1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 34 u8 intfnum, u8 cs, void *data, u16 size, 35 int timeout) 36 { 37 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 73 u8 intfnum, u8 cs, void *data, u16 size) 74 { 75 int ret; 76 u8 error; 77 u8 tmp; 78 79 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 80 UVC_CTRL_CONTROL_TIMEOUT); 81 if (likely(ret == size)) 82 return 0; 83 84 uvc_printk(KERN_ERR, 85 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 86 uvc_query_name(query), cs, unit, ret, size); 87 88 if (ret != -EPIPE) 89 return ret; 90 91 tmp = *(u8 *)data; 92 93 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 94 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 95 UVC_CTRL_CONTROL_TIMEOUT); 96 97 error = *(u8 *)data; 98 *(u8 *)data = tmp; 99 100 if (ret != 1) 101 return ret < 0 ? ret : -EPIPE; 102 103 uvc_trace(UVC_TRACE_CONTROL, "Control error %u\n", error); 104 105 switch (error) { 106 case 0: 107 /* Cannot happen - we received a STALL */ 108 return -EPIPE; 109 case 1: /* Not ready */ 110 return -EBUSY; 111 case 2: /* Wrong state */ 112 return -EILSEQ; 113 case 3: /* Power */ 114 return -EREMOTE; 115 case 4: /* Out of range */ 116 return -ERANGE; 117 case 5: /* Invalid unit */ 118 case 6: /* Invalid control */ 119 case 7: /* Invalid Request */ 120 case 8: /* Invalid value within range */ 121 return -EINVAL; 122 default: /* reserved or unknown */ 123 break; 124 } 125 126 return -EPIPE; 127 } 128 129 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 130 struct uvc_streaming_control *ctrl) 131 { 132 struct uvc_format *format = NULL; 133 struct uvc_frame *frame = NULL; 134 unsigned int i; 135 136 for (i = 0; i < stream->nformats; ++i) { 137 if (stream->format[i].index == ctrl->bFormatIndex) { 138 format = &stream->format[i]; 139 break; 140 } 141 } 142 143 if (format == NULL) 144 return; 145 146 for (i = 0; i < format->nframes; ++i) { 147 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 148 frame = &format->frame[i]; 149 break; 150 } 151 } 152 153 if (frame == NULL) 154 return; 155 156 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 157 (ctrl->dwMaxVideoFrameSize == 0 && 158 stream->dev->uvc_version < 0x0110)) 159 ctrl->dwMaxVideoFrameSize = 160 frame->dwMaxVideoFrameBufferSize; 161 162 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 163 * compute the bandwidth on 16 bits and erroneously sign-extend it to 164 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 165 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 166 */ 167 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 168 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 169 170 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 171 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 172 stream->intf->num_altsetting > 1) { 173 u32 interval; 174 u32 bandwidth; 175 176 interval = (ctrl->dwFrameInterval > 100000) 177 ? ctrl->dwFrameInterval 178 : frame->dwFrameInterval[0]; 179 180 /* Compute a bandwidth estimation by multiplying the frame 181 * size by the number of video frames per second, divide the 182 * result by the number of USB frames (or micro-frames for 183 * high-speed devices) per second and add the UVC header size 184 * (assumed to be 12 bytes long). 185 */ 186 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 187 bandwidth *= 10000000 / interval + 1; 188 bandwidth /= 1000; 189 if (stream->dev->udev->speed == USB_SPEED_HIGH) 190 bandwidth /= 8; 191 bandwidth += 12; 192 193 /* The bandwidth estimate is too low for many cameras. Don't use 194 * maximum packet sizes lower than 1024 bytes to try and work 195 * around the problem. According to measurements done on two 196 * different camera models, the value is high enough to get most 197 * resolutions working while not preventing two simultaneous 198 * VGA streams at 15 fps. 199 */ 200 bandwidth = max_t(u32, bandwidth, 1024); 201 202 ctrl->dwMaxPayloadTransferSize = bandwidth; 203 } 204 } 205 206 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 207 { 208 /* 209 * Return the size of the video probe and commit controls, which depends 210 * on the protocol version. 211 */ 212 if (stream->dev->uvc_version < 0x0110) 213 return 26; 214 else if (stream->dev->uvc_version < 0x0150) 215 return 34; 216 else 217 return 48; 218 } 219 220 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 221 struct uvc_streaming_control *ctrl, int probe, u8 query) 222 { 223 u16 size = uvc_video_ctrl_size(stream); 224 u8 *data; 225 int ret; 226 227 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 228 query == UVC_GET_DEF) 229 return -EIO; 230 231 data = kmalloc(size, GFP_KERNEL); 232 if (data == NULL) 233 return -ENOMEM; 234 235 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 236 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 237 size, uvc_timeout_param); 238 239 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 240 /* Some cameras, mostly based on Bison Electronics chipsets, 241 * answer a GET_MIN or GET_MAX request with the wCompQuality 242 * field only. 243 */ 244 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 245 "compliance - GET_MIN/MAX(PROBE) incorrectly " 246 "supported. Enabling workaround.\n"); 247 memset(ctrl, 0, sizeof(*ctrl)); 248 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 249 ret = 0; 250 goto out; 251 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 252 /* Many cameras don't support the GET_DEF request on their 253 * video probe control. Warn once and return, the caller will 254 * fall back to GET_CUR. 255 */ 256 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 257 "compliance - GET_DEF(PROBE) not supported. " 258 "Enabling workaround.\n"); 259 ret = -EIO; 260 goto out; 261 } else if (ret != size) { 262 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 263 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 264 ret, size); 265 ret = -EIO; 266 goto out; 267 } 268 269 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 270 ctrl->bFormatIndex = data[2]; 271 ctrl->bFrameIndex = data[3]; 272 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 273 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 274 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 275 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 276 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 277 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 278 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 279 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 280 281 if (size >= 34) { 282 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 283 ctrl->bmFramingInfo = data[30]; 284 ctrl->bPreferedVersion = data[31]; 285 ctrl->bMinVersion = data[32]; 286 ctrl->bMaxVersion = data[33]; 287 } else { 288 ctrl->dwClockFrequency = stream->dev->clock_frequency; 289 ctrl->bmFramingInfo = 0; 290 ctrl->bPreferedVersion = 0; 291 ctrl->bMinVersion = 0; 292 ctrl->bMaxVersion = 0; 293 } 294 295 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 296 * dwMaxPayloadTransferSize fields. Try to get the value from the 297 * format and frame descriptors. 298 */ 299 uvc_fixup_video_ctrl(stream, ctrl); 300 ret = 0; 301 302 out: 303 kfree(data); 304 return ret; 305 } 306 307 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 308 struct uvc_streaming_control *ctrl, int probe) 309 { 310 u16 size = uvc_video_ctrl_size(stream); 311 u8 *data; 312 int ret; 313 314 data = kzalloc(size, GFP_KERNEL); 315 if (data == NULL) 316 return -ENOMEM; 317 318 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 319 data[2] = ctrl->bFormatIndex; 320 data[3] = ctrl->bFrameIndex; 321 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 322 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 323 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 324 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 325 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 326 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 327 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 328 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 329 330 if (size >= 34) { 331 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 332 data[30] = ctrl->bmFramingInfo; 333 data[31] = ctrl->bPreferedVersion; 334 data[32] = ctrl->bMinVersion; 335 data[33] = ctrl->bMaxVersion; 336 } 337 338 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 339 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 340 size, uvc_timeout_param); 341 if (ret != size) { 342 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 343 "%d (exp. %u).