1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 34 __u8 intfnum, __u8 cs, void *data, __u16 size, 35 int timeout) 36 { 37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(__u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 73 __u8 intfnum, __u8 cs, void *data, __u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 123 * compute the bandwidth on 16 bits and erroneously sign-extend it to 124 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 125 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 126 */ 127 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 128 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 129 130 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 131 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 132 stream->intf->num_altsetting > 1) { 133 u32 interval; 134 u32 bandwidth; 135 136 interval = (ctrl->dwFrameInterval > 100000) 137 ? ctrl->dwFrameInterval 138 : frame->dwFrameInterval[0]; 139 140 /* Compute a bandwidth estimation by multiplying the frame 141 * size by the number of video frames per second, divide the 142 * result by the number of USB frames (or micro-frames for 143 * high-speed devices) per second and add the UVC header size 144 * (assumed to be 12 bytes long). 145 */ 146 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 147 bandwidth *= 10000000 / interval + 1; 148 bandwidth /= 1000; 149 if (stream->dev->udev->speed == USB_SPEED_HIGH) 150 bandwidth /= 8; 151 bandwidth += 12; 152 153 /* The bandwidth estimate is too low for many cameras. Don't use 154 * maximum packet sizes lower than 1024 bytes to try and work 155 * around the problem. According to measurements done on two 156 * different camera models, the value is high enough to get most 157 * resolutions working while not preventing two simultaneous 158 * VGA streams at 15 fps. 159 */ 160 bandwidth = max_t(u32, bandwidth, 1024); 161 162 ctrl->dwMaxPayloadTransferSize = bandwidth; 163 } 164 } 165 166 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 167 struct uvc_streaming_control *ctrl, int probe, __u8 query) 168 { 169 __u8 *data; 170 __u16 size; 171 int ret; 172 173 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 174 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 175 query == UVC_GET_DEF) 176 return -EIO; 177 178 data = kmalloc(size, GFP_KERNEL); 179 if (data == NULL) 180 return -ENOMEM; 181 182 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 183 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 184 size, uvc_timeout_param); 185 186 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 187 /* Some cameras, mostly based on Bison Electronics chipsets, 188 * answer a GET_MIN or GET_MAX request with the wCompQuality 189 * field only. 190 */ 191 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 192 "compliance - GET_MIN/MAX(PROBE) incorrectly " 193 "supported. Enabling workaround.\n"); 194 memset(ctrl, 0, sizeof *ctrl); 195 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 196 ret = 0; 197 goto out; 198 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 199 /* Many cameras don't support the GET_DEF request on their 200 * video probe control. Warn once and return, the caller will 201 * fall back to GET_CUR. 202 */ 203 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 204 "compliance - GET_DEF(PROBE) not supported. " 205 "Enabling workaround.\n"); 206 ret = -EIO; 207 goto out; 208 } else if (ret != size) { 209 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 210 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 211 ret, size); 212 ret = -EIO; 213 goto out; 214 } 215 216 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 217 ctrl->bFormatIndex = data[2]; 218 ctrl->bFrameIndex = data[3]; 219 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 220 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 221 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 222 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 223 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 224 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 225 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 226 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 227 228 if (size == 34) { 229 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 230 ctrl->bmFramingInfo = data[30]; 231 ctrl->bPreferedVersion = data[31]; 232 ctrl->bMinVersion = data[32]; 233 ctrl->bMaxVersion = data[33]; 234 } else { 235 ctrl->dwClockFrequency = stream->dev->clock_frequency; 236 ctrl->bmFramingInfo = 0; 237 ctrl->bPreferedVersion = 0; 238 ctrl->bMinVersion = 0; 239 ctrl->bMaxVersion = 0; 240 } 241 242 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 243 * dwMaxPayloadTransferSize fields. Try to get the value from the 244 * format and frame descriptors. 