1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <asm/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 dev_err(&dev->udev->dev, 83 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 84 uvc_query_name(query), cs, unit, ret, size); 85 86 if (ret != -EPIPE) 87 return ret; 88 89 tmp = *(u8 *)data; 90 91 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 92 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 93 UVC_CTRL_CONTROL_TIMEOUT); 94 95 error = *(u8 *)data; 96 *(u8 *)data = tmp; 97 98 if (ret != 1) 99 return ret < 0 ? ret : -EPIPE; 100 101 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 102 103 switch (error) { 104 case 0: 105 /* Cannot happen - we received a STALL */ 106 return -EPIPE; 107 case 1: /* Not ready */ 108 return -EBUSY; 109 case 2: /* Wrong state */ 110 return -EILSEQ; 111 case 3: /* Power */ 112 return -EREMOTE; 113 case 4: /* Out of range */ 114 return -ERANGE; 115 case 5: /* Invalid unit */ 116 case 6: /* Invalid control */ 117 case 7: /* Invalid Request */ 118 /* 119 * The firmware has not properly implemented 120 * the control or there has been a HW error. 121 */ 122 return -EIO; 123 case 8: /* Invalid value within range */ 124 return -EINVAL; 125 default: /* reserved or unknown */ 126 break; 127 } 128 129 return -EPIPE; 130 } 131 132 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 133 struct uvc_streaming_control *ctrl) 134 { 135 static const struct usb_device_id elgato_cam_link_4k = { 136 USB_DEVICE(0x0fd9, 0x0066) 137 }; 138 struct uvc_format *format = NULL; 139 struct uvc_frame *frame = NULL; 140 unsigned int i; 141 142 /* 143 * The response of the Elgato Cam Link 4K is incorrect: The second byte 144 * contains bFormatIndex (instead of being the second byte of bmHint). 145 * The first byte is always zero. The third byte is always 1. 146 * 147 * The UVC 1.5 class specification defines the first five bits in the 148 * bmHint bitfield. The remaining bits are reserved and should be zero. 149 * Therefore a valid bmHint will be less than 32. 150 * 151 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 152 * MCU: 20.02.19, FPGA: 67 153 */ 154 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 155 ctrl->bmHint > 255) { 156 u8 corrected_format_index = ctrl->bmHint >> 8; 157 158 uvc_dbg(stream->dev, VIDEO, 159 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 160 ctrl->bmHint, ctrl->bFormatIndex, 161 1, corrected_format_index); 162 ctrl->bmHint = 1; 163 ctrl->bFormatIndex = corrected_format_index; 164 } 165 166 for (i = 0; i < stream->nformats; ++i) { 167 if (stream->format[i].index == ctrl->bFormatIndex) { 168 format = &stream->format[i]; 169 break; 170 } 171 } 172 173 if (format == NULL) 174 return; 175 176 for (i = 0; i < format->nframes; ++i) { 177 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 178 frame = &format->frame[i]; 179 break; 180 } 181 } 182 183 if (frame == NULL) 184 return; 185 186 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 187 (ctrl->dwMaxVideoFrameSize == 0 && 188 stream->dev->uvc_version < 0x0110)) 189 ctrl->dwMaxVideoFrameSize = 190 frame->dwMaxVideoFrameBufferSize; 191 192 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 193 * compute the bandwidth on 16 bits and erroneously sign-extend it to 194 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 195 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 196 */ 197 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 198 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 199 200 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 201 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 202 stream->intf->num_altsetting > 1) { 203 u32 interval; 204 u32 bandwidth; 205 206 interval = (ctrl->dwFrameInterval > 100000) 207 ? ctrl->dwFrameInterval 208 : frame->dwFrameInterval[0]; 209 210 /* Compute a bandwidth estimation by multiplying the frame 211 * size by the number of video frames per second, divide the 212 * result by the number of USB frames (or micro-frames for 213 * high-speed devices) per second and add the UVC header size 214 * (assumed to be 12 bytes long). 215 */ 216 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 217 bandwidth *= 10000000 / interval + 1; 218 bandwidth /= 1000; 219 if (stream->dev->udev->speed == USB_SPEED_HIGH) 220 bandwidth /= 8; 221 bandwidth += 12; 222 223 /* The bandwidth estimate is too low for many cameras. Don't use 224 * maximum packet sizes lower than 1024 bytes to try and work 225 * around the problem. According to measurements done on two 226 * different camera models, the value is high enough to get most 227 * resolutions working while not preventing two simultaneous 228 * VGA streams at 15 fps. 229 */ 230 bandwidth = max_t(u32, bandwidth, 1024); 231 232 ctrl->dwMaxPayloadTransferSize = bandwidth; 233 } 234 } 235 236 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 237 { 238 /* 239 * Return the size of the video probe and commit controls, which depends 240 * on the protocol version. 241 */ 242 if (stream->dev->uvc_version < 0x0110) 243 return 26; 244 else if (stream->dev->uvc_version < 0x0150) 245 return 34; 246 else 247 return 48; 248 } 249 250 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 251 struct uvc_streaming_control *ctrl, int probe, u8 query) 252 { 253 u16 size = uvc_video_ctrl_size(stream); 254 u8 *data; 255 int ret; 256 257 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 258 query == UVC_GET_DEF) 259 return -EIO; 260 261 data = kmalloc(size, GFP_KERNEL); 262 if (data == NULL) 263 return -ENOMEM; 264 265 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 266 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 267 size, uvc_timeout_param); 268 269 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 270 /* Some cameras, mostly based on Bison Electronics chipsets, 271 * answer a GET_MIN or GET_MAX request with the wCompQuality 272 * field only. 273 */ 274 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 275 "compliance - GET_MIN/MAX(PROBE) incorrectly " 276 "supported. Enabling workaround.\n"); 277 memset(ctrl, 0, sizeof(*ctrl)); 278 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 279 ret = 0; 280 goto out; 281 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 282 /* Many cameras don't support the GET_DEF request on their 283 * video probe control. Warn once and return, the caller will 284 * fall back to GET_CUR. 285 */ 286 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 287 "compliance - GET_DEF(PROBE) not supported. " 288 "Enabling workaround.\n"); 289 ret = -EIO; 290 goto out; 291 } else if (ret != size) { 292 dev_err(&stream->intf->dev, 293 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 294 query, probe ? "probe" : "commit", ret, size); 295 ret = -EIO; 296 goto out; 297 } 298 299 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 300 ctrl->bFormatIndex = data[2]; 301 ctrl->bFrameIndex = data[3]; 302 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 303 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 304 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 305 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 306 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 307 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 308 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 309 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 310 311 if (size >= 34) { 312 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 313 ctrl->bmFramingInfo = data[30]; 314 ctrl->bPreferedVersion = data[31]; 315 ctrl->bMinVersion = data[32]; 316 ctrl->bMaxVersion = data[33]; 317 } else { 318 ctrl->dwClockFrequency = stream->dev->clock_frequency; 319 ctrl->bmFramingInfo = 0; 320 ctrl->bPreferedVersion = 0; 321 ctrl->bMinVersion = 0; 322 ctrl->bMaxVersion = 0; 323 } 324 325 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 326 * dwMaxPayloadTransferSize fields. Try to get the value from the 327 * format and frame descriptors. 