xref: /openbmc/linux/drivers/media/usb/uvc/uvc_video.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  *      uvc_video.c  --  USB Video Class driver - Video handling
3  *
4  *      Copyright (C) 2005-2010
5  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
6  *
7  *      This program is free software; you can redistribute it and/or modify
8  *      it under the terms of the GNU General Public License as published by
9  *      the Free Software Foundation; either version 2 of the License, or
10  *      (at your option) any later version.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
24 
25 #include <media/v4l2-common.h>
26 
27 #include "uvcvideo.h"
28 
29 /* ------------------------------------------------------------------------
30  * UVC Controls
31  */
32 
33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34 			__u8 intfnum, __u8 cs, void *data, __u16 size,
35 			int timeout)
36 {
37 	__u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
38 	unsigned int pipe;
39 
40 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41 			      : usb_sndctrlpipe(dev->udev, 0);
42 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
43 
44 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45 			unit << 8 | intfnum, data, size, timeout);
46 }
47 
48 static const char *uvc_query_name(__u8 query)
49 {
50 	switch (query) {
51 	case UVC_SET_CUR:
52 		return "SET_CUR";
53 	case UVC_GET_CUR:
54 		return "GET_CUR";
55 	case UVC_GET_MIN:
56 		return "GET_MIN";
57 	case UVC_GET_MAX:
58 		return "GET_MAX";
59 	case UVC_GET_RES:
60 		return "GET_RES";
61 	case UVC_GET_LEN:
62 		return "GET_LEN";
63 	case UVC_GET_INFO:
64 		return "GET_INFO";
65 	case UVC_GET_DEF:
66 		return "GET_DEF";
67 	default:
68 		return "<invalid>";
69 	}
70 }
71 
72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73 			__u8 intfnum, __u8 cs, void *data, __u16 size)
74 {
75 	int ret;
76 
77 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 				UVC_CTRL_CONTROL_TIMEOUT);
79 	if (ret != size) {
80 		uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81 			"unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82 			unit, ret, size);
83 		return -EIO;
84 	}
85 
86 	return 0;
87 }
88 
89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
90 	struct uvc_streaming_control *ctrl)
91 {
92 	struct uvc_format *format = NULL;
93 	struct uvc_frame *frame = NULL;
94 	unsigned int i;
95 
96 	for (i = 0; i < stream->nformats; ++i) {
97 		if (stream->format[i].index == ctrl->bFormatIndex) {
98 			format = &stream->format[i];
99 			break;
100 		}
101 	}
102 
103 	if (format == NULL)
104 		return;
105 
106 	for (i = 0; i < format->nframes; ++i) {
107 		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
108 			frame = &format->frame[i];
109 			break;
110 		}
111 	}
112 
113 	if (frame == NULL)
114 		return;
115 
116 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
117 	     (ctrl->dwMaxVideoFrameSize == 0 &&
118 	      stream->dev->uvc_version < 0x0110))
119 		ctrl->dwMaxVideoFrameSize =
120 			frame->dwMaxVideoFrameBufferSize;
121 
122 	/* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
123 	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
124 	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
125 	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
126 	 */
127 	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
128 		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
129 
130 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
131 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
132 	    stream->intf->num_altsetting > 1) {
133 		u32 interval;
134 		u32 bandwidth;
135 
136 		interval = (ctrl->dwFrameInterval > 100000)
137 			 ? ctrl->dwFrameInterval
138 			 : frame->dwFrameInterval[0];
139 
140 		/* Compute a bandwidth estimation by multiplying the frame
141 		 * size by the number of video frames per second, divide the
142 		 * result by the number of USB frames (or micro-frames for
143 		 * high-speed devices) per second and add the UVC header size
144 		 * (assumed to be 12 bytes long).
145 		 */
146 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
147 		bandwidth *= 10000000 / interval + 1;
148 		bandwidth /= 1000;
149 		if (stream->dev->udev->speed == USB_SPEED_HIGH)
150 			bandwidth /= 8;
151 		bandwidth += 12;
152 
153 		/* The bandwidth estimate is too low for many cameras. Don't use
154 		 * maximum packet sizes lower than 1024 bytes to try and work
155 		 * around the problem. According to measurements done on two
156 		 * different camera models, the value is high enough to get most
157 		 * resolutions working while not preventing two simultaneous
158 		 * VGA streams at 15 fps.
159 		 */
160 		bandwidth = max_t(u32, bandwidth, 1024);
161 
162 		ctrl->dwMaxPayloadTransferSize = bandwidth;
163 	}
164 }
165 
166 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
167 	struct uvc_streaming_control *ctrl, int probe, __u8 query)
168 {
169 	__u8 *data;
170 	__u16 size;
171 	int ret;
172 
173 	size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
174 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
175 			query == UVC_GET_DEF)
176 		return -EIO;
177 
178 	data = kmalloc(size, GFP_KERNEL);
179 	if (data == NULL)
180 		return -ENOMEM;
181 
182 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
183 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
184 		size, uvc_timeout_param);
185 
186 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
187 		/* Some cameras, mostly based on Bison Electronics chipsets,
188 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
189 		 * field only.
190 		 */
191 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
192 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
193 			"supported. Enabling workaround.\n");
194 		memset(ctrl, 0, sizeof *ctrl);
195 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
196 		ret = 0;
197 		goto out;
198 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
199 		/* Many cameras don't support the GET_DEF request on their
200 		 * video probe control. Warn once and return, the caller will
201 		 * fall back to GET_CUR.
202 		 */
203 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
204 			"compliance - GET_DEF(PROBE) not supported. "
205 			"Enabling workaround.\n");
206 		ret = -EIO;
207 		goto out;
208 	} else if (ret != size) {
209 		uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
210 			"%d (exp. %u).\n", query, probe ? "probe" : "commit",
211 			ret, size);
212 		ret = -EIO;
213 		goto out;
214 	}
215 
216 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
217 	ctrl->bFormatIndex = data[2];
218 	ctrl->bFrameIndex = data[3];
219 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
220 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
221 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
222 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
223 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
224 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
225 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
226 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
227 
228 	if (size == 34) {
229 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
230 		ctrl->bmFramingInfo = data[30];
231 		ctrl->bPreferedVersion = data[31];
232 		ctrl->bMinVersion = data[32];
233 		ctrl->bMaxVersion = data[33];
234 	} else {
235 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
236 		ctrl->bmFramingInfo = 0;
237 		ctrl->bPreferedVersion = 0;
238 		ctrl->bMinVersion = 0;
239 		ctrl->bMaxVersion = 0;
240 	}
241 
242 	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
243 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
244 	 * format and frame descriptors.
245 	 */
246 	uvc_fixup_video_ctrl(stream, ctrl);
247 	ret = 0;
248 
249 out:
250 	kfree(data);
251 	return ret;
252 }
253 
254 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
255 	struct uvc_streaming_control *ctrl, int probe)
256 {
257 	__u8 *data;
258 	__u16 size;
259 	int ret;
260 
261 	size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
262 	data = kzalloc(size, GFP_KERNEL);
263 	if (data == NULL)
264 		return -ENOMEM;
265 
266 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
267 	data[2] = ctrl->bFormatIndex;
268 	data[3] = ctrl->bFrameIndex;
269 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
270 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
271 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
272 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
273 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
274 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
275 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
276 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
277 
278 	if (size == 34) {
279 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
280 		data[30] = ctrl->bmFramingInfo;
281 		data[31] = ctrl->bPreferedVersion;
282 		data[32] = ctrl->bMinVersion;
283 		data[33] = ctrl->bMaxVersion;
284 	}
285 
286 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
287 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
288 		size, uvc_timeout_param);
289 	if (ret != size) {
290 		uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
291 			"%d (exp. %u).\n", probe ? "probe" : "commit",
292 			ret, size);
293 		ret = -EIO;
294 	}
295 
296 	kfree(data);
297 	return ret;
298 }
299 
300 int uvc_probe_video(struct uvc_streaming *stream,
301 	struct uvc_streaming_control *probe)
302 {
303 	struct uvc_streaming_control probe_min, probe_max;
304 	__u16 bandwidth;
305 	unsigned int i;
306 	int ret;
307 
308 	/* Perform probing. The device should adjust the requested values
309 	 * according to its capabilities. However, some devices, namely the
310 	 * first generation UVC Logitech webcams, don't implement the Video
311 	 * Probe control properly, and just return the needed bandwidth. For
312 	 * that reason, if the needed bandwidth exceeds the maximum available
313 	 * bandwidth, try to lower the quality.
