1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <asm/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 if (ret != -EPIPE) { 83 dev_err(&dev->udev->dev, 84 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 85 uvc_query_name(query), cs, unit, ret, size); 86 return ret < 0 ? ret : -EPIPE; 87 } 88 89 /* Reuse data[0] to request the error code. */ 90 tmp = *(u8 *)data; 91 92 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 93 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 94 UVC_CTRL_CONTROL_TIMEOUT); 95 96 error = *(u8 *)data; 97 *(u8 *)data = tmp; 98 99 if (ret != 1) 100 return ret < 0 ? ret : -EPIPE; 101 102 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 103 104 switch (error) { 105 case 0: 106 /* Cannot happen - we received a STALL */ 107 return -EPIPE; 108 case 1: /* Not ready */ 109 return -EBUSY; 110 case 2: /* Wrong state */ 111 return -EACCES; 112 case 3: /* Power */ 113 return -EREMOTE; 114 case 4: /* Out of range */ 115 return -ERANGE; 116 case 5: /* Invalid unit */ 117 case 6: /* Invalid control */ 118 case 7: /* Invalid Request */ 119 /* 120 * The firmware has not properly implemented 121 * the control or there has been a HW error. 122 */ 123 return -EIO; 124 case 8: /* Invalid value within range */ 125 return -EINVAL; 126 default: /* reserved or unknown */ 127 break; 128 } 129 130 return -EPIPE; 131 } 132 133 static const struct usb_device_id elgato_cam_link_4k = { 134 USB_DEVICE(0x0fd9, 0x0066) 135 }; 136 137 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 138 struct uvc_streaming_control *ctrl) 139 { 140 const struct uvc_format *format = NULL; 141 const struct uvc_frame *frame = NULL; 142 unsigned int i; 143 144 /* 145 * The response of the Elgato Cam Link 4K is incorrect: The second byte 146 * contains bFormatIndex (instead of being the second byte of bmHint). 147 * The first byte is always zero. The third byte is always 1. 148 * 149 * The UVC 1.5 class specification defines the first five bits in the 150 * bmHint bitfield. The remaining bits are reserved and should be zero. 151 * Therefore a valid bmHint will be less than 32. 152 * 153 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 154 * MCU: 20.02.19, FPGA: 67 155 */ 156 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 157 ctrl->bmHint > 255) { 158 u8 corrected_format_index = ctrl->bmHint >> 8; 159 160 uvc_dbg(stream->dev, VIDEO, 161 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 162 ctrl->bmHint, ctrl->bFormatIndex, 163 1, corrected_format_index); 164 ctrl->bmHint = 1; 165 ctrl->bFormatIndex = corrected_format_index; 166 } 167 168 for (i = 0; i < stream->nformats; ++i) { 169 if (stream->formats[i].index == ctrl->bFormatIndex) { 170 format = &stream->formats[i]; 171 break; 172 } 173 } 174 175 if (format == NULL) 176 return; 177 178 for (i = 0; i < format->nframes; ++i) { 179 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) { 180 frame = &format->frames[i]; 181 break; 182 } 183 } 184 185 if (frame == NULL) 186 return; 187 188 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 189 (ctrl->dwMaxVideoFrameSize == 0 && 190 stream->dev->uvc_version < 0x0110)) 191 ctrl->dwMaxVideoFrameSize = 192 frame->dwMaxVideoFrameBufferSize; 193 194 /* 195 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 196 * compute the bandwidth on 16 bits and erroneously sign-extend it to 197 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 198 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 199 */ 200 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 201 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 202 203 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 204 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 205 stream->intf->num_altsetting > 1) { 206 u32 interval; 207 u32 bandwidth; 208 209 interval = (ctrl->dwFrameInterval > 100000) 210 ? ctrl->dwFrameInterval 211 : frame->dwFrameInterval[0]; 212 213 /* 214 * Compute a bandwidth estimation by multiplying the frame 215 * size by the number of video frames per second, divide the 216 * result by the number of USB frames (or micro-frames for 217 * high- and super-speed devices) per second and add the UVC 218 * header size (assumed to be 12 bytes long). 219 */ 220 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 221 bandwidth *= 10000000 / interval + 1; 222 bandwidth /= 1000; 223 if (stream->dev->udev->speed >= USB_SPEED_HIGH) 224 bandwidth /= 8; 225 bandwidth += 12; 226 227 /* 228 * The bandwidth estimate is too low for many cameras. Don't use 229 * maximum packet sizes lower than 1024 bytes to try and work 230 * around the problem. According to measurements done on two 231 * different camera models, the value is high enough to get most 232 * resolutions working while not preventing two simultaneous 233 * VGA streams at 15 fps. 234 */ 235 bandwidth = max_t(u32, bandwidth, 1024); 236 237 ctrl->dwMaxPayloadTransferSize = bandwidth; 238 } 239 } 240 241 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 242 { 243 /* 244 * Return the size of the video probe and commit controls, which depends 245 * on the protocol version. 246 */ 247 if (stream->dev->uvc_version < 0x0110) 248 return 26; 249 else if (stream->dev->uvc_version < 0x0150) 250 return 34; 251 else 252 return 48; 253 } 254 255 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 256 struct uvc_streaming_control *ctrl, int probe, u8 query) 257 { 258 u16 size = uvc_video_ctrl_size(stream); 259 u8 *data; 260 int ret; 261 262 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 263 query == UVC_GET_DEF) 264 return -EIO; 265 266 data = kmalloc(size, GFP_KERNEL); 267 if (data == NULL) 268 return -ENOMEM; 269 270 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 271 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 272 size, uvc_timeout_param); 273 274 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 275 /* 276 * Some cameras, mostly based on Bison Electronics chipsets, 277 * answer a GET_MIN or GET_MAX request with the wCompQuality 278 * field only. 279 */ 280 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 281 "compliance - GET_MIN/MAX(PROBE) incorrectly " 282 "supported. Enabling workaround.\n"); 283 memset(ctrl, 0, sizeof(*ctrl)); 284 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 285 ret = 0; 286 goto out; 287 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 288 /* 289 * Many cameras don't support the GET_DEF request on their 290 * video probe control. Warn once and return, the caller will 291 * fall back to GET_CUR. 292 */ 293 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 294 "compliance - GET_DEF(PROBE) not supported. " 295 "Enabling workaround.\n"); 296 ret = -EIO; 297 goto out; 298 } else if (ret != size) { 299 dev_err(&stream->intf->dev, 300 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 301 query, probe ? "probe" : "commit", ret, size); 302 ret = (ret == -EPROTO) ? -EPROTO : -EIO; 303 goto out; 304 } 305 306 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 307 ctrl->bFormatIndex = data[2]; 308 ctrl->bFrameIndex = data[3]; 309 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 310 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 311 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 312 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 313 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 314 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 315 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 316 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 317 318 if (size >= 34) { 319 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 320 ctrl->bmFramingInfo = data[30]; 321 ctrl->bPreferedVersion = data[31]; 322 ctrl->bMinVersion = data[32]; 323 ctrl->bMaxVersion = data[33]; 324 } else { 325 ctrl->dwClockFrequency = stream->dev->clock_frequency; 326 ctrl->bmFramingInfo = 0; 327 ctrl->bPreferedVersion = 0; 328 ctrl->bMinVersion = 0; 329 ctrl->bMaxVersion = 0; 330 } 331 332 /* 333 * Some broken devices return null or wrong dwMaxVideoFrameSize and 334 * dwMaxPayloadTransferSize fields. Try to get the value from the 335 * format and frame descriptors. 