buf, data, len); 975 uvc_video_stats_decode(stream, data, len); 976 977 /* Store the payload FID bit and return immediately when the buffer is 978 * NULL. 979 */ 980 if (buf == NULL) { 981 stream->last_fid = fid; 982 return -ENODATA; 983 } 984 985 /* Mark the buffer as bad if the error bit is set. */ 986 if (data[1] & UVC_STREAM_ERR) { 987 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 988 "set).\n"); 989 buf->error = 1; 990 } 991 992 /* Synchronize to the input stream by waiting for the FID bit to be 993 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 994 * stream->last_fid is initialized to -1, so the first isochronous 995 * frame will always be in sync. 996 * 997 * If the device doesn't toggle the FID bit, invert stream->last_fid 998 * when the EOF bit is set to force synchronisation on the next packet. 999 */ 1000 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1001 if (fid == stream->last_fid) { 1002 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1003 "sync).\n"); 1004 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1005 (data[1] & UVC_STREAM_EOF)) 1006 stream->last_fid ^= UVC_STREAM_FID; 1007 return -ENODATA; 1008 } 1009 1010 buf->buf.field = V4L2_FIELD_NONE; 1011 buf->buf.sequence = stream->sequence; 1012 buf->buf.vb2_buf.timestamp = uvc_video_get_time(); 1013 1014 /* TODO: Handle PTS and SCR. */ 1015 buf->state = UVC_BUF_STATE_ACTIVE; 1016 } 1017 1018 /* Mark the buffer as done if we're at the beginning of a new frame. 1019 * End of frame detection is better implemented by checking the EOF 1020 * bit (FID bit toggling is delayed by one frame compared to the EOF 1021 * bit), but some devices don't set the bit at end of frame (and the 1022 * last payload can be lost anyway). We thus must check if the FID has 1023 * been toggled. 1024 * 1025 * stream->last_fid is initialized to -1, so the first isochronous 1026 * frame will never trigger an end of frame detection. 1027 * 1028 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1029 * as it doesn't make sense to return an empty buffer. This also 1030 * avoids detecting end of frame conditions at FID toggling if the 1031 * previous payload had the EOF bit set. 1032 */ 1033 if (fid != stream->last_fid && buf->bytesused != 0) { 1034 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1035 "toggled).\n"); 1036 buf->state = UVC_BUF_STATE_READY; 1037 return -EAGAIN; 1038 } 1039 1040 stream->last_fid = fid; 1041 1042 return data[0]; 1043 } 1044 1045 static void uvc_video_decode_data(struct uvc_streaming *stream, 1046 struct uvc_buffer *buf, const __u8 *data, int len) 1047 { 1048 unsigned int maxlen, nbytes; 1049 void *mem; 1050 1051 if (len <= 0) 1052 return; 1053 1054 /* Copy the video data to the buffer. */ 1055 maxlen = buf->length - buf->bytesused; 1056 mem = buf->mem + buf->bytesused; 1057 nbytes = min((unsigned int)len, maxlen); 1058 memcpy(mem, data, nbytes); 1059 buf->bytesused += nbytes; 1060 1061 /* Complete the current frame if the buffer size was exceeded. */ 1062 if (len > maxlen) { 1063 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1064 buf->error = 1; 1065 buf->state = UVC_BUF_STATE_READY; 1066 } 1067 } 1068 1069 static void uvc_video_decode_end(struct uvc_streaming *stream, 1070 struct uvc_buffer *buf, const __u8 *data, int len) 1071 { 1072 /* Mark the buffer as done if the EOF marker is set. */ 1073 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1074 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1075 if (data[0] == len) 1076 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1077 buf->state = UVC_BUF_STATE_READY; 1078 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1079 stream->last_fid ^= UVC_STREAM_FID; 1080 } 1081 } 1082 1083 /* Video payload encoding is handled by uvc_video_encode_header() and 1084 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1085 * 1086 * uvc_video_encode_header is called at the start of a payload. It adds header 1087 * data to the transfer buffer and returns the header size. As the only known 1088 * UVC output device transfers a whole frame in a single payload, the EOF bit 1089 * is always set in the header. 