245 */ 246 uvc_fixup_video_ctrl(stream, ctrl); 247 ret = 0; 248 249 out: 250 kfree(data); 251 return ret; 252 } 253 254 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 255 struct uvc_streaming_control *ctrl, int probe) 256 { 257 __u8 *data; 258 __u16 size; 259 int ret; 260 261 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 262 data = kzalloc(size, GFP_KERNEL); 263 if (data == NULL) 264 return -ENOMEM; 265 266 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 267 data[2] = ctrl->bFormatIndex; 268 data[3] = ctrl->bFrameIndex; 269 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 270 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 271 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 272 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 273 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 274 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 275 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 276 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 277 278 if (size == 34) { 279 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 280 data[30] = ctrl->bmFramingInfo; 281 data[31] = ctrl->bPreferedVersion; 282 data[32] = ctrl->bMinVersion; 283 data[33] = ctrl->bMaxVersion; 284 } 285 286 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 287 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 288 size, uvc_timeout_param); 289 if (ret != size) { 290 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 291 "%d (exp. %u).\n", probe ? "probe" : "commit", 292 ret, size); 293 ret = -EIO; 294 } 295 296 kfree(data); 297 return ret; 298 } 299 300 int uvc_probe_video(struct uvc_streaming *stream, 301 struct uvc_streaming_control *probe) 302 { 303 struct uvc_streaming_control probe_min, probe_max; 304 __u16 bandwidth; 305 unsigned int i; 306 int ret; 307 308 /* Perform probing. The device should adjust the requested values 309 * according to its capabilities. However, some devices, namely the 310 * first generation UVC Logitech webcams, don't implement the Video 311 * Probe control properly, and just return the needed bandwidth. For 312 * that reason, if the needed bandwidth exceeds the maximum available 313 * bandwidth, try to lower the quality. 314 */ 315 ret = uvc_set_video_ctrl(stream, probe, 1); 316 if (ret < 0) 317 goto done; 318 319 /* Get the minimum and maximum values for compression settings. */ 320 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 321 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 322 if (ret < 0) 323 goto done; 324 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 325 if (ret < 0) 326 goto done; 327 328 probe->wCompQuality = probe_max.wCompQuality; 329 } 330 331 for (i = 0; i < 2; ++i) { 332 ret = uvc_set_video_ctrl(stream, probe, 1); 333 if (ret < 0) 334 goto done; 335 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 336 if (ret < 0) 337 goto done; 338 339 if (stream->intf->num_altsetting == 1) 340 break; 341 342 bandwidth = probe->dwMaxPayloadTransferSize; 343 if (bandwidth <= stream->maxpsize) 344 break; 345 346 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 347 ret = -ENOSPC; 348 goto done; 349 } 350 351 /* TODO: negotiate compression parameters */ 352 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 353 probe->wPFrameRate = probe_min.wPFrameRate; 354 probe->wCompQuality = probe_max.wCompQuality; 355 probe->wCompWindowSize = probe_min.wCompWindowSize; 356 } 357 358 done: 359 return ret; 360 } 361 362 static int uvc_commit_video(struct uvc_streaming *stream, 363 struct uvc_streaming_control *probe) 364 { 365 return uvc_set_video_ctrl(stream, probe, 0); 366 } 367 368 /* ----------------------------------------------------------------------------- 369 * Clocks and timestamps 370 */ 371 372 static inline void uvc_video_get_ts(struct timespec *ts) 373 { 374 if (uvc_clock_param == CLOCK_MONOTONIC) 375 ktime_get_ts(ts); 376 else 377 ktime_get_real_ts(ts); 378 } 379 380 static void 381 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 382 const __u8 *data, int len) 383 { 384 struct uvc_clock_sample *sample; 385 unsigned int header_size; 386 bool has_pts = false; 387 bool has_scr = false; 388 unsigned long flags; 389 struct timespec ts; 390 u16 host_sof; 391 u16 dev_sof; 392 393 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 394 case UVC_STREAM_PTS | UVC_STREAM_SCR: 395 header_size = 12; 396 has_pts = true; 397 has_scr = true; 398 break; 399 case UVC_STREAM_PTS: 400 header_size = 6; 401 has_pts = true; 402 break; 403 case UVC_STREAM_SCR: 