328 */ 329 uvc_fixup_video_ctrl(stream, ctrl); 330 ret = 0; 331 332 out: 333 kfree(data); 334 return ret; 335 } 336 337 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 338 struct uvc_streaming_control *ctrl, int probe) 339 { 340 u16 size = uvc_video_ctrl_size(stream); 341 u8 *data; 342 int ret; 343 344 data = kzalloc(size, GFP_KERNEL); 345 if (data == NULL) 346 return -ENOMEM; 347 348 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 349 data[2] = ctrl->bFormatIndex; 350 data[3] = ctrl->bFrameIndex; 351 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 352 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 353 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 354 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 355 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 356 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 357 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 358 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 359 360 if (size >= 34) { 361 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 362 data[30] = ctrl->bmFramingInfo; 363 data[31] = ctrl->bPreferedVersion; 364 data[32] = ctrl->bMinVersion; 365 data[33] = ctrl->bMaxVersion; 366 } 367 368 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 369 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 370 size, uvc_timeout_param); 371 if (ret != size) { 372 dev_err(&stream->intf->dev, 373 "Failed to set UVC %s control : %d (exp. %u).\n", 374 probe ? "probe" : "commit", ret, size); 375 ret = -EIO; 376 } 377 378 kfree(data); 379 return ret; 380 } 381 382 int uvc_probe_video(struct uvc_streaming *stream, 383 struct uvc_streaming_control *probe) 384 { 385 struct uvc_streaming_control probe_min, probe_max; 386 u16 bandwidth; 387 unsigned int i; 388 int ret; 389 390 /* Perform probing. The device should adjust the requested values 391 * according to its capabilities. However, some devices, namely the 392 * first generation UVC Logitech webcams, don't implement the Video 393 * Probe control properly, and just return the needed bandwidth. For 394 * that reason, if the needed bandwidth exceeds the maximum available 395 * bandwidth, try to lower the quality. 396 */ 397 ret = uvc_set_video_ctrl(stream, probe, 1); 398 if (ret < 0) 399 goto done; 400 401 /* Get the minimum and maximum values for compression settings. */ 402 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 403 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 404 if (ret < 0) 405 goto done; 406 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 407 if (ret < 0) 408 goto done; 409 410 probe->wCompQuality = probe_max.wCompQuality; 411 } 412 413 for (i = 0; i < 2; ++i) { 414 ret = uvc_set_video_ctrl(stream, probe, 1); 415 if (ret < 0) 416 goto done; 417 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 418 if (ret < 0) 419 goto done; 420 421 if (stream->intf->num_altsetting == 1) 422 break; 423 424 bandwidth = probe->dwMaxPayloadTransferSize; 425 if (bandwidth <= stream->maxpsize) 426 break; 427 428 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 429 ret = -ENOSPC; 430 goto done; 431 } 432 433 /* TODO: negotiate compression parameters */ 434 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 435 probe->wPFrameRate = probe_min.wPFrameRate; 436 probe->wCompQuality = probe_max.wCompQuality; 437 probe->wCompWindowSize = probe_min.wCompWindowSize; 438 } 439 440 done: 441 return ret; 442 } 443 444 static int uvc_commit_video(struct uvc_streaming *stream, 445 struct uvc_streaming_control *probe) 446 { 447 return uvc_set_video_ctrl(stream, probe, 0); 448 } 449 450 /* ----------------------------------------------------------------------------- 451 * Clocks and timestamps 452 */ 453 454 static inline ktime_t uvc_video_get_time(void) 455 { 456 if (uvc_clock_param == CLOCK_MONOTONIC) 457 return ktime_get(); 458 else 459 return ktime_get_real(); 460 } 461 462 static void 463 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 464 const u8 *data, int len) 465 { 466 struct uvc_clock_sample *sample; 467 unsigned int header_size; 468 bool has_pts = false; 469 bool has_scr = false; 470 unsigned long flags; 471 ktime_t time; 472 u16 host_sof; 473 u16 dev_sof; 474 475 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 476 case UVC_STREAM_PTS | UVC_STREAM_SCR: 477 header_size = 12; 478 has_pts = true; 479 has_scr = true; 480 break; 481 case UVC_STREAM_PTS: 482 header_size = 6; 483 has_pts = true; 484 break; 485 case UVC_STREAM_SCR: 486 header_size = 8; 487 has_scr = true; 488 break; 489 default: 490 header_size = 2; 491 break; 492 } 493 494 /* Check for invalid headers. */ 495 if (len < header_size) 496 return; 497 498 /* Extract the timestamps: 499 * 500 * - store the frame PTS in the buffer structure 501 * - if the SCR field is present, retrieve the host SOF counter and 502 * kernel timestamps and store them with the SCR STC and SOF fields 503 * in the ring buffer 504 */ 505 if (has_pts && buf != NULL) 506 buf->pts = get_unaligned_le32(&data[2]); 507 508 if (!has_scr) 509 return; 510 511 /* To limit the amount of data, drop SCRs with an SOF identical to the 512 * previous one. 513 */ 514 dev_sof = get_unaligned_le16(&data[header_size - 2]); 515 if (dev_sof == stream->clock.last_sof) 516 return; 517 518 stream->clock.last_sof = dev_sof; 519 520 host_sof = usb_get_current_frame_number(stream->dev->udev); 521 time = uvc_video_get_time(); 522 523 /* The UVC specification allows device implementations that can't obtain 524 * the USB frame number to keep their own frame counters as long as they 525 * match the size and frequency of the frame number associated with USB 526 * SOF tokens. The SOF values sent by such devices differ from the USB 527 * SOF tokens by a fixed offset that needs to be estimated and accounted 528 * for to make timestamp recovery as accurate as possible. 529 * 530 * The offset is estimated the first time a device SOF value is received 531 * as the difference between the host and device SOF values. As the two 532 * SOF values can differ slightly due to transmission delays, consider 533 * that the offset is null if the difference is not higher than 10 ms 534 * (negative differences can not happen and are thus considered as an 535 * offset). The video commit control wDelay field should be used to 536 * compute a dynamic threshold instead of using a fixed 10 ms value, but 537 * devices don't report reliable wDelay values. 538 * 539 * See uvc_video_clock_host_sof() for an explanation regarding why only 540 * the 8 LSBs of the delta are kept. 541 */ 542 if (stream->clock.sof_offset == (u16)-1) { 543 u16 delta_sof = (host_sof - dev_sof) & 255; 544 if (delta_sof >= 10) 545 stream->clock.sof_offset = delta_sof; 546 else 547 stream->clock.sof_offset = 0; 548 } 549 550 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 551 552 spin_lock_irqsave(&stream->clock.lock, flags); 553 554 sample = &stream->clock.samples[stream->clock.head]; 555 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 556 sample->dev_sof = dev_sof; 557 sample->host_sof = host_sof; 558 sample->host_time = time; 559 560 /* Update the sliding window head and count. */ 561 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 562 563 if (stream->clock.count < stream->clock.size) 564 stream->clock.count++; 565 566 spin_unlock_irqrestore(&stream->clock.lock, flags); 567 } 568 569 static void uvc_video_clock_reset(struct uvc_streaming *stream) 570 { 571 struct uvc_clock *clock = &stream->clock; 572 573 clock->head = 0; 574 clock->count = 0; 575 clock->last_sof = -1; 576 clock->sof_offset = -1; 577 } 578 579 static int uvc_video_clock_init(struct uvc_streaming *stream) 580 { 581 struct uvc_clock *clock = &stream->clock; 582 583 spin_lock_init(&clock->lock); 584 clock->size = 32; 585 586 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 587 GFP_KERNEL); 588 if (clock->samples == NULL) 589 return -ENOMEM; 590 591 uvc_video_clock_reset(stream); 592 593 return 0; 594 } 595 596 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 597 { 598 kfree(stream->clock.samples); 599 stream->clock.samples = NULL; 600 } 601 602 /* 603 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 604 * 605 * Host SOF counters reported by usb_get_current_frame_number() usually don't 606 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 607 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 608 * controller and its configuration. 609 * 610 * We thus need to recover the SOF value corresponding to the host frame number. 611 * As the device and host frame numbers are sampled in a short interval, the 612 * difference between their values should be equal to a small delta plus an 613 * integer multiple of 256 caused by the host frame number limited precision. 614 * 615 * To obtain the recovered host SOF value, compute the small delta by masking 616 * the high bits of the host frame counter and device SOF difference and add it 617 * to the device SOF value. 