1090 * 1091 * uvc_video_encode_data is called for every URB and copies the data from the 1092 * video buffer to the transfer buffer. 1093 */ 1094 static int uvc_video_encode_header(struct uvc_streaming *stream, 1095 struct uvc_buffer *buf, __u8 *data, int len) 1096 { 1097 data[0] = 2; /* Header length */ 1098 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1099 | (stream->last_fid & UVC_STREAM_FID); 1100 return 2; 1101 } 1102 1103 static int uvc_video_encode_data(struct uvc_streaming *stream, 1104 struct uvc_buffer *buf, __u8 *data, int len) 1105 { 1106 struct uvc_video_queue *queue = &stream->queue; 1107 unsigned int nbytes; 1108 void *mem; 1109 1110 /* Copy video data to the URB buffer. */ 1111 mem = buf->mem + queue->buf_used; 1112 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1113 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1114 nbytes); 1115 memcpy(data, mem, nbytes); 1116 1117 queue->buf_used += nbytes; 1118 1119 return nbytes; 1120 } 1121 1122 /* ------------------------------------------------------------------------ 1123 * Metadata 1124 */ 1125 1126 /* 1127 * Additionally to the payload headers we also want to provide the user with USB 1128 * Frame Numbers and system time values. The resulting buffer is thus composed 1129 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1130 * Number, and a copy of the payload header. 1131 * 1132 * Ideally we want to capture all payload headers for each frame. However, their 1133 * number is unknown and unbound. We thus drop headers that contain no vendor 1134 * data and that either contain no SCR value or an SCR value identical to the 1135 * previous header. 1136 */ 1137 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1138 struct uvc_buffer *meta_buf, 1139 const u8 *mem, unsigned int length) 1140 { 1141 struct uvc_meta_buf *meta; 1142 size_t len_std = 2; 1143 bool has_pts, has_scr; 1144 unsigned long flags; 1145 unsigned int sof; 1146 ktime_t time; 1147 const u8 *scr; 1148 1149 if (!meta_buf || length == 2) 1150 return; 1151 1152 if (meta_buf->length - meta_buf->bytesused < 1153 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1154 meta_buf->error = 1; 1155 return; 1156 } 1157 1158 has_pts = mem[1] & UVC_STREAM_PTS; 1159 has_scr = mem[1] & UVC_STREAM_SCR; 1160 1161 if (has_pts) { 1162 len_std += 4; 1163 scr = mem + 6; 1164 } else { 1165 scr = mem + 2; 1166 } 1167 1168 if (has_scr) 1169 len_std += 6; 1170 1171 if (stream->meta.format == V4L2_META_FMT_UVC) 1172 length = len_std; 1173 1174 if (length == len_std && (!has_scr || 1175 !memcmp(scr, stream->clock.last_scr, 6))) 1176 return; 1177 1178 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1179 local_irq_save(flags); 1180 time = uvc_video_get_time(); 1181 sof = usb_get_current_frame_number(stream->dev->udev); 1182 local_irq_restore(flags); 1183 put_unaligned(ktime_to_ns(time), &meta->ns); 1184 put_unaligned(sof, &meta->sof); 1185 1186 if (has_scr) 1187 memcpy(stream->clock.last_scr, scr, 6); 1188 1189 memcpy(&meta->length, mem, length); 1190 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1191 1192 uvc_trace(UVC_TRACE_FRAME, 1193 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1194 __func__, time, meta->sof, meta->length, meta->flags, 1195 has_pts ? *(u32 *)meta->buf : 0, 1196 has_scr ? *(u32 *)scr : 0, 1197 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1198 } 1199 1200 /* ------------------------------------------------------------------------ 1201 * URB handling 1202 */ 1203 1204 /* 1205 * Set error flag for incomplete buffer. 