404 header_size = 8; 405 has_scr = true; 406 break; 407 default: 408 header_size = 2; 409 break; 410 } 411 412 /* Check for invalid headers. */ 413 if (len < header_size) 414 return; 415 416 /* Extract the timestamps: 417 * 418 * - store the frame PTS in the buffer structure 419 * - if the SCR field is present, retrieve the host SOF counter and 420 * kernel timestamps and store them with the SCR STC and SOF fields 421 * in the ring buffer 422 */ 423 if (has_pts && buf != NULL) 424 buf->pts = get_unaligned_le32(&data[2]); 425 426 if (!has_scr) 427 return; 428 429 /* To limit the amount of data, drop SCRs with an SOF identical to the 430 * previous one. 431 */ 432 dev_sof = get_unaligned_le16(&data[header_size - 2]); 433 if (dev_sof == stream->clock.last_sof) 434 return; 435 436 stream->clock.last_sof = dev_sof; 437 438 host_sof = usb_get_current_frame_number(stream->dev->udev); 439 uvc_video_get_ts(&ts); 440 441 /* The UVC specification allows device implementations that can't obtain 442 * the USB frame number to keep their own frame counters as long as they 443 * match the size and frequency of the frame number associated with USB 444 * SOF tokens. The SOF values sent by such devices differ from the USB 445 * SOF tokens by a fixed offset that needs to be estimated and accounted 446 * for to make timestamp recovery as accurate as possible. 447 * 448 * The offset is estimated the first time a device SOF value is received 449 * as the difference between the host and device SOF values. As the two 450 * SOF values can differ slightly due to transmission delays, consider 451 * that the offset is null if the difference is not higher than 10 ms 452 * (negative differences can not happen and are thus considered as an 453 * offset). The video commit control wDelay field should be used to 454 * compute a dynamic threshold instead of using a fixed 10 ms value, but 455 * devices don't report reliable wDelay values. 456 * 457 * See uvc_video_clock_host_sof() for an explanation regarding why only 458 * the 8 LSBs of the delta are kept. 459 */ 460 if (stream->clock.sof_offset == (u16)-1) { 461 u16 delta_sof = (host_sof - dev_sof) & 255; 462 if (delta_sof >= 10) 463 stream->clock.sof_offset = delta_sof; 464 else 465 stream->clock.sof_offset = 0; 466 } 467 468 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 469 470 spin_lock_irqsave(&stream->clock.lock, flags); 471 472 sample = &stream->clock.samples[stream->clock.head]; 473 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 474 sample->dev_sof = dev_sof; 475 sample->host_sof = host_sof; 476 sample->host_ts = ts; 477 478 /* Update the sliding window head and count. */ 479 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 480 481 if (stream->clock.count < stream->clock.size) 482 stream->clock.count++; 483 484 spin_unlock_irqrestore(&stream->clock.lock, flags); 485 } 486 487 static void uvc_video_clock_reset(struct uvc_streaming *stream) 488 { 489 struct uvc_clock *clock = &stream->clock; 490 491 clock->head = 0; 492 clock->count = 0; 493 clock->last_sof = -1; 494 clock->sof_offset = -1; 495 } 496 497 static int uvc_video_clock_init(struct uvc_streaming *stream) 498 { 499 struct uvc_clock *clock = &stream->clock; 500 501 spin_lock_init(&clock->lock); 502 clock->size = 32; 503 504 clock->samples = kmalloc(clock->size * sizeof(*clock->samples), 505 GFP_KERNEL); 506 if (clock->samples == NULL) 507 return -ENOMEM; 508 509 uvc_video_clock_reset(stream); 510 511 return 0; 512 } 513 514 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 515 { 516 kfree(stream->clock.samples); 517 stream->clock.samples = NULL; 518 } 519 520 /* 521 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 522 * 523 * Host SOF counters reported by usb_get_current_frame_number() usually don't 524 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 525 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 526 * controller and its configuration. 527 * 528 * We thus need to recover the SOF value corresponding to the host frame number. 529 * As the device and host frame numbers are sampled in a short interval, the 530 * difference between their values should be equal to a small delta plus an 531 * integer multiple of 256 caused by the host frame number limited precision. 532 * 533 * To obtain the recovered host SOF value, compute the small delta by masking 534 * the high bits of the host frame counter and device SOF difference and add it 535 * to the device SOF value. 