618 */ 619 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 620 { 621 /* The delta value can be negative. */ 622 s8 delta_sof; 623 624 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 625 626 return (sample->dev_sof + delta_sof) & 2047; 627 } 628 629 /* 630 * uvc_video_clock_update - Update the buffer timestamp 631 * 632 * This function converts the buffer PTS timestamp to the host clock domain by 633 * going through the USB SOF clock domain and stores the result in the V4L2 634 * buffer timestamp field. 635 * 636 * The relationship between the device clock and the host clock isn't known. 637 * However, the device and the host share the common USB SOF clock which can be 638 * used to recover that relationship. 639 * 640 * The relationship between the device clock and the USB SOF clock is considered 641 * to be linear over the clock samples sliding window and is given by 642 * 643 * SOF = m * PTS + p 644 * 645 * Several methods to compute the slope (m) and intercept (p) can be used. As 646 * the clock drift should be small compared to the sliding window size, we 647 * assume that the line that goes through the points at both ends of the window 648 * is a good approximation. Naming those points P1 and P2, we get 649 * 650 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 651 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 652 * 653 * or 654 * 655 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 656 * 657 * to avoid losing precision in the division. Similarly, the host timestamp is 658 * computed with 659 * 660 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 661 * 662 * SOF values are coded on 11 bits by USB. We extend their precision with 16 663 * decimal bits, leading to a 11.16 coding. 664 * 665 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 666 * be normalized using the nominal device clock frequency reported through the 667 * UVC descriptors. 668 * 669 * Both the PTS/STC and SOF counters roll over, after a fixed but device 670 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 671 * sliding window size is smaller than the rollover period, differences computed 672 * on unsigned integers will produce the correct result. However, the p term in 673 * the linear relations will be miscomputed. 674 * 675 * To fix the issue, we subtract a constant from the PTS and STC values to bring 676 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 677 * the 32 bit range without any rollover. 678 * 679 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 680 * computed by (1) will never be smaller than 0. This offset is then compensated 681 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 682 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 683 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 684 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 685 * SOF value at the end of the sliding window. 686 * 687 * Finally we subtract a constant from the host timestamps to bring the first 688 * timestamp of the sliding window to 1s. 689 */ 690 void uvc_video_clock_update(struct uvc_streaming *stream, 691 struct vb2_v4l2_buffer *vbuf, 692 struct uvc_buffer *buf) 693 { 694 struct uvc_clock *clock = &stream->clock; 695 struct uvc_clock_sample *first; 696 struct uvc_clock_sample *last; 697 unsigned long flags; 698 u64 timestamp; 699 u32 delta_stc; 700 u32 y1, y2; 701 u32 x1, x2; 702 u32 mean; 703 u32 sof; 704 u64 y; 705 706 if (!uvc_hw_timestamps_param) 707 return; 708 709 /* 710 * We will get called from __vb2_queue_cancel() if there are buffers 711 * done but not dequeued by the user, but the sample array has already 712 * been released at that time. Just bail out in that case. 713 */ 714 if (!clock->samples) 715 return; 716 717 spin_lock_irqsave(&clock->lock, flags); 718 719 if (clock->count < clock->size) 720 goto done; 721 722 first = &clock->samples[clock->head]; 723 last = &clock->samples[(clock->head - 1) % clock->size]; 724 725 /* First step, PTS to SOF conversion. */ 726 delta_stc = buf->pts - (1UL << 31); 727 x1 = first->dev_stc - delta_stc; 728 x2 = last->dev_stc - delta_stc; 729 if (x1 == x2) 730 goto done; 731 732 y1 = (first->dev_sof + 2048) << 16; 733 y2 = (last->dev_sof + 2048) << 16; 734 if (y2 < y1) 735 y2 += 2048 << 16; 736 737 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 738 - (u64)y2 * (u64)x1; 739 y = div_u64(y, x2 - x1); 740 741 sof = y; 742 743 uvc_dbg(stream->dev, CLOCK, 744 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 745 stream->dev->name, buf->pts, 746 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 747 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 748 x1, x2, y1, y2, clock->sof_offset); 749 750 /* Second step, SOF to host clock conversion. */ 751 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 752 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 753 if (x2 < x1) 754 x2 += 2048 << 16; 755 if (x1 == x2) 756 goto done; 757 758 y1 = NSEC_PER_SEC; 759 y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 760 761 /* Interpolated and host SOF timestamps can wrap around at slightly 762 * different times. Handle this by adding or removing 2048 to or from 763 * the computed SOF value to keep it close to the SOF samples mean 764 * value. 765 */ 766 mean = (x1 + x2) / 2; 767 if (mean - (1024 << 16) > sof) 768 sof += 2048 << 16; 769 else if (sof > mean + (1024 << 16)) 770 sof -= 2048 << 16; 771 772 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 773 - (u64)y2 * (u64)x1; 774 y = div_u64(y, x2 - x1); 775 776 timestamp = ktime_to_ns(first->host_time) + y - y1; 777 778 uvc_dbg(stream->dev, CLOCK, 779 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 780 stream->dev->name, 781 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 782 y, timestamp, vbuf->vb2_buf.timestamp, 783 x1, first->host_sof, first->dev_sof, 784 x2, last->host_sof, last->dev_sof, y1, y2); 785 786 /* Update the V4L2 buffer. */ 787 vbuf->vb2_buf.timestamp = timestamp; 788 789 done: 790 spin_unlock_irqrestore(&clock->lock, flags); 791 } 792 793 /* ------------------------------------------------------------------------ 794 * Stream statistics 795 */ 796 797 static void uvc_video_stats_decode(struct uvc_streaming *stream, 798 const u8 *data, int len) 799 { 800 unsigned int header_size; 801 bool has_pts = false; 802 bool has_scr = false; 803 u16 scr_sof; 804 u32 scr_stc; 805 u32 pts; 806 807 if (stream->stats.stream.nb_frames == 0 && 808 stream->stats.frame.nb_packets == 0) 809 stream->stats.stream.start_ts = ktime_get(); 810 811 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 812 case UVC_STREAM_PTS | UVC_STREAM_SCR: 813 header_size = 12; 814 has_pts = true; 815 has_scr = true; 816 break; 817 case UVC_STREAM_PTS: 818 header_size = 6; 819 has_pts = true; 820 break; 821 case UVC_STREAM_SCR: 822 header_size = 8; 823 has_scr = true; 824 break; 825 default: 826 header_size = 2; 827 break; 828 } 829 830 /* Check for invalid headers. */ 831 if (len < header_size || data[0] < header_size) { 832 stream->stats.frame.nb_invalid++; 833 return; 834 } 835 836 /* Extract the timestamps. */ 837 if (has_pts) 838 pts = get_unaligned_le32(&data[2]); 839 840 if (has_scr) { 841 scr_stc = get_unaligned_le32(&data[header_size - 6]); 842 scr_sof = get_unaligned_le16(&data[header_size - 2]); 843 } 844 845 /* Is PTS constant through the whole frame ? */ 846 if (has_pts && stream->stats.frame.nb_pts) { 847 if (stream->stats.frame.pts != pts) { 848 stream->stats.frame.nb_pts_diffs++; 849 stream->stats.frame.last_pts_diff = 850 stream->stats.frame.nb_packets; 851 } 852 } 853 854 if (has_pts) { 855 stream->stats.frame.nb_pts++; 856 stream->stats.frame.pts = pts; 857 } 858 859 /* Do all frames have a PTS in their first non-empty packet, or before 860 * their first empty packet ? 