1206 */ 1207 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1208 struct uvc_buffer *buf) 1209 { 1210 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1211 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1212 buf->error = 1; 1213 } 1214 1215 /* 1216 * Completion handler for video URBs. 1217 */ 1218 1219 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1220 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1221 { 1222 if (*meta_buf) { 1223 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1224 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1225 1226 vb2_meta->sequence = vb2_video->sequence; 1227 vb2_meta->field = vb2_video->field; 1228 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1229 1230 (*meta_buf)->state = UVC_BUF_STATE_READY; 1231 if (!(*meta_buf)->error) 1232 (*meta_buf)->error = (*video_buf)->error; 1233 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1234 *meta_buf); 1235 } 1236 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1237 } 1238 1239 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1240 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1241 { 1242 u8 *mem; 1243 int ret, i; 1244 1245 for (i = 0; i < urb->number_of_packets; ++i) { 1246 if (urb->iso_frame_desc[i].status < 0) { 1247 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1248 "lost (%d).\n", urb->iso_frame_desc[i].status); 1249 /* Mark the buffer as faulty. */ 1250 if (buf != NULL) 1251 buf->error = 1; 1252 continue; 1253 } 1254 1255 /* Decode the payload header. */ 1256 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1257 do { 1258 ret = uvc_video_decode_start(stream, buf, mem, 1259 urb->iso_frame_desc[i].actual_length); 1260 if (ret == -EAGAIN) { 1261 uvc_video_validate_buffer(stream, buf); 1262 uvc_video_next_buffers(stream, &buf, &meta_buf); 1263 } 1264 } while (ret == -EAGAIN); 1265 1266 if (ret < 0) 1267 continue; 1268 1269 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1270 1271 /* Decode the payload data. */ 1272 uvc_video_decode_data(stream, buf, mem + ret, 1273 urb->iso_frame_desc[i].actual_length - ret); 1274 1275 /* Process the header again. */ 1276 uvc_video_decode_end(stream, buf, mem, 1277 urb->iso_frame_desc[i].actual_length); 1278 1279 if (buf->state == UVC_BUF_STATE_READY) { 1280 uvc_video_validate_buffer(stream, buf); 1281 uvc_video_next_buffers(stream, &buf, &meta_buf); 1282 } 1283 } 1284 } 1285 1286 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1287 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1288 { 1289 u8 *mem; 1290 int len, ret; 1291 1292 /* 1293 * Ignore ZLPs if they're not part of a frame, otherwise process them 1294 * to trigger the end of payload detection. 1295 */ 1296 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1297 return; 1298 1299 mem = urb->transfer_buffer; 1300 len = urb->actual_length; 1301 stream->bulk.payload_size += len; 1302 1303 /* If the URB is the first of its payload, decode and save the 1304 * header. 1305 */ 1306 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1307 do { 1308 ret = uvc_video_decode_start(stream, buf, mem, len); 1309 if (ret == -EAGAIN) 1310 uvc_video_next_buffers(stream, &buf, &meta_buf); 1311 } while (ret == -EAGAIN); 1312 1313 /* If an error occurred skip the rest of the payload. */ 1314 if (ret < 0 || buf == NULL) { 1315 stream->bulk.skip_payload = 1; 1316 } else { 1317 memcpy(stream->bulk.header, mem, ret); 1318 stream->bulk.header_size = ret; 1319 1320 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1321 1322 mem += ret; 1323 len -= ret; 1324 } 1325 } 1326 1327 /* The buffer queue might have been cancelled while a bulk transfer 1328 * was in progress, so we can reach here with buf equal to NULL. Make 1329 * sure buf is never dereferenced if NULL. 1330 */ 1331 1332 /* Process video data. */ 1333 if (!stream->bulk.skip_payload && buf != NULL) 1334 uvc_video_decode_data(stream, buf, mem, len); 1335 1336 /* Detect the payload end by a URB smaller than the maximum size (or 1337 * a payload size equal to the maximum) and process the header again. 