\n", probe ? "probe" : "commit", 344 ret, size); 345 ret = -EIO; 346 } 347 348 kfree(data); 349 return ret; 350 } 351 352 int uvc_probe_video(struct uvc_streaming *stream, 353 struct uvc_streaming_control *probe) 354 { 355 struct uvc_streaming_control probe_min, probe_max; 356 u16 bandwidth; 357 unsigned int i; 358 int ret; 359 360 /* Perform probing. The device should adjust the requested values 361 * according to its capabilities. However, some devices, namely the 362 * first generation UVC Logitech webcams, don't implement the Video 363 * Probe control properly, and just return the needed bandwidth. For 364 * that reason, if the needed bandwidth exceeds the maximum available 365 * bandwidth, try to lower the quality. 366 */ 367 ret = uvc_set_video_ctrl(stream, probe, 1); 368 if (ret < 0) 369 goto done; 370 371 /* Get the minimum and maximum values for compression settings. */ 372 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 373 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 374 if (ret < 0) 375 goto done; 376 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 377 if (ret < 0) 378 goto done; 379 380 probe->wCompQuality = probe_max.wCompQuality; 381 } 382 383 for (i = 0; i < 2; ++i) { 384 ret = uvc_set_video_ctrl(stream, probe, 1); 385 if (ret < 0) 386 goto done; 387 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 388 if (ret < 0) 389 goto done; 390 391 if (stream->intf->num_altsetting == 1) 392 break; 393 394 bandwidth = probe->dwMaxPayloadTransferSize; 395 if (bandwidth <= stream->maxpsize) 396 break; 397 398 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 399 ret = -ENOSPC; 400 goto done; 401 } 402 403 /* TODO: negotiate compression parameters */ 404 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 405 probe->wPFrameRate = probe_min.wPFrameRate; 406 probe->wCompQuality = probe_max.wCompQuality; 407 probe->wCompWindowSize = probe_min.wCompWindowSize; 408 } 409 410 done: 411 return ret; 412 } 413 414 static int uvc_commit_video(struct uvc_streaming *stream, 415 struct uvc_streaming_control *probe) 416 { 417 return uvc_set_video_ctrl(stream, probe, 0); 418 } 419 420 /* ----------------------------------------------------------------------------- 421 * Clocks and timestamps 422 */ 423 424 static inline ktime_t uvc_video_get_time(void) 425 { 426 if (uvc_clock_param == CLOCK_MONOTONIC) 427 return ktime_get(); 428 else 429 return ktime_get_real(); 430 } 431 432 static void 433 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 434 const u8 *data, int len) 435 { 436 struct uvc_clock_sample *sample; 437 unsigned int header_size; 438 bool has_pts = false; 439 bool has_scr = false; 440 unsigned long flags; 441 ktime_t time; 442 u16 host_sof; 443 u16 dev_sof; 444 445 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 446 case UVC_STREAM_PTS | UVC_STREAM_SCR: 447 header_size = 12; 448 has_pts = true; 449 has_scr = true; 450 break; 451 case UVC_STREAM_PTS: 452 header_size = 6; 453 has_pts = true; 454 break; 455 case UVC_STREAM_SCR: 456 header_size = 8; 457 has_scr = true; 458 break; 459 default: 460 header_size = 2; 461 break; 462 } 463 464 /* Check for invalid headers. */ 465 if (len < header_size) 466 return; 467 468 /* Extract the timestamps: 469 * 470 * - store the frame PTS in the buffer structure 471 * - if the SCR field is present, retrieve the host SOF counter and 472 * kernel timestamps and store them with the SCR STC and SOF fields 473 * in the ring buffer 474 */ 475 if (has_pts && buf != NULL) 476 buf->pts = get_unaligned_le32(&data[2]); 477 478 if (!has_scr) 479 return; 480 481 /* To limit the amount of data, drop SCRs with an SOF identical to the 482 * previous one. 483 */ 484 dev_sof = get_unaligned_le16(&data[header_size - 2]); 485 if (dev_sof == stream->clock.last_sof) 486 return; 487 488 stream->clock.last_sof = dev_sof; 489 490 host_sof = usb_get_current_frame_number(stream->dev->udev); 491 time = uvc_video_get_time(); 492 493 /* The UVC specification allows device implementations that can't obtain 494 * the USB frame number to keep their own frame counters as long as they 495 * match the size and frequency of the frame number associated with USB 496 * SOF tokens. The SOF values sent by such devices differ from the USB 497 * SOF tokens by a fixed offset that needs to be estimated and accounted 498 * for to make timestamp recovery as accurate as possible. 499 * 500 * The offset is estimated the first time a device SOF value is received 501 * as the difference between the host and device SOF values. As the two 502 * SOF values can differ slightly due to transmission delays, consider 503 * that the offset is null if the difference is not higher than 10 ms 504 * (negative differences can not happen and are thus considered as an 505 * offset). The video commit control wDelay field should be used to 506 * compute a dynamic threshold instead of using a fixed 10 ms value, but 507 * devices don't report reliable wDelay values. 508 * 509 * See uvc_video_clock_host_sof() for an explanation regarding why only 510 * the 8 LSBs of the delta are kept. 511 */ 512 if (stream->clock.sof_offset == (u16)-1) { 513 u16 delta_sof = (host_sof - dev_sof) & 255; 514 if (delta_sof >= 10) 515 stream->clock.sof_offset = delta_sof; 516 else 517 stream->clock.sof_offset = 0; 518 } 519 520 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 521 522 spin_lock_irqsave(&stream->clock.lock, flags); 523 524 sample = &stream->clock.samples[stream->clock.head]; 525 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 526 sample->dev_sof = dev_sof; 527 sample->host_sof = host_sof; 528 sample->host_time = time; 529 530 /* Update the sliding window head and count. */ 531 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 532 533 if (stream->clock.count < stream->clock.size) 534 stream->clock.count++; 535 536 spin_unlock_irqrestore(&stream->clock.lock, flags); 537 } 538 539 static void uvc_video_clock_reset(struct uvc_streaming *stream) 540 { 541 struct uvc_clock *clock = &stream->clock; 542 543 clock->head = 0; 544 clock->count = 0; 545 clock->last_sof = -1; 546 clock->sof_offset = -1; 547 } 548 549 static int uvc_video_clock_init(struct uvc_streaming *stream) 550 { 551 struct uvc_clock *clock = &stream->clock; 552 553 spin_lock_init(&clock->lock); 554 clock->size = 32; 555 556 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 557 GFP_KERNEL); 558 if (clock->samples == NULL) 559 return -ENOMEM; 560 561 uvc_video_clock_reset(stream); 562 563 return 0; 564 } 565 566 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 567 { 568 kfree(stream->clock.samples); 569 stream->clock.samples = NULL; 570 } 571 572 /* 573 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 574 * 575 * Host SOF counters reported by usb_get_current_frame_number() usually don't 576 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 577 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 578 * controller and its configuration. 579 * 580 * We thus need to recover the SOF value corresponding to the host frame number. 581 * As the device and host frame numbers are sampled in a short interval, the 582 * difference between their values should be equal to a small delta plus an 583 * integer multiple of 256 caused by the host frame number limited precision. 584 * 585 * To obtain the recovered host SOF value, compute the small delta by masking 586 * the high bits of the host frame counter and device SOF difference and add it 587 * to the device SOF value. 