861 */ 862 if (stream->stats.frame.size == 0) { 863 if (len > header_size) 864 stream->stats.frame.has_initial_pts = has_pts; 865 if (len == header_size && has_pts) 866 stream->stats.frame.has_early_pts = true; 867 } 868 869 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 870 if (has_scr && stream->stats.frame.nb_scr) { 871 if (stream->stats.frame.scr_stc != scr_stc) 872 stream->stats.frame.nb_scr_diffs++; 873 } 874 875 if (has_scr) { 876 /* Expand the SOF counter to 32 bits and store its value. */ 877 if (stream->stats.stream.nb_frames > 0 || 878 stream->stats.frame.nb_scr > 0) 879 stream->stats.stream.scr_sof_count += 880 (scr_sof - stream->stats.stream.scr_sof) % 2048; 881 stream->stats.stream.scr_sof = scr_sof; 882 883 stream->stats.frame.nb_scr++; 884 stream->stats.frame.scr_stc = scr_stc; 885 stream->stats.frame.scr_sof = scr_sof; 886 887 if (scr_sof < stream->stats.stream.min_sof) 888 stream->stats.stream.min_sof = scr_sof; 889 if (scr_sof > stream->stats.stream.max_sof) 890 stream->stats.stream.max_sof = scr_sof; 891 } 892 893 /* Record the first non-empty packet number. */ 894 if (stream->stats.frame.size == 0 && len > header_size) 895 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 896 897 /* Update the frame size. */ 898 stream->stats.frame.size += len - header_size; 899 900 /* Update the packets counters. */ 901 stream->stats.frame.nb_packets++; 902 if (len <= header_size) 903 stream->stats.frame.nb_empty++; 904 905 if (data[1] & UVC_STREAM_ERR) 906 stream->stats.frame.nb_errors++; 907 } 908 909 static void uvc_video_stats_update(struct uvc_streaming *stream) 910 { 911 struct uvc_stats_frame *frame = &stream->stats.frame; 912 913 uvc_dbg(stream->dev, STATS, 914 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 915 stream->sequence, frame->first_data, 916 frame->nb_packets - frame->nb_empty, frame->nb_packets, 917 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 918 frame->has_early_pts ? "" : "!", 919 frame->has_initial_pts ? "" : "!", 920 frame->nb_scr_diffs, frame->nb_scr, 921 frame->pts, frame->scr_stc, frame->scr_sof); 922 923 stream->stats.stream.nb_frames++; 924 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 925 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 926 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 927 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 928 929 if (frame->has_early_pts) 930 stream->stats.stream.nb_pts_early++; 931 if (frame->has_initial_pts) 932 stream->stats.stream.nb_pts_initial++; 933 if (frame->last_pts_diff <= frame->first_data) 934 stream->stats.stream.nb_pts_constant++; 935 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 936 stream->stats.stream.nb_scr_count_ok++; 937 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 938 stream->stats.stream.nb_scr_diffs_ok++; 939 940 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 941 } 942 943 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 944 size_t size) 945 { 946 unsigned int scr_sof_freq; 947 unsigned int duration; 948 size_t count = 0; 949 950 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 951 * frequency this will not overflow before more than 1h. 952 */ 953 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 954 stream->stats.stream.start_ts); 955 if (duration != 0) 956 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 957 / duration; 958 else 959 scr_sof_freq = 0; 960 961 count += scnprintf(buf + count, size - count, 962 "frames: %u\npackets: %u\nempty: %u\n" 963 "errors: %u\ninvalid: %u\n", 964 stream->stats.stream.nb_frames, 965 stream->stats.stream.nb_packets, 966 stream->stats.stream.nb_empty, 967 stream->stats.stream.nb_errors, 968 stream->stats.stream.nb_invalid); 969 count += scnprintf(buf + count, size - count, 970 "pts: %u early, %u initial, %u ok\n", 971 stream->stats.stream.nb_pts_early, 972 stream->stats.stream.nb_pts_initial, 973 stream->stats.stream.nb_pts_constant); 974 count += scnprintf(buf + count, size - count, 975 "scr: %u count ok, %u diff ok\n", 976 stream->stats.stream.nb_scr_count_ok, 977 stream->stats.stream.nb_scr_diffs_ok); 978 count += scnprintf(buf + count, size - count, 979 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 980 stream->stats.stream.min_sof, 981 stream->stats.stream.max_sof, 982 scr_sof_freq / 1000, scr_sof_freq % 1000); 983 984 return count; 985 } 986 987 static void uvc_video_stats_start(struct uvc_streaming *stream) 988 { 989 memset(&stream->stats, 0, sizeof(stream->stats)); 990 stream->stats.stream.min_sof = 2048; 991 } 992 993 static void uvc_video_stats_stop(struct uvc_streaming *stream) 994 { 995 stream->stats.stream.stop_ts = ktime_get(); 996 } 997 998 /* ------------------------------------------------------------------------ 999 * Video codecs 1000 */ 1001 1002 /* Video payload decoding is handled by uvc_video_decode_start(), 1003 * uvc_video_decode_data() and uvc_video_decode_end(). 1004 * 1005 * uvc_video_decode_start is called with URB data at the start of a bulk or 1006 * isochronous payload. It processes header data and returns the header size 1007 * in bytes if successful. If an error occurs, it returns a negative error 1008 * code. The following error codes have special meanings. 1009 * 1010 * - EAGAIN informs the caller that the current video buffer should be marked 1011 * as done, and that the function should be called again with the same data 1012 * and a new video buffer. This is used when end of frame conditions can be 1013 * reliably detected at the beginning of the next frame only. 1014 * 1015 * If an error other than -EAGAIN is returned, the caller will drop the current 1016 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1017 * made until the next payload. -ENODATA can be used to drop the current 1018 * payload if no other error code is appropriate. 1019 * 1020 * uvc_video_decode_data is called for every URB with URB data. It copies the 1021 * data to the video buffer. 1022 * 1023 * uvc_video_decode_end is called with header data at the end of a bulk or 1024 * isochronous payload. It performs any additional header data processing and 1025 * returns 0 or a negative error code if an error occurred. As header data have 1026 * already been processed by uvc_video_decode_start, this functions isn't 1027 * required to perform sanity checks a second time. 1028 * 1029 * For isochronous transfers where a payload is always transferred in a single 1030 * URB, the three functions will be called in a row. 1031 * 1032 * To let the decoder process header data and update its internal state even 1033 * when no video buffer is available, uvc_video_decode_start must be prepared 1034 * to be called with a NULL buf parameter. uvc_video_decode_data and 1035 * uvc_video_decode_end will never be called with a NULL buffer. 1036 */ 1037 static int uvc_video_decode_start(struct uvc_streaming *stream, 1038 struct uvc_buffer *buf, const u8 *data, int len) 1039 { 1040 u8 fid; 1041 1042 /* Sanity checks: 1043 * - packet must be at least 2 bytes long 1044 * - bHeaderLength value must be at least 2 bytes (see above) 1045 * - bHeaderLength value can't be larger than the packet size. 1046 */ 1047 if (len < 2 || data[0] < 2 || data[0] > len) { 1048 stream->stats.frame.nb_invalid++; 1049 return -EINVAL; 1050 } 1051 1052 fid = data[1] & UVC_STREAM_FID; 1053 1054 /* Increase the sequence number regardless of any buffer states, so 1055 * that discontinuous sequence numbers always indicate lost frames. 1056 */ 1057 if (stream->last_fid != fid) { 1058 stream->sequence++; 1059 if (stream->sequence) 1060 uvc_video_stats_update(stream); 1061 } 1062 1063 uvc_video_clock_decode(stream, buf, data, len); 1064 uvc_video_stats_decode(stream, data, len); 1065 1066 /* Store the payload FID bit and return immediately when the buffer is 1067 * NULL. 1068 */ 1069 if (buf == NULL) { 1070 stream->last_fid = fid; 1071 return -ENODATA; 1072 } 1073 1074 /* Mark the buffer as bad if the error bit is set. */ 1075 if (data[1] & UVC_STREAM_ERR) { 1076 uvc_dbg(stream->dev, FRAME, 1077 "Marking buffer as bad (error bit set)\n"); 1078 buf->error = 1; 1079 } 1080 1081 /* Synchronize to the input stream by waiting for the FID bit to be 1082 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1083 * stream->last_fid is initialized to -1, so the first isochronous 1084 * frame will always be in sync. 1085 * 1086 * If the device doesn't toggle the FID bit, invert stream->last_fid 1087 * when the EOF bit is set to force synchronisation on the next packet. 1088 */ 1089 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1090 if (fid == stream->last_fid) { 1091 uvc_dbg(stream->dev, FRAME, 1092 "Dropping payload (out of sync)\n"); 1093 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1094 (data[1] & UVC_STREAM_EOF)) 1095 stream->last_fid ^= UVC_STREAM_FID; 1096 return -ENODATA; 1097 } 1098 1099 buf->buf.field = V4L2_FIELD_NONE; 1100 buf->buf.sequence = stream->sequence; 1101 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1102 1103 /* TODO: Handle PTS and SCR. */ 1104 buf->state = UVC_BUF_STATE_ACTIVE; 1105 } 1106 1107 /* Mark the buffer as done if we're at the beginning of a new frame. 