314 	 */
315 	ret = uvc_set_video_ctrl(stream, probe, 1);
316 	if (ret < 0)
317 		goto done;
318 
319 	/* Get the minimum and maximum values for compression settings. */
320 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
321 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
322 		if (ret < 0)
323 			goto done;
324 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
325 		if (ret < 0)
326 			goto done;
327 
328 		probe->wCompQuality = probe_max.wCompQuality;
329 	}
330 
331 	for (i = 0; i < 2; ++i) {
332 		ret = uvc_set_video_ctrl(stream, probe, 1);
333 		if (ret < 0)
334 			goto done;
335 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
336 		if (ret < 0)
337 			goto done;
338 
339 		if (stream->intf->num_altsetting == 1)
340 			break;
341 
342 		bandwidth = probe->dwMaxPayloadTransferSize;
343 		if (bandwidth <= stream->maxpsize)
344 			break;
345 
346 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
347 			ret = -ENOSPC;
348 			goto done;
349 		}
350 
351 		/* TODO: negotiate compression parameters */
352 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
353 		probe->wPFrameRate = probe_min.wPFrameRate;
354 		probe->wCompQuality = probe_max.wCompQuality;
355 		probe->wCompWindowSize = probe_min.wCompWindowSize;
356 	}
357 
358 done:
359 	return ret;
360 }
361 
362 static int uvc_commit_video(struct uvc_streaming *stream,
363 			    struct uvc_streaming_control *probe)
364 {
365 	return uvc_set_video_ctrl(stream, probe, 0);
366 }
367 
368 /* -----------------------------------------------------------------------------
369  * Clocks and timestamps
370  */
371 
372 static inline ktime_t uvc_video_get_time(void)
373 {
374 	if (uvc_clock_param == CLOCK_MONOTONIC)
375 		return ktime_get();
376 	else
377 		return ktime_get_real();
378 }
379 
380 static void
381 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
382 		       const __u8 *data, int len)
383 {
384 	struct uvc_clock_sample *sample;
385 	unsigned int header_size;
386 	bool has_pts = false;
387 	bool has_scr = false;
388 	unsigned long flags;
389 	ktime_t time;
390 	u16 host_sof;
391 	u16 dev_sof;
392 
393 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
394 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
395 		header_size = 12;
396 		has_pts = true;
397 		has_scr = true;
398 		break;
399 	case UVC_STREAM_PTS:
400 		header_size = 6;
401 		has_pts = true;
402 		break;
403 	case UVC_STREAM_SCR:
404 		header_size = 8;
405 		has_scr = true;
406 		break;
407 	default:
408 		header_size = 2;
409 		break;
410 	}
411 
412 	/* Check for invalid headers. */
413 	if (len < header_size)
414 		return;
415 
416 	/* Extract the timestamps:
417 	 *
418 	 * - store the frame PTS in the buffer structure
419 	 * - if the SCR field is present, retrieve the host SOF counter and
420 	 *   kernel timestamps and store them with the SCR STC and SOF fields
421 	 *   in the ring buffer
422 	 */
423 	if (has_pts && buf != NULL)
424 		buf->pts = get_unaligned_le32(&data[2]);
425 
426 	if (!has_scr)
427 		return;
428 
429 	/* To limit the amount of data, drop SCRs with an SOF identical to the
430 	 * previous one.
431 	 */
432 	dev_sof = get_unaligned_le16(&data[header_size - 2]);
433 	if (dev_sof == stream->clock.last_sof)
434 		return;
435 
436 	stream->clock.last_sof = dev_sof;
437 
438 	host_sof = usb_get_current_frame_number(stream->dev->udev);
439 	time = uvc_video_get_time();
440 
441 	/* The UVC specification allows device implementations that can't obtain
442 	 * the USB frame number to keep their own frame counters as long as they
443 	 * match the size and frequency of the frame number associated with USB
444 	 * SOF tokens. The SOF values sent by such devices differ from the USB
445 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
446 	 * for to make timestamp recovery as accurate as possible.
447 	 *
448 	 * The offset is estimated the first time a device SOF value is received
449 	 * as the difference between the host and device SOF values. As the two
450 	 * SOF values can differ slightly due to transmission delays, consider
451 	 * that the offset is null if the difference is not higher than 10 ms
452 	 * (negative differences can not happen and are thus considered as an
453 	 * offset). The video commit control wDelay field should be used to
454 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
455 	 * devices don't report reliable wDelay values.
456 	 *
457 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
458 	 * the 8 LSBs of the delta are kept.
459 	 */
460 	if (stream->clock.sof_offset == (u16)-1) {
461 		u16 delta_sof = (host_sof - dev_sof) & 255;
462 		if (delta_sof >= 10)
463 			stream->clock.sof_offset = delta_sof;
464 		else
465 			stream->clock.sof_offset = 0;
466 	}
467 
468 	dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
469 
470 	spin_lock_irqsave(&stream->clock.lock, flags);
471 
472 	sample = &stream->clock.samples[stream->clock.head];
473 	sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
474 	sample->dev_sof = dev_sof;
475 	sample->host_sof = host_sof;
476 	sample->host_time = time;
477 
478 	/* Update the sliding window head and count. */
479 	stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
480 
481 	if (stream->clock.count < stream->clock.size)
482 		stream->clock.count++;
483 
484 	spin_unlock_irqrestore(&stream->clock.lock, flags);
485 }
486 
487 static void uvc_video_clock_reset(struct uvc_streaming *stream)
488 {
489 	struct uvc_clock *clock = &stream->clock;
490 
491 	clock->head = 0;
492 	clock->count = 0;
493 	clock->last_sof = -1;
494 	clock->sof_offset = -1;
495 }
496 
497 static int uvc_video_clock_init(struct uvc_streaming *stream)
498 {
499 	struct uvc_clock *clock = &stream->clock;
500 
501 	spin_lock_init(&clock->lock);
502 	clock->size = 32;
503 
504 	clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
505 				 GFP_KERNEL);
506 	if (clock->samples == NULL)
507 		return -ENOMEM;
508 
509 	uvc_video_clock_reset(stream);
510 
511 	return 0;
512 }
513 
514 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
515 {
516 	kfree(stream->clock.samples);
517 	stream->clock.samples = NULL;
518 }
519 
520 /*
521  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
522  *
523  * Host SOF counters reported by usb_get_current_frame_number() usually don't
524  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
525  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
526  * controller and its configuration.
527  *
528  * We thus need to recover the SOF value corresponding to the host frame number.
529  * As the device and host frame numbers are sampled in a short interval, the
530  * difference between their values should be equal to a small delta plus an
531  * integer multiple of 256 caused by the host frame number limited precision.
532  *
533  * To obtain the recovered host SOF value, compute the small delta by masking
534  * the high bits of the host frame counter and device SOF difference and add it
535  * to the device SOF value.
536  */
537 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
538 {
539 	/* The delta value can be negative. */
540 	s8 delta_sof;
541 
542 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
543 
544 	return (sample->dev_sof + delta_sof) & 2047;
545 }
546 
547 /*
548  * uvc_video_clock_update - Update the buffer timestamp
549  *
550  * This function converts the buffer PTS timestamp to the host clock domain by
551  * going through the USB SOF clock domain and stores the result in the V4L2
552  * buffer timestamp field.
553  *
554  * The relationship between the device clock and the host clock isn't known.
555  * However, the device and the host share the common USB SOF clock which can be
556  * used to recover that relationship.