588 */ 589 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 590 { 591 /* The delta value can be negative. */ 592 s8 delta_sof; 593 594 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 595 596 return (sample->dev_sof + delta_sof) & 2047; 597 } 598 599 /* 600 * uvc_video_clock_update - Update the buffer timestamp 601 * 602 * This function converts the buffer PTS timestamp to the host clock domain by 603 * going through the USB SOF clock domain and stores the result in the V4L2 604 * buffer timestamp field. 605 * 606 * The relationship between the device clock and the host clock isn't known. 607 * However, the device and the host share the common USB SOF clock which can be 608 * used to recover that relationship. 609 * 610 * The relationship between the device clock and the USB SOF clock is considered 611 * to be linear over the clock samples sliding window and is given by 612 * 613 * SOF = m * PTS + p 614 * 615 * Several methods to compute the slope (m) and intercept (p) can be used. As 616 * the clock drift should be small compared to the sliding window size, we 617 * assume that the line that goes through the points at both ends of the window 618 * is a good approximation. Naming those points P1 and P2, we get 619 * 620 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 621 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 622 * 623 * or 624 * 625 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 626 * 627 * to avoid losing precision in the division. Similarly, the host timestamp is 628 * computed with 629 * 630 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 631 * 632 * SOF values are coded on 11 bits by USB. We extend their precision with 16 633 * decimal bits, leading to a 11.16 coding. 634 * 635 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 636 * be normalized using the nominal device clock frequency reported through the 637 * UVC descriptors. 638 * 639 * Both the PTS/STC and SOF counters roll over, after a fixed but device 640 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 641 * sliding window size is smaller than the rollover period, differences computed 642 * on unsigned integers will produce the correct result. However, the p term in 643 * the linear relations will be miscomputed. 644 * 645 * To fix the issue, we subtract a constant from the PTS and STC values to bring 646 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 647 * the 32 bit range without any rollover. 648 * 649 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 650 * computed by (1) will never be smaller than 0. This offset is then compensated 651 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 652 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 653 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 654 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 655 * SOF value at the end of the sliding window. 656 * 657 * Finally we subtract a constant from the host timestamps to bring the first 658 * timestamp of the sliding window to 1s. 659 */ 660 void uvc_video_clock_update(struct uvc_streaming *stream, 661 struct vb2_v4l2_buffer *vbuf, 662 struct uvc_buffer *buf) 663 { 664 struct uvc_clock *clock = &stream->clock; 665 struct uvc_clock_sample *first; 666 struct uvc_clock_sample *last; 667 unsigned long flags; 668 u64 timestamp; 669 u32 delta_stc; 670 u32 y1, y2; 671 u32 x1, x2; 672 u32 mean; 673 u32 sof; 674 u64 y; 675 676 if (!uvc_hw_timestamps_param) 677 return; 678 679 spin_lock_irqsave(&clock->lock, flags); 680 681 if (clock->count < clock->size) 682 goto done; 683 684 first = &clock->samples[clock->head]; 685 last = &clock->samples[(clock->head - 1) % clock->size]; 686 687 /* First step, PTS to SOF conversion. */ 688 delta_stc = buf->pts - (1UL << 31); 689 x1 = first->dev_stc - delta_stc; 690 x2 = last->dev_stc - delta_stc; 691 if (x1 == x2) 692 goto done; 693 694 y1 = (first->dev_sof + 2048) << 16; 695 y2 = (last->dev_sof + 2048) << 16; 696 if (y2 < y1) 697 y2 += 2048 << 16; 698 699 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 700 - (u64)y2 * (u64)x1; 701 y = div_u64(y, x2 - x1); 702 703 sof = y; 704 705 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 706 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 707 stream->dev->name, buf->pts, 708 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 709 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 710 x1, x2, y1, y2, clock->sof_offset); 711 712 /* Second step, SOF to host clock conversion. */ 713 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 714 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 715 if (x2 < x1) 716 x2 += 2048 << 16; 717 if (x1 == x2) 718 goto done; 719 720 y1 = NSEC_PER_SEC; 721 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 722 723 /* Interpolated and host SOF timestamps can wrap around at slightly 724 * different times. Handle this by adding or removing 2048 to or from 725 * the computed SOF value to keep it close to the SOF samples mean 726 * value. 727 */ 728 mean = (x1 + x2) / 2; 729 if (mean - (1024 << 16) > sof) 730 sof += 2048 << 16; 731 else if (sof > mean + (1024 << 16)) 732 sof -= 2048 << 16; 733 734 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 735 - (u64)y2 * (u64)x1; 736 y = div_u64(y, x2 - x1); 737 738 timestamp = ktime_to_ns(first->host_time) + y - y1; 739 740 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 741 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 742 stream->dev->name, 743 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 744 y, timestamp, vbuf->vb2_buf.timestamp, 745 x1, first->host_sof, first->dev_sof, 746 x2, last->host_sof, last->dev_sof, y1, y2); 747 748 /* Update the V4L2 buffer. */ 749 vbuf->vb2_buf.timestamp = timestamp; 750 751 done: 752 spin_unlock_irqrestore(&clock->lock, flags); 753 } 754 755 /* ------------------------------------------------------------------------ 756 * Stream statistics 757 */ 758 759 static void uvc_video_stats_decode(struct uvc_streaming *stream, 760 const u8 *data, int len) 761 { 762 unsigned int header_size; 763 bool has_pts = false; 764 bool has_scr = false; 765 u16 uninitialized_var(scr_sof); 766 u32 uninitialized_var(scr_stc); 767 u32 uninitialized_var(pts); 768 769 if (stream->stats.stream.nb_frames == 0 && 770 stream->stats.frame.nb_packets == 0) 771 stream->stats.stream.start_ts = ktime_get(); 772 773 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 774 case UVC_STREAM_PTS | UVC_STREAM_SCR: 775 header_size = 12; 776 has_pts = true; 777 has_scr = true; 778 break; 779 case UVC_STREAM_PTS: 780 header_size = 6; 781 has_pts = true; 782 break; 783 case UVC_STREAM_SCR: 784 header_size = 8; 785 has_scr = true; 786 break; 787 default: 788 header_size = 2; 789 break; 790 } 791 792 /* Check for invalid headers. */ 793 if (len < header_size || data[0] < header_size) { 794 stream->stats.frame.nb_invalid++; 795 return; 796 } 797 798 /* Extract the timestamps. */ 799 if (has_pts) 800 pts = get_unaligned_le32(&data[2]); 801 802 if (has_scr) { 803 scr_stc = get_unaligned_le32(&data[header_size - 6]); 804 scr_sof = get_unaligned_le16(&data[header_size - 2]); 805 } 806 807 /* Is PTS constant through the whole frame ? */ 808 if (has_pts && stream->stats.frame.nb_pts) { 809 if (stream->stats.frame.pts != pts) { 810 stream->stats.frame.nb_pts_diffs++; 811 stream->stats.frame.last_pts_diff = 812 stream->stats.frame.nb_packets; 813 } 814 } 815 816 if (has_pts) { 817 stream->stats.frame.nb_pts++; 818 stream->stats.frame.pts = pts; 819 } 820 821 /* Do all frames have a PTS in their first non-empty packet, or before 822 * their first empty packet ? 