1108 * End of frame detection is better implemented by checking the EOF 1109 * bit (FID bit toggling is delayed by one frame compared to the EOF 1110 * bit), but some devices don't set the bit at end of frame (and the 1111 * last payload can be lost anyway). We thus must check if the FID has 1112 * been toggled. 1113 * 1114 * stream->last_fid is initialized to -1, so the first isochronous 1115 * frame will never trigger an end of frame detection. 1116 * 1117 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1118 * as it doesn't make sense to return an empty buffer. This also 1119 * avoids detecting end of frame conditions at FID toggling if the 1120 * previous payload had the EOF bit set. 1121 */ 1122 if (fid != stream->last_fid && buf->bytesused != 0) { 1123 uvc_dbg(stream->dev, FRAME, 1124 "Frame complete (FID bit toggled)\n"); 1125 buf->state = UVC_BUF_STATE_READY; 1126 return -EAGAIN; 1127 } 1128 1129 stream->last_fid = fid; 1130 1131 return data[0]; 1132 } 1133 1134 static inline enum dma_data_direction uvc_stream_dir( 1135 struct uvc_streaming *stream) 1136 { 1137 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1138 return DMA_FROM_DEVICE; 1139 else 1140 return DMA_TO_DEVICE; 1141 } 1142 1143 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1144 { 1145 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1146 } 1147 1148 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1149 { 1150 /* Sync DMA. */ 1151 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1152 uvc_urb->sgt, 1153 uvc_stream_dir(uvc_urb->stream)); 1154 return usb_submit_urb(uvc_urb->urb, mem_flags); 1155 } 1156 1157 /* 1158 * uvc_video_decode_data_work: Asynchronous memcpy processing 1159 * 1160 * Copy URB data to video buffers in process context, releasing buffer 1161 * references and requeuing the URB when done. 1162 */ 1163 static void uvc_video_copy_data_work(struct work_struct *work) 1164 { 1165 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1166 unsigned int i; 1167 int ret; 1168 1169 for (i = 0; i < uvc_urb->async_operations; i++) { 1170 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1171 1172 memcpy(op->dst, op->src, op->len); 1173 1174 /* Release reference taken on this buffer. */ 1175 uvc_queue_buffer_release(op->buf); 1176 } 1177 1178 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1179 if (ret < 0) 1180 dev_err(&uvc_urb->stream->intf->dev, 1181 "Failed to resubmit video URB (%d).\n", ret); 1182 } 1183 1184 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1185 struct uvc_buffer *buf, const u8 *data, int len) 1186 { 1187 unsigned int active_op = uvc_urb->async_operations; 1188 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1189 unsigned int maxlen; 1190 1191 if (len <= 0) 1192 return; 1193 1194 maxlen = buf->length - buf->bytesused; 1195 1196 /* Take a buffer reference for async work. */ 1197 kref_get(&buf->ref); 1198 1199 op->buf = buf; 1200 op->src = data; 1201 op->dst = buf->mem + buf->bytesused; 1202 op->len = min_t(unsigned int, len, maxlen); 1203 1204 buf->bytesused += op->len; 1205 1206 /* Complete the current frame if the buffer size was exceeded. */ 1207 if (len > maxlen) { 1208 uvc_dbg(uvc_urb->stream->dev, FRAME, 1209 "Frame complete (overflow)\n"); 1210 buf->error = 1; 1211 buf->state = UVC_BUF_STATE_READY; 1212 } 1213 1214 uvc_urb->async_operations++; 1215 } 1216 1217 static void uvc_video_decode_end(struct uvc_streaming *stream, 1218 struct uvc_buffer *buf, const u8 *data, int len) 1219 { 1220 /* Mark the buffer as done if the EOF marker is set. */ 1221 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1222 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1223 if (data[0] == len) 1224 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1225 buf->state = UVC_BUF_STATE_READY; 1226 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1227 stream->last_fid ^= UVC_STREAM_FID; 1228 } 1229 } 1230 1231 /* Video payload encoding is handled by uvc_video_encode_header() and 1232 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1233 * 1234 * uvc_video_encode_header is called at the start of a payload. It adds header 1235 * data to the transfer buffer and returns the header size. As the only known 1236 * UVC output device transfers a whole frame in a single payload, the EOF bit 1237 * is always set in the header. 1238 * 1239 * uvc_video_encode_data is called for every URB and copies the data from the 1240 * video buffer to the transfer buffer. 1241 */ 1242 static int uvc_video_encode_header(struct uvc_streaming *stream, 1243 struct uvc_buffer *buf, u8 *data, int len) 1244 { 1245 data[0] = 2; /* Header length */ 1246 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1247 | (stream->last_fid & UVC_STREAM_FID); 1248 return 2; 1249 } 1250 1251 static int uvc_video_encode_data(struct uvc_streaming *stream, 1252 struct uvc_buffer *buf, u8 *data, int len) 1253 { 1254 struct uvc_video_queue *queue = &stream->queue; 1255 unsigned int nbytes; 1256 void *mem; 1257 1258 /* Copy video data to the URB buffer. */ 1259 mem = buf->mem + queue->buf_used; 1260 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1261 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1262 nbytes); 1263 memcpy(data, mem, nbytes); 1264 1265 queue->buf_used += nbytes; 1266 1267 return nbytes; 1268 } 1269 1270 /* ------------------------------------------------------------------------ 1271 * Metadata 1272 */ 1273 1274 /* 1275 * Additionally to the payload headers we also want to provide the user with USB 1276 * Frame Numbers and system time values. The resulting buffer is thus composed 1277 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1278 * Number, and a copy of the payload header. 1279 * 1280 * Ideally we want to capture all payload headers for each frame. However, their 1281 * number is unknown and unbound. We thus drop headers that contain no vendor 1282 * data and that either contain no SCR value or an SCR value identical to the 1283 * previous header. 1284 */ 1285 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1286 struct uvc_buffer *meta_buf, 1287 const u8 *mem, unsigned int length) 1288 { 1289 struct uvc_meta_buf *meta; 1290 size_t len_std = 2; 1291 bool has_pts, has_scr; 1292 unsigned long flags; 1293 unsigned int sof; 1294 ktime_t time; 1295 const u8 *scr; 1296 1297 if (!meta_buf || length == 2) 1298 return; 1299 1300 if (meta_buf->length - meta_buf->bytesused < 1301 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1302 meta_buf->error = 1; 1303 return; 1304 } 1305 1306 has_pts = mem[1] & UVC_STREAM_PTS; 1307 has_scr = mem[1] & UVC_STREAM_SCR; 1308 1309 if (has_pts) { 1310 len_std += 4; 1311 scr = mem + 6; 1312 } else { 1313 scr = mem + 2; 1314 } 1315 1316 if (has_scr) 1317 len_std += 6; 1318 1319 if (stream->meta.format == V4L2_META_FMT_UVC) 1320 length = len_std; 1321 1322 if (length == len_std && (!has_scr || 1323 !memcmp(scr, stream->clock.last_scr, 6))) 1324 return; 1325 1326 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1327 local_irq_save(flags); 1328 time = uvc_video_get_time(); 1329 sof = usb_get_current_frame_number(stream->dev->udev); 1330 local_irq_restore(flags); 1331 put_unaligned(ktime_to_ns(time), &meta->ns); 1332 put_unaligned(sof, &meta->sof); 1333 1334 if (has_scr) 1335 memcpy(stream->clock.last_scr, scr, 6); 1336 1337 memcpy(&meta->length, mem, length); 1338 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1339 1340 uvc_dbg(stream->dev, FRAME, 1341 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1342 __func__, ktime_to_ns(time), meta->sof, meta->length, 1343 meta->flags, 1344 has_pts ? *(u32 *)meta->buf : 0, 1345 has_scr ? *(u32 *)scr : 0, 1346 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1347 } 1348 1349 /* ------------------------------------------------------------------------ 1350 * URB handling 1351 */ 1352 1353 /* 1354 * Set error flag for incomplete buffer. 1355 */ 1356 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1357 struct uvc_buffer *buf) 1358 { 1359 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1360 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1361 buf->error = 1; 1362 } 1363 1364 /* 1365 * Completion handler for video URBs. 1366 */ 1367 1368 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1369 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1370 { 1371 uvc_video_validate_buffer(stream, *video_buf); 1372 1373 if (*meta_buf) { 1374 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1375 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1376 1377 vb2_meta->sequence = vb2_video->sequence; 1378 vb2_meta->field = vb2_video->field; 1379 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1380 1381 (*meta_buf)->state = UVC_BUF_STATE_READY; 1382 if (!