557  *
558  * The relationship between the device clock and the USB SOF clock is considered
559  * to be linear over the clock samples sliding window and is given by
560  *
561  * SOF = m * PTS + p
562  *
563  * Several methods to compute the slope (m) and intercept (p) can be used. As
564  * the clock drift should be small compared to the sliding window size, we
565  * assume that the line that goes through the points at both ends of the window
566  * is a good approximation. Naming those points P1 and P2, we get
567  *
568  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
569  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
570  *
571  * or
572  *
573  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
574  *
575  * to avoid losing precision in the division. Similarly, the host timestamp is
576  * computed with
577  *
578  * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
579  *
580  * SOF values are coded on 11 bits by USB. We extend their precision with 16
581  * decimal bits, leading to a 11.16 coding.
582  *
583  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
584  * be normalized using the nominal device clock frequency reported through the
585  * UVC descriptors.
586  *
587  * Both the PTS/STC and SOF counters roll over, after a fixed but device
588  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
589  * sliding window size is smaller than the rollover period, differences computed
590  * on unsigned integers will produce the correct result. However, the p term in
591  * the linear relations will be miscomputed.
592  *
593  * To fix the issue, we subtract a constant from the PTS and STC values to bring
594  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
595  * the 32 bit range without any rollover.
596  *
597  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
598  * computed by (1) will never be smaller than 0. This offset is then compensated
599  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
600  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
601  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
602  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
603  * SOF value at the end of the sliding window.
604  *
605  * Finally we subtract a constant from the host timestamps to bring the first
606  * timestamp of the sliding window to 1s.
607  */
608 void uvc_video_clock_update(struct uvc_streaming *stream,
609 			    struct vb2_v4l2_buffer *vbuf,
610 			    struct uvc_buffer *buf)
611 {
612 	struct uvc_clock *clock = &stream->clock;
613 	struct uvc_clock_sample *first;
614 	struct uvc_clock_sample *last;
615 	unsigned long flags;
616 	u64 timestamp;
617 	u32 delta_stc;
618 	u32 y1, y2;
619 	u32 x1, x2;
620 	u32 mean;
621 	u32 sof;
622 	u64 y;
623 
624 	if (!uvc_hw_timestamps_param)
625 		return;
626 
627 	spin_lock_irqsave(&clock->lock, flags);
628 
629 	if (clock->count < clock->size)
630 		goto done;
631 
632 	first = &clock->samples[clock->head];
633 	last = &clock->samples[(clock->head - 1) % clock->size];
634 
635 	/* First step, PTS to SOF conversion. */
636 	delta_stc = buf->pts - (1UL << 31);
637 	x1 = first->dev_stc - delta_stc;
638 	x2 = last->dev_stc - delta_stc;
639 	if (x1 == x2)
640 		goto done;
641 
642 	y1 = (first->dev_sof + 2048) << 16;
643 	y2 = (last->dev_sof + 2048) << 16;
644 	if (y2 < y1)
645 		y2 += 2048 << 16;
646 
647 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
648 	  - (u64)y2 * (u64)x1;
649 	y = div_u64(y, x2 - x1);
650 
651 	sof = y;
652 
653 	uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
654 		  "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
655 		  stream->dev->name, buf->pts,
656 		  y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
657 		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
658 		  x1, x2, y1, y2, clock->sof_offset);
659 
660 	/* Second step, SOF to host clock conversion. */
661 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
662 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
663 	if (x2 < x1)
664 		x2 += 2048 << 16;
665 	if (x1 == x2)
666 		goto done;
667 
668 	y1 = NSEC_PER_SEC;
669 	y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
670 
671 	/* Interpolated and host SOF timestamps can wrap around at slightly
672 	 * different times. Handle this by adding or removing 2048 to or from
673 	 * the computed SOF value to keep it close to the SOF samples mean
674 	 * value.
675 	 */
676 	mean = (x1 + x2) / 2;
677 	if (mean - (1024 << 16) > sof)
678 		sof += 2048 << 16;
679 	else if (sof > mean + (1024 << 16))
680 		sof -= 2048 << 16;
681 
682 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
683 	  - (u64)y2 * (u64)x1;
684 	y = div_u64(y, x2 - x1);
685 
686 	timestamp = ktime_to_ns(first->host_time) + y - y1;
687 
688 	uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu "
689 		  "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
690 		  stream->dev->name,
691 		  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
692 		  y, timestamp, vbuf->vb2_buf.timestamp,
693 		  x1, first->host_sof, first->dev_sof,
694 		  x2, last->host_sof, last->dev_sof, y1, y2);
695 
696 	/* Update the V4L2 buffer. */
697 	vbuf->vb2_buf.timestamp = timestamp;
698 
699 done:
700 	spin_unlock_irqrestore(&clock->lock, flags);
701 }
702 
703 /* ------------------------------------------------------------------------
704  * Stream statistics
705  */
706 
707 static void uvc_video_stats_decode(struct uvc_streaming *stream,
708 		const __u8 *data, int len)
709 {
710 	unsigned int header_size;
711 	bool has_pts = false;
712 	bool has_scr = false;
713 	u16 uninitialized_var(scr_sof);
714 	u32 uninitialized_var(scr_stc);
715 	u32 uninitialized_var(pts);
716 
717 	if (stream->stats.stream.nb_frames == 0 &&
718 	    stream->stats.frame.nb_packets == 0)
719 		stream->stats.stream.start_ts = ktime_get();
720 
721 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
722 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
723 		header_size = 12;
724 		has_pts = true;
725 		has_scr = true;
726 		break;
727 	case UVC_STREAM_PTS:
728 		header_size = 6;
729 		has_pts = true;
730 		break;
731 	case UVC_STREAM_SCR:
732 		header_size = 8;
733 		has_scr = true;
734 		break;
735 	default:
736 		header_size = 2;
737 		break;
738 	}
739 
740 	/* Check for invalid headers. */
741 	if (len < header_size || data[0] < header_size) {
742 		stream->stats.frame.nb_invalid++;
743 		return;
744 	}
745 
746 	/* Extract the timestamps. */
747 	if (has_pts)
748 		pts = get_unaligned_le32(&data[2]);
749 
750 	if (has_scr) {
751 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
752 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
753 	}
754 
755 	/* Is PTS constant through the whole frame ? */
756 	if (has_pts && stream->stats.frame.nb_pts) {
757 		if (stream->stats.frame.pts != pts) {
758 			stream->stats.frame.nb_pts_diffs++;
759 			stream->stats.frame.last_pts_diff =
760 				stream->stats.frame.nb_packets;
761 		}
762 	}
763 
764 	if (has_pts) {
765 		stream->stats.frame.nb_pts++;
766 		stream->stats.frame.pts = pts;
767 	}
768 
769 	/* Do all frames have a PTS in their first non-empty packet, or before
770 	 * their first empty packet ?