823 */ 824 if (stream->stats.frame.size == 0) { 825 if (len > header_size) 826 stream->stats.frame.has_initial_pts = has_pts; 827 if (len == header_size && has_pts) 828 stream->stats.frame.has_early_pts = true; 829 } 830 831 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 832 if (has_scr && stream->stats.frame.nb_scr) { 833 if (stream->stats.frame.scr_stc != scr_stc) 834 stream->stats.frame.nb_scr_diffs++; 835 } 836 837 if (has_scr) { 838 /* Expand the SOF counter to 32 bits and store its value. */ 839 if (stream->stats.stream.nb_frames > 0 || 840 stream->stats.frame.nb_scr > 0) 841 stream->stats.stream.scr_sof_count += 842 (scr_sof - stream->stats.stream.scr_sof) % 2048; 843 stream->stats.stream.scr_sof = scr_sof; 844 845 stream->stats.frame.nb_scr++; 846 stream->stats.frame.scr_stc = scr_stc; 847 stream->stats.frame.scr_sof = scr_sof; 848 849 if (scr_sof < stream->stats.stream.min_sof) 850 stream->stats.stream.min_sof = scr_sof; 851 if (scr_sof > stream->stats.stream.max_sof) 852 stream->stats.stream.max_sof = scr_sof; 853 } 854 855 /* Record the first non-empty packet number. */ 856 if (stream->stats.frame.size == 0 && len > header_size) 857 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 858 859 /* Update the frame size. */ 860 stream->stats.frame.size += len - header_size; 861 862 /* Update the packets counters. */ 863 stream->stats.frame.nb_packets++; 864 if (len <= header_size) 865 stream->stats.frame.nb_empty++; 866 867 if (data[1] & UVC_STREAM_ERR) 868 stream->stats.frame.nb_errors++; 869 } 870 871 static void uvc_video_stats_update(struct uvc_streaming *stream) 872 { 873 struct uvc_stats_frame *frame = &stream->stats.frame; 874 875 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 876 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 877 "last pts/stc/sof %u/%u/%u\n", 878 stream->sequence, frame->first_data, 879 frame->nb_packets - frame->nb_empty, frame->nb_packets, 880 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 881 frame->has_early_pts ? "" : "!", 882 frame->has_initial_pts ? "" : "!", 883 frame->nb_scr_diffs, frame->nb_scr, 884 frame->pts, frame->scr_stc, frame->scr_sof); 885 886 stream->stats.stream.nb_frames++; 887 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 888 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 889 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 890 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 891 892 if (frame->has_early_pts) 893 stream->stats.stream.nb_pts_early++; 894 if (frame->has_initial_pts) 895 stream->stats.stream.nb_pts_initial++; 896 if (frame->last_pts_diff <= frame->first_data) 897 stream->stats.stream.nb_pts_constant++; 898 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 899 stream->stats.stream.nb_scr_count_ok++; 900 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 901 stream->stats.stream.nb_scr_diffs_ok++; 902 903 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 904 } 905 906 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 907 size_t size) 908 { 909 unsigned int scr_sof_freq; 910 unsigned int duration; 911 size_t count = 0; 912 913 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 914 * frequency this will not overflow before more than 1h. 915 */ 916 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 917 stream->stats.stream.start_ts); 918 if (duration != 0) 919 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 920 / duration; 921 else 922 scr_sof_freq = 0; 923 924 count += scnprintf(buf + count, size - count, 925 "frames: %u\npackets: %u\nempty: %u\n" 926 "errors: %u\ninvalid: %u\n", 927 stream->stats.stream.nb_frames, 928 stream->stats.stream.nb_packets, 929 stream->stats.stream.nb_empty, 930 stream->stats.stream.nb_errors, 931 stream->stats.stream.nb_invalid); 932 count += scnprintf(buf + count, size - count, 933 "pts: %u early, %u initial, %u ok\n", 934 stream->stats.stream.nb_pts_early, 935 stream->stats.stream.nb_pts_initial, 936 stream->stats.stream.nb_pts_constant); 937 count += scnprintf(buf + count, size - count, 938 "scr: %u count ok, %u diff ok\n", 939 stream->stats.stream.nb_scr_count_ok, 940 stream->stats.stream.nb_scr_diffs_ok); 941 count += scnprintf(buf + count, size - count, 942 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 943 stream->stats.stream.min_sof, 944 stream->stats.stream.max_sof, 945 scr_sof_freq / 1000, scr_sof_freq % 1000); 946 947 return count; 948 } 949 950 static void uvc_video_stats_start(struct uvc_streaming *stream) 951 { 952 memset(&stream->stats, 0, sizeof(stream->stats)); 953 stream->stats.stream.min_sof = 2048; 954 } 955 956 static void uvc_video_stats_stop(struct uvc_streaming *stream) 957 { 958 stream->stats.stream.stop_ts = ktime_get(); 959 } 960 961 /* ------------------------------------------------------------------------ 962 * Video codecs 963 */ 964 965 /* Video payload decoding is handled by uvc_video_decode_start(), 966 * uvc_video_decode_data() and uvc_video_decode_end(). 967 * 968 * uvc_video_decode_start is called with URB data at the start of a bulk or 969 * isochronous payload. It processes header data and returns the header size 970 * in bytes if successful. If an error occurs, it returns a negative error 971 * code. The following error codes have special meanings. 972 * 973 * - EAGAIN informs the caller that the current video buffer should be marked 974 * as done, and that the function should be called again with the same data 975 * and a new video buffer. This is used when end of frame conditions can be 976 * reliably detected at the beginning of the next frame only. 977 * 978 * If an error other than -EAGAIN is returned, the caller will drop the current 979 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 980 * made until the next payload. -ENODATA can be used to drop the current 981 * payload if no other error code is appropriate. 982 * 983 * uvc_video_decode_data is called for every URB with URB data. It copies the 984 * data to the video buffer. 985 * 986 * uvc_video_decode_end is called with header data at the end of a bulk or 987 * isochronous payload. It performs any additional header data processing and 988 * returns 0 or a negative error code if an error occurred. As header data have 989 * already been processed by uvc_video_decode_start, this functions isn't 990 * required to perform sanity checks a second time. 991 * 992 * For isochronous transfers where a payload is always transferred in a single 993 * URB, the three functions will be called in a row. 994 * 995 * To let the decoder process header data and update its internal state even 996 * when no video buffer is available, uvc_video_decode_start must be prepared 997 * to be called with a NULL buf parameter. uvc_video_decode_data and 998 * uvc_video_decode_end will never be called with a NULL buffer. 999 */ 1000 static int uvc_video_decode_start(struct uvc_streaming *stream, 1001 struct uvc_buffer *buf, const u8 *data, int len) 1002 { 1003 u8 fid; 1004 1005 /* Sanity checks: 1006 * - packet must be at least 2 bytes long 1007 * - bHeaderLength value must be at least 2 bytes (see above) 1008 * - bHeaderLength value can't be larger than the packet size. 1009 */ 1010 if (len < 2 || data[0] < 2 || data[0] > len) { 1011 stream->stats.frame.nb_invalid++; 1012 return -EINVAL; 1013 } 1014 1015 fid = data[1] & UVC_STREAM_FID; 1016 1017 /* Increase the sequence number regardless of any buffer states, so 1018 * that discontinuous sequence numbers always indicate lost frames. 1019 */ 1020 if (stream->last_fid != fid) { 1021 stream->sequence++; 1022 if (stream->sequence) 1023 uvc_video_stats_update(stream); 1024 } 1025 1026 uvc_video_clock_decode(stream, buf, data, len); 1027 uvc_video_stats_decode(stream, data, len); 1028 1029 /* Store the payload FID bit and return immediately when the buffer is 1030 * NULL. 1031 */ 1032 if (buf == NULL) { 1033 stream->last_fid = fid; 1034 return -ENODATA; 1035 } 1036 1037 /* Mark the buffer as bad if the error bit is set. */ 1038 if (data[1] & UVC_STREAM_ERR) { 1039 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1040 "set).\n"); 1041 buf->error = 1; 1042 } 1043 1044 /* Synchronize to the input stream by waiting for the FID bit to be 1045 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1046 * stream->last_fid is initialized to -1, so the first isochronous 1047 * frame will always be in sync. 1048 * 1049 * If the device doesn't toggle the FID bit, invert stream->last_fid 1050 * when the EOF bit is set to force synchronisation on the next packet. 1051 */ 1052 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1053 if (fid == stream->last_fid) { 1054 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1055 "sync).