(*meta_buf)->error) 1383 (*meta_buf)->error = (*video_buf)->error; 1384 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1385 *meta_buf); 1386 } 1387 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1388 } 1389 1390 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1391 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1392 { 1393 struct urb *urb = uvc_urb->urb; 1394 struct uvc_streaming *stream = uvc_urb->stream; 1395 u8 *mem; 1396 int ret, i; 1397 1398 for (i = 0; i < urb->number_of_packets; ++i) { 1399 if (urb->iso_frame_desc[i].status < 0) { 1400 uvc_dbg(stream->dev, FRAME, 1401 "USB isochronous frame lost (%d)\n", 1402 urb->iso_frame_desc[i].status); 1403 /* Mark the buffer as faulty. */ 1404 if (buf != NULL) 1405 buf->error = 1; 1406 continue; 1407 } 1408 1409 /* Decode the payload header. */ 1410 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1411 do { 1412 ret = uvc_video_decode_start(stream, buf, mem, 1413 urb->iso_frame_desc[i].actual_length); 1414 if (ret == -EAGAIN) 1415 uvc_video_next_buffers(stream, &buf, &meta_buf); 1416 } while (ret == -EAGAIN); 1417 1418 if (ret < 0) 1419 continue; 1420 1421 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1422 1423 /* Decode the payload data. */ 1424 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1425 urb->iso_frame_desc[i].actual_length - ret); 1426 1427 /* Process the header again. */ 1428 uvc_video_decode_end(stream, buf, mem, 1429 urb->iso_frame_desc[i].actual_length); 1430 1431 if (buf->state == UVC_BUF_STATE_READY) 1432 uvc_video_next_buffers(stream, &buf, &meta_buf); 1433 } 1434 } 1435 1436 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1437 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1438 { 1439 struct urb *urb = uvc_urb->urb; 1440 struct uvc_streaming *stream = uvc_urb->stream; 1441 u8 *mem; 1442 int len, ret; 1443 1444 /* 1445 * Ignore ZLPs if they're not part of a frame, otherwise process them 1446 * to trigger the end of payload detection. 1447 */ 1448 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1449 return; 1450 1451 mem = urb->transfer_buffer; 1452 len = urb->actual_length; 1453 stream->bulk.payload_size += len; 1454 1455 /* If the URB is the first of its payload, decode and save the 1456 * header. 1457 */ 1458 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1459 do { 1460 ret = uvc_video_decode_start(stream, buf, mem, len); 1461 if (ret == -EAGAIN) 1462 uvc_video_next_buffers(stream, &buf, &meta_buf); 1463 } while (ret == -EAGAIN); 1464 1465 /* If an error occurred skip the rest of the payload. */ 1466 if (ret < 0 || buf == NULL) { 1467 stream->bulk.skip_payload = 1; 1468 } else { 1469 memcpy(stream->bulk.header, mem, ret); 1470 stream->bulk.header_size = ret; 1471 1472 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1473 1474 mem += ret; 1475 len -= ret; 1476 } 1477 } 1478 1479 /* The buffer queue might have been cancelled while a bulk transfer 1480 * was in progress, so we can reach here with buf equal to NULL. Make 1481 * sure buf is never dereferenced if NULL. 1482 */ 1483 1484 /* Prepare video data for processing. */ 1485 if (!stream->bulk.skip_payload && buf != NULL) 1486 uvc_video_decode_data(uvc_urb, buf, mem, len); 1487 1488 /* Detect the payload end by a URB smaller than the maximum size (or 1489 * a payload size equal to the maximum) and process the header again. 1490 */ 1491 if (urb->actual_length < urb->transfer_buffer_length || 1492 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1493 if (!stream->bulk.skip_payload && buf != NULL) { 1494 uvc_video_decode_end(stream, buf, stream->bulk.header, 1495 stream->bulk.payload_size); 1496 if (buf->state == UVC_BUF_STATE_READY) 1497 uvc_video_next_buffers(stream, &buf, &meta_buf); 1498 } 1499 1500 stream->bulk.header_size = 0; 1501 stream->bulk.skip_payload = 0; 1502 stream->bulk.payload_size = 0; 1503 } 1504 } 1505 1506 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1507 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1508 { 1509 struct urb *urb = uvc_urb->urb; 1510 struct uvc_streaming *stream = uvc_urb->stream; 1511 1512 u8 *mem = urb->transfer_buffer; 1513 int len = stream->urb_size, ret; 1514 1515 if (buf == NULL) { 1516 urb->transfer_buffer_length = 0; 1517 return; 1518 } 1519 1520 /* If the URB is the first of its payload, add the header. */ 1521 if (stream->bulk.header_size == 0) { 1522 ret = uvc_video_encode_header(stream, buf, mem, len); 1523 stream->bulk.header_size = ret; 1524 stream->bulk.payload_size += ret; 1525 mem += ret; 1526 len -= ret; 1527 } 1528 1529 /* Process video data. */ 1530 ret = uvc_video_encode_data(stream, buf, mem, len); 1531 1532 stream->bulk.payload_size += ret; 1533 len -= ret; 1534 1535 if (buf->bytesused == stream->queue.buf_used || 1536 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1537 if (buf->bytesused == stream->queue.buf_used) { 1538 stream->queue.buf_used = 0; 1539 buf->state = UVC_BUF_STATE_READY; 1540 buf->buf.sequence = ++stream->sequence; 1541 uvc_queue_next_buffer(&stream->queue, buf); 1542 stream->last_fid ^= UVC_STREAM_FID; 1543 } 1544 1545 stream->bulk.header_size = 0; 1546 stream->bulk.payload_size = 0; 1547 } 1548 1549 urb->transfer_buffer_length = stream->urb_size - len; 1550 } 1551 1552 static void uvc_video_complete(struct urb *urb) 1553 { 1554 struct uvc_urb *uvc_urb = urb->context; 1555 struct uvc_streaming *stream = uvc_urb->stream; 1556 struct uvc_video_queue *queue = &stream->queue; 1557 struct uvc_video_queue *qmeta = &stream->meta.queue; 1558 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1559 struct uvc_buffer *buf = NULL; 1560 struct uvc_buffer *buf_meta = NULL; 1561 unsigned long flags; 1562 int ret; 1563 1564 switch (urb->status) { 1565 case 0: 1566 break; 1567 1568 default: 1569 dev_warn(&stream->intf->dev, 1570 "Non-zero status (%d) in video completion handler.\n", 1571 urb->status); 1572 fallthrough; 1573 case -ENOENT: /* usb_poison_urb() called. */ 1574 if (stream->frozen) 1575 return; 1576 fallthrough; 1577 case -ECONNRESET: /* usb_unlink_urb() called. */ 1578 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1579 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1580 if (vb2_qmeta) 1581 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1582 return; 1583 } 1584 1585 buf = uvc_queue_get_current_buffer(queue); 1586 1587 if (vb2_qmeta) { 1588 spin_lock_irqsave(&qmeta->irqlock, flags); 1589 if (!list_empty(&qmeta->irqqueue)) 1590 buf_meta = list_first_entry(&qmeta->irqqueue, 1591 struct uvc_buffer, queue); 1592 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1593 } 1594 1595 /* Re-initialise the URB async work. */ 1596 uvc_urb->async_operations = 0; 1597 1598 /* Sync DMA and invalidate vmap range. */ 1599 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1600 uvc_urb->sgt, uvc_stream_dir(stream)); 1601 invalidate_kernel_vmap_range(uvc_urb->buffer, 1602 uvc_urb->stream->urb_size); 1603 1604 /* 1605 * Process the URB headers, and optionally queue expensive memcpy tasks 1606 * to be deferred to a work queue. 1607 */ 1608 stream->decode(uvc_urb, buf, buf_meta); 1609 1610 /* If no async work is needed, resubmit the URB immediately. */ 1611 if (!uvc_urb->async_operations) { 1612 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1613 if (ret < 0) 1614 dev_err(&stream->intf->dev, 1615 "Failed to resubmit video URB (%d).\n", ret); 1616 return; 1617 } 1618 1619 queue_work(stream->async_wq, &uvc_urb->work); 1620 } 1621 1622 /* 1623 * Free transfer buffers. 