771 	 */
772 	if (stream->stats.frame.size == 0) {
773 		if (len > header_size)
774 			stream->stats.frame.has_initial_pts = has_pts;
775 		if (len == header_size && has_pts)
776 			stream->stats.frame.has_early_pts = true;
777 	}
778 
779 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
780 	if (has_scr && stream->stats.frame.nb_scr) {
781 		if (stream->stats.frame.scr_stc != scr_stc)
782 			stream->stats.frame.nb_scr_diffs++;
783 	}
784 
785 	if (has_scr) {
786 		/* Expand the SOF counter to 32 bits and store its value. */
787 		if (stream->stats.stream.nb_frames > 0 ||
788 		    stream->stats.frame.nb_scr > 0)
789 			stream->stats.stream.scr_sof_count +=
790 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
791 		stream->stats.stream.scr_sof = scr_sof;
792 
793 		stream->stats.frame.nb_scr++;
794 		stream->stats.frame.scr_stc = scr_stc;
795 		stream->stats.frame.scr_sof = scr_sof;
796 
797 		if (scr_sof < stream->stats.stream.min_sof)
798 			stream->stats.stream.min_sof = scr_sof;
799 		if (scr_sof > stream->stats.stream.max_sof)
800 			stream->stats.stream.max_sof = scr_sof;
801 	}
802 
803 	/* Record the first non-empty packet number. */
804 	if (stream->stats.frame.size == 0 && len > header_size)
805 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
806 
807 	/* Update the frame size. */
808 	stream->stats.frame.size += len - header_size;
809 
810 	/* Update the packets counters. */
811 	stream->stats.frame.nb_packets++;
812 	if (len <= header_size)
813 		stream->stats.frame.nb_empty++;
814 
815 	if (data[1] & UVC_STREAM_ERR)
816 		stream->stats.frame.nb_errors++;
817 }
818 
819 static void uvc_video_stats_update(struct uvc_streaming *stream)
820 {
821 	struct uvc_stats_frame *frame = &stream->stats.frame;
822 
823 	uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
824 		  "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
825 		  "last pts/stc/sof %u/%u/%u\n",
826 		  stream->sequence, frame->first_data,
827 		  frame->nb_packets - frame->nb_empty, frame->nb_packets,
828 		  frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
829 		  frame->has_early_pts ? "" : "!",
830 		  frame->has_initial_pts ? "" : "!",
831 		  frame->nb_scr_diffs, frame->nb_scr,
832 		  frame->pts, frame->scr_stc, frame->scr_sof);
833 
834 	stream->stats.stream.nb_frames++;
835 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
836 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
837 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
838 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
839 
840 	if (frame->has_early_pts)
841 		stream->stats.stream.nb_pts_early++;
842 	if (frame->has_initial_pts)
843 		stream->stats.stream.nb_pts_initial++;
844 	if (frame->last_pts_diff <= frame->first_data)
845 		stream->stats.stream.nb_pts_constant++;
846 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
847 		stream->stats.stream.nb_scr_count_ok++;
848 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
849 		stream->stats.stream.nb_scr_diffs_ok++;
850 
851 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
852 }
853 
854 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
855 			    size_t size)
856 {
857 	unsigned int scr_sof_freq;
858 	unsigned int duration;
859 	size_t count = 0;
860 
861 	/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
862 	 * frequency this will not overflow before more than 1h.
863 	 */
864 	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
865 				  stream->stats.stream.start_ts);
866 	if (duration != 0)
867 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
868 			     / duration;
869 	else
870 		scr_sof_freq = 0;
871 
872 	count += scnprintf(buf + count, size - count,
873 			   "frames:  %u\npackets: %u\nempty:   %u\n"
874 			   "errors:  %u\ninvalid: %u\n",
875 			   stream->stats.stream.nb_frames,
876 			   stream->stats.stream.nb_packets,
877 			   stream->stats.stream.nb_empty,
878 			   stream->stats.stream.nb_errors,
879 			   stream->stats.stream.nb_invalid);
880 	count += scnprintf(buf + count, size - count,
881 			   "pts: %u early, %u initial, %u ok\n",
882 			   stream->stats.stream.nb_pts_early,
883 			   stream->stats.stream.nb_pts_initial,
884 			   stream->stats.stream.nb_pts_constant);
885 	count += scnprintf(buf + count, size - count,
886 			   "scr: %u count ok, %u diff ok\n",
887 			   stream->stats.stream.nb_scr_count_ok,
888 			   stream->stats.stream.nb_scr_diffs_ok);
889 	count += scnprintf(buf + count, size - count,
890 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
891 			   stream->stats.stream.min_sof,
892 			   stream->stats.stream.max_sof,
893 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
894 
895 	return count;
896 }
897 
898 static void uvc_video_stats_start(struct uvc_streaming *stream)
899 {
900 	memset(&stream->stats, 0, sizeof(stream->stats));
901 	stream->stats.stream.min_sof = 2048;
902 }
903 
904 static void uvc_video_stats_stop(struct uvc_streaming *stream)
905 {
906 	stream->stats.stream.stop_ts = ktime_get();
907 }
908 
909 /* ------------------------------------------------------------------------
910  * Video codecs
911  */
912 
913 /* Video payload decoding is handled by uvc_video_decode_start(),
914  * uvc_video_decode_data() and uvc_video_decode_end().
915  *
916  * uvc_video_decode_start is called with URB data at the start of a bulk or
917  * isochronous payload. It processes header data and returns the header size
918  * in bytes if successful. If an error occurs, it returns a negative error
919  * code. The following error codes have special meanings.
920  *
921  * - EAGAIN informs the caller that the current video buffer should be marked
922  *   as done, and that the function should be called again with the same data
923  *   and a new video buffer. This is used when end of frame conditions can be
924  *   reliably detected at the beginning of the next frame only.
925  *
926  * If an error other than -EAGAIN is returned, the caller will drop the current
927  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
928  * made until the next payload. -ENODATA can be used to drop the current
929  * payload if no other error code is appropriate.
930  *
931  * uvc_video_decode_data is called for every URB with URB data. It copies the
932  * data to the video buffer.
933  *
934  * uvc_video_decode_end is called with header data at the end of a bulk or
935  * isochronous payload. It performs any additional header data processing and
936  * returns 0 or a negative error code if an error occurred. As header data have
937  * already been processed by uvc_video_decode_start, this functions isn't
938  * required to perform sanity checks a second time.
939  *
940  * For isochronous transfers where a payload is always transferred in a single
941  * URB, the three functions will be called in a row.
942  *
943  * To let the decoder process header data and update its internal state even
944  * when no video buffer is available, uvc_video_decode_start must be prepared
945  * to be called with a NULL buf parameter. uvc_video_decode_data and
946  * uvc_video_decode_end will never be called with a NULL buffer.
947  */
948 static int uvc_video_decode_start(struct uvc_streaming *stream,
949 		struct uvc_buffer *buf, const __u8 *data, int len)
950 {
951 	__u8 fid;
952 
953 	/* Sanity checks:
954 	 * - packet must be at least 2 bytes long
955 	 * - bHeaderLength value must be at least 2 bytes (see above)
956 	 * - bHeaderLength value can't be larger than the packet size.
957 	 */
958 	if (len < 2 || data[0] < 2 || data[0] > len) {
959 		stream->stats.frame.nb_invalid++;
960 		return -EINVAL;
961 	}
962 
963 	fid = data[1] & UVC_STREAM_FID;
964 
965 	/* Increase the sequence number regardless of any buffer states, so
966 	 * that discontinuous sequence numbers always indicate lost frames.
967 	 */
968 	if (stream->last_fid != fid) {
969 		stream->sequence++;
970 		if (stream->sequence)
971 			uvc_video_stats_update(stream);
972 	}
973 
974 	uvc_video_clock_decode(stream, buf, data, len);
975 	uvc_video_stats_decode(stream, data, len);
976 
977 	/* Store the payload FID bit and return immediately when the buffer is
978 	 * NULL.
979 	 */
980 	if (buf == NULL) {
981 		stream->last_fid = fid;
982 		return -ENODATA;
983 	}
984 
985 	/* Mark the buffer as bad if the error bit is set. */
986 	if (data[1] & UVC_STREAM_ERR) {
987 		uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
988 			  "set).\n");
989 		buf->error = 1;
990 	}
991 
992 	/* Synchronize to the input stream by waiting for the FID bit to be
993 	 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
994 	 * stream->last_fid is initialized to -1, so the first isochronous
995 	 * frame will always be in sync.
996 	 *
997 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
998 	 * when the EOF bit is set to force synchronisation on the next packet.
999 	 */
1000 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1001 		if (fid == stream->last_fid) {
1002 			uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1003 				"sync).\n");
1004 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1005 			    (data[1] & UVC_STREAM_EOF))
1006 				stream->last_fid ^= UVC_STREAM_FID;
1007 			return -ENODATA;
1008 		}
1009 
1010 		buf->buf.field = V4L2_FIELD_NONE;
1011 		buf->buf.sequence = stream->sequence;
1012 		buf->buf.vb2_buf.timestamp = uvc_video_get_time();
1013 
1014 		/* TODO: Handle PTS and SCR. */
1015 		buf->state = UVC_BUF_STATE_ACTIVE;
1016 	}
1017 
1018 	/* Mark the buffer as done if we're at the beginning of a new frame.