\n"); 1056 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1057 (data[1] & UVC_STREAM_EOF)) 1058 stream->last_fid ^= UVC_STREAM_FID; 1059 return -ENODATA; 1060 } 1061 1062 buf->buf.field = V4L2_FIELD_NONE; 1063 buf->buf.sequence = stream->sequence; 1064 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1065 1066 /* TODO: Handle PTS and SCR. */ 1067 buf->state = UVC_BUF_STATE_ACTIVE; 1068 } 1069 1070 /* Mark the buffer as done if we're at the beginning of a new frame. 1071 * End of frame detection is better implemented by checking the EOF 1072 * bit (FID bit toggling is delayed by one frame compared to the EOF 1073 * bit), but some devices don't set the bit at end of frame (and the 1074 * last payload can be lost anyway). We thus must check if the FID has 1075 * been toggled. 1076 * 1077 * stream->last_fid is initialized to -1, so the first isochronous 1078 * frame will never trigger an end of frame detection. 1079 * 1080 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1081 * as it doesn't make sense to return an empty buffer. This also 1082 * avoids detecting end of frame conditions at FID toggling if the 1083 * previous payload had the EOF bit set. 1084 */ 1085 if (fid != stream->last_fid && buf->bytesused != 0) { 1086 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1087 "toggled).\n"); 1088 buf->state = UVC_BUF_STATE_READY; 1089 return -EAGAIN; 1090 } 1091 1092 stream->last_fid = fid; 1093 1094 return data[0]; 1095 } 1096 1097 /* 1098 * uvc_video_decode_data_work: Asynchronous memcpy processing 1099 * 1100 * Copy URB data to video buffers in process context, releasing buffer 1101 * references and requeuing the URB when done. 1102 */ 1103 static void uvc_video_copy_data_work(struct work_struct *work) 1104 { 1105 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1106 unsigned int i; 1107 int ret; 1108 1109 for (i = 0; i < uvc_urb->async_operations; i++) { 1110 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1111 1112 memcpy(op->dst, op->src, op->len); 1113 1114 /* Release reference taken on this buffer. */ 1115 uvc_queue_buffer_release(op->buf); 1116 } 1117 1118 ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL); 1119 if (ret < 0) 1120 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1121 ret); 1122 } 1123 1124 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1125 struct uvc_buffer *buf, const u8 *data, int len) 1126 { 1127 unsigned int active_op = uvc_urb->async_operations; 1128 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1129 unsigned int maxlen; 1130 1131 if (len <= 0) 1132 return; 1133 1134 maxlen = buf->length - buf->bytesused; 1135 1136 /* Take a buffer reference for async work. */ 1137 kref_get(&buf->ref); 1138 1139 op->buf = buf; 1140 op->src = data; 1141 op->dst = buf->mem + buf->bytesused; 1142 op->len = min_t(unsigned int, len, maxlen); 1143 1144 buf->bytesused += op->len; 1145 1146 /* Complete the current frame if the buffer size was exceeded. */ 1147 if (len > maxlen) { 1148 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1149 buf->error = 1; 1150 buf->state = UVC_BUF_STATE_READY; 1151 } 1152 1153 uvc_urb->async_operations++; 1154 } 1155 1156 static void uvc_video_decode_end(struct uvc_streaming *stream, 1157 struct uvc_buffer *buf, const u8 *data, int len) 1158 { 1159 /* Mark the buffer as done if the EOF marker is set. */ 1160 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1161 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1162 if (data[0] == len) 1163 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1164 buf->state = UVC_BUF_STATE_READY; 1165 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1166 stream->last_fid ^= UVC_STREAM_FID; 1167 } 1168 } 1169 1170 /* Video payload encoding is handled by uvc_video_encode_header() and 1171 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1172 * 1173 * uvc_video_encode_header is called at the start of a payload. It adds header 1174 * data to the transfer buffer and returns the header size. As the only known 1175 * UVC output device transfers a whole frame in a single payload, the EOF bit 1176 * is always set in the header. 1177 * 1178 * uvc_video_encode_data is called for every URB and copies the data from the 1179 * video buffer to the transfer buffer. 1180 */ 1181 static int uvc_video_encode_header(struct uvc_streaming *stream, 1182 struct uvc_buffer *buf, u8 *data, int len) 1183 { 1184 data[0] = 2; /* Header length */ 1185 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1186 | (stream->last_fid & UVC_STREAM_FID); 1187 return 2; 1188 } 1189 1190 static int uvc_video_encode_data(struct uvc_streaming *stream, 1191 struct uvc_buffer *buf, u8 *data, int len) 1192 { 1193 struct uvc_video_queue *queue = &stream->queue; 1194 unsigned int nbytes; 1195 void *mem; 1196 1197 /* Copy video data to the URB buffer. */ 1198 mem = buf->mem + queue->buf_used; 1199 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1200 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1201 nbytes); 1202 memcpy(data, mem, nbytes); 1203 1204 queue->buf_used += nbytes; 1205 1206 return nbytes; 1207 } 1208 1209 /* ------------------------------------------------------------------------ 1210 * Metadata 1211 */ 1212 1213 /* 1214 * Additionally to the payload headers we also want to provide the user with USB 1215 * Frame Numbers and system time values. The resulting buffer is thus composed 1216 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1217 * Number, and a copy of the payload header. 1218 * 1219 * Ideally we want to capture all payload headers for each frame. However, their 1220 * number is unknown and unbound. We thus drop headers that contain no vendor 1221 * data and that either contain no SCR value or an SCR value identical to the 1222 * previous header. 1223 */ 1224 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1225 struct uvc_buffer *meta_buf, 1226 const u8 *mem, unsigned int length) 1227 { 1228 struct uvc_meta_buf *meta; 1229 size_t len_std = 2; 1230 bool has_pts, has_scr; 1231 unsigned long flags; 1232 unsigned int sof; 1233 ktime_t time; 1234 const u8 *scr; 1235 1236 if (!meta_buf || length == 2) 1237 return; 1238 1239 if (meta_buf->length - meta_buf->bytesused < 1240 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1241 meta_buf->error = 1; 1242 return; 1243 } 1244 1245 has_pts = mem[1] & UVC_STREAM_PTS; 1246 has_scr = mem[1] & UVC_STREAM_SCR; 1247 1248 if (has_pts) { 1249 len_std += 4; 1250 scr = mem + 6; 1251 } else { 1252 scr = mem + 2; 1253 } 1254 1255 if (has_scr) 1256 len_std += 6; 1257 1258 if (stream->meta.format == V4L2_META_FMT_UVC) 1259 length = len_std; 1260 1261 if (length == len_std && (!has_scr || 1262 !memcmp(scr, stream->clock.last_scr, 6))) 1263 return; 1264 1265 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1266 local_irq_save(flags); 1267 time = uvc_video_get_time(); 1268 sof = usb_get_current_frame_number(stream->dev->udev); 1269 local_irq_restore(flags); 1270 put_unaligned(ktime_to_ns(time), &meta->ns); 1271 put_unaligned(sof, &meta->sof); 1272 1273 if (has_scr) 1274 memcpy(stream->clock.last_scr, scr, 6); 1275 1276 memcpy(&meta->length, mem, length); 1277 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1278 1279 uvc_trace(UVC_TRACE_FRAME, 1280 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1281 __func__, ktime_to_ns(time), meta->sof, meta->length, 1282 meta->flags, 1283 has_pts ? *(u32 *)meta->buf : 0, 1284 has_scr ? *(u32 *)scr : 0, 1285 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1286 } 1287 1288 /* ------------------------------------------------------------------------ 1289 * URB handling 1290 */ 1291 1292 /* 1293 * Set error flag for incomplete buffer. 1294 */ 1295 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1296 struct uvc_buffer *buf) 1297 { 1298 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1299 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1300 buf->error = 1; 1301 } 1302 1303 /* 1304 * Completion handler for video URBs. 1305 */ 1306 1307 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1308 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1309 { 1310 uvc_video_validate_buffer(stream, *video_buf); 1311 1312 if (*meta_buf) { 1313 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1314 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1315 1316 vb2_meta->sequence = vb2_video->sequence; 1317 vb2_meta->field = vb2_video->field; 1318 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1319 1320 (*meta_buf)->state = UVC_BUF_STATE_READY; 1321 if (!