1624 */ 1625 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1626 { 1627 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1628 struct uvc_urb *uvc_urb; 1629 1630 for_each_uvc_urb(uvc_urb, stream) { 1631 if (!uvc_urb->buffer) 1632 continue; 1633 1634 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1635 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1636 uvc_stream_dir(stream)); 1637 1638 uvc_urb->buffer = NULL; 1639 uvc_urb->sgt = NULL; 1640 } 1641 1642 stream->urb_size = 0; 1643 } 1644 1645 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1646 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1647 { 1648 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1649 1650 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1651 uvc_stream_dir(stream), 1652 gfp_flags, 0); 1653 if (!uvc_urb->sgt) 1654 return false; 1655 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1656 1657 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1658 uvc_urb->sgt); 1659 if (!uvc_urb->buffer) { 1660 dma_free_noncontiguous(dma_dev, stream->urb_size, 1661 uvc_urb->sgt, 1662 uvc_stream_dir(stream)); 1663 uvc_urb->sgt = NULL; 1664 return false; 1665 } 1666 1667 return true; 1668 } 1669 1670 /* 1671 * Allocate transfer buffers. This function can be called with buffers 1672 * already allocated when resuming from suspend, in which case it will 1673 * return without touching the buffers. 1674 * 1675 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1676 * system is too low on memory try successively smaller numbers of packets 1677 * until allocation succeeds. 1678 * 1679 * Return the number of allocated packets on success or 0 when out of memory. 1680 */ 1681 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1682 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1683 { 1684 unsigned int npackets; 1685 unsigned int i; 1686 1687 /* Buffers are already allocated, bail out. */ 1688 if (stream->urb_size) 1689 return stream->urb_size / psize; 1690 1691 /* Compute the number of packets. Bulk endpoints might transfer UVC 1692 * payloads across multiple URBs. 1693 */ 1694 npackets = DIV_ROUND_UP(size, psize); 1695 if (npackets > UVC_MAX_PACKETS) 1696 npackets = UVC_MAX_PACKETS; 1697 1698 /* Retry allocations until one succeed. */ 1699 for (; npackets > 1; npackets /= 2) { 1700 stream->urb_size = psize * npackets; 1701 1702 for (i = 0; i < UVC_URBS; ++i) { 1703 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1704 1705 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1706 uvc_free_urb_buffers(stream); 1707 break; 1708 } 1709 1710 uvc_urb->stream = stream; 1711 } 1712 1713 if (i == UVC_URBS) { 1714 uvc_dbg(stream->dev, VIDEO, 1715 "Allocated %u URB buffers of %ux%u bytes each\n", 1716 UVC_URBS, npackets, psize); 1717 return npackets; 1718 } 1719 } 1720 1721 uvc_dbg(stream->dev, VIDEO, 1722 "Failed to allocate URB buffers (%u bytes per packet)\n", 1723 psize); 1724 return 0; 1725 } 1726 1727 /* 1728 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1729 */ 1730 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1731 int free_buffers) 1732 { 1733 struct uvc_urb *uvc_urb; 1734 1735 uvc_video_stats_stop(stream); 1736 1737 /* 1738 * We must poison the URBs rather than kill them to ensure that even 1739 * after the completion handler returns, any asynchronous workqueues 1740 * will be prevented from resubmitting the URBs. 1741 */ 1742 for_each_uvc_urb(uvc_urb, stream) 1743 usb_poison_urb(uvc_urb->urb); 1744 1745 flush_workqueue(stream->async_wq); 1746 1747 for_each_uvc_urb(uvc_urb, stream) { 1748 usb_free_urb(uvc_urb->urb); 1749 uvc_urb->urb = NULL; 1750 } 1751 1752 if (free_buffers) 1753 uvc_free_urb_buffers(stream); 1754 } 1755 1756 /* 1757 * Compute the maximum number of bytes per interval for an endpoint. 1758 */ 1759 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1760 struct usb_host_endpoint *ep) 1761 { 1762 u16 psize; 1763 u16 mult; 1764 1765 switch (dev->speed) { 1766 case USB_SPEED_SUPER: 1767 case USB_SPEED_SUPER_PLUS: 1768 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1769 case USB_SPEED_HIGH: 1770 psize = usb_endpoint_maxp(&ep->desc); 1771 mult = usb_endpoint_maxp_mult(&ep->desc); 1772 return psize * mult; 1773 case USB_SPEED_WIRELESS: 1774 psize = usb_endpoint_maxp(&ep->desc); 1775 return psize; 1776 default: 1777 psize = usb_endpoint_maxp(&ep->desc); 1778 return psize; 1779 } 1780 } 1781 1782 /* 1783 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1784 * is given by the endpoint. 1785 */ 1786 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1787 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1788 { 1789 struct urb *urb; 1790 struct uvc_urb *uvc_urb; 1791 unsigned int npackets, i; 1792 u16 psize; 1793 u32 size; 1794 1795 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1796 size = stream->ctrl.dwMaxVideoFrameSize; 1797 1798 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1799 if (npackets == 0) 1800 return -ENOMEM; 1801 1802 size = npackets * psize; 1803 1804 for_each_uvc_urb(uvc_urb, stream) { 1805 urb = usb_alloc_urb(npackets, gfp_flags); 1806 if (urb == NULL) { 1807 uvc_video_stop_transfer(stream, 1); 1808 return -ENOMEM; 1809 } 1810 1811 urb->dev = stream->dev->udev; 1812 urb->context = uvc_urb; 1813 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1814 ep->desc.bEndpointAddress); 1815 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1816 urb->transfer_dma = uvc_urb->dma; 1817 urb->interval = ep->desc.bInterval; 1818 urb->transfer_buffer = uvc_urb->buffer; 1819 urb->complete = uvc_video_complete; 1820 urb->number_of_packets = npackets; 1821 urb->transfer_buffer_length = size; 1822 1823 for (i = 0; i < npackets; ++i) { 1824 urb->iso_frame_desc[i].offset = i * psize; 1825 urb->iso_frame_desc[i].length = psize; 1826 } 1827 1828 uvc_urb->urb = urb; 1829 } 1830 1831 return 0; 1832 } 1833 1834 /* 1835 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1836 * given by the endpoint. 1837 */ 1838 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1839 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1840 { 1841 struct urb *urb; 1842 struct uvc_urb *uvc_urb; 1843 unsigned int npackets, pipe; 1844 u16 psize; 1845 u32 size; 1846 1847 psize = usb_endpoint_maxp(&ep->desc); 1848 size = stream->ctrl.dwMaxPayloadTransferSize; 1849 stream->bulk.max_payload_size = size; 1850 1851 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1852 if (npackets == 0) 1853 return -ENOMEM; 1854 1855 size = npackets * psize; 1856 1857 if (usb_endpoint_dir_in(&ep->desc)) 1858 pipe = usb_rcvbulkpipe(stream->dev->udev, 1859 ep->desc.bEndpointAddress); 1860 else 1861 pipe = usb_sndbulkpipe(stream->dev->udev, 1862 ep->desc.bEndpointAddress); 1863 1864 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1865 size = 0; 1866 1867 for_each_uvc_urb(uvc_urb, stream) { 1868 urb = usb_alloc_urb(0, gfp_flags); 1869 if (urb == NULL) { 1870 uvc_video_stop_transfer(stream, 1); 1871 return -ENOMEM; 1872 } 1873 1874 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1875 size, uvc_video_complete, uvc_urb); 1876 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1877 urb->transfer_dma = uvc_urb->dma; 1878 1879 uvc_urb->urb = urb; 1880 } 1881 1882 return 0; 1883 } 1884 1885 /* 1886 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1887 */ 1888 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1889 gfp_t gfp_flags) 1890 { 1891 struct usb_interface *intf = stream->intf; 1892 struct usb_host_endpoint *ep; 1893 struct uvc_urb *uvc_urb; 1894 unsigned int i; 1895 int ret; 1896 1897 stream->sequence = -1; 1898 stream->last_fid = -1; 1899 stream->bulk.header_size = 0; 1900 stream->bulk.skip_payload = 0; 1901 stream->bulk.payload_size = 0; 1902 1903 uvc_video_stats_start(stream); 1904 1905 if (intf->num_altsetting > 1) { 1906 struct usb_host_endpoint *best_ep = NULL; 1907 unsigned int best_psize = UINT_MAX; 1908 unsigned int bandwidth; 1909 unsigned int altsetting; 1910 int intfnum = stream->intfnum; 1911 1912 /* Isochronous endpoint, select the alternate setting. */ 1913 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1914 1915 if (bandwidth == 0) { 1916 uvc_dbg(stream->dev, VIDEO, 1917 "Device requested null bandwidth, defaulting to lowest\n"); 1918 bandwidth = 1; 1919 } else { 1920 uvc_dbg(stream->dev, VIDEO, 1921 "Device requested %u B/frame bandwidth\n", 1922 bandwidth); 1923 } 1924 1925 for (i = 0; i < intf->num_altsetting; ++i) { 1926 struct usb_host_interface *alts; 1927 unsigned int psize; 1928 1929 alts = &intf->altsetting[i]; 1930 ep = uvc_find_endpoint(alts, 1931 stream->header.bEndpointAddress); 1932 if (ep == NULL) 1933 continue; 1934 1935 /* Check if the bandwidth is high enough. */ 1936 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1937 if (psize >= bandwidth && psize <= best_psize) { 1938 altsetting = alts->desc.bAlternateSetting; 1939 best_psize = psize; 1940 best_ep = ep; 1941 } 1942 } 1943 1944 if (best_ep == NULL) { 1945 uvc_dbg(stream->dev, VIDEO, 1946 "No fast enough alt setting for requested bandwidth\n"); 1947 return -EIO; 1948 } 1949 1950 uvc_dbg(stream->dev, VIDEO, 1951 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 1952 altsetting, best_psize); 1953 1954 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1955 if (ret < 0) 1956 return ret; 1957 1958 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1959 } else { 1960 /* Bulk endpoint, proceed to URB initialization. */ 1961 ep = uvc_find_endpoint(&intf->altsetting[0], 1962 stream->header.bEndpointAddress); 1963 if (ep == NULL) 1964 return -EIO; 1965 1966 /* Reject broken descriptors. */ 1967 if (usb_endpoint_maxp(&ep->desc) == 0) 1968 return -EIO; 1969 1970 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1971 } 1972 1973 if (ret < 0) 1974 return ret; 1975 1976 /* Submit the URBs. */ 1977 for_each_uvc_urb(uvc_urb, stream) { 1978 ret = uvc_submit_urb(uvc_urb, gfp_flags); 1979 if (ret < 0) { 1980 dev_err(&stream->intf->dev, 1981 "Failed to submit URB %u (%d).