1019 	 * End of frame detection is better implemented by checking the EOF
1020 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1021 	 * bit), but some devices don't set the bit at end of frame (and the
1022 	 * last payload can be lost anyway). We thus must check if the FID has
1023 	 * been toggled.
1024 	 *
1025 	 * stream->last_fid is initialized to -1, so the first isochronous
1026 	 * frame will never trigger an end of frame detection.
1027 	 *
1028 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1029 	 * as it doesn't make sense to return an empty buffer. This also
1030 	 * avoids detecting end of frame conditions at FID toggling if the
1031 	 * previous payload had the EOF bit set.
1032 	 */
1033 	if (fid != stream->last_fid && buf->bytesused != 0) {
1034 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1035 				"toggled).\n");
1036 		buf->state = UVC_BUF_STATE_READY;
1037 		return -EAGAIN;
1038 	}
1039 
1040 	stream->last_fid = fid;
1041 
1042 	return data[0];
1043 }
1044 
1045 static void uvc_video_decode_data(struct uvc_streaming *stream,
1046 		struct uvc_buffer *buf, const __u8 *data, int len)
1047 {
1048 	unsigned int maxlen, nbytes;
1049 	void *mem;
1050 
1051 	if (len <= 0)
1052 		return;
1053 
1054 	/* Copy the video data to the buffer. */
1055 	maxlen = buf->length - buf->bytesused;
1056 	mem = buf->mem + buf->bytesused;
1057 	nbytes = min((unsigned int)len, maxlen);
1058 	memcpy(mem, data, nbytes);
1059 	buf->bytesused += nbytes;
1060 
1061 	/* Complete the current frame if the buffer size was exceeded. */
1062 	if (len > maxlen) {
1063 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1064 		buf->error = 1;
1065 		buf->state = UVC_BUF_STATE_READY;
1066 	}
1067 }
1068 
1069 static void uvc_video_decode_end(struct uvc_streaming *stream,
1070 		struct uvc_buffer *buf, const __u8 *data, int len)
1071 {
1072 	/* Mark the buffer as done if the EOF marker is set. */
1073 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1074 		uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1075 		if (data[0] == len)
1076 			uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1077 		buf->state = UVC_BUF_STATE_READY;
1078 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1079 			stream->last_fid ^= UVC_STREAM_FID;
1080 	}
1081 }
1082 
1083 /* Video payload encoding is handled by uvc_video_encode_header() and
1084  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1085  *
1086  * uvc_video_encode_header is called at the start of a payload. It adds header
1087  * data to the transfer buffer and returns the header size. As the only known
1088  * UVC output device transfers a whole frame in a single payload, the EOF bit
1089  * is always set in the header.
1090  *
1091  * uvc_video_encode_data is called for every URB and copies the data from the
1092  * video buffer to the transfer buffer.
1093  */
1094 static int uvc_video_encode_header(struct uvc_streaming *stream,
1095 		struct uvc_buffer *buf, __u8 *data, int len)
1096 {
1097 	data[0] = 2;	/* Header length */
1098 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1099 		| (stream->last_fid & UVC_STREAM_FID);
1100 	return 2;
1101 }
1102 
1103 static int uvc_video_encode_data(struct uvc_streaming *stream,
1104 		struct uvc_buffer *buf, __u8 *data, int len)
1105 {
1106 	struct uvc_video_queue *queue = &stream->queue;
1107 	unsigned int nbytes;
1108 	void *mem;
1109 
1110 	/* Copy video data to the URB buffer. */
1111 	mem = buf->mem + queue->buf_used;
1112 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1113 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1114 			nbytes);
1115 	memcpy(data, mem, nbytes);
1116 
1117 	queue->buf_used += nbytes;
1118 
1119 	return nbytes;
1120 }
1121 
1122 /* ------------------------------------------------------------------------
1123  * Metadata
1124  */
1125 
1126 /*
1127  * Additionally to the payload headers we also want to provide the user with USB
1128  * Frame Numbers and system time values. The resulting buffer is thus composed
1129  * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1130  * Number, and a copy of the payload header.
1131  *
1132  * Ideally we want to capture all payload headers for each frame. However, their
1133  * number is unknown and unbound. We thus drop headers that contain no vendor
1134  * data and that either contain no SCR value or an SCR value identical to the
1135  * previous header.
1136  */
1137 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1138 				  struct uvc_buffer *meta_buf,
1139 				  const u8 *mem, unsigned int length)
1140 {
1141 	struct uvc_meta_buf *meta;
1142 	size_t len_std = 2;
1143 	bool has_pts, has_scr;
1144 	unsigned long flags;
1145 	unsigned int sof;
1146 	ktime_t time;
1147 	const u8 *scr;
1148 
1149 	if (!meta_buf || length == 2)
1150 		return;
1151 
1152 	if (meta_buf->length - meta_buf->bytesused <
1153 	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1154 		meta_buf->error = 1;
1155 		return;
1156 	}
1157 
1158 	has_pts = mem[1] & UVC_STREAM_PTS;
1159 	has_scr = mem[1] & UVC_STREAM_SCR;
1160 
1161 	if (has_pts) {
1162 		len_std += 4;
1163 		scr = mem + 6;
1164 	} else {
1165 		scr = mem + 2;
1166 	}
1167 
1168 	if (has_scr)
1169 		len_std += 6;
1170 
1171 	if (stream->meta.format == V4L2_META_FMT_UVC)
1172 		length = len_std;
1173 
1174 	if (length == len_std && (!has_scr ||
1175 				  !memcmp(scr, stream->clock.last_scr, 6)))
1176 		return;
1177 
1178 	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1179 	local_irq_save(flags);
1180 	time = uvc_video_get_time();
1181 	sof = usb_get_current_frame_number(stream->dev->udev);
1182 	local_irq_restore(flags);
1183 	put_unaligned(ktime_to_ns(time), &meta->ns);
1184 	put_unaligned(sof, &meta->sof);
1185 
1186 	if (has_scr)
1187 		memcpy(stream->clock.last_scr, scr, 6);
1188 
1189 	memcpy(&meta->length, mem, length);
1190 	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1191 
1192 	uvc_trace(UVC_TRACE_FRAME,
1193 		  "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1194 		  __func__, time, meta->sof, meta->length, meta->flags,
1195 		  has_pts ? *(u32 *)meta->buf : 0,
1196 		  has_scr ? *(u32 *)scr : 0,
1197 		  has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1198 }
1199 
1200 /* ------------------------------------------------------------------------
1201  * URB handling
1202  */
1203 
1204 /*
1205  * Set error flag for incomplete buffer.
1206  */
1207 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1208 				      struct uvc_buffer *buf)
1209 {
1210 	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1211 	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1212 		buf->error = 1;
1213 }
1214 
1215 /*
1216  * Completion handler for video URBs.
1217  */
1218 
1219 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1220 		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1221 {
1222 	if (*meta_buf) {
1223 		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1224 		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1225 
1226 		vb2_meta->sequence = vb2_video->sequence;
1227 		vb2_meta->field = vb2_video->field;
1228 		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1229 
1230 		(*meta_buf)->state = UVC_BUF_STATE_READY;
1231 		if (!(*meta_buf)->error)
1232 			(*meta_buf)->error = (*video_buf)->error;
1233 		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1234 						  *meta_buf);
1235 	}
1236 	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1237 }
1238 
1239 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1240 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1241 {
1242 	u8 *mem;
1243 	int ret, i;
1244 
1245 	for (i = 0; i < urb->number_of_packets; ++i) {
1246 		if (urb->iso_frame_desc[i].status < 0) {
1247 			uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1248 				"lost (%d).\n", urb->iso_frame_desc[i].status);
1249 			/* Mark the buffer as faulty. */
1250 			if (buf != NULL)
1251 				buf->error = 1;
1252 			continue;
1253 		}
1254 
1255 		/* Decode the payload header. */
1256 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1257 		do {
1258 			ret = uvc_video_decode_start(stream, buf, mem,
1259 				urb->iso_frame_desc[i].actual_length);
1260 			if (ret == -EAGAIN) {
1261 				uvc_video_validate_buffer(stream, buf);
1262 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1263 			}
1264 		} while (ret == -EAGAIN);
1265 
1266 		if (ret < 0)
1267 			continue;
1268 
1269 		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1270 
1271 		/* Decode the payload data. */
1272 		uvc_video_decode_data(stream, buf, mem + ret,
1273 			urb->iso_frame_desc[i].actual_length - ret);
1274 
1275 		/* Process the header again. */
1276 		uvc_video_decode_end(stream, buf, mem,
1277 			urb->iso_frame_desc[i].actual_length);
1278 
1279 		if (buf->state == UVC_BUF_STATE_READY) {
1280 			uvc_video_validate_buffer(stream, buf);
1281 			uvc_video_next_buffers(stream, &buf, &meta_buf);
1282 		}
1283 	}
1284 }
1285 
1286 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1287 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1288 {
1289 	u8 *mem;
1290 	int len, ret;
1291 
1292 	/*
1293 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1294 	 * to trigger the end of payload detection.