1338 */ 1339 if (urb->actual_length < urb->transfer_buffer_length || 1340 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1341 if (!stream->bulk.skip_payload && buf != NULL) { 1342 uvc_video_decode_end(stream, buf, stream->bulk.header, 1343 stream->bulk.payload_size); 1344 if (buf->state == UVC_BUF_STATE_READY) 1345 uvc_video_next_buffers(stream, &buf, &meta_buf); 1346 } 1347 1348 stream->bulk.header_size = 0; 1349 stream->bulk.skip_payload = 0; 1350 stream->bulk.payload_size = 0; 1351 } 1352 } 1353 1354 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1355 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1356 { 1357 u8 *mem = urb->transfer_buffer; 1358 int len = stream->urb_size, ret; 1359 1360 if (buf == NULL) { 1361 urb->transfer_buffer_length = 0; 1362 return; 1363 } 1364 1365 /* If the URB is the first of its payload, add the header. */ 1366 if (stream->bulk.header_size == 0) { 1367 ret = uvc_video_encode_header(stream, buf, mem, len); 1368 stream->bulk.header_size = ret; 1369 stream->bulk.payload_size += ret; 1370 mem += ret; 1371 len -= ret; 1372 } 1373 1374 /* Process video data. */ 1375 ret = uvc_video_encode_data(stream, buf, mem, len); 1376 1377 stream->bulk.payload_size += ret; 1378 len -= ret; 1379 1380 if (buf->bytesused == stream->queue.buf_used || 1381 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1382 if (buf->bytesused == stream->queue.buf_used) { 1383 stream->queue.buf_used = 0; 1384 buf->state = UVC_BUF_STATE_READY; 1385 buf->buf.sequence = ++stream->sequence; 1386 uvc_queue_next_buffer(&stream->queue, buf); 1387 stream->last_fid ^= UVC_STREAM_FID; 1388 } 1389 1390 stream->bulk.header_size = 0; 1391 stream->bulk.payload_size = 0; 1392 } 1393 1394 urb->transfer_buffer_length = stream->urb_size - len; 1395 } 1396 1397 static void uvc_video_complete(struct urb *urb) 1398 { 1399 struct uvc_streaming *stream = urb->context; 1400 struct uvc_video_queue *queue = &stream->queue; 1401 struct uvc_video_queue *qmeta = &stream->meta.queue; 1402 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1403 struct uvc_buffer *buf = NULL; 1404 struct uvc_buffer *buf_meta = NULL; 1405 unsigned long flags; 1406 int ret; 1407 1408 switch (urb->status) { 1409 case 0: 1410 break; 1411 1412 default: 1413 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1414 "completion handler.\n", urb->status); 1415 /* fall through */ 1416 case -ENOENT: /* usb_kill_urb() called. */ 1417 if (stream->frozen) 1418 return; 1419 /* fall through */ 1420 case -ECONNRESET: /* usb_unlink_urb() called. */ 1421 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1422 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1423 if (vb2_qmeta) 1424 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1425 return; 1426 } 1427 1428 spin_lock_irqsave(&queue->irqlock, flags); 1429 if (!list_empty(&queue->irqqueue)) 1430 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1431 queue); 1432 spin_unlock_irqrestore(&queue->irqlock, flags); 1433 1434 if (vb2_qmeta) { 1435 spin_lock_irqsave(&qmeta->irqlock, flags); 1436 if (!list_empty(&qmeta->irqqueue)) 1437 buf_meta = list_first_entry(&qmeta->irqqueue, 1438 struct uvc_buffer, queue); 1439 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1440 } 1441 1442 stream->decode(urb, stream, buf, buf_meta); 1443 1444 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1445 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1446 ret); 1447 } 1448 } 1449 1450 /* 1451 * Free transfer buffers. 1452 */ 1453 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1454 { 1455 unsigned int i; 1456 1457 for (i = 0; i < UVC_URBS; ++i) { 1458 if (stream->urb_buffer[i]) { 1459 #ifndef CONFIG_DMA_NONCOHERENT 1460 usb_free_coherent(stream->dev->udev, stream->urb_size, 1461 stream->urb_buffer[i], stream->urb_dma[i]); 1462 #else 1463 kfree(stream->urb_buffer[i]); 1464 #endif 1465 stream->urb_buffer[i] = NULL; 1466 } 1467 } 1468 1469 stream->urb_size = 0; 1470 } 1471 1472 /* 1473 * Allocate transfer buffers. This function can be called with buffers 1474 * already allocated when resuming from suspend, in which case it will 1475 * return without touching the buffers. 