336 */ 337 uvc_fixup_video_ctrl(stream, ctrl); 338 ret = 0; 339 340 out: 341 kfree(data); 342 return ret; 343 } 344 345 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 346 struct uvc_streaming_control *ctrl, int probe) 347 { 348 u16 size = uvc_video_ctrl_size(stream); 349 u8 *data; 350 int ret; 351 352 data = kzalloc(size, GFP_KERNEL); 353 if (data == NULL) 354 return -ENOMEM; 355 356 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 357 data[2] = ctrl->bFormatIndex; 358 data[3] = ctrl->bFrameIndex; 359 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 360 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 361 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 362 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 363 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 364 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 365 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 366 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 367 368 if (size >= 34) { 369 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 370 data[30] = ctrl->bmFramingInfo; 371 data[31] = ctrl->bPreferedVersion; 372 data[32] = ctrl->bMinVersion; 373 data[33] = ctrl->bMaxVersion; 374 } 375 376 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 377 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 378 size, uvc_timeout_param); 379 if (ret != size) { 380 dev_err(&stream->intf->dev, 381 "Failed to set UVC %s control : %d (exp. %u).\n", 382 probe ? "probe" : "commit", ret, size); 383 ret = -EIO; 384 } 385 386 kfree(data); 387 return ret; 388 } 389 390 int uvc_probe_video(struct uvc_streaming *stream, 391 struct uvc_streaming_control *probe) 392 { 393 struct uvc_streaming_control probe_min, probe_max; 394 unsigned int i; 395 int ret; 396 397 /* 398 * Perform probing. The device should adjust the requested values 399 * according to its capabilities. However, some devices, namely the 400 * first generation UVC Logitech webcams, don't implement the Video 401 * Probe control properly, and just return the needed bandwidth. For 402 * that reason, if the needed bandwidth exceeds the maximum available 403 * bandwidth, try to lower the quality. 404 */ 405 ret = uvc_set_video_ctrl(stream, probe, 1); 406 if (ret < 0) 407 goto done; 408 409 /* Get the minimum and maximum values for compression settings. */ 410 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 411 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 412 if (ret < 0) 413 goto done; 414 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 415 if (ret < 0) 416 goto done; 417 418 probe->wCompQuality = probe_max.wCompQuality; 419 } 420 421 for (i = 0; i < 2; ++i) { 422 ret = uvc_set_video_ctrl(stream, probe, 1); 423 if (ret < 0) 424 goto done; 425 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 426 if (ret < 0) 427 goto done; 428 429 if (stream->intf->num_altsetting == 1) 430 break; 431 432 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize) 433 break; 434 435 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 436 ret = -ENOSPC; 437 goto done; 438 } 439 440 /* TODO: negotiate compression parameters */ 441 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 442 probe->wPFrameRate = probe_min.wPFrameRate; 443 probe->wCompQuality = probe_max.wCompQuality; 444 probe->wCompWindowSize = probe_min.wCompWindowSize; 445 } 446 447 done: 448 return ret; 449 } 450 451 static int uvc_commit_video(struct uvc_streaming *stream, 452 struct uvc_streaming_control *probe) 453 { 454 return uvc_set_video_ctrl(stream, probe, 0); 455 } 456 457 /* ----------------------------------------------------------------------------- 458 * Clocks and timestamps 459 */ 460 461 static inline ktime_t uvc_video_get_time(void) 462 { 463 if (uvc_clock_param == CLOCK_MONOTONIC) 464 return ktime_get(); 465 else 466 return ktime_get_real(); 467 } 468 469 static void 470 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 471 const u8 *data, int len) 472 { 473 struct uvc_clock_sample *sample; 474 unsigned int header_size; 475 bool has_pts = false; 476 bool has_scr = false; 477 unsigned long flags; 478 ktime_t time; 479 u16 host_sof; 480 u16 dev_sof; 481 u32 dev_stc; 482 483 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 484 case UVC_STREAM_PTS | UVC_STREAM_SCR: 485 header_size = 12; 486 has_pts = true; 487 has_scr = true; 488 break; 489 case UVC_STREAM_PTS: 490 header_size = 6; 491 has_pts = true; 492 break; 493 case UVC_STREAM_SCR: 494 header_size = 8; 495 has_scr = true; 496 break; 497 default: 498 header_size = 2; 499 break; 500 } 501 502 /* Check for invalid headers. */ 503 if (len < header_size) 504 return; 505 506 /* 507 * Extract the timestamps: 508 * 509 * - store the frame PTS in the buffer structure 510 * - if the SCR field is present, retrieve the host SOF counter and 511 * kernel timestamps and store them with the SCR STC and SOF fields 512 * in the ring buffer 513 */ 514 if (has_pts && buf != NULL) 515 buf->pts = get_unaligned_le32(&data[2]); 516 517 if (!has_scr) 518 return; 519 520 /* 521 * To limit the amount of data, drop SCRs with an SOF identical to the 522 * previous one. This filtering is also needed to support UVC 1.5, where 523 * all the data packets of the same frame contains the same SOF. In that 524 * case only the first one will match the host_sof. 525 */ 526 dev_sof = get_unaligned_le16(&data[header_size - 2]); 527 if (dev_sof == stream->clock.last_sof) 528 return; 529 530 dev_stc = get_unaligned_le32(&data[header_size - 6]); 531 532 /* 533 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5 534 * standard states that it "must be captured when the first video data 535 * of a video frame is put on the USB bus". This is generally understood 536 * as requiring devices to clear the payload header's SCR bit before 537 * the first packet containing video data. 538 * 539 * Most vendors follow that interpretation, but some (namely SunplusIT 540 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR 541 * field with 0's,and expect that the driver only processes the SCR if 542 * there is data in the packet. 543 * 544 * Ignore all the hardware timestamp information if we haven't received 545 * any data for this frame yet, the packet contains no data, and both 546 * STC and SOF are zero. This heuristics should be safe on compliant 547 * devices. This should be safe with compliant devices, as in the very 548 * unlikely case where a UVC 1.1 device would send timing information 549 * only before the first packet containing data, and both STC and SOF 550 * happen to be zero for a particular frame, we would only miss one 551 * clock sample from many and the clock recovery algorithm wouldn't 552 * suffer from this condition. 553 */ 554 if (buf && buf->bytesused == 0 && len == header_size && 555 dev_stc == 0 && dev_sof == 0) 556 return; 557 558 stream->clock.last_sof = dev_sof; 559 560 host_sof = usb_get_current_frame_number(stream->dev->udev); 561 562 /* 563 * On some devices, like the Logitech C922, the device SOF does not run 564 * at a stable rate of 1kHz. For those devices use the host SOF instead. 565 * In the tests performed so far, this improves the timestamp precision. 566 * This is probably explained by a small packet handling jitter from the 567 * host, but the exact reason hasn't been fully determined. 568 */ 569 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF) 570 dev_sof = host_sof; 571 572 time = uvc_video_get_time(); 573 574 /* 575 * The UVC specification allows device implementations that can't obtain 576 * the USB frame number to keep their own frame counters as long as they 577 * match the size and frequency of the frame number associated with USB 578 * SOF tokens. The SOF values sent by such devices differ from the USB 579 * SOF tokens by a fixed offset that needs to be estimated and accounted 580 * for to make timestamp recovery as accurate as possible. 581 * 582 * The offset is estimated the first time a device SOF value is received 583 * as the difference between the host and device SOF values. As the two 584 * SOF values can differ slightly due to transmission delays, consider 585 * that the offset is null if the difference is not higher than 10 ms 586 * (negative differences can not happen and are thus considered as an 587 * offset). The video commit control wDelay field should be used to 588 * compute a dynamic threshold instead of using a fixed 10 ms value, but 589 * devices don't report reliable wDelay values. 590 * 591 * See uvc_video_clock_host_sof() for an explanation regarding why only 592 * the 8 LSBs of the delta are kept. 593 */ 594 if (stream->clock.sof_offset == (u16)-1) { 595 u16 delta_sof = (host_sof - dev_sof) & 255; 596 if (delta_sof >= 10) 597 stream->clock.sof_offset = delta_sof; 598 else 599 stream->clock.sof_offset = 0; 600 } 601 602 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 603 604 spin_lock_irqsave(&stream->clock.lock, flags); 605 606 sample = &stream->clock.samples[stream->clock.head]; 607 sample->dev_stc = dev_stc; 608 sample->dev_sof = dev_sof; 609 sample->host_sof = host_sof; 610 sample->host_time = time; 611 612 /* Update the sliding window head and count. */ 613 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 614 615 if (stream->clock.count < stream->clock.size) 616 stream->clock.count++; 617 618 spin_unlock_irqrestore(&stream->clock.lock, flags); 619 } 620 621 static void uvc_video_clock_reset(struct uvc_streaming *stream) 622 { 623 struct uvc_clock *clock = &stream->clock; 624 625 clock->head = 0; 626 clock->count = 0; 627 clock->last_sof = -1; 628 clock->sof_offset = -1; 629 } 630 631 static int uvc_video_clock_init(struct uvc_streaming *stream) 632 { 633 struct uvc_clock *clock = &stream->clock; 634 635 spin_lock_init(&clock->lock); 636 clock->size = 32; 637 638 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 639 GFP_KERNEL); 640 if (clock->samples == NULL) 641 return -ENOMEM; 642 643 uvc_video_clock_reset(stream); 644 645 return 0; 646 } 647 648 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 649 { 650 kfree(stream->clock.samples); 651 stream->clock.samples = NULL; 652 } 653 654 /* 655 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 656 * 657 * Host SOF counters reported by usb_get_current_frame_number() usually don't 658 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 659 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 660 * controller and its configuration. 