536 */ 537 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 538 { 539 /* The delta value can be negative. */ 540 s8 delta_sof; 541 542 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 543 544 return (sample->dev_sof + delta_sof) & 2047; 545 } 546 547 /* 548 * uvc_video_clock_update - Update the buffer timestamp 549 * 550 * This function converts the buffer PTS timestamp to the host clock domain by 551 * going through the USB SOF clock domain and stores the result in the V4L2 552 * buffer timestamp field. 553 * 554 * The relationship between the device clock and the host clock isn't known. 555 * However, the device and the host share the common USB SOF clock which can be 556 * used to recover that relationship. 557 * 558 * The relationship between the device clock and the USB SOF clock is considered 559 * to be linear over the clock samples sliding window and is given by 560 * 561 * SOF = m * PTS + p 562 * 563 * Several methods to compute the slope (m) and intercept (p) can be used. As 564 * the clock drift should be small compared to the sliding window size, we 565 * assume that the line that goes through the points at both ends of the window 566 * is a good approximation. Naming those points P1 and P2, we get 567 * 568 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 569 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 570 * 571 * or 572 * 573 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 574 * 575 * to avoid losing precision in the division. Similarly, the host timestamp is 576 * computed with 577 * 578 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 579 * 580 * SOF values are coded on 11 bits by USB. We extend their precision with 16 581 * decimal bits, leading to a 11.16 coding. 582 * 583 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 584 * be normalized using the nominal device clock frequency reported through the 585 * UVC descriptors. 586 * 587 * Both the PTS/STC and SOF counters roll over, after a fixed but device 588 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 589 * sliding window size is smaller than the rollover period, differences computed 590 * on unsigned integers will produce the correct result. However, the p term in 591 * the linear relations will be miscomputed. 592 * 593 * To fix the issue, we subtract a constant from the PTS and STC values to bring 594 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 595 * the 32 bit range without any rollover. 596 * 597 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 598 * computed by (1) will never be smaller than 0. This offset is then compensated 599 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 600 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 601 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 602 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 603 * SOF value at the end of the sliding window. 604 * 605 * Finally we subtract a constant from the host timestamps to bring the first 606 * timestamp of the sliding window to 1s. 607 */ 608 void uvc_video_clock_update(struct uvc_streaming *stream, 609 struct vb2_v4l2_buffer *vbuf, 610 struct uvc_buffer *buf) 611 { 612 struct uvc_clock *clock = &stream->clock; 613 struct uvc_clock_sample *first; 614 struct uvc_clock_sample *last; 615 unsigned long flags; 616 struct timespec ts; 617 u32 delta_stc; 618 u32 y1, y2; 619 u32 x1, x2; 620 u32 mean; 621 u32 sof; 622 u32 div; 623 u32 rem; 624 u64 y; 625 626 if (!uvc_hw_timestamps_param) 627 return; 628 629 spin_lock_irqsave(&clock->lock, flags); 630 631 if (clock->count < clock->size) 632 goto done; 633 634 first = &clock->samples[clock->head]; 635 last = &clock->samples[(clock->head - 1) % clock->size]; 636 637 /* First step, PTS to SOF conversion. */ 638 delta_stc = buf->pts - (1UL << 31); 639 x1 = first->dev_stc - delta_stc; 640 x2 = last->dev_stc - delta_stc; 641 if (x1 == x2) 642 goto done; 643 644 y1 = (first->dev_sof + 2048) << 16; 645 y2 = (last->dev_sof + 2048) << 16; 646 if (y2 < y1) 647 y2 += 2048 << 16; 648 649 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 650 - (u64)y2 * (u64)x1; 651 y = div_u64(y, x2 - x1); 652 653 sof = y; 654 655 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 656 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 657 stream->dev->name, buf->pts, 658 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 659 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 660 x1, x2, y1, y2, clock->sof_offset); 661 662 /* Second step, SOF to host clock conversion. */ 663 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 664 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 665 if (x2 < x1) 666 x2 += 2048 << 16; 667 if (x1 == x2) 668 goto done; 669 670 ts = timespec_sub(last->host_ts, first->host_ts); 671 y1 = NSEC_PER_SEC; 672 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec; 673 674 /* Interpolated and host SOF timestamps can wrap around at slightly 675 * different times. Handle this by adding or removing 2048 to or from 676 * the computed SOF value to keep it close to the SOF samples mean 677 * value. 