1476 * 1477 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1478 * system is too low on memory try successively smaller numbers of packets 1479 * until allocation succeeds. 1480 * 1481 * Return the number of allocated packets on success or 0 when out of memory. 1482 */ 1483 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1484 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1485 { 1486 unsigned int npackets; 1487 unsigned int i; 1488 1489 /* Buffers are already allocated, bail out. */ 1490 if (stream->urb_size) 1491 return stream->urb_size / psize; 1492 1493 /* Compute the number of packets. Bulk endpoints might transfer UVC 1494 * payloads across multiple URBs. 1495 */ 1496 npackets = DIV_ROUND_UP(size, psize); 1497 if (npackets > UVC_MAX_PACKETS) 1498 npackets = UVC_MAX_PACKETS; 1499 1500 /* Retry allocations until one succeed. */ 1501 for (; npackets > 1; npackets /= 2) { 1502 for (i = 0; i < UVC_URBS; ++i) { 1503 stream->urb_size = psize * npackets; 1504 #ifndef CONFIG_DMA_NONCOHERENT 1505 stream->urb_buffer[i] = usb_alloc_coherent( 1506 stream->dev->udev, stream->urb_size, 1507 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1508 #else 1509 stream->urb_buffer[i] = 1510 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1511 #endif 1512 if (!stream->urb_buffer[i]) { 1513 uvc_free_urb_buffers(stream); 1514 break; 1515 } 1516 } 1517 1518 if (i == UVC_URBS) { 1519 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1520 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1521 psize); 1522 return npackets; 1523 } 1524 } 1525 1526 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1527 "per packet).\n", psize); 1528 return 0; 1529 } 1530 1531 /* 1532 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1533 */ 1534 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1535 { 1536 struct urb *urb; 1537 unsigned int i; 1538 1539 uvc_video_stats_stop(stream); 1540 1541 for (i = 0; i < UVC_URBS; ++i) { 1542 urb = stream->urb[i]; 1543 if (urb == NULL) 1544 continue; 1545 1546 usb_kill_urb(urb); 1547 usb_free_urb(urb); 1548 stream->urb[i] = NULL; 1549 } 1550 1551 if (free_buffers) 1552 uvc_free_urb_buffers(stream); 1553 } 1554 1555 /* 1556 * Compute the maximum number of bytes per interval for an endpoint. 1557 */ 1558 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1559 struct usb_host_endpoint *ep) 1560 { 1561 u16 psize; 1562 u16 mult; 1563 1564 switch (dev->speed) { 1565 case USB_SPEED_SUPER: 1566 case USB_SPEED_SUPER_PLUS: 1567 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1568 case USB_SPEED_HIGH: 1569 psize = usb_endpoint_maxp(&ep->desc); 1570 mult = usb_endpoint_maxp_mult(&ep->desc); 1571 return psize * mult; 1572 case USB_SPEED_WIRELESS: 1573 psize = usb_endpoint_maxp(&ep->desc); 1574 return psize; 1575 default: 1576 psize = usb_endpoint_maxp(&ep->desc); 1577 return psize; 1578 } 1579 } 1580 1581 /* 1582 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1583 * is given by the endpoint. 1584 */ 1585 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1586 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1587 { 1588 struct urb *urb; 1589 unsigned int npackets, i, j; 1590 u16 psize; 1591 u32 size; 1592 1593 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1594 size = stream->ctrl.dwMaxVideoFrameSize; 1595 1596 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1597 if (npackets == 0) 1598 return -ENOMEM; 1599 1600 size = npackets * psize; 1601 1602 for (i = 0; i < UVC_URBS; ++i) { 1603 urb = usb_alloc_urb(npackets, gfp_flags); 1604 if (urb == NULL) { 1605 uvc_uninit_video(stream, 1); 1606 return -ENOMEM; 1607 } 1608 1609 urb->dev = stream->dev->udev; 1610 urb->context = stream; 1611 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1612 ep->desc.bEndpointAddress); 1613 #ifndef CONFIG_DMA_NONCOHERENT 1614 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1615 