661 * 662 * We thus need to recover the SOF value corresponding to the host frame number. 663 * As the device and host frame numbers are sampled in a short interval, the 664 * difference between their values should be equal to a small delta plus an 665 * integer multiple of 256 caused by the host frame number limited precision. 666 * 667 * To obtain the recovered host SOF value, compute the small delta by masking 668 * the high bits of the host frame counter and device SOF difference and add it 669 * to the device SOF value. 670 */ 671 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 672 { 673 /* The delta value can be negative. */ 674 s8 delta_sof; 675 676 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 677 678 return (sample->dev_sof + delta_sof) & 2047; 679 } 680 681 /* 682 * uvc_video_clock_update - Update the buffer timestamp 683 * 684 * This function converts the buffer PTS timestamp to the host clock domain by 685 * going through the USB SOF clock domain and stores the result in the V4L2 686 * buffer timestamp field. 687 * 688 * The relationship between the device clock and the host clock isn't known. 689 * However, the device and the host share the common USB SOF clock which can be 690 * used to recover that relationship. 691 * 692 * The relationship between the device clock and the USB SOF clock is considered 693 * to be linear over the clock samples sliding window and is given by 694 * 695 * SOF = m * PTS + p 696 * 697 * Several methods to compute the slope (m) and intercept (p) can be used. As 698 * the clock drift should be small compared to the sliding window size, we 699 * assume that the line that goes through the points at both ends of the window 700 * is a good approximation. Naming those points P1 and P2, we get 701 * 702 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 703 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 704 * 705 * or 706 * 707 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 708 * 709 * to avoid losing precision in the division. Similarly, the host timestamp is 710 * computed with 711 * 712 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 713 * 714 * SOF values are coded on 11 bits by USB. We extend their precision with 16 715 * decimal bits, leading to a 11.16 coding. 716 * 717 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 718 * be normalized using the nominal device clock frequency reported through the 719 * UVC descriptors. 720 * 721 * Both the PTS/STC and SOF counters roll over, after a fixed but device 722 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 723 * sliding window size is smaller than the rollover period, differences computed 724 * on unsigned integers will produce the correct result. However, the p term in 725 * the linear relations will be miscomputed. 726 * 727 * To fix the issue, we subtract a constant from the PTS and STC values to bring 728 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 729 * the 32 bit range without any rollover. 730 * 731 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 732 * computed by (1) will never be smaller than 0. This offset is then compensated 733 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 734 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 735 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 736 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 737 * SOF value at the end of the sliding window. 738 * 739 * Finally we subtract a constant from the host timestamps to bring the first 740 * timestamp of the sliding window to 1s. 741 */ 742 void uvc_video_clock_update(struct uvc_streaming *stream, 743 struct vb2_v4l2_buffer *vbuf, 744 struct uvc_buffer *buf) 745 { 746 struct uvc_clock *clock = &stream->clock; 747 struct uvc_clock_sample *first; 748 struct uvc_clock_sample *last; 749 unsigned long flags; 750 u64 timestamp; 751 u32 delta_stc; 752 u32 y1; 753 u32 x1, x2; 754 u32 mean; 755 u32 sof; 756 u64 y, y2; 757 758 if (!uvc_hw_timestamps_param) 759 return; 760 761 /* 762 * We will get called from __vb2_queue_cancel() if there are buffers 763 * done but not dequeued by the user, but the sample array has already 764 * been released at that time. Just bail out in that case. 765 */ 766 if (!clock->samples) 767 return; 768 769 spin_lock_irqsave(&clock->lock, flags); 770 771 if (clock->count < clock->size) 772 goto done; 773 774 first = &clock->samples[clock->head]; 775 last = &clock->samples[(clock->head - 1) % clock->size]; 776 777 /* First step, PTS to SOF conversion. */ 778 delta_stc = buf->pts - (1UL << 31); 779 x1 = first->dev_stc - delta_stc; 780 x2 = last->dev_stc - delta_stc; 781 if (x1 == x2) 782 goto done; 783 784 y1 = (first->dev_sof + 2048) << 16; 785 y2 = (last->dev_sof + 2048) << 16; 786 if (y2 < y1) 787 y2 += 2048 << 16; 788 789 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 790 - (u64)y2 * (u64)x1; 791 y = div_u64(y, x2 - x1); 792 793 sof = y; 794 795 uvc_dbg(stream->dev, CLOCK, 796 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n", 797 stream->dev->name, buf->pts, 798 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 799 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 800 x1, x2, y1, y2, clock->sof_offset); 801 802 /* Second step, SOF to host clock conversion. */ 803 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 804 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 805 if (x2 < x1) 806 x2 += 2048 << 16; 807 if (x1 == x2) 808 goto done; 809 810 y1 = NSEC_PER_SEC; 811 y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 812 813 /* 814 * Interpolated and host SOF timestamps can wrap around at slightly 815 * different times. Handle this by adding or removing 2048 to or from 816 * the computed SOF value to keep it close to the SOF samples mean 817 * value. 818 */ 819 mean = (x1 + x2) / 2; 820 if (mean - (1024 << 16) > sof) 821 sof += 2048 << 16; 822 else if (sof > mean + (1024 << 16)) 823 sof -= 2048 << 16; 824 825 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 826 - (u64)y2 * (u64)x1; 827 y = div_u64(y, x2 - x1); 828 829 timestamp = ktime_to_ns(first->host_time) + y - y1; 830 831 uvc_dbg(stream->dev, CLOCK, 832 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n", 833 stream->dev->name, 834 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 835 y, timestamp, vbuf->vb2_buf.timestamp, 836 x1, first->host_sof, first->dev_sof, 837 x2, last->host_sof, last->dev_sof, y1, y2); 838 839 /* Update the V4L2 buffer. */ 840 vbuf->vb2_buf.timestamp = timestamp; 841 842 done: 843 spin_unlock_irqrestore(&clock->lock, flags); 844 } 845 846 /* ------------------------------------------------------------------------ 847 * Stream statistics 848 */ 849 850 static void uvc_video_stats_decode(struct uvc_streaming *stream, 851 const u8 *data, int len) 852 { 853 unsigned int header_size; 854 bool has_pts = false; 855 bool has_scr = false; 856 u16 scr_sof; 857 u32 scr_stc; 858 u32 pts; 859 860 if (stream->stats.stream.nb_frames == 0 && 861 stream->stats.frame.nb_packets == 0) 862 stream->stats.stream.start_ts = ktime_get(); 863 864 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 865 case UVC_STREAM_PTS | UVC_STREAM_SCR: 866 header_size = 12; 867 has_pts = true; 868 has_scr = true; 869 break; 870 case UVC_STREAM_PTS: 871 header_size = 6; 872 has_pts = true; 873 break; 874 case UVC_STREAM_SCR: 875 header_size = 8; 876 has_scr = true; 877 break; 878 default: 879 header_size = 2; 880 break; 881 } 882 883 /* Check for invalid headers. */ 884 if (len < header_size || data[0] < header_size) { 885 stream->stats.frame.nb_invalid++; 886 return; 887 } 888 889 /* Extract the timestamps. */ 890 if (has_pts) 891 pts = get_unaligned_le32(&data[2]); 892 893 if (has_scr) { 894 scr_stc = get_unaligned_le32(&data[header_size - 6]); 895 scr_sof = get_unaligned_le16(&data[header_size - 2]); 896 } 897 898 /* Is PTS constant through the whole frame ? */ 899 if (has_pts && stream->stats.frame.nb_pts) { 900 if (stream->stats.frame.pts != pts) { 901 stream->stats.frame.nb_pts_diffs++; 902 stream->stats.frame.last_pts_diff = 903 stream->stats.frame.nb_packets; 904 } 905 } 906 907 if (has_pts) { 908 stream->stats.frame.nb_pts++; 909 stream->stats.frame.pts = pts; 910 } 911 912 /* 913 * Do all frames have a PTS in their first non-empty packet, or before 914 * their first empty packet ? 