678 */ 679 mean = (x1 + x2) / 2; 680 if (mean - (1024 << 16) > sof) 681 sof += 2048 << 16; 682 else if (sof > mean + (1024 << 16)) 683 sof -= 2048 << 16; 684 685 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 686 - (u64)y2 * (u64)x1; 687 y = div_u64(y, x2 - x1); 688 689 div = div_u64_rem(y, NSEC_PER_SEC, &rem); 690 ts.tv_sec = first->host_ts.tv_sec - 1 + div; 691 ts.tv_nsec = first->host_ts.tv_nsec + rem; 692 if (ts.tv_nsec >= NSEC_PER_SEC) { 693 ts.tv_sec++; 694 ts.tv_nsec -= NSEC_PER_SEC; 695 } 696 697 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %llu " 698 "buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 699 stream->dev->name, 700 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 701 y, timespec_to_ns(&ts), vbuf->vb2_buf.timestamp, 702 x1, first->host_sof, first->dev_sof, 703 x2, last->host_sof, last->dev_sof, y1, y2); 704 705 /* Update the V4L2 buffer. */ 706 vbuf->vb2_buf.timestamp = timespec_to_ns(&ts); 707 708 done: 709 spin_unlock_irqrestore(&clock->lock, flags); 710 } 711 712 /* ------------------------------------------------------------------------ 713 * Stream statistics 714 */ 715 716 static void uvc_video_stats_decode(struct uvc_streaming *stream, 717 const __u8 *data, int len) 718 { 719 unsigned int header_size; 720 bool has_pts = false; 721 bool has_scr = false; 722 u16 uninitialized_var(scr_sof); 723 u32 uninitialized_var(scr_stc); 724 u32 uninitialized_var(pts); 725 726 if (stream->stats.stream.nb_frames == 0 && 727 stream->stats.frame.nb_packets == 0) 728 ktime_get_ts(&stream->stats.stream.start_ts); 729 730 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 731 case UVC_STREAM_PTS | UVC_STREAM_SCR: 732 header_size = 12; 733 has_pts = true; 734 has_scr = true; 735 break; 736 case UVC_STREAM_PTS: 737 header_size = 6; 738 has_pts = true; 739 break; 740 case UVC_STREAM_SCR: 741 header_size = 8; 742 has_scr = true; 743 break; 744 default: 745 header_size = 2; 746 break; 747 } 748 749 /* Check for invalid headers. */ 750 if (len < header_size || data[0] < header_size) { 751 stream->stats.frame.nb_invalid++; 752 return; 753 } 754 755 /* Extract the timestamps. */ 756 if (has_pts) 757 pts = get_unaligned_le32(&data[2]); 758 759 if (has_scr) { 760 scr_stc = get_unaligned_le32(&data[header_size - 6]); 761 scr_sof = get_unaligned_le16(&data[header_size - 2]); 762 } 763 764 /* Is PTS constant through the whole frame ? */ 765 if (has_pts && stream->stats.frame.nb_pts) { 766 if (stream->stats.frame.pts != pts) { 767 stream->stats.frame.nb_pts_diffs++; 768 stream->stats.frame.last_pts_diff = 769 stream->stats.frame.nb_packets; 770 } 771 } 772 773 if (has_pts) { 774 stream->stats.frame.nb_pts++; 775 stream->stats.frame.pts = pts; 776 } 777 778 /* Do all frames have a PTS in their first non-empty packet, or before 779 * their first empty packet ? 780 */ 781 if (stream->stats.frame.size == 0) { 782 if (len > header_size) 783 stream->stats.frame.has_initial_pts = has_pts; 784 if (len == header_size && has_pts) 785 stream->stats.frame.has_early_pts = true; 786 } 787 788 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 789 if (has_scr && stream->stats.frame.nb_scr) { 790 if (stream->stats.frame.scr_stc != scr_stc) 791 stream->stats.frame.nb_scr_diffs++; 792 } 793 794 if (has_scr) { 795 /* Expand the SOF counter to 32 bits and store its value. */ 796 if (stream->stats.stream.nb_frames > 0 || 797 stream->stats.frame.nb_scr > 0) 798 stream->stats.stream.scr_sof_count += 799 (scr_sof - stream->stats.stream.scr_sof) % 2048; 800 stream->stats.stream.scr_sof = scr_sof; 801 802 stream->stats.frame.nb_scr++; 803 stream->stats.frame.scr_stc = scr_stc; 804 stream->stats.frame.scr_sof = scr_sof; 805 806 if (scr_sof < stream->stats.stream.min_sof) 807 stream->stats.stream.min_sof = scr_sof; 808 if (scr_sof > stream->stats.stream.max_sof) 809 stream->stats.stream.max_sof = scr_sof; 810 } 811 812 /* Record the first non-empty packet number. */ 813 if (stream->stats.frame.size == 0 && len > header_size) 814 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 815 816 /* Update the frame size. */ 817 stream->stats.frame.size += len - header_size; 818 819 /* Update the packets counters. */ 820 stream->stats.frame.nb_packets++; 821 if (len <= header_size) 822 stream->stats.frame.nb_empty++; 823 824 if (data[1] & UVC_STREAM_ERR) 825 stream->stats.frame.nb_errors++; 826 } 827 828 static void uvc_video_stats_update(struct