(*meta_buf)->error) 1322 (*meta_buf)->error = (*video_buf)->error; 1323 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1324 *meta_buf); 1325 } 1326 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1327 } 1328 1329 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1330 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1331 { 1332 struct urb *urb = uvc_urb->urb; 1333 struct uvc_streaming *stream = uvc_urb->stream; 1334 u8 *mem; 1335 int ret, i; 1336 1337 for (i = 0; i < urb->number_of_packets; ++i) { 1338 if (urb->iso_frame_desc[i].status < 0) { 1339 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1340 "lost (%d).\n", urb->iso_frame_desc[i].status); 1341 /* Mark the buffer as faulty. */ 1342 if (buf != NULL) 1343 buf->error = 1; 1344 continue; 1345 } 1346 1347 /* Decode the payload header. */ 1348 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1349 do { 1350 ret = uvc_video_decode_start(stream, buf, mem, 1351 urb->iso_frame_desc[i].actual_length); 1352 if (ret == -EAGAIN) 1353 uvc_video_next_buffers(stream, &buf, &meta_buf); 1354 } while (ret == -EAGAIN); 1355 1356 if (ret < 0) 1357 continue; 1358 1359 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1360 1361 /* Decode the payload data. */ 1362 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1363 urb->iso_frame_desc[i].actual_length - ret); 1364 1365 /* Process the header again. */ 1366 uvc_video_decode_end(stream, buf, mem, 1367 urb->iso_frame_desc[i].actual_length); 1368 1369 if (buf->state == UVC_BUF_STATE_READY) 1370 uvc_video_next_buffers(stream, &buf, &meta_buf); 1371 } 1372 } 1373 1374 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1375 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1376 { 1377 struct urb *urb = uvc_urb->urb; 1378 struct uvc_streaming *stream = uvc_urb->stream; 1379 u8 *mem; 1380 int len, ret; 1381 1382 /* 1383 * Ignore ZLPs if they're not part of a frame, otherwise process them 1384 * to trigger the end of payload detection. 1385 */ 1386 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1387 return; 1388 1389 mem = urb->transfer_buffer; 1390 len = urb->actual_length; 1391 stream->bulk.payload_size += len; 1392 1393 /* If the URB is the first of its payload, decode and save the 1394 * header. 1395 */ 1396 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1397 do { 1398 ret = uvc_video_decode_start(stream, buf, mem, len); 1399 if (ret == -EAGAIN) 1400 uvc_video_next_buffers(stream, &buf, &meta_buf); 1401 } while (ret == -EAGAIN); 1402 1403 /* If an error occurred skip the rest of the payload. */ 1404 if (ret < 0 || buf == NULL) { 1405 stream->bulk.skip_payload = 1; 1406 } else { 1407 memcpy(stream->bulk.header, mem, ret); 1408 stream->bulk.header_size = ret; 1409 1410 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1411 1412 mem += ret; 1413 len -= ret; 1414 } 1415 } 1416 1417 /* The buffer queue might have been cancelled while a bulk transfer 1418 * was in progress, so we can reach here with buf equal to NULL. Make 1419 * sure buf is never dereferenced if NULL. 1420 */ 1421 1422 /* Prepare video data for processing. */ 1423 if (!stream->bulk.skip_payload && buf != NULL) 1424 uvc_video_decode_data(uvc_urb, buf, mem, len); 1425 1426 /* Detect the payload end by a URB smaller than the maximum size (or 1427 * a payload size equal to the maximum) and process the header again. 1428 */ 1429 if (urb->actual_length < urb->transfer_buffer_length || 1430 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1431 if (!stream->bulk.skip_payload && buf != NULL) { 1432 uvc_video_decode_end(stream, buf, stream->bulk.header, 1433 stream->bulk.payload_size); 1434 if (buf->state == UVC_BUF_STATE_READY) 1435 uvc_video_next_buffers(stream, &buf, &meta_buf); 1436 } 1437 1438 stream->bulk.header_size = 0; 1439 stream->bulk.skip_payload = 0; 1440 stream->bulk.payload_size = 0; 1441 } 1442 } 1443 1444 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1445 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1446 { 1447 struct urb *urb = uvc_urb->urb; 1448 struct uvc_streaming *stream = uvc_urb->stream; 1449 1450 u8 *mem = urb->transfer_buffer; 1451 int len = stream->urb_size, ret; 1452 1453 if (buf == NULL) { 1454 urb->transfer_buffer_length = 0; 1455 return; 1456 } 1457 1458 /* If the URB is the first of its payload, add the header. */ 1459 if (stream->bulk.header_size == 0) { 1460 ret = uvc_video_encode_header(stream, buf, mem, len); 1461 stream->bulk.header_size = ret; 1462 stream->bulk.payload_size += ret; 1463 mem += ret; 1464 len -= ret; 1465 } 1466 1467 /* Process video data. */ 1468 ret = uvc_video_encode_data(stream, buf, mem, len); 1469 1470 stream->bulk.payload_size += ret; 1471 len -= ret; 1472 1473 if (buf->bytesused == stream->queue.buf_used || 1474 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1475 if (buf->bytesused == stream->queue.buf_used) { 1476 stream->queue.buf_used = 0; 1477 buf->state = UVC_BUF_STATE_READY; 1478 buf->buf.sequence = ++stream->sequence; 1479 uvc_queue_next_buffer(&stream->queue, buf); 1480 stream->last_fid ^= UVC_STREAM_FID; 1481 } 1482 1483 stream->bulk.header_size = 0; 1484 stream->bulk.payload_size = 0; 1485 } 1486 1487 urb->transfer_buffer_length = stream->urb_size - len; 1488 } 1489 1490 static void uvc_video_complete(struct urb *urb) 1491 { 1492 struct uvc_urb *uvc_urb = urb->context; 1493 struct uvc_streaming *stream = uvc_urb->stream; 1494 struct uvc_video_queue *queue = &stream->queue; 1495 struct uvc_video_queue *qmeta = &stream->meta.queue; 1496 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1497 struct uvc_buffer *buf = NULL; 1498 struct uvc_buffer *buf_meta = NULL; 1499 unsigned long flags; 1500 int ret; 1501 1502 switch (urb->status) { 1503 case 0: 1504 break; 1505 1506 default: 1507 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1508 "completion handler.\n", urb->status); 1509 /* fall through */ 1510 case -ENOENT: /* usb_poison_urb() called. */ 1511 if (stream->frozen) 1512 return; 1513 /* fall through */ 1514 case -ECONNRESET: /* usb_unlink_urb() called. */ 1515 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1516 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1517 if (vb2_qmeta) 1518 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1519 return; 1520 } 1521 1522 buf = uvc_queue_get_current_buffer(queue); 1523 1524 if (vb2_qmeta) { 1525 spin_lock_irqsave(&qmeta->irqlock, flags); 1526 if (!list_empty(&qmeta->irqqueue)) 1527 buf_meta = list_first_entry(&qmeta->irqqueue, 1528 struct uvc_buffer, queue); 1529 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1530 } 1531 1532 /* Re-initialise the URB async work. */ 1533 uvc_urb->async_operations = 0; 1534 1535 /* 1536 * Process the URB headers, and optionally queue expensive memcpy tasks 1537 * to be deferred to a work queue. 1538 */ 1539 stream->decode(uvc_urb, buf, buf_meta); 1540 1541 /* If no async work is needed, resubmit the URB immediately. */ 1542 if (!uvc_urb->async_operations) { 1543 ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC); 1544 if (ret < 0) 1545 uvc_printk(KERN_ERR, 1546 "Failed to resubmit video URB (%d).\n", 1547 ret); 1548 return; 1549 } 1550 1551 queue_work(stream->async_wq, &uvc_urb->work); 1552 } 1553 1554 /* 1555 * Free transfer buffers. 1556 */ 1557 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1558 { 1559 struct uvc_urb *uvc_urb; 1560 1561 for_each_uvc_urb(uvc_urb, stream) { 1562 if (!uvc_urb->buffer) 1563 continue; 1564 1565 #ifndef CONFIG_DMA_NONCOHERENT 1566 usb_free_coherent(stream->dev->udev, stream->urb_size, 1567 uvc_urb->buffer, uvc_urb->dma); 1568 #else 1569 kfree(uvc_urb->buffer); 1570 #endif 1571 uvc_urb->buffer = NULL; 1572 } 1573 1574 stream->urb_size = 0; 1575 } 1576 1577 /* 1578 * Allocate transfer buffers. This function can be called with buffers 1579 * already allocated when resuming from suspend, in which case it will 1580 * return without touching the buffers. 