1295 	 */
1296 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1297 		return;
1298 
1299 	mem = urb->transfer_buffer;
1300 	len = urb->actual_length;
1301 	stream->bulk.payload_size += len;
1302 
1303 	/* If the URB is the first of its payload, decode and save the
1304 	 * header.
1305 	 */
1306 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1307 		do {
1308 			ret = uvc_video_decode_start(stream, buf, mem, len);
1309 			if (ret == -EAGAIN)
1310 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1311 		} while (ret == -EAGAIN);
1312 
1313 		/* If an error occurred skip the rest of the payload. */
1314 		if (ret < 0 || buf == NULL) {
1315 			stream->bulk.skip_payload = 1;
1316 		} else {
1317 			memcpy(stream->bulk.header, mem, ret);
1318 			stream->bulk.header_size = ret;
1319 
1320 			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1321 
1322 			mem += ret;
1323 			len -= ret;
1324 		}
1325 	}
1326 
1327 	/* The buffer queue might have been cancelled while a bulk transfer
1328 	 * was in progress, so we can reach here with buf equal to NULL. Make
1329 	 * sure buf is never dereferenced if NULL.
1330 	 */
1331 
1332 	/* Process video data. */
1333 	if (!stream->bulk.skip_payload && buf != NULL)
1334 		uvc_video_decode_data(stream, buf, mem, len);
1335 
1336 	/* Detect the payload end by a URB smaller than the maximum size (or
1337 	 * a payload size equal to the maximum) and process the header again.
1338 	 */
1339 	if (urb->actual_length < urb->transfer_buffer_length ||
1340 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1341 		if (!stream->bulk.skip_payload && buf != NULL) {
1342 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1343 				stream->bulk.payload_size);
1344 			if (buf->state == UVC_BUF_STATE_READY)
1345 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1346 		}
1347 
1348 		stream->bulk.header_size = 0;
1349 		stream->bulk.skip_payload = 0;
1350 		stream->bulk.payload_size = 0;
1351 	}
1352 }
1353 
1354 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1355 	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1356 {
1357 	u8 *mem = urb->transfer_buffer;
1358 	int len = stream->urb_size, ret;
1359 
1360 	if (buf == NULL) {
1361 		urb->transfer_buffer_length = 0;
1362 		return;
1363 	}
1364 
1365 	/* If the URB is the first of its payload, add the header. */
1366 	if (stream->bulk.header_size == 0) {
1367 		ret = uvc_video_encode_header(stream, buf, mem, len);
1368 		stream->bulk.header_size = ret;
1369 		stream->bulk.payload_size += ret;
1370 		mem += ret;
1371 		len -= ret;
1372 	}
1373 
1374 	/* Process video data. */
1375 	ret = uvc_video_encode_data(stream, buf, mem, len);
1376 
1377 	stream->bulk.payload_size += ret;
1378 	len -= ret;
1379 
1380 	if (buf->bytesused == stream->queue.buf_used ||
1381 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1382 		if (buf->bytesused == stream->queue.buf_used) {
1383 			stream->queue.buf_used = 0;
1384 			buf->state = UVC_BUF_STATE_READY;
1385 			buf->buf.sequence = ++stream->sequence;
1386 			uvc_queue_next_buffer(&stream->queue, buf);
1387 			stream->last_fid ^= UVC_STREAM_FID;
1388 		}
1389 
1390 		stream->bulk.header_size = 0;
1391 		stream->bulk.payload_size = 0;
1392 	}
1393 
1394 	urb->transfer_buffer_length = stream->urb_size - len;
1395 }
1396 
1397 static void uvc_video_complete(struct urb *urb)
1398 {
1399 	struct uvc_streaming *stream = urb->context;
1400 	struct uvc_video_queue *queue = &stream->queue;
1401 	struct uvc_video_queue *qmeta = &stream->meta.queue;
1402 	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1403 	struct uvc_buffer *buf = NULL;
1404 	struct uvc_buffer *buf_meta = NULL;
1405 	unsigned long flags;
1406 	int ret;
1407 
1408 	switch (urb->status) {
1409 	case 0:
1410 		break;
1411 
1412 	default:
1413 		uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1414 			"completion handler.\n", urb->status);
1415 		/* fall through */
1416 	case -ENOENT:		/* usb_kill_urb() called. */
1417 		if (stream->frozen)
1418 			return;
1419 		/* fall through */
1420 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1421 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1422 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1423 		if (vb2_qmeta)
1424 			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1425 		return;
1426 	}
1427 
1428 	spin_lock_irqsave(&queue->irqlock, flags);
1429 	if (!list_empty(&queue->irqqueue))
1430 		buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1431 				       queue);
1432 	spin_unlock_irqrestore(&queue->irqlock, flags);
1433 
1434 	if (vb2_qmeta) {
1435 		spin_lock_irqsave(&qmeta->irqlock, flags);
1436 		if (!list_empty(&qmeta->irqqueue))
1437 			buf_meta = list_first_entry(&qmeta->irqqueue,
1438 						    struct uvc_buffer, queue);
1439 		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1440 	}
1441 
1442 	stream->decode(urb, stream, buf, buf_meta);
1443 
1444 	if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1445 		uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1446 			ret);
1447 	}
1448 }
1449 
1450 /*
1451  * Free transfer buffers.
1452  */
1453 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1454 {
1455 	unsigned int i;
1456 
1457 	for (i = 0; i < UVC_URBS; ++i) {
1458 		if (stream->urb_buffer[i]) {
1459 #ifndef CONFIG_DMA_NONCOHERENT
1460 			usb_free_coherent(stream->dev->udev, stream->urb_size,
1461 				stream->urb_buffer[i], stream->urb_dma[i]);
1462 #else
1463 			kfree(stream->urb_buffer[i]);
1464 #endif
1465 			stream->urb_buffer[i] = NULL;
1466 		}
1467 	}
1468 
1469 	stream->urb_size = 0;
1470 }
1471 
1472 /*
1473  * Allocate transfer buffers. This function can be called with buffers
1474  * already allocated when resuming from suspend, in which case it will
1475  * return without touching the buffers.
1476  *
1477  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1478  * system is too low on memory try successively smaller numbers of packets
1479  * until allocation succeeds.
1480  *
1481  * Return the number of allocated packets on success or 0 when out of memory.
1482  */
1483 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1484 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1485 {
1486 	unsigned int npackets;
1487 	unsigned int i;
1488 
1489 	/* Buffers are already allocated, bail out. */
1490 	if (stream->urb_size)
1491 		return stream->urb_size / psize;
1492 
1493 	/* Compute the number of packets. Bulk endpoints might transfer UVC
1494 	 * payloads across multiple URBs.