uvc_streaming *stream) 829 { 830 struct uvc_stats_frame *frame = &stream->stats.frame; 831 832 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 833 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 834 "last pts/stc/sof %u/%u/%u\n", 835 stream->sequence, frame->first_data, 836 frame->nb_packets - frame->nb_empty, frame->nb_packets, 837 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 838 frame->has_early_pts ? "" : "!", 839 frame->has_initial_pts ? "" : "!", 840 frame->nb_scr_diffs, frame->nb_scr, 841 frame->pts, frame->scr_stc, frame->scr_sof); 842 843 stream->stats.stream.nb_frames++; 844 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 845 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 846 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 847 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 848 849 if (frame->has_early_pts) 850 stream->stats.stream.nb_pts_early++; 851 if (frame->has_initial_pts) 852 stream->stats.stream.nb_pts_initial++; 853 if (frame->last_pts_diff <= frame->first_data) 854 stream->stats.stream.nb_pts_constant++; 855 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 856 stream->stats.stream.nb_scr_count_ok++; 857 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 858 stream->stats.stream.nb_scr_diffs_ok++; 859 860 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 861 } 862 863 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 864 size_t size) 865 { 866 unsigned int scr_sof_freq; 867 unsigned int duration; 868 struct timespec ts; 869 size_t count = 0; 870 871 ts = timespec_sub(stream->stats.stream.stop_ts, 872 stream->stats.stream.start_ts); 873 874 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 875 * frequency this will not overflow before more than 1h. 876 */ 877 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000; 878 if (duration != 0) 879 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 880 / duration; 881 else 882 scr_sof_freq = 0; 883 884 count += scnprintf(buf + count, size - count, 885 "frames: %u\npackets: %u\nempty: %u\n" 886 "errors: %u\ninvalid: %u\n", 887 stream->stats.stream.nb_frames, 888 stream->stats.stream.nb_packets, 889 stream->stats.stream.nb_empty, 890 stream->stats.stream.nb_errors, 891 stream->stats.stream.nb_invalid); 892 count += scnprintf(buf + count, size - count, 893 "pts: %u early, %u initial, %u ok\n", 894 stream->stats.stream.nb_pts_early, 895 stream->stats.stream.nb_pts_initial, 896 stream->stats.stream.nb_pts_constant); 897 count += scnprintf(buf + count, size - count, 898 "scr: %u count ok, %u diff ok\n", 899 stream->stats.stream.nb_scr_count_ok, 900 stream->stats.stream.nb_scr_diffs_ok); 901 count += scnprintf(buf + count, size - count, 902 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 903 stream->stats.stream.min_sof, 904 stream->stats.stream.max_sof, 905 scr_sof_freq / 1000, scr_sof_freq % 1000); 906 907 return count; 908 } 909 910 static void uvc_video_stats_start(struct uvc_streaming *stream) 911 { 912 memset(&stream->stats, 0, sizeof(stream->stats)); 913 stream->stats.stream.min_sof = 2048; 914 } 915 916 static void uvc_video_stats_stop(struct uvc_streaming *stream) 917 { 918 ktime_get_ts(&stream->stats.stream.stop_ts); 919 } 920 921 /* ------------------------------------------------------------------------ 922 * Video codecs 923 */ 924 925 /* Video payload decoding is handled by uvc_video_decode_start(), 926 * uvc_video_decode_data() and uvc_video_decode_end(). 927 * 928 * uvc_video_decode_start is called with URB data at the start of a bulk or 929 * isochronous payload. It processes header data and returns the header size 930 * in bytes if successful. If an error occurs, it returns a negative error 931 * code. The following error codes have special meanings. 932 * 933 * - EAGAIN informs the caller that the current video buffer should be marked 934 * as done, and that the function should be called again with the same data 935 * and a new video buffer. This is used when end of frame conditions can be 936 * reliably detected at the beginning of the next frame only. 937 * 938 * If an error other than -EAGAIN is returned, the caller will drop the current 939 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 940 * made until the next payload. -ENODATA can be used to drop the current 941 * payload if no other error code is appropriate. 942 * 943 * uvc_video_decode_data is called for every URB with URB data. It copies the 944 * data to the video buffer. 945 * 946 * uvc_video_decode_end is called with header data at the end of a bulk or 947 * isochronous payload. It performs any additional header data processing and 948 * returns 0 