1581 * 1582 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1583 * system is too low on memory try successively smaller numbers of packets 1584 * until allocation succeeds. 1585 * 1586 * Return the number of allocated packets on success or 0 when out of memory. 1587 */ 1588 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1589 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1590 { 1591 unsigned int npackets; 1592 unsigned int i; 1593 1594 /* Buffers are already allocated, bail out. */ 1595 if (stream->urb_size) 1596 return stream->urb_size / psize; 1597 1598 /* Compute the number of packets. Bulk endpoints might transfer UVC 1599 * payloads across multiple URBs. 1600 */ 1601 npackets = DIV_ROUND_UP(size, psize); 1602 if (npackets > UVC_MAX_PACKETS) 1603 npackets = UVC_MAX_PACKETS; 1604 1605 /* Retry allocations until one succeed. */ 1606 for (; npackets > 1; npackets /= 2) { 1607 for (i = 0; i < UVC_URBS; ++i) { 1608 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1609 1610 stream->urb_size = psize * npackets; 1611 #ifndef CONFIG_DMA_NONCOHERENT 1612 uvc_urb->buffer = usb_alloc_coherent( 1613 stream->dev->udev, stream->urb_size, 1614 gfp_flags | __GFP_NOWARN, &uvc_urb->dma); 1615 #else 1616 uvc_urb->buffer = 1617 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1618 #endif 1619 if (!uvc_urb->buffer) { 1620 uvc_free_urb_buffers(stream); 1621 break; 1622 } 1623 1624 uvc_urb->stream = stream; 1625 } 1626 1627 if (i == UVC_URBS) { 1628 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1629 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1630 psize); 1631 return npackets; 1632 } 1633 } 1634 1635 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1636 "per packet).\n", psize); 1637 return 0; 1638 } 1639 1640 /* 1641 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1642 */ 1643 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1644 int free_buffers) 1645 { 1646 struct uvc_urb *uvc_urb; 1647 1648 uvc_video_stats_stop(stream); 1649 1650 /* 1651 * We must poison the URBs rather than kill them to ensure that even 1652 * after the completion handler returns, any asynchronous workqueues 1653 * will be prevented from resubmitting the URBs. 1654 */ 1655 for_each_uvc_urb(uvc_urb, stream) 1656 usb_poison_urb(uvc_urb->urb); 1657 1658 flush_workqueue(stream->async_wq); 1659 1660 for_each_uvc_urb(uvc_urb, stream) { 1661 usb_free_urb(uvc_urb->urb); 1662 uvc_urb->urb = NULL; 1663 } 1664 1665 if (free_buffers) 1666 uvc_free_urb_buffers(stream); 1667 } 1668 1669 /* 1670 * Compute the maximum number of bytes per interval for an endpoint. 1671 */ 1672 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1673 struct usb_host_endpoint *ep) 1674 { 1675 u16 psize; 1676 u16 mult; 1677 1678 switch (dev->speed) { 1679 case USB_SPEED_SUPER: 1680 case USB_SPEED_SUPER_PLUS: 1681 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1682 case USB_SPEED_HIGH: 1683 psize = usb_endpoint_maxp(&ep->desc); 1684 mult = usb_endpoint_maxp_mult(&ep->desc); 1685 return psize * mult; 1686 case USB_SPEED_WIRELESS: 1687 psize = usb_endpoint_maxp(&ep->desc); 1688 return psize; 1689 default: 1690 psize = usb_endpoint_maxp(&ep->desc); 1691 return psize; 1692 } 1693 } 1694 1695 /* 1696 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1697 * is given by the endpoint. 1698 */ 1699 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1700 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1701 { 1702 struct urb *urb; 1703 struct uvc_urb *uvc_urb; 1704 unsigned int npackets, i; 1705 u16 psize; 1706 u32 size; 1707 1708 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1709 size = stream->ctrl.dwMaxVideoFrameSize; 1710 1711 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1712 if (npackets == 0) 1713 return -ENOMEM; 1714 1715 size = npackets * psize; 1716 1717 for_each_uvc_urb(uvc_urb, stream) { 1718 urb = usb_alloc_urb(npackets, gfp_flags); 1719 if (urb == NULL) { 1720 uvc_video_stop_transfer(stream, 1); 1721 return -ENOMEM; 1722 } 1723 1724 urb->dev = stream->dev->udev; 1725 urb->context = uvc_urb; 1726 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1727 ep->desc.bEndpointAddress); 1728 #ifndef CONFIG_DMA_NONCOHERENT 1729 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1730 urb->transfer_dma = uvc_urb->dma; 1731 #else 1732 urb->transfer_flags = URB_ISO_ASAP; 1733 #endif 1734 urb->interval = ep->desc.bInterval; 1735 urb->transfer_buffer = uvc_urb->buffer; 1736 urb->complete = uvc_video_complete; 1737 urb->number_of_packets = npackets; 1738 urb->transfer_buffer_length = size; 1739 1740 for (i = 0; i < npackets; ++i) { 1741 urb->iso_frame_desc[i].offset = i * psize; 1742 urb->iso_frame_desc[i].length = psize; 1743 } 1744 1745 uvc_urb->urb = urb; 1746 } 1747 1748 return 0; 1749 } 1750 1751 /* 1752 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1753 * given by the endpoint. 1754 */ 1755 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1756 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1757 { 1758 struct urb *urb; 1759 struct uvc_urb *uvc_urb; 1760 unsigned int npackets, pipe; 1761 u16 psize; 1762 u32 size; 1763 1764 psize = usb_endpoint_maxp(&ep->desc); 1765 size = stream->ctrl.dwMaxPayloadTransferSize; 1766 stream->bulk.max_payload_size = size; 1767 1768 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1769 if (npackets == 0) 1770 return -ENOMEM; 1771 1772 size = npackets * psize; 1773 1774 if (usb_endpoint_dir_in(&ep->desc)) 1775 pipe = usb_rcvbulkpipe(stream->dev->udev, 1776 ep->desc.bEndpointAddress); 1777 else 1778 pipe = usb_sndbulkpipe(stream->dev->udev, 1779 ep->desc.bEndpointAddress); 1780 1781 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1782 size = 0; 1783 1784 for_each_uvc_urb(uvc_urb, stream) { 1785 urb = usb_alloc_urb(0, gfp_flags); 1786 if (urb == NULL) { 1787 uvc_video_stop_transfer(stream, 1); 1788 return -ENOMEM; 1789 } 1790 1791 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1792 size, uvc_video_complete, uvc_urb); 1793 #ifndef CONFIG_DMA_NONCOHERENT 1794 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1795 urb->transfer_dma = uvc_urb->dma; 1796 #endif 1797 1798 uvc_urb->urb = urb; 1799 } 1800 1801 return 0; 1802 } 1803 1804 /* 1805 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1806 */ 1807 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1808 gfp_t gfp_flags) 1809 { 1810 struct usb_interface *intf = stream->intf; 1811 struct usb_host_endpoint *ep; 1812 struct uvc_urb *uvc_urb; 1813 unsigned int i; 1814 int ret; 1815 1816 stream->sequence = -1; 1817 stream->last_fid = -1; 1818 stream->bulk.header_size = 0; 1819 stream->bulk.skip_payload = 0; 1820 stream->bulk.payload_size = 0; 1821 1822 uvc_video_stats_start(stream); 1823 1824 if (intf->num_altsetting > 1) { 1825 struct usb_host_endpoint *best_ep = NULL; 1826 unsigned int best_psize = UINT_MAX; 1827 unsigned int bandwidth; 1828 unsigned int uninitialized_var(altsetting); 1829 int intfnum = stream->intfnum; 1830 1831 /* Isochronous endpoint, select the alternate setting. */ 1832 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1833 1834 if (bandwidth == 0) { 1835 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1836 "bandwidth, defaulting to lowest.\n"); 1837 bandwidth = 1; 1838 } else { 1839 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1840 "B/frame bandwidth.\n", bandwidth); 1841 } 1842 1843 for (i = 0; i < intf->num_altsetting; ++i) { 1844 struct usb_host_interface *alts; 1845 unsigned int psize; 1846 1847 alts = &intf->altsetting[i]; 1848 ep = uvc_find_endpoint(alts, 1849 stream->header.bEndpointAddress); 1850 if (ep == NULL) 1851 continue; 1852 1853 /* Check if the bandwidth is high enough. */ 1854 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1855 if (psize >= bandwidth && psize <= best_psize) { 1856 altsetting = alts->desc.bAlternateSetting; 1857 best_psize = psize; 1858 best_ep = ep; 1859 } 1860 } 1861 1862 if (best_ep == NULL) { 1863 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1864 "for requested bandwidth.