1495 	 */
1496 	npackets = DIV_ROUND_UP(size, psize);
1497 	if (npackets > UVC_MAX_PACKETS)
1498 		npackets = UVC_MAX_PACKETS;
1499 
1500 	/* Retry allocations until one succeed. */
1501 	for (; npackets > 1; npackets /= 2) {
1502 		for (i = 0; i < UVC_URBS; ++i) {
1503 			stream->urb_size = psize * npackets;
1504 #ifndef CONFIG_DMA_NONCOHERENT
1505 			stream->urb_buffer[i] = usb_alloc_coherent(
1506 				stream->dev->udev, stream->urb_size,
1507 				gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1508 #else
1509 			stream->urb_buffer[i] =
1510 			    kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1511 #endif
1512 			if (!stream->urb_buffer[i]) {
1513 				uvc_free_urb_buffers(stream);
1514 				break;
1515 			}
1516 		}
1517 
1518 		if (i == UVC_URBS) {
1519 			uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1520 				"of %ux%u bytes each.\n", UVC_URBS, npackets,
1521 				psize);
1522 			return npackets;
1523 		}
1524 	}
1525 
1526 	uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1527 		"per packet).\n", psize);
1528 	return 0;
1529 }
1530 
1531 /*
1532  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1533  */
1534 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1535 {
1536 	struct urb *urb;
1537 	unsigned int i;
1538 
1539 	uvc_video_stats_stop(stream);
1540 
1541 	for (i = 0; i < UVC_URBS; ++i) {
1542 		urb = stream->urb[i];
1543 		if (urb == NULL)
1544 			continue;
1545 
1546 		usb_kill_urb(urb);
1547 		usb_free_urb(urb);
1548 		stream->urb[i] = NULL;
1549 	}
1550 
1551 	if (free_buffers)
1552 		uvc_free_urb_buffers(stream);
1553 }
1554 
1555 /*
1556  * Compute the maximum number of bytes per interval for an endpoint.
1557  */
1558 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1559 					 struct usb_host_endpoint *ep)
1560 {
1561 	u16 psize;
1562 	u16 mult;
1563 
1564 	switch (dev->speed) {
1565 	case USB_SPEED_SUPER:
1566 	case USB_SPEED_SUPER_PLUS:
1567 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1568 	case USB_SPEED_HIGH:
1569 		psize = usb_endpoint_maxp(&ep->desc);
1570 		mult = usb_endpoint_maxp_mult(&ep->desc);
1571 		return psize * mult;
1572 	case USB_SPEED_WIRELESS:
1573 		psize = usb_endpoint_maxp(&ep->desc);
1574 		return psize;
1575 	default:
1576 		psize = usb_endpoint_maxp(&ep->desc);
1577 		return psize;
1578 	}
1579 }
1580 
1581 /*
1582  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1583  * is given by the endpoint.
1584  */
1585 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1586 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1587 {
1588 	struct urb *urb;
1589 	unsigned int npackets, i, j;
1590 	u16 psize;
1591 	u32 size;
1592 
1593 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1594 	size = stream->ctrl.dwMaxVideoFrameSize;
1595 
1596 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1597 	if (npackets == 0)
1598 		return -ENOMEM;
1599 
1600 	size = npackets * psize;
1601 
1602 	for (i = 0; i < UVC_URBS; ++i) {
1603 		urb = usb_alloc_urb(npackets, gfp_flags);
1604 		if (urb == NULL) {
1605 			uvc_uninit_video(stream, 1);
1606 			return -ENOMEM;
1607 		}
1608 
1609 		urb->dev = stream->dev->udev;
1610 		urb->context = stream;
1611 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1612 				ep->desc.bEndpointAddress);
1613 #ifndef CONFIG_DMA_NONCOHERENT
1614 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1615 		urb->transfer_dma = stream->urb_dma[i];
1616 #else
1617 		urb->transfer_flags = URB_ISO_ASAP;
1618 #endif
1619 		urb->interval = ep->desc.bInterval;
1620 		urb->transfer_buffer = stream->urb_buffer[i];
1621 		urb->complete = uvc_video_complete;
1622 		urb->number_of_packets = npackets;
1623 		urb->transfer_buffer_length = size;
1624 
1625 		for (j = 0; j < npackets; ++j) {
1626 			urb->iso_frame_desc[j].offset = j * psize;
1627 			urb->iso_frame_desc[j].length = psize;
1628 		}
1629 
1630 		stream->urb[i] = urb;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 /*
1637  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1638  * given by the endpoint.
1639  */
1640 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1641 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1642 {
1643 	struct urb *urb;
1644 	unsigned int npackets, pipe, i;
1645 	u16 psize;
1646 	u32 size;
1647 
1648 	psize = usb_endpoint_maxp(&ep->desc);
1649 	size = stream->ctrl.dwMaxPayloadTransferSize;
1650 	stream->bulk.max_payload_size = size;
1651 
1652 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1653 	if (npackets == 0)
1654 		return -ENOMEM;
1655 
1656 	size = npackets * psize;
1657 
1658 	if (usb_endpoint_dir_in(&ep->desc))
1659 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1660 				       ep->desc.bEndpointAddress);
1661 	else
1662 		pipe = usb_sndbulkpipe(stream->dev->udev,
1663 				       ep->desc.bEndpointAddress);
1664 
1665 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1666 		size = 0;
1667 
1668 	for (i = 0; i < UVC_URBS; ++i) {
1669 		urb = usb_alloc_urb(0, gfp_flags);
1670 		if (urb == NULL) {
1671 			uvc_uninit_video(stream, 1);
1672 			return -ENOMEM;
1673 		}
1674 
1675 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1676 			stream->urb_buffer[i], size, uvc_video_complete,
1677 			stream);
1678 #ifndef CONFIG_DMA_NONCOHERENT
1679 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1680 		urb->transfer_dma = stream->urb_dma[i];
1681 #endif
1682 
1683 		stream->urb[i] = urb;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 /*
1690  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1691  */
1692 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1693 {
1694 	struct usb_interface *intf = stream->intf;
1695 	struct usb_host_endpoint *ep;
1696 	unsigned int i;
1697 	int ret;
1698 
1699 	stream->sequence = -1;
1700 	stream->last_fid = -1;
1701 	stream->bulk.header_size = 0;
1702 	stream->bulk.skip_payload = 0;
1703 	stream->bulk.payload_size = 0;
1704 
1705 	uvc_video_stats_start(stream);
1706 
1707 	if (intf->num_altsetting > 1) {
1708 		struct usb_host_endpoint *best_ep = NULL;
1709 		unsigned int best_psize = UINT_MAX;
1710 		unsigned int bandwidth;
1711 		unsigned int uninitialized_var(altsetting);
1712 		int intfnum = stream->intfnum;
1713 
1714 		/* Isochronous endpoint, select the alternate setting. */
1715 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1716 
1717 		if (bandwidth == 0) {
1718 			uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1719 				"bandwidth, defaulting to lowest.\n");
1720 			bandwidth = 1;
1721 		} else {
1722 			uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1723 				"B/frame bandwidth.\n", bandwidth);
1724 		}
1725 
1726 		for (i = 0; i < intf->num_altsetting; ++i) {
1727 			struct usb_host_interface *alts;
1728 			unsigned int psize;
1729 
1730 			alts = &intf->altsetting[i];
1731 			ep = uvc_find_endpoint(alts,
1732 				stream->header.bEndpointAddress);
1733 			if (ep == NULL)
1734 				continue;
1735 
1736 			/* Check if the bandwidth is high enough. */
1737 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1738 			if (psize >= bandwidth && psize <= best_psize) {
1739 				altsetting = alts->desc.bAlternateSetting;
1740 				best_psize = psize;
1741 				best_ep = ep;
1742 			}
1743 		}
1744 
1745 		if (best_ep == NULL) {
1746 			uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1747 				"for requested bandwidth.\n");
1748 			return -EIO;
1749 		}
1750 
1751 		uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1752 			"(%u B/frame bandwidth).\n", altsetting, best_psize);
1753 
1754 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1755 		if (ret < 0)
1756 			return ret;
1757 
1758 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1759 	} else {
1760 		/* Bulk endpoint, proceed to URB initialization. */
1761 		ep = uvc_find_endpoint(&intf->altsetting[0],
1762 				stream->header.bEndpointAddress);
1763 		if (ep == NULL)
1764 			return -EIO;
1765 
1766 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1767 	}
1768 
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	/* Submit the URBs. */
1773 	for (i = 0; i < UVC_URBS; ++i) {
1774 		ret = usb_submit_urb(stream->urb[i], gfp_flags);
1775 		if (ret < 0) {
1776 			uvc_printk(KERN_ERR, "Failed to submit URB %u "
1777 					"(%d).\n", i, ret);
1778 			uvc_uninit_video(stream, 1);
1779 			return ret;
1780 		}
1781 	}
1782 
1783 	/* The Logitech C920 temporarily forgets that it should not be adjusting
1784 	 * Exposure Absolute during init so restore controls to stored values.