915 */ 916 if (stream->stats.frame.size == 0) { 917 if (len > header_size) 918 stream->stats.frame.has_initial_pts = has_pts; 919 if (len == header_size && has_pts) 920 stream->stats.frame.has_early_pts = true; 921 } 922 923 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 924 if (has_scr && stream->stats.frame.nb_scr) { 925 if (stream->stats.frame.scr_stc != scr_stc) 926 stream->stats.frame.nb_scr_diffs++; 927 } 928 929 if (has_scr) { 930 /* Expand the SOF counter to 32 bits and store its value. */ 931 if (stream->stats.stream.nb_frames > 0 || 932 stream->stats.frame.nb_scr > 0) 933 stream->stats.stream.scr_sof_count += 934 (scr_sof - stream->stats.stream.scr_sof) % 2048; 935 stream->stats.stream.scr_sof = scr_sof; 936 937 stream->stats.frame.nb_scr++; 938 stream->stats.frame.scr_stc = scr_stc; 939 stream->stats.frame.scr_sof = scr_sof; 940 941 if (scr_sof < stream->stats.stream.min_sof) 942 stream->stats.stream.min_sof = scr_sof; 943 if (scr_sof > stream->stats.stream.max_sof) 944 stream->stats.stream.max_sof = scr_sof; 945 } 946 947 /* Record the first non-empty packet number. */ 948 if (stream->stats.frame.size == 0 && len > header_size) 949 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 950 951 /* Update the frame size. */ 952 stream->stats.frame.size += len - header_size; 953 954 /* Update the packets counters. */ 955 stream->stats.frame.nb_packets++; 956 if (len <= header_size) 957 stream->stats.frame.nb_empty++; 958 959 if (data[1] & UVC_STREAM_ERR) 960 stream->stats.frame.nb_errors++; 961 } 962 963 static void uvc_video_stats_update(struct uvc_streaming *stream) 964 { 965 struct uvc_stats_frame *frame = &stream->stats.frame; 966 967 uvc_dbg(stream->dev, STATS, 968 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 969 stream->sequence, frame->first_data, 970 frame->nb_packets - frame->nb_empty, frame->nb_packets, 971 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 972 frame->has_early_pts ? "" : "!", 973 frame->has_initial_pts ? "" : "!", 974 frame->nb_scr_diffs, frame->nb_scr, 975 frame->pts, frame->scr_stc, frame->scr_sof); 976 977 stream->stats.stream.nb_frames++; 978 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 979 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 980 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 981 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 982 983 if (frame->has_early_pts) 984 stream->stats.stream.nb_pts_early++; 985 if (frame->has_initial_pts) 986 stream->stats.stream.nb_pts_initial++; 987 if (frame->last_pts_diff <= frame->first_data) 988 stream->stats.stream.nb_pts_constant++; 989 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 990 stream->stats.stream.nb_scr_count_ok++; 991 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 992 stream->stats.stream.nb_scr_diffs_ok++; 993 994 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 995 } 996 997 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 998 size_t size) 999 { 1000 unsigned int scr_sof_freq; 1001 unsigned int duration; 1002 size_t count = 0; 1003 1004 /* 1005 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 1006 * frequency this will not overflow before more than 1h. 1007 */ 1008 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 1009 stream->stats.stream.start_ts); 1010 if (duration != 0) 1011 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 1012 / duration; 1013 else 1014 scr_sof_freq = 0; 1015 1016 count += scnprintf(buf + count, size - count, 1017 "frames: %u\npackets: %u\nempty: %u\n" 1018 "errors: %u\ninvalid: %u\n", 1019 stream->stats.stream.nb_frames, 1020 stream->stats.stream.nb_packets, 1021 stream->stats.stream.nb_empty, 1022 stream->stats.stream.nb_errors, 1023 stream->stats.stream.nb_invalid); 1024 count += scnprintf(buf + count, size - count, 1025 "pts: %u early, %u initial, %u ok\n", 1026 stream->stats.stream.nb_pts_early, 1027 stream->stats.stream.nb_pts_initial, 1028 stream->stats.stream.nb_pts_constant); 1029 count += scnprintf(buf + count, size - count, 1030 "scr: %u count ok, %u diff ok\n", 1031 stream->stats.stream.nb_scr_count_ok, 1032 stream->stats.stream.nb_scr_diffs_ok); 1033 count += scnprintf(buf + count, size - count, 1034 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 1035 stream->stats.stream.min_sof, 1036 stream->stats.stream.max_sof, 1037 scr_sof_freq / 1000, scr_sof_freq % 1000); 1038 1039 return count; 1040 } 1041 1042 static void uvc_video_stats_start(struct uvc_streaming *stream) 1043 { 1044 memset(&stream->stats, 0, sizeof(stream->stats)); 1045 stream->stats.stream.min_sof = 2048; 1046 } 1047 1048 static void uvc_video_stats_stop(struct uvc_streaming *stream) 1049 { 1050 stream->stats.stream.stop_ts = ktime_get(); 1051 } 1052 1053 /* ------------------------------------------------------------------------ 1054 * Video codecs 1055 */ 1056 1057 /* 1058 * Video payload decoding is handled by uvc_video_decode_start(), 1059 * uvc_video_decode_data() and uvc_video_decode_end(). 1060 * 1061 * uvc_video_decode_start is called with URB data at the start of a bulk or 1062 * isochronous payload. It processes header data and returns the header size 1063 * in bytes if successful. If an error occurs, it returns a negative error 1064 * code. The following error codes have special meanings. 1065 * 1066 * - EAGAIN informs the caller that the current video buffer should be marked 1067 * as done, and that the function should be called again with the same data 1068 * and a new video buffer. This is used when end of frame conditions can be 1069 * reliably detected at the beginning of the next frame only. 1070 * 1071 * If an error other than -EAGAIN is returned, the caller will drop the current 1072 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1073 * made until the next payload. -ENODATA can be used to drop the current 1074 * payload if no other error code is appropriate. 1075 * 1076 * uvc_video_decode_data is called for every URB with URB data. It copies the 1077 * data to the video buffer. 1078 * 1079 * uvc_video_decode_end is called with header data at the end of a bulk or 1080 * isochronous payload. It performs any additional header data processing and 1081 * returns 0 or a negative error code if an error occurred. As header data have 1082 * already been processed by uvc_video_decode_start, this functions isn't 1083 * required to perform sanity checks a second time. 1084 * 1085 * For isochronous transfers where a payload is always transferred in a single 1086 * URB, the three functions will be called in a row. 1087 * 1088 * To let the decoder process header data and update its internal state even 1089 * when no video buffer is available, uvc_video_decode_start must be prepared 1090 * to be called with a NULL buf parameter. uvc_video_decode_data and 1091 * uvc_video_decode_end will never be called with a NULL buffer. 1092 */ 1093 static int uvc_video_decode_start(struct uvc_streaming *stream, 1094 struct uvc_buffer *buf, const u8 *data, int len) 1095 { 1096 u8 fid; 1097 1098 /* 1099 * Sanity checks: 1100 * - packet must be at least 2 bytes long 1101 * - bHeaderLength value must be at least 2 bytes (see above) 1102 * - bHeaderLength value can't be larger than the packet size. 1103 */ 1104 if (len < 2 || data[0] < 2 || data[0] > len) { 1105 stream->stats.frame.nb_invalid++; 1106 return -EINVAL; 1107 } 1108 1109 fid = data[1] & UVC_STREAM_FID; 1110 1111 /* 1112 * Increase the sequence number regardless of any buffer states, so 1113 * that discontinuous sequence numbers always indicate lost frames. 1114 */ 1115 if (stream->last_fid != fid) { 1116 stream->sequence++; 1117 if (stream->sequence) 1118 uvc_video_stats_update(stream); 1119 } 1120 1121 uvc_video_clock_decode(stream, buf, data, len); 1122 uvc_video_stats_decode(stream, data, len); 1123 1124 /* 1125 * Store the payload FID bit and return immediately when the buffer is 1126 * NULL. 1127 */ 1128 if (buf == NULL) { 1129 stream->last_fid = fid; 1130 return -ENODATA; 1131 } 1132 1133 /* Mark the buffer as bad if the error bit is set. */ 1134 if (data[1] & UVC_STREAM_ERR) { 1135 uvc_dbg(stream->dev, FRAME, 1136 "Marking buffer as bad (error bit set)\n"); 1137 buf->error = 1; 1138 } 1139 1140 /* 1141 * Synchronize to the input stream by waiting for the FID bit to be 1142 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE. 1143 * stream->last_fid is initialized to -1, so the first isochronous 1144 * frame will always be in sync. 1145 * 1146 * If the device doesn't toggle the FID bit, invert stream->last_fid 1147 * when the EOF bit is set to force synchronisation on the next packet. 