\n"); 1865 return -EIO; 1866 } 1867 1868 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1869 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1870 1871 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1872 if (ret < 0) 1873 return ret; 1874 1875 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1876 } else { 1877 /* Bulk endpoint, proceed to URB initialization. */ 1878 ep = uvc_find_endpoint(&intf->altsetting[0], 1879 stream->header.bEndpointAddress); 1880 if (ep == NULL) 1881 return -EIO; 1882 1883 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1884 } 1885 1886 if (ret < 0) 1887 return ret; 1888 1889 /* Submit the URBs. */ 1890 for_each_uvc_urb(uvc_urb, stream) { 1891 ret = usb_submit_urb(uvc_urb->urb, gfp_flags); 1892 if (ret < 0) { 1893 uvc_printk(KERN_ERR, "Failed to submit URB %u (%d).\n", 1894 uvc_urb_index(uvc_urb), ret); 1895 uvc_video_stop_transfer(stream, 1); 1896 return ret; 1897 } 1898 } 1899 1900 /* The Logitech C920 temporarily forgets that it should not be adjusting 1901 * Exposure Absolute during init so restore controls to stored values. 1902 */ 1903 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1904 uvc_ctrl_restore_values(stream->dev); 1905 1906 return 0; 1907 } 1908 1909 /* -------------------------------------------------------------------------- 1910 * Suspend/resume 1911 */ 1912 1913 /* 1914 * Stop streaming without disabling the video queue. 1915 * 1916 * To let userspace applications resume without trouble, we must not touch the 1917 * video buffers in any way. We mark the device as frozen to make sure the URB 1918 * completion handler won't try to cancel the queue when we kill the URBs. 1919 */ 1920 int uvc_video_suspend(struct uvc_streaming *stream) 1921 { 1922 if (!uvc_queue_streaming(&stream->queue)) 1923 return 0; 1924 1925 stream->frozen = 1; 1926 uvc_video_stop_transfer(stream, 0); 1927 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1928 return 0; 1929 } 1930 1931 /* 1932 * Reconfigure the video interface and restart streaming if it was enabled 1933 * before suspend. 1934 * 1935 * If an error occurs, disable the video queue. This will wake all pending 1936 * buffers, making sure userspace applications are notified of the problem 1937 * instead of waiting forever. 1938 */ 1939 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1940 { 1941 int ret; 1942 1943 /* If the bus has been reset on resume, set the alternate setting to 0. 1944 * This should be the default value, but some devices crash or otherwise 1945 * misbehave if they don't receive a SET_INTERFACE request before any 1946 * other video control request. 1947 */ 1948 if (reset) 1949 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1950 1951 stream->frozen = 0; 1952 1953 uvc_video_clock_reset(stream); 1954 1955 if (!uvc_queue_streaming(&stream->queue)) 1956 return 0; 1957 1958 ret = uvc_commit_video(stream, &stream->ctrl); 1959 if (ret < 0) 1960 return ret; 1961 1962 return uvc_video_start_transfer(stream, GFP_NOIO); 1963 } 1964 1965 /* ------------------------------------------------------------------------ 1966 * Video device 1967 */ 1968 1969 /* 1970 * Initialize the UVC video device by switching to alternate setting 0 and 1971 * retrieve the default format. 1972 * 1973 * Some cameras (namely the Fuji Finepix) set the format and frame 1974 * indexes to zero. The UVC standard doesn't clearly make this a spec 1975 * violation, so try to silently fix the values if possible. 1976 * 1977 * This function is called before registering the device with V4L. 1978 */ 1979 int uvc_video_init(struct uvc_streaming *stream) 1980 { 1981 struct uvc_streaming_control *probe = &stream->ctrl; 1982 struct uvc_format *format = NULL; 1983 struct uvc_frame *frame = NULL; 1984 struct uvc_urb *uvc_urb; 1985 unsigned int i; 1986 int ret; 1987 1988 if (stream->nformats == 0) { 1989 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1990 return -EINVAL; 1991 } 1992 1993 atomic_set(&stream->active, 0); 1994 1995 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1996 * Cam (and possibly other devices) crash or otherwise misbehave if 1997 * they don't receive a SET_INTERFACE request before any other video 1998 * control request. 1999 */ 2000 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2001 2002 /* Set the streaming probe control with default streaming parameters 2003 * retrieved from the device. Webcams that don't suport GET_DEF 2004 * requests on the probe control will just keep their current streaming 2005 * parameters. 2006 */ 2007 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2008 uvc_set_video_ctrl(stream, probe, 1); 2009 2010 /* Initialize the streaming parameters with the probe control current 2011 * value. This makes sure SET_CUR requests on the streaming commit 2012 * control will always use values retrieved from a successful GET_CUR 2013 * request on the probe control, as required by the UVC specification. 2014 */ 2015 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2016 if (ret < 0) 2017 return ret; 2018 2019 /* Check if the default format descriptor exists. Use the first 2020 * available format otherwise. 2021 */ 2022 for (i = stream->nformats; i > 0; --i) { 2023 format = &stream->format[i-1]; 2024 if (format->index == probe->bFormatIndex) 2025 break; 2026 } 2027 2028 if (format->nframes == 0) { 2029 uvc_printk(KERN_INFO, "No frame descriptor found for the " 2030 "default format.\n"); 2031 return -EINVAL; 2032 } 2033 2034 /* Zero bFrameIndex might be correct. Stream-based formats (including 2035 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2036 * descriptor with bFrameIndex set to zero. If the default frame 2037 * descriptor is not found, use the first available frame. 2038 */ 2039 for (i = format->nframes; i > 0; --i) { 2040 frame = &format->frame[i-1]; 2041 if (frame->bFrameIndex == probe->bFrameIndex) 2042 break; 2043 } 2044 2045 probe->bFormatIndex = format->index; 2046 probe->bFrameIndex = frame->bFrameIndex; 2047 2048 stream->def_format = format; 2049 stream->cur_format = format; 2050 stream->cur_frame = frame; 2051 2052 /* Select the video decoding function */ 2053 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2054 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2055 stream->decode = uvc_video_decode_isight; 2056 else if (stream->intf->num_altsetting > 1) 2057 stream->decode = uvc_video_decode_isoc; 2058 else 2059 stream->decode = uvc_video_decode_bulk; 2060 } else { 2061 if (stream->intf->num_altsetting == 1) 2062 stream->decode = uvc_video_encode_bulk; 2063 else { 2064 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 2065 "supported for video output devices.\n"); 2066 return -EINVAL; 2067 } 2068 } 2069 2070 /* Prepare asynchronous work items. */ 2071 for_each_uvc_urb(uvc_urb, stream) 2072 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2073 2074 return 0; 2075 } 2076 2077 int uvc_video_start_streaming(struct uvc_streaming *stream) 2078 { 2079 int ret; 2080 2081 ret = uvc_video_clock_init(stream); 2082 if (ret < 0) 2083 return ret; 2084 2085 /* Commit the streaming parameters. */ 2086 ret = uvc_commit_video(stream, &stream->ctrl); 2087 if (ret < 0) 2088 goto error_commit; 2089 2090 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2091 if (ret < 0) 2092 goto error_video; 2093 2094 return 0; 2095 2096 error_video: 2097 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2098 error_commit: 2099 uvc_video_clock_cleanup(stream); 2100 2101 return ret; 2102 } 2103 2104 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2105 { 2106 uvc_video_stop_transfer(stream, 1); 2107 2108 if (stream->intf->num_altsetting > 1) { 2109 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2110 } else { 2111 /* UVC doesn't specify how to inform a bulk-based device 2112 * when the video stream is stopped. Windows sends a 2113 * CLEAR_FEATURE(HALT) request to the video streaming 2114 * bulk endpoint, mimic the same behaviour. 2115 */ 2116 unsigned int epnum = stream->header.bEndpointAddress 2117 & USB_ENDPOINT_NUMBER_MASK; 2118 unsigned int dir = stream->header.bEndpointAddress 2119 & USB_ENDPOINT_DIR_MASK; 2120 unsigned int pipe; 2121 2122 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2123 usb_clear_halt(stream->dev->udev, pipe); 2124 } 2125 2126 uvc_video_clock_cleanup(stream); 2127 } 2128