1785 	 */
1786 	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1787 		uvc_ctrl_restore_values(stream->dev);
1788 
1789 	return 0;
1790 }
1791 
1792 /* --------------------------------------------------------------------------
1793  * Suspend/resume
1794  */
1795 
1796 /*
1797  * Stop streaming without disabling the video queue.
1798  *
1799  * To let userspace applications resume without trouble, we must not touch the
1800  * video buffers in any way. We mark the device as frozen to make sure the URB
1801  * completion handler won't try to cancel the queue when we kill the URBs.
1802  */
1803 int uvc_video_suspend(struct uvc_streaming *stream)
1804 {
1805 	if (!uvc_queue_streaming(&stream->queue))
1806 		return 0;
1807 
1808 	stream->frozen = 1;
1809 	uvc_uninit_video(stream, 0);
1810 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1811 	return 0;
1812 }
1813 
1814 /*
1815  * Reconfigure the video interface and restart streaming if it was enabled
1816  * before suspend.
1817  *
1818  * If an error occurs, disable the video queue. This will wake all pending
1819  * buffers, making sure userspace applications are notified of the problem
1820  * instead of waiting forever.
1821  */
1822 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1823 {
1824 	int ret;
1825 
1826 	/* If the bus has been reset on resume, set the alternate setting to 0.
1827 	 * This should be the default value, but some devices crash or otherwise
1828 	 * misbehave if they don't receive a SET_INTERFACE request before any
1829 	 * other video control request.
1830 	 */
1831 	if (reset)
1832 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1833 
1834 	stream->frozen = 0;
1835 
1836 	uvc_video_clock_reset(stream);
1837 
1838 	if (!uvc_queue_streaming(&stream->queue))
1839 		return 0;
1840 
1841 	ret = uvc_commit_video(stream, &stream->ctrl);
1842 	if (ret < 0)
1843 		return ret;
1844 
1845 	return uvc_init_video(stream, GFP_NOIO);
1846 }
1847 
1848 /* ------------------------------------------------------------------------
1849  * Video device
1850  */
1851 
1852 /*
1853  * Initialize the UVC video device by switching to alternate setting 0 and
1854  * retrieve the default format.
1855  *
1856  * Some cameras (namely the Fuji Finepix) set the format and frame
1857  * indexes to zero. The UVC standard doesn't clearly make this a spec
1858  * violation, so try to silently fix the values if possible.
1859  *
1860  * This function is called before registering the device with V4L.
1861  */
1862 int uvc_video_init(struct uvc_streaming *stream)
1863 {
1864 	struct uvc_streaming_control *probe = &stream->ctrl;
1865 	struct uvc_format *format = NULL;
1866 	struct uvc_frame *frame = NULL;
1867 	unsigned int i;
1868 	int ret;
1869 
1870 	if (stream->nformats == 0) {
1871 		uvc_printk(KERN_INFO, "No supported video formats found.\n");
1872 		return -EINVAL;
1873 	}
1874 
1875 	atomic_set(&stream->active, 0);
1876 
1877 	/* Alternate setting 0 should be the default, yet the XBox Live Vision
1878 	 * Cam (and possibly other devices) crash or otherwise misbehave if
1879 	 * they don't receive a SET_INTERFACE request before any other video
1880 	 * control request.
1881 	 */
1882 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1883 
1884 	/* Set the streaming probe control with default streaming parameters
1885 	 * retrieved from the device. Webcams that don't suport GET_DEF
1886 	 * requests on the probe control will just keep their current streaming
1887 	 * parameters.
1888 	 */
1889 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1890 		uvc_set_video_ctrl(stream, probe, 1);
1891 
1892 	/* Initialize the streaming parameters with the probe control current
1893 	 * value. This makes sure SET_CUR requests on the streaming commit
1894 	 * control will always use values retrieved from a successful GET_CUR
1895 	 * request on the probe control, as required by the UVC specification.
1896 	 */
1897 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1898 	if (ret < 0)
1899 		return ret;
1900 
1901 	/* Check if the default format descriptor exists. Use the first
1902 	 * available format otherwise.
1903 	 */
1904 	for (i = stream->nformats; i > 0; --i) {
1905 		format = &stream->format[i-1];
1906 		if (format->index == probe->bFormatIndex)
1907 			break;
1908 	}
1909 
1910 	if (format->nframes == 0) {
1911 		uvc_printk(KERN_INFO, "No frame descriptor found for the "
1912 			"default format.\n");
1913 		return -EINVAL;
1914 	}
1915 
1916 	/* Zero bFrameIndex might be correct. Stream-based formats (including
1917 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1918 	 * descriptor with bFrameIndex set to zero. If the default frame
1919 	 * descriptor is not found, use the first available frame.
1920 	 */
1921 	for (i = format->nframes; i > 0; --i) {
1922 		frame = &format->frame[i-1];
1923 		if (frame->bFrameIndex == probe->bFrameIndex)
1924 			break;
1925 	}
1926 
1927 	probe->bFormatIndex = format->index;
1928 	probe->bFrameIndex = frame->bFrameIndex;
1929 
1930 	stream->def_format = format;
1931 	stream->cur_format = format;
1932 	stream->cur_frame = frame;
1933 
1934 	/* Select the video decoding function */
1935 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1936 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1937 			stream->decode = uvc_video_decode_isight;
1938 		else if (stream->intf->num_altsetting > 1)
1939 			stream->decode = uvc_video_decode_isoc;
1940 		else
1941 			stream->decode = uvc_video_decode_bulk;
1942 	} else {
1943 		if (stream->intf->num_altsetting == 1)
1944 			stream->decode = uvc_video_encode_bulk;
1945 		else {
1946 			uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1947 				"supported for video output devices.\n");
1948 			return -EINVAL;
1949 		}
1950 	}
1951 
1952 	return 0;
1953 }
1954 
1955 /*
1956  * Enable or disable the video stream.
1957  */
1958 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1959 {
1960 	int ret;
1961 
1962 	if (!enable) {
1963 		uvc_uninit_video(stream, 1);
1964 		if (stream->intf->num_altsetting > 1) {
1965 			usb_set_interface(stream->dev->udev,
1966 					  stream->intfnum, 0);
1967 		} else {
1968 			/* UVC doesn't specify how to inform a bulk-based device
1969 			 * when the video stream is stopped. Windows sends a
1970 			 * CLEAR_FEATURE(HALT) request to the video streaming
1971 			 * bulk endpoint, mimic the same behaviour.
1972 			 */
1973 			unsigned int epnum = stream->header.bEndpointAddress
1974 					   & USB_ENDPOINT_NUMBER_MASK;
1975 			unsigned int dir = stream->header.bEndpointAddress
1976 					 & USB_ENDPOINT_DIR_MASK;
1977 			unsigned int pipe;
1978 
1979 			pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
1980 			usb_clear_halt(stream->dev->udev, pipe);
1981 		}
1982 
1983 		uvc_video_clock_cleanup(stream);
1984 		return 0;
1985 	}
1986 
1987 	ret = uvc_video_clock_init(stream);
1988 	if (ret < 0)
1989 		return ret;
1990 
1991 	/* Commit the streaming parameters. */
1992 	ret = uvc_commit_video(stream, &stream->ctrl);
1993 	if (ret < 0)
1994 		goto error_commit;
1995 
1996 	ret = uvc_init_video(stream, GFP_KERNEL);
1997 	if (ret < 0)
1998 		goto error_video;
1999 
2000 	return 0;
2001 
2002 error_video:
2003 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2004 error_commit:
2005 	uvc_video_clock_cleanup(stream);
2006 
2007 	return ret;
2008 }
2009