1148 */ 1149 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1150 if (fid == stream->last_fid) { 1151 uvc_dbg(stream->dev, FRAME, 1152 "Dropping payload (out of sync)\n"); 1153 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1154 (data[1] & UVC_STREAM_EOF)) 1155 stream->last_fid ^= UVC_STREAM_FID; 1156 return -ENODATA; 1157 } 1158 1159 buf->buf.field = V4L2_FIELD_NONE; 1160 buf->buf.sequence = stream->sequence; 1161 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1162 1163 /* TODO: Handle PTS and SCR. */ 1164 buf->state = UVC_BUF_STATE_ACTIVE; 1165 } 1166 1167 /* 1168 * Mark the buffer as done if we're at the beginning of a new frame. 1169 * End of frame detection is better implemented by checking the EOF 1170 * bit (FID bit toggling is delayed by one frame compared to the EOF 1171 * bit), but some devices don't set the bit at end of frame (and the 1172 * last payload can be lost anyway). We thus must check if the FID has 1173 * been toggled. 1174 * 1175 * stream->last_fid is initialized to -1, so the first isochronous 1176 * frame will never trigger an end of frame detection. 1177 * 1178 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1179 * as it doesn't make sense to return an empty buffer. This also 1180 * avoids detecting end of frame conditions at FID toggling if the 1181 * previous payload had the EOF bit set. 1182 */ 1183 if (fid != stream->last_fid && buf->bytesused != 0) { 1184 uvc_dbg(stream->dev, FRAME, 1185 "Frame complete (FID bit toggled)\n"); 1186 buf->state = UVC_BUF_STATE_READY; 1187 return -EAGAIN; 1188 } 1189 1190 stream->last_fid = fid; 1191 1192 return data[0]; 1193 } 1194 1195 static inline enum dma_data_direction uvc_stream_dir( 1196 struct uvc_streaming *stream) 1197 { 1198 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1199 return DMA_FROM_DEVICE; 1200 else 1201 return DMA_TO_DEVICE; 1202 } 1203 1204 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1205 { 1206 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1207 } 1208 1209 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1210 { 1211 /* Sync DMA. */ 1212 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1213 uvc_urb->sgt, 1214 uvc_stream_dir(uvc_urb->stream)); 1215 return usb_submit_urb(uvc_urb->urb, mem_flags); 1216 } 1217 1218 /* 1219 * uvc_video_decode_data_work: Asynchronous memcpy processing 1220 * 1221 * Copy URB data to video buffers in process context, releasing buffer 1222 * references and requeuing the URB when done. 1223 */ 1224 static void uvc_video_copy_data_work(struct work_struct *work) 1225 { 1226 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1227 unsigned int i; 1228 int ret; 1229 1230 for (i = 0; i < uvc_urb->async_operations; i++) { 1231 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1232 1233 memcpy(op->dst, op->src, op->len); 1234 1235 /* Release reference taken on this buffer. */ 1236 uvc_queue_buffer_release(op->buf); 1237 } 1238 1239 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1240 if (ret < 0) 1241 dev_err(&uvc_urb->stream->intf->dev, 1242 "Failed to resubmit video URB (%d).\n", ret); 1243 } 1244 1245 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1246 struct uvc_buffer *buf, const u8 *data, int len) 1247 { 1248 unsigned int active_op = uvc_urb->async_operations; 1249 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1250 unsigned int maxlen; 1251 1252 if (len <= 0) 1253 return; 1254 1255 maxlen = buf->length - buf->bytesused; 1256 1257 /* Take a buffer reference for async work. */ 1258 kref_get(&buf->ref); 1259 1260 op->buf = buf; 1261 op->src = data; 1262 op->dst = buf->mem + buf->bytesused; 1263 op->len = min_t(unsigned int, len, maxlen); 1264 1265 buf->bytesused += op->len; 1266 1267 /* Complete the current frame if the buffer size was exceeded. */ 1268 if (len > maxlen) { 1269 uvc_dbg(uvc_urb->stream->dev, FRAME, 1270 "Frame complete (overflow)\n"); 1271 buf->error = 1; 1272 buf->state = UVC_BUF_STATE_READY; 1273 } 1274 1275 uvc_urb->async_operations++; 1276 } 1277 1278 static void uvc_video_decode_end(struct uvc_streaming *stream, 1279 struct uvc_buffer *buf, const u8 *data, int len) 1280 { 1281 /* Mark the buffer as done if the EOF marker is set. */ 1282 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1283 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1284 if (data[0] == len) 1285 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1286 buf->state = UVC_BUF_STATE_READY; 1287 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1288 stream->last_fid ^= UVC_STREAM_FID; 1289 } 1290 } 1291 1292 /* 1293 * Video payload encoding is handled by uvc_video_encode_header() and 1294 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1295 * 1296 * uvc_video_encode_header is called at the start of a payload. It adds header 1297 * data to the transfer buffer and returns the header size. As the only known 1298 * UVC output device transfers a whole frame in a single payload, the EOF bit 1299 * is always set in the header. 1300 * 1301 * uvc_video_encode_data is called for every URB and copies the data from the 1302 * video buffer to the transfer buffer. 1303 */ 1304 static int uvc_video_encode_header(struct uvc_streaming *stream, 1305 struct uvc_buffer *buf, u8 *data, int len) 1306 { 1307 data[0] = 2; /* Header length */ 1308 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1309 | (stream->last_fid & UVC_STREAM_FID); 1310 return 2; 1311 } 1312 1313 static int uvc_video_encode_data(struct uvc_streaming *stream, 1314 struct uvc_buffer *buf, u8 *data, int len) 1315 { 1316 struct uvc_video_queue *queue = &stream->queue; 1317 unsigned int nbytes; 1318 void *mem; 1319 1320 /* Copy video data to the URB buffer. */ 1321 mem = buf->mem + queue->buf_used; 1322 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1323 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1324 nbytes); 1325 memcpy(data, mem, nbytes); 1326 1327 queue->buf_used += nbytes; 1328 1329 return nbytes; 1330 } 1331 1332 /* ------------------------------------------------------------------------ 1333 * Metadata 1334 */ 1335 1336 /* 1337 * Additionally to the payload headers we also want to provide the user with USB 1338 * Frame Numbers and system time values. The resulting buffer is thus composed 1339 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1340 * Number, and a copy of the payload header. 1341 * 1342 * Ideally we want to capture all payload headers for each frame. However, their 1343 * number is unknown and unbound. We thus drop headers that contain no vendor 1344 * data and that either contain no SCR value or an SCR value identical to the 1345 * previous header. 1346 */ 1347 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1348 struct uvc_buffer *meta_buf, 1349 const u8 *mem, unsigned int length) 1350 { 1351 struct uvc_meta_buf *meta; 1352 size_t len_std = 2; 1353 bool has_pts, has_scr; 1354 unsigned long flags; 1355 unsigned int sof; 1356 ktime_t time; 1357 const u8 *scr; 1358 1359 if (!meta_buf || length == 2) 1360 return; 1361 1362 if (meta_buf->length - meta_buf->bytesused < 1363 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1364 meta_buf->error = 1; 1365 return; 1366 } 1367 1368 has_pts = mem[1] & UVC_STREAM_PTS; 1369 has_scr = mem[1] & UVC_STREAM_SCR; 1370 1371 if (has_pts) { 1372 len_std += 4; 1373 scr = mem + 6; 1374 } else { 1375 scr = mem + 2; 1376 } 1377 1378 if (has_scr) 1379 len_std += 6; 1380 1381 if (stream->meta.format == V4L2_META_FMT_UVC) 1382 length = len_std; 1383 1384 if (length == len_std && (!has_scr || 1385 !memcmp(scr, stream->clock.last_scr, 6))) 1386 return; 1387 1388 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1389 local_irq_save(flags); 1390 time = uvc_video_get_time(); 1391 sof = usb_get_current_frame_number(stream->dev->udev); 1392 local_irq_restore(flags); 1393 put_unaligned(ktime_to_ns(time), &meta->ns); 1394 put_unaligned(sof, &meta->sof); 1395 1396 if (has_scr) 1397 memcpy(stream->clock.last_scr, scr, 6); 1398 1399 meta->length = mem[0]; 1400 meta->flags = mem[1]; 1401 memcpy(meta->buf, &mem[2], length - 2); 1402 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1403 1404 uvc_dbg(stream->dev, FRAME, 1405 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1406 __func__, ktime_to_ns(time), meta->sof, meta->length, 1407 meta->flags, 1408 has_pts ? *(u32 *)meta->buf : 0, 1409 has_scr ? *(u32 *)scr : 0, 1410 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1411 } 1412 1413 /* ------------------------------------------------------------------------ 1414 * URB handling 1415 */ 1416 1417 /* 1418 * Set error flag for incomplete buffer. 