urb->transfer_dma = stream->urb_dma[i]; 1616 #else 1617 urb->transfer_flags = URB_ISO_ASAP; 1618 #endif 1619 urb->interval = ep->desc.bInterval; 1620 urb->transfer_buffer = stream->urb_buffer[i]; 1621 urb->complete = uvc_video_complete; 1622 urb->number_of_packets = npackets; 1623 urb->transfer_buffer_length = size; 1624 1625 for (j = 0; j < npackets; ++j) { 1626 urb->iso_frame_desc[j].offset = j * psize; 1627 urb->iso_frame_desc[j].length = psize; 1628 } 1629 1630 stream->urb[i] = urb; 1631 } 1632 1633 return 0; 1634 } 1635 1636 /* 1637 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1638 * given by the endpoint. 1639 */ 1640 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1641 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1642 { 1643 struct urb *urb; 1644 unsigned int npackets, pipe, i; 1645 u16 psize; 1646 u32 size; 1647 1648 psize = usb_endpoint_maxp(&ep->desc); 1649 size = stream->ctrl.dwMaxPayloadTransferSize; 1650 stream->bulk.max_payload_size = size; 1651 1652 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1653 if (npackets == 0) 1654 return -ENOMEM; 1655 1656 size = npackets * psize; 1657 1658 if (usb_endpoint_dir_in(&ep->desc)) 1659 pipe = usb_rcvbulkpipe(stream->dev->udev, 1660 ep->desc.bEndpointAddress); 1661 else 1662 pipe = usb_sndbulkpipe(stream->dev->udev, 1663 ep->desc.bEndpointAddress); 1664 1665 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1666 size = 0; 1667 1668 for (i = 0; i < UVC_URBS; ++i) { 1669 urb = usb_alloc_urb(0, gfp_flags); 1670 if (urb == NULL) { 1671 uvc_uninit_video(stream, 1); 1672 return -ENOMEM; 1673 } 1674 1675 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1676 stream->urb_buffer[i], size, uvc_video_complete, 1677 stream); 1678 #ifndef CONFIG_DMA_NONCOHERENT 1679 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1680 urb->transfer_dma = stream->urb_dma[i]; 1681 #endif 1682 1683 stream->urb[i] = urb; 1684 } 1685 1686 return 0; 1687 } 1688 1689 /* 1690 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1691 */ 1692 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1693 { 1694 struct usb_interface *intf = stream->intf; 1695 struct usb_host_endpoint *ep; 1696 unsigned int i; 1697 int ret; 1698 1699 stream->sequence = -1; 1700 stream->last_fid = -1; 1701 stream->bulk.header_size = 0; 1702 stream->bulk.skip_payload = 0; 1703 stream->bulk.payload_size = 0; 1704 1705 uvc_video_stats_start(stream); 1706 1707 if (intf->num_altsetting > 1) { 1708 struct usb_host_endpoint *best_ep = NULL; 1709 unsigned int best_psize = UINT_MAX; 1710 unsigned int bandwidth; 1711 unsigned int uninitialized_var(altsetting); 1712 int intfnum = stream->intfnum; 1713 1714 /* Isochronous endpoint, select the alternate setting. */ 1715 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1716 1717 if (bandwidth == 0) { 1718 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1719 "bandwidth, defaulting to lowest.\n"); 1720 bandwidth = 1; 1721 } else { 1722 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1723 "B/frame bandwidth.\n", bandwidth); 1724 } 1725 1726 for (i = 0; i < intf->num_altsetting; ++i) { 1727 struct usb_host_interface *alts; 1728 unsigned int psize; 1729 1730 alts = &intf->altsetting[i]; 1731 ep = uvc_find_endpoint(alts, 1732 stream->header.bEndpointAddress); 1733 if (ep == NULL) 1734 continue; 1735 1736 /* Check if the bandwidth is high enough. */ 1737 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1738 if (psize >= bandwidth && psize <= best_psize) { 1739 altsetting = alts->desc.bAlternateSetting; 1740 best_psize = psize; 1741 best_ep = ep; 1742 } 1743 } 1744 1745 if (best_ep == NULL) { 1746 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1747 "for requested bandwidth.