\n", 1982 uvc_urb_index(uvc_urb), ret); 1983 uvc_video_stop_transfer(stream, 1); 1984 return ret; 1985 } 1986 } 1987 1988 /* The Logitech C920 temporarily forgets that it should not be adjusting 1989 * Exposure Absolute during init so restore controls to stored values. 1990 */ 1991 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1992 uvc_ctrl_restore_values(stream->dev); 1993 1994 return 0; 1995 } 1996 1997 /* -------------------------------------------------------------------------- 1998 * Suspend/resume 1999 */ 2000 2001 /* 2002 * Stop streaming without disabling the video queue. 2003 * 2004 * To let userspace applications resume without trouble, we must not touch the 2005 * video buffers in any way. We mark the device as frozen to make sure the URB 2006 * completion handler won't try to cancel the queue when we kill the URBs. 2007 */ 2008 int uvc_video_suspend(struct uvc_streaming *stream) 2009 { 2010 if (!uvc_queue_streaming(&stream->queue)) 2011 return 0; 2012 2013 stream->frozen = 1; 2014 uvc_video_stop_transfer(stream, 0); 2015 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2016 return 0; 2017 } 2018 2019 /* 2020 * Reconfigure the video interface and restart streaming if it was enabled 2021 * before suspend. 2022 * 2023 * If an error occurs, disable the video queue. This will wake all pending 2024 * buffers, making sure userspace applications are notified of the problem 2025 * instead of waiting forever. 2026 */ 2027 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2028 { 2029 int ret; 2030 2031 /* If the bus has been reset on resume, set the alternate setting to 0. 2032 * This should be the default value, but some devices crash or otherwise 2033 * misbehave if they don't receive a SET_INTERFACE request before any 2034 * other video control request. 2035 */ 2036 if (reset) 2037 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2038 2039 stream->frozen = 0; 2040 2041 uvc_video_clock_reset(stream); 2042 2043 if (!uvc_queue_streaming(&stream->queue)) 2044 return 0; 2045 2046 ret = uvc_commit_video(stream, &stream->ctrl); 2047 if (ret < 0) 2048 return ret; 2049 2050 return uvc_video_start_transfer(stream, GFP_NOIO); 2051 } 2052 2053 /* ------------------------------------------------------------------------ 2054 * Video device 2055 */ 2056 2057 /* 2058 * Initialize the UVC video device by switching to alternate setting 0 and 2059 * retrieve the default format. 2060 * 2061 * Some cameras (namely the Fuji Finepix) set the format and frame 2062 * indexes to zero. The UVC standard doesn't clearly make this a spec 2063 * violation, so try to silently fix the values if possible. 2064 * 2065 * This function is called before registering the device with V4L. 2066 */ 2067 int uvc_video_init(struct uvc_streaming *stream) 2068 { 2069 struct uvc_streaming_control *probe = &stream->ctrl; 2070 struct uvc_format *format = NULL; 2071 struct uvc_frame *frame = NULL; 2072 struct uvc_urb *uvc_urb; 2073 unsigned int i; 2074 int ret; 2075 2076 if (stream->nformats == 0) { 2077 dev_info(&stream->intf->dev, 2078 "No supported video formats found.\n"); 2079 return -EINVAL; 2080 } 2081 2082 atomic_set(&stream->active, 0); 2083 2084 /* Alternate setting 0 should be the default, yet the XBox Live Vision 2085 * Cam (and possibly other devices) crash or otherwise misbehave if 2086 * they don't receive a SET_INTERFACE request before any other video 2087 * control request. 2088 */ 2089 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2090 2091 /* Set the streaming probe control with default streaming parameters 2092 * retrieved from the device. Webcams that don't support GET_DEF 2093 * requests on the probe control will just keep their current streaming 2094 * parameters. 2095 */ 2096 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2097 uvc_set_video_ctrl(stream, probe, 1); 2098 2099 /* Initialize the streaming parameters with the probe control current 2100 * value. This makes sure SET_CUR requests on the streaming commit 2101 * control will always use values retrieved from a successful GET_CUR 2102 * request on the probe control, as required by the UVC specification. 2103 */ 2104 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2105 if (ret < 0) 2106 return ret; 2107 2108 /* Check if the default format descriptor exists. Use the first 2109 * available format otherwise. 2110 */ 2111 for (i = stream->nformats; i > 0; --i) { 2112 format = &stream->format[i-1]; 2113 if (format->index == probe->bFormatIndex) 2114 break; 2115 } 2116 2117 if (format->nframes == 0) { 2118 dev_info(&stream->intf->dev, 2119 "No frame descriptor found for the default format.\n"); 2120 return -EINVAL; 2121 } 2122 2123 /* Zero bFrameIndex might be correct. Stream-based formats (including 2124 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2125 * descriptor with bFrameIndex set to zero. If the default frame 2126 * descriptor is not found, use the first available frame. 2127 */ 2128 for (i = format->nframes; i > 0; --i) { 2129 frame = &format->frame[i-1]; 2130 if (frame->bFrameIndex == probe->bFrameIndex) 2131 break; 2132 } 2133 2134 probe->bFormatIndex = format->index; 2135 probe->bFrameIndex = frame->bFrameIndex; 2136 2137 stream->def_format = format; 2138 stream->cur_format = format; 2139 stream->cur_frame = frame; 2140 2141 /* Select the video decoding function */ 2142 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2143 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2144 stream->decode = uvc_video_decode_isight; 2145 else if (stream->intf->num_altsetting > 1) 2146 stream->decode = uvc_video_decode_isoc; 2147 else 2148 stream->decode = uvc_video_decode_bulk; 2149 } else { 2150 if (stream->intf->num_altsetting == 1) 2151 stream->decode = uvc_video_encode_bulk; 2152 else { 2153 dev_info(&stream->intf->dev, 2154 "Isochronous endpoints are not supported for video output devices.\n"); 2155 return -EINVAL; 2156 } 2157 } 2158 2159 /* Prepare asynchronous work items. */ 2160 for_each_uvc_urb(uvc_urb, stream) 2161 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2162 2163 return 0; 2164 } 2165 2166 int uvc_video_start_streaming(struct uvc_streaming *stream) 2167 { 2168 int ret; 2169 2170 ret = uvc_video_clock_init(stream); 2171 if (ret < 0) 2172 return ret; 2173 2174 /* Commit the streaming parameters. */ 2175 ret = uvc_commit_video(stream, &stream->ctrl); 2176 if (ret < 0) 2177 goto error_commit; 2178 2179 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2180 if (ret < 0) 2181 goto error_video; 2182 2183 return 0; 2184 2185 error_video: 2186 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2187 error_commit: 2188 uvc_video_clock_cleanup(stream); 2189 2190 return ret; 2191 } 2192 2193 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2194 { 2195 uvc_video_stop_transfer(stream, 1); 2196 2197 if (stream->intf->num_altsetting > 1) { 2198 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2199 } else { 2200 /* UVC doesn't specify how to inform a bulk-based device 2201 * when the video stream is stopped. Windows sends a 2202 * CLEAR_FEATURE(HALT) request to the video streaming 2203 * bulk endpoint, mimic the same behaviour. 2204 */ 2205 unsigned int epnum = stream->header.bEndpointAddress 2206 & USB_ENDPOINT_NUMBER_MASK; 2207 unsigned int dir = stream->header.bEndpointAddress 2208 & USB_ENDPOINT_DIR_MASK; 2209 unsigned int pipe; 2210 2211 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2212 usb_clear_halt(stream->dev->udev, pipe); 2213 } 2214 2215 uvc_video_clock_cleanup(stream); 2216 } 2217