1419 */ 1420 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1421 struct uvc_buffer *buf) 1422 { 1423 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1424 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1425 buf->error = 1; 1426 } 1427 1428 /* 1429 * Completion handler for video URBs. 1430 */ 1431 1432 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1433 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1434 { 1435 uvc_video_validate_buffer(stream, *video_buf); 1436 1437 if (*meta_buf) { 1438 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1439 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1440 1441 vb2_meta->sequence = vb2_video->sequence; 1442 vb2_meta->field = vb2_video->field; 1443 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1444 1445 (*meta_buf)->state = UVC_BUF_STATE_READY; 1446 if (!(*meta_buf)->error) 1447 (*meta_buf)->error = (*video_buf)->error; 1448 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1449 *meta_buf); 1450 } 1451 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1452 } 1453 1454 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1455 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1456 { 1457 struct urb *urb = uvc_urb->urb; 1458 struct uvc_streaming *stream = uvc_urb->stream; 1459 u8 *mem; 1460 int ret, i; 1461 1462 for (i = 0; i < urb->number_of_packets; ++i) { 1463 if (urb->iso_frame_desc[i].status < 0) { 1464 uvc_dbg(stream->dev, FRAME, 1465 "USB isochronous frame lost (%d)\n", 1466 urb->iso_frame_desc[i].status); 1467 /* Mark the buffer as faulty. */ 1468 if (buf != NULL) 1469 buf->error = 1; 1470 continue; 1471 } 1472 1473 /* Decode the payload header. */ 1474 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1475 do { 1476 ret = uvc_video_decode_start(stream, buf, mem, 1477 urb->iso_frame_desc[i].actual_length); 1478 if (ret == -EAGAIN) 1479 uvc_video_next_buffers(stream, &buf, &meta_buf); 1480 } while (ret == -EAGAIN); 1481 1482 if (ret < 0) 1483 continue; 1484 1485 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1486 1487 /* Decode the payload data. */ 1488 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1489 urb->iso_frame_desc[i].actual_length - ret); 1490 1491 /* Process the header again. */ 1492 uvc_video_decode_end(stream, buf, mem, 1493 urb->iso_frame_desc[i].actual_length); 1494 1495 if (buf->state == UVC_BUF_STATE_READY) 1496 uvc_video_next_buffers(stream, &buf, &meta_buf); 1497 } 1498 } 1499 1500 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1501 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1502 { 1503 struct urb *urb = uvc_urb->urb; 1504 struct uvc_streaming *stream = uvc_urb->stream; 1505 u8 *mem; 1506 int len, ret; 1507 1508 /* 1509 * Ignore ZLPs if they're not part of a frame, otherwise process them 1510 * to trigger the end of payload detection. 1511 */ 1512 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1513 return; 1514 1515 mem = urb->transfer_buffer; 1516 len = urb->actual_length; 1517 stream->bulk.payload_size += len; 1518 1519 /* 1520 * If the URB is the first of its payload, decode and save the 1521 * header. 1522 */ 1523 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1524 do { 1525 ret = uvc_video_decode_start(stream, buf, mem, len); 1526 if (ret == -EAGAIN) 1527 uvc_video_next_buffers(stream, &buf, &meta_buf); 1528 } while (ret == -EAGAIN); 1529 1530 /* If an error occurred skip the rest of the payload. */ 1531 if (ret < 0 || buf == NULL) { 1532 stream->bulk.skip_payload = 1; 1533 } else { 1534 memcpy(stream->bulk.header, mem, ret); 1535 stream->bulk.header_size = ret; 1536 1537 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1538 1539 mem += ret; 1540 len -= ret; 1541 } 1542 } 1543 1544 /* 1545 * The buffer queue might have been cancelled while a bulk transfer 1546 * was in progress, so we can reach here with buf equal to NULL. Make 1547 * sure buf is never dereferenced if NULL. 1548 */ 1549 1550 /* Prepare video data for processing. */ 1551 if (!stream->bulk.skip_payload && buf != NULL) 1552 uvc_video_decode_data(uvc_urb, buf, mem, len); 1553 1554 /* 1555 * Detect the payload end by a URB smaller than the maximum size (or 1556 * a payload size equal to the maximum) and process the header again. 1557 */ 1558 if (urb->actual_length < urb->transfer_buffer_length || 1559 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1560 if (!stream->bulk.skip_payload && buf != NULL) { 1561 uvc_video_decode_end(stream, buf, stream->bulk.header, 1562 stream->bulk.payload_size); 1563 if (buf->state == UVC_BUF_STATE_READY) 1564 uvc_video_next_buffers(stream, &buf, &meta_buf); 1565 } 1566 1567 stream->bulk.header_size = 0; 1568 stream->bulk.skip_payload = 0; 1569 stream->bulk.payload_size = 0; 1570 } 1571 } 1572 1573 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1574 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1575 { 1576 struct urb *urb = uvc_urb->urb; 1577 struct uvc_streaming *stream = uvc_urb->stream; 1578 1579 u8 *mem = urb->transfer_buffer; 1580 int len = stream->urb_size, ret; 1581 1582 if (buf == NULL) { 1583 urb->transfer_buffer_length = 0; 1584 return; 1585 } 1586 1587 /* If the URB is the first of its payload, add the header. */ 1588 if (stream->bulk.header_size == 0) { 1589 ret = uvc_video_encode_header(stream, buf, mem, len); 1590 stream->bulk.header_size = ret; 1591 stream->bulk.payload_size += ret; 1592 mem += ret; 1593 len -= ret; 1594 } 1595 1596 /* Process video data. */ 1597 ret = uvc_video_encode_data(stream, buf, mem, len); 1598 1599 stream->bulk.payload_size += ret; 1600 len -= ret; 1601 1602 if (buf->bytesused == stream->queue.buf_used || 1603 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1604 if (buf->bytesused == stream->queue.buf_used) { 1605 stream->queue.buf_used = 0; 1606 buf->state = UVC_BUF_STATE_READY; 1607 buf->buf.sequence = ++stream->sequence; 1608 uvc_queue_next_buffer(&stream->queue, buf); 1609 stream->last_fid ^= UVC_STREAM_FID; 1610 } 1611 1612 stream->bulk.header_size = 0; 1613 stream->bulk.payload_size = 0; 1614 } 1615 1616 urb->transfer_buffer_length = stream->urb_size - len; 1617 } 1618 1619 static void uvc_video_complete(struct urb *urb) 1620 { 1621 struct uvc_urb *uvc_urb = urb->context; 1622 struct uvc_streaming *stream = uvc_urb->stream; 1623 struct uvc_video_queue *queue = &stream->queue; 1624 struct uvc_video_queue *qmeta = &stream->meta.queue; 1625 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1626 struct uvc_buffer *buf = NULL; 1627 struct uvc_buffer *buf_meta = NULL; 1628 unsigned long flags; 1629 int ret; 1630 1631 switch (urb->status) { 1632 case 0: 1633 break; 1634 1635 default: 1636 dev_warn(&stream->intf->dev, 1637 "Non-zero status (%d) in video completion handler.\n", 1638 urb->status); 1639 fallthrough; 1640 case -ENOENT: /* usb_poison_urb() called. */ 1641 if (stream->frozen) 1642 return; 1643 fallthrough; 1644 case -ECONNRESET: /* usb_unlink_urb() called. */ 1645 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1646 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1647 if (vb2_qmeta) 1648 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1649 return; 1650 } 1651 1652 buf = uvc_queue_get_current_buffer(queue); 1653 1654 if (vb2_qmeta) { 1655 spin_lock_irqsave(&qmeta->irqlock, flags); 1656 if (!list_empty(&qmeta->irqqueue)) 1657 buf_meta = list_first_entry(&qmeta->irqqueue, 1658 struct uvc_buffer, queue); 1659 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1660 } 1661 1662 /* Re-initialise the URB async work. */ 1663 uvc_urb->async_operations = 0; 1664 1665 /* Sync DMA and invalidate vmap range. */ 1666 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1667 uvc_urb->sgt, uvc_stream_dir(stream)); 1668 invalidate_kernel_vmap_range(uvc_urb->buffer, 1669 uvc_urb->stream->urb_size); 1670 1671 /* 1672 * Process the URB headers, and optionally queue expensive memcpy tasks 1673 * to be deferred to a work queue. 1674 */ 1675 stream->decode(uvc_urb, buf, buf_meta); 1676 1677 /* If no async work is needed, resubmit the URB immediately. */ 1678 if (!uvc_urb->async_operations) { 1679 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1680 if (ret < 0) 1681 dev_err(&stream->intf->dev, 1682 "Failed to resubmit video URB (%d).\n", ret); 1683 return; 1684 } 1685 1686 queue_work(stream->async_wq, &uvc_urb->work); 1687 } 1688 1689 /* 1690 * Free transfer buffers. 