\n"); 1748 return -EIO; 1749 } 1750 1751 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1752 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1753 1754 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1755 if (ret < 0) 1756 return ret; 1757 1758 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1759 } else { 1760 /* Bulk endpoint, proceed to URB initialization. */ 1761 ep = uvc_find_endpoint(&intf->altsetting[0], 1762 stream->header.bEndpointAddress); 1763 if (ep == NULL) 1764 return -EIO; 1765 1766 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1767 } 1768 1769 if (ret < 0) 1770 return ret; 1771 1772 /* Submit the URBs. */ 1773 for (i = 0; i < UVC_URBS; ++i) { 1774 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1775 if (ret < 0) { 1776 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1777 "(%d).\n", i, ret); 1778 uvc_uninit_video(stream, 1); 1779 return ret; 1780 } 1781 } 1782 1783 /* The Logitech C920 temporarily forgets that it should not be adjusting 1784 * Exposure Absolute during init so restore controls to stored values. 1785 */ 1786 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1787 uvc_ctrl_restore_values(stream->dev); 1788 1789 return 0; 1790 } 1791 1792 /* -------------------------------------------------------------------------- 1793 * Suspend/resume 1794 */ 1795 1796 /* 1797 * Stop streaming without disabling the video queue. 1798 * 1799 * To let userspace applications resume without trouble, we must not touch the 1800 * video buffers in any way. We mark the device as frozen to make sure the URB 1801 * completion handler won't try to cancel the queue when we kill the URBs. 1802 */ 1803 int uvc_video_suspend(struct uvc_streaming *stream) 1804 { 1805 if (!uvc_queue_streaming(&stream->queue)) 1806 return 0; 1807 1808 stream->frozen = 1; 1809 uvc_uninit_video(stream, 0); 1810 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1811 return 0; 1812 } 1813 1814 /* 1815 * Reconfigure the video interface and restart streaming if it was enabled 1816 * before suspend. 1817 * 1818 * If an error occurs, disable the video queue. This will wake all pending 1819 * buffers, making sure userspace applications are notified of the problem 1820 * instead of waiting forever. 1821 */ 1822 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1823 { 1824 int ret; 1825 1826 /* If the bus has been reset on resume, set the alternate setting to 0. 1827 * This should be the default value, but some devices crash or otherwise 1828 * misbehave if they don't receive a SET_INTERFACE request before any 1829 * other video control request. 1830 */ 1831 if (reset) 1832 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1833 1834 stream->frozen = 0; 1835 1836 uvc_video_clock_reset(stream); 1837 1838 if (!uvc_queue_streaming(&stream->queue)) 1839 return 0; 1840 1841 ret = uvc_commit_video(stream, &stream->ctrl); 1842 if (ret < 0) 1843 return ret; 1844 1845 return uvc_init_video(stream, GFP_NOIO); 1846 } 1847 1848 /* ------------------------------------------------------------------------ 1849 * Video device 1850 */ 1851 1852 /* 1853 * Initialize the UVC video device by switching to alternate setting 0 and 1854 * retrieve the default format. 1855 * 1856 * Some cameras (namely the Fuji Finepix) set the format and frame 1857 * indexes to zero. The UVC standard doesn't clearly make this a spec 1858 * violation, so try to silently fix the values if possible. 1859 * 1860 * This function is called before registering the device with V4L. 1861 */ 1862 int uvc_video_init(struct uvc_streaming *stream) 1863 { 1864 struct uvc_streaming_control *probe = &stream->ctrl; 1865 struct uvc_format *format = NULL; 1866 struct uvc_frame *frame = NULL; 1867 unsigned int i; 1868 int ret; 1869 1870 if (stream->nformats == 0) { 1871 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1872 return -EINVAL; 1873 } 1874 1875 atomic_set(&stream->active, 0); 1876 1877 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1878 * Cam (and possibly other devices) crash or otherwise misbehave if 1879 * they don't receive a SET_INTERFACE request before any other video 1880 * control request. 