1691 */ 1692 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1693 { 1694 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1695 struct uvc_urb *uvc_urb; 1696 1697 for_each_uvc_urb(uvc_urb, stream) { 1698 if (!uvc_urb->buffer) 1699 continue; 1700 1701 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1702 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1703 uvc_stream_dir(stream)); 1704 1705 uvc_urb->buffer = NULL; 1706 uvc_urb->sgt = NULL; 1707 } 1708 1709 stream->urb_size = 0; 1710 } 1711 1712 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1713 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1714 { 1715 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1716 1717 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1718 uvc_stream_dir(stream), 1719 gfp_flags, 0); 1720 if (!uvc_urb->sgt) 1721 return false; 1722 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1723 1724 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1725 uvc_urb->sgt); 1726 if (!uvc_urb->buffer) { 1727 dma_free_noncontiguous(dma_dev, stream->urb_size, 1728 uvc_urb->sgt, 1729 uvc_stream_dir(stream)); 1730 uvc_urb->sgt = NULL; 1731 return false; 1732 } 1733 1734 return true; 1735 } 1736 1737 /* 1738 * Allocate transfer buffers. This function can be called with buffers 1739 * already allocated when resuming from suspend, in which case it will 1740 * return without touching the buffers. 1741 * 1742 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1743 * system is too low on memory try successively smaller numbers of packets 1744 * until allocation succeeds. 1745 * 1746 * Return the number of allocated packets on success or 0 when out of memory. 1747 */ 1748 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1749 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1750 { 1751 unsigned int npackets; 1752 unsigned int i; 1753 1754 /* Buffers are already allocated, bail out. */ 1755 if (stream->urb_size) 1756 return stream->urb_size / psize; 1757 1758 /* 1759 * Compute the number of packets. Bulk endpoints might transfer UVC 1760 * payloads across multiple URBs. 1761 */ 1762 npackets = DIV_ROUND_UP(size, psize); 1763 if (npackets > UVC_MAX_PACKETS) 1764 npackets = UVC_MAX_PACKETS; 1765 1766 /* Retry allocations until one succeed. */ 1767 for (; npackets > 1; npackets /= 2) { 1768 stream->urb_size = psize * npackets; 1769 1770 for (i = 0; i < UVC_URBS; ++i) { 1771 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1772 1773 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1774 uvc_free_urb_buffers(stream); 1775 break; 1776 } 1777 1778 uvc_urb->stream = stream; 1779 } 1780 1781 if (i == UVC_URBS) { 1782 uvc_dbg(stream->dev, VIDEO, 1783 "Allocated %u URB buffers of %ux%u bytes each\n", 1784 UVC_URBS, npackets, psize); 1785 return npackets; 1786 } 1787 } 1788 1789 uvc_dbg(stream->dev, VIDEO, 1790 "Failed to allocate URB buffers (%u bytes per packet)\n", 1791 psize); 1792 return 0; 1793 } 1794 1795 /* 1796 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1797 */ 1798 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1799 int free_buffers) 1800 { 1801 struct uvc_urb *uvc_urb; 1802 1803 uvc_video_stats_stop(stream); 1804 1805 /* 1806 * We must poison the URBs rather than kill them to ensure that even 1807 * after the completion handler returns, any asynchronous workqueues 1808 * will be prevented from resubmitting the URBs. 1809 */ 1810 for_each_uvc_urb(uvc_urb, stream) 1811 usb_poison_urb(uvc_urb->urb); 1812 1813 flush_workqueue(stream->async_wq); 1814 1815 for_each_uvc_urb(uvc_urb, stream) { 1816 usb_free_urb(uvc_urb->urb); 1817 uvc_urb->urb = NULL; 1818 } 1819 1820 if (free_buffers) 1821 uvc_free_urb_buffers(stream); 1822 } 1823 1824 /* 1825 * Compute the maximum number of bytes per interval for an endpoint. 1826 */ 1827 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep) 1828 { 1829 u16 psize; 1830 1831 switch (dev->speed) { 1832 case USB_SPEED_SUPER: 1833 case USB_SPEED_SUPER_PLUS: 1834 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1835 default: 1836 psize = usb_endpoint_maxp(&ep->desc); 1837 psize *= usb_endpoint_maxp_mult(&ep->desc); 1838 return psize; 1839 } 1840 } 1841 1842 /* 1843 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1844 * is given by the endpoint. 1845 */ 1846 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1847 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1848 { 1849 struct urb *urb; 1850 struct uvc_urb *uvc_urb; 1851 unsigned int npackets, i; 1852 u16 psize; 1853 u32 size; 1854 1855 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1856 size = stream->ctrl.dwMaxVideoFrameSize; 1857 1858 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1859 if (npackets == 0) 1860 return -ENOMEM; 1861 1862 size = npackets * psize; 1863 1864 for_each_uvc_urb(uvc_urb, stream) { 1865 urb = usb_alloc_urb(npackets, gfp_flags); 1866 if (urb == NULL) { 1867 uvc_video_stop_transfer(stream, 1); 1868 return -ENOMEM; 1869 } 1870 1871 urb->dev = stream->dev->udev; 1872 urb->context = uvc_urb; 1873 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1874 ep->desc.bEndpointAddress); 1875 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1876 urb->transfer_dma = uvc_urb->dma; 1877 urb->interval = ep->desc.bInterval; 1878 urb->transfer_buffer = uvc_urb->buffer; 1879 urb->complete = uvc_video_complete; 1880 urb->number_of_packets = npackets; 1881 urb->transfer_buffer_length = size; 1882 1883 for (i = 0; i < npackets; ++i) { 1884 urb->iso_frame_desc[i].offset = i * psize; 1885 urb->iso_frame_desc[i].length = psize; 1886 } 1887 1888 uvc_urb->urb = urb; 1889 } 1890 1891 return 0; 1892 } 1893 1894 /* 1895 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1896 * given by the endpoint. 1897 */ 1898 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1899 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1900 { 1901 struct urb *urb; 1902 struct uvc_urb *uvc_urb; 1903 unsigned int npackets, pipe; 1904 u16 psize; 1905 u32 size; 1906 1907 psize = usb_endpoint_maxp(&ep->desc); 1908 size = stream->ctrl.dwMaxPayloadTransferSize; 1909 stream->bulk.max_payload_size = size; 1910 1911 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1912 if (npackets == 0) 1913 return -ENOMEM; 1914 1915 size = npackets * psize; 1916 1917 if (usb_endpoint_dir_in(&ep->desc)) 1918 pipe = usb_rcvbulkpipe(stream->dev->udev, 1919 ep->desc.bEndpointAddress); 1920 else 1921 pipe = usb_sndbulkpipe(stream->dev->udev, 1922 ep->desc.bEndpointAddress); 1923 1924 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1925 size = 0; 1926 1927 for_each_uvc_urb(uvc_urb, stream) { 1928 urb = usb_alloc_urb(0, gfp_flags); 1929 if (urb == NULL) { 1930 uvc_video_stop_transfer(stream, 1); 1931 return -ENOMEM; 1932 } 1933 1934 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1935 size, uvc_video_complete, uvc_urb); 1936 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1937 urb->transfer_dma = uvc_urb->dma; 1938 1939 uvc_urb->urb = urb; 1940 } 1941 1942 return 0; 1943 } 1944 1945 /* 1946 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1947 */ 1948 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1949 gfp_t gfp_flags) 1950 { 1951 struct usb_interface *intf = stream->intf; 1952 struct usb_host_endpoint *ep; 1953 struct uvc_urb *uvc_urb; 1954 unsigned int i; 1955 int ret; 1956 1957 stream->sequence = -1; 1958 stream->last_fid = -1; 1959 stream->bulk.header_size = 0; 1960 stream->bulk.skip_payload = 0; 1961 stream->bulk.payload_size = 0; 1962 1963 uvc_video_stats_start(stream); 1964 1965 if (intf->num_altsetting > 1) { 1966 struct usb_host_endpoint *best_ep = NULL; 1967 unsigned int best_psize = UINT_MAX; 1968 unsigned int bandwidth; 1969 unsigned int altsetting; 1970 int intfnum = stream->intfnum; 1971 1972 /* Isochronous endpoint, select the alternate setting. */ 1973 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1974 1975 if (bandwidth == 0) { 1976 uvc_dbg(stream->dev, VIDEO, 1977 "Device requested null bandwidth, defaulting to lowest\n"); 1978 bandwidth = 1; 1979 } else { 1980 uvc_dbg(stream->dev, VIDEO, 1981 "Device requested %u B/frame bandwidth\n", 1982 bandwidth); 1983 } 1984 1985 for (i = 0; i < intf->num_altsetting; ++i) { 1986 struct usb_host_interface *alts; 1987 unsigned int psize; 1988 1989 alts = &intf->altsetting[i]; 1990 ep = uvc_find_endpoint(alts, 1991 stream->header.bEndpointAddress); 1992 if (ep == NULL) 1993 continue; 1994 1995 /* Check if the bandwidth is high enough. */ 1996 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1997 if (psize >= bandwidth && psize <= best_psize) { 1998 altsetting = alts->desc.bAlternateSetting; 1999 best_psize = psize; 2000 best_ep = ep; 2001 } 2002 } 2003 2004 if (best_ep == NULL) { 2005 uvc_dbg(stream->dev, VIDEO, 2006 "No fast enough alt setting for requested bandwidth\n"); 2007 return -EIO; 2008 } 2009 2010 uvc_dbg(stream->dev, VIDEO, 2011 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 2012 altsetting, best_psize); 2013 2014 /* 2015 * Some devices, namely the Logitech C910 and B910, are unable 2016 * to recover from a USB autosuspend, unless the alternate 2017 * setting of the streaming interface is toggled. 2018 */ 2019 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) { 2020 usb_set_interface(stream->dev->udev, intfnum, 2021 altsetting); 2022 usb_set_interface(stream->dev->udev, intfnum, 0); 2023 } 2024 2025 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 2026 if (ret < 0) 2027 return ret; 2028 2029 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 2030 } else { 2031 /* Bulk endpoint, proceed to URB initialization. */ 2032 ep = uvc_find_endpoint(&intf->altsetting[0], 2033 stream->header.bEndpointAddress); 2034 if (ep == NULL) 2035 return -EIO; 2036 2037 /* Reject broken descriptors. */ 2038 if (usb_endpoint_maxp(&ep->desc) == 0) 2039 return -EIO; 2040 2041 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 2042 } 2043 2044 if (ret < 0) 2045 return ret; 2046 2047 /* Submit the URBs. */ 2048 for_each_uvc_urb(uvc_urb, stream) { 2049 ret = uvc_submit_urb(uvc_urb, gfp_flags); 2050 if (ret < 0) { 2051 dev_err(&stream->intf->dev, 2052 "Failed to submit URB %u (%d).\n", 2053 uvc_urb_index(uvc_urb), ret); 2054 uvc_video_stop_transfer(stream, 1); 2055 return ret; 2056 } 2057 } 2058 2059 /* 2060 * The Logitech C920 temporarily forgets that it should not be adjusting 2061 * Exposure Absolute during init so restore controls to stored values. 2062 */ 2063 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 2064 uvc_ctrl_restore_values(stream->dev); 2065 2066 return 0; 2067 } 2068 2069 /* -------------------------------------------------------------------------- 2070 * Suspend/resume 2071 */ 2072 2073 /* 2074 * Stop streaming without disabling the video queue. 2075 * 2076 * To let userspace applications resume without trouble, we must not touch the 2077 * video buffers in any way. We mark the device as frozen to make sure the URB 2078 * completion handler won't try to cancel the queue when we kill the URBs. 2079 */ 2080 int uvc_video_suspend(struct uvc_streaming *stream) 2081 { 2082 if (!uvc_queue_streaming(&stream->queue)) 2083 return 0; 2084 2085 stream->frozen = 1; 2086 uvc_video_stop_transfer(stream, 0); 2087 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2088 return 0; 2089 } 2090 2091 /* 2092 * Reconfigure the video interface and restart streaming if it was enabled 2093 * before suspend. 2094 * 2095 * If an error occurs, disable the video queue. This will wake all pending 2096 * buffers, making sure userspace applications are notified of the problem 2097 * instead of waiting forever. 2098 */ 2099 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2100 { 2101 int ret; 2102 2103 /* 2104 * If the bus has been reset on resume, set the alternate setting to 0. 2105 * This should be the default value, but some devices crash or otherwise 2106 * misbehave if they don't receive a SET_INTERFACE request before any 2107 * other video control request. 2108 */ 2109 if (reset) 2110 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2111 2112 stream->frozen = 0; 2113 2114 uvc_video_clock_reset(stream); 2115 2116 if (!uvc_queue_streaming(&stream->queue)) 2117 return 0; 2118 2119 ret = uvc_commit_video(stream, &stream->ctrl); 2120 if (ret < 0) 2121 return ret; 2122 2123 return uvc_video_start_transfer(stream, GFP_NOIO); 2124 } 2125 2126 /* ------------------------------------------------------------------------ 2127 * Video device 2128 */ 2129 2130 /* 2131 * Initialize the UVC video device by switching to alternate setting 0 and 2132 * retrieve the default format. 2133 * 2134 * Some cameras (namely the Fuji Finepix) set the format and frame 2135 * indexes to zero. The UVC standard doesn't clearly make this a spec 2136 * violation, so try to silently fix the values if possible. 2137 * 2138 * This function is called before registering the device with V4L. 2139 */ 2140 int uvc_video_init(struct uvc_streaming *stream) 2141 { 2142 struct uvc_streaming_control *probe = &stream->ctrl; 2143 const struct uvc_format *format = NULL; 2144 const struct uvc_frame *frame = NULL; 2145 struct uvc_urb *uvc_urb; 2146 unsigned int i; 2147 int ret; 2148 2149 if (stream->nformats == 0) { 2150 dev_info(&stream->intf->dev, 2151 "No supported video formats found.\n"); 2152 return -EINVAL; 2153 } 2154 2155 atomic_set(&stream->active, 0); 2156 2157 /* 2158 * Alternate setting 0 should be the default, yet the XBox Live Vision 2159 * Cam (and possibly other devices) crash or otherwise misbehave if 2160 * they don't receive a SET_INTERFACE request before any other video 2161 * control request. 2162 */ 2163 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2164 2165 /* 2166 * Set the streaming probe control with default streaming parameters 2167 * retrieved from the device. Webcams that don't support GET_DEF 2168 * requests on the probe control will just keep their current streaming 2169 * parameters. 2170 */ 2171 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2172 uvc_set_video_ctrl(stream, probe, 1); 2173 2174 /* 2175 * Initialize the streaming parameters with the probe control current 2176 * value. This makes sure SET_CUR requests on the streaming commit 2177 * control will always use values retrieved from a successful GET_CUR 2178 * request on the probe control, as required by the UVC specification. 2179 */ 2180 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2181 2182 /* 2183 * Elgato Cam Link 4k can be in a stalled state if the resolution of 2184 * the external source has changed while the firmware initializes. 2185 * Once in this state, the device is useless until it receives a 2186 * USB reset. It has even been observed that the stalled state will 2187 * continue even after unplugging the device. 2188 */ 2189 if (ret == -EPROTO && 2190 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) { 2191 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n"); 2192 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n"); 2193 usb_reset_device(stream->dev->udev); 2194 } 2195 2196 if (ret < 0) 2197 return ret; 2198 2199 /* 2200 * Check if the default format descriptor exists. Use the first 2201 * available format otherwise. 2202 */ 2203 for (i = stream->nformats; i > 0; --i) { 2204 format = &stream->formats[i-1]; 2205 if (format->index == probe->bFormatIndex) 2206 break; 2207 } 2208 2209 if (format->nframes == 0) { 2210 dev_info(&stream->intf->dev, 2211 "No frame descriptor found for the default format.\n"); 2212 return -EINVAL; 2213 } 2214 2215 /* 2216 * Zero bFrameIndex might be correct. Stream-based formats (including 2217 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2218 * descriptor with bFrameIndex set to zero. If the default frame 2219 * descriptor is not found, use the first available frame. 2220 */ 2221 for (i = format->nframes; i > 0; --i) { 2222 frame = &format->frames[i-1]; 2223 if (frame->bFrameIndex == probe->bFrameIndex) 2224 break; 2225 } 2226 2227 probe->bFormatIndex = format->index; 2228 probe->bFrameIndex = frame->bFrameIndex; 2229 2230 stream->def_format = format; 2231 stream->cur_format = format; 2232 stream->cur_frame = frame; 2233 2234 /* Select the video decoding function */ 2235 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2236 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2237 stream->decode = uvc_video_decode_isight; 2238 else if (stream->intf->num_altsetting > 1) 2239 stream->decode = uvc_video_decode_isoc; 2240 else 2241 stream->decode = uvc_video_decode_bulk; 2242 } else { 2243 if (stream->intf->num_altsetting == 1) 2244 stream->decode = uvc_video_encode_bulk; 2245 else { 2246 dev_info(&stream->intf->dev, 2247 "Isochronous endpoints are not supported for video output devices.\n"); 2248 return -EINVAL; 2249 } 2250 } 2251 2252 /* Prepare asynchronous work items. */ 2253 for_each_uvc_urb(uvc_urb, stream) 2254 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2255 2256 return 0; 2257 } 2258 2259 int uvc_video_start_streaming(struct uvc_streaming *stream) 2260 { 2261 int ret; 2262 2263 ret = uvc_video_clock_init(stream); 2264 if (ret < 0) 2265 return ret; 2266 2267 /* Commit the streaming parameters. */ 2268 ret = uvc_commit_video(stream, &stream->ctrl); 2269 if (ret < 0) 2270 goto error_commit; 2271 2272 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2273 if (ret < 0) 2274 goto error_video; 2275 2276 return 0; 2277 2278 error_video: 2279 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2280 error_commit: 2281 uvc_video_clock_cleanup(stream); 2282 2283 return ret; 2284 } 2285 2286 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2287 { 2288 uvc_video_stop_transfer(stream, 1); 2289 2290 if (stream->intf->num_altsetting > 1) { 2291 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2292 } else { 2293 /* 2294 * UVC doesn't specify how to inform a bulk-based device 2295 * when the video stream is stopped. Windows sends a 2296 * CLEAR_FEATURE(HALT) request to the video streaming 2297 * bulk endpoint, mimic the same behaviour. 2298 */ 2299 unsigned int epnum = stream->header.bEndpointAddress 2300 & USB_ENDPOINT_NUMBER_MASK; 2301 unsigned int dir = stream->header.bEndpointAddress 2302 & USB_ENDPOINT_DIR_MASK; 2303 unsigned int pipe; 2304 2305 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2306 usb_clear_halt(stream->dev->udev, pipe); 2307 } 2308 2309 uvc_video_clock_cleanup(stream); 2310 } 2311