1881 */ 1882 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1883 1884 /* Set the streaming probe control with default streaming parameters 1885 * retrieved from the device. Webcams that don't suport GET_DEF 1886 * requests on the probe control will just keep their current streaming 1887 * parameters. 1888 */ 1889 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1890 uvc_set_video_ctrl(stream, probe, 1); 1891 1892 /* Initialize the streaming parameters with the probe control current 1893 * value. This makes sure SET_CUR requests on the streaming commit 1894 * control will always use values retrieved from a successful GET_CUR 1895 * request on the probe control, as required by the UVC specification. 1896 */ 1897 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1898 if (ret < 0) 1899 return ret; 1900 1901 /* Check if the default format descriptor exists. Use the first 1902 * available format otherwise. 1903 */ 1904 for (i = stream->nformats; i > 0; --i) { 1905 format = &stream->format[i-1]; 1906 if (format->index == probe->bFormatIndex) 1907 break; 1908 } 1909 1910 if (format->nframes == 0) { 1911 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1912 "default format.\n"); 1913 return -EINVAL; 1914 } 1915 1916 /* Zero bFrameIndex might be correct. Stream-based formats (including 1917 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1918 * descriptor with bFrameIndex set to zero. If the default frame 1919 * descriptor is not found, use the first available frame. 1920 */ 1921 for (i = format->nframes; i > 0; --i) { 1922 frame = &format->frame[i-1]; 1923 if (frame->bFrameIndex == probe->bFrameIndex) 1924 break; 1925 } 1926 1927 probe->bFormatIndex = format->index; 1928 probe->bFrameIndex = frame->bFrameIndex; 1929 1930 stream->def_format = format; 1931 stream->cur_format = format; 1932 stream->cur_frame = frame; 1933 1934 /* Select the video decoding function */ 1935 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1936 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1937 stream->decode = uvc_video_decode_isight; 1938 else if (stream->intf->num_altsetting > 1) 1939 stream->decode = uvc_video_decode_isoc; 1940 else 1941 stream->decode = uvc_video_decode_bulk; 1942 } else { 1943 if (stream->intf->num_altsetting == 1) 1944 stream->decode = uvc_video_encode_bulk; 1945 else { 1946 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1947 "supported for video output devices.\n"); 1948 return -EINVAL; 1949 } 1950 } 1951 1952 return 0; 1953 } 1954 1955 /* 1956 * Enable or disable the video stream. 1957 */ 1958 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1959 { 1960 int ret; 1961 1962 if (!enable) { 1963 uvc_uninit_video(stream, 1); 1964 if (stream->intf->num_altsetting > 1) { 1965 usb_set_interface(stream->dev->udev, 1966 stream->intfnum, 0); 1967 } else { 1968 /* UVC doesn't specify how to inform a bulk-based device 1969 * when the video stream is stopped. Windows sends a 1970 * CLEAR_FEATURE(HALT) request to the video streaming 1971 * bulk endpoint, mimic the same behaviour. 1972 */ 1973 unsigned int epnum = stream->header.bEndpointAddress 1974 & USB_ENDPOINT_NUMBER_MASK; 1975 unsigned int dir = stream->header.bEndpointAddress 1976 & USB_ENDPOINT_DIR_MASK; 1977 unsigned int pipe; 1978 1979 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 1980 usb_clear_halt(stream->dev->udev, pipe); 1981 } 1982 1983 uvc_video_clock_cleanup(stream); 1984 return 0; 1985 } 1986 1987 ret = uvc_video_clock_init(stream); 1988 if (ret < 0) 1989 return ret; 1990 1991 /* Commit the streaming parameters. */ 1992 ret = uvc_commit_video(stream, &stream->ctrl); 1993 if (ret < 0) 1994 goto error_commit; 1995 1996 ret = uvc_init_video(stream, GFP_KERNEL); 1997 if (ret < 0) 1998 goto error_video; 1999 2000 return 0; 2001 2002 error_video: 2003 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2004 error_commit: 2005 uvc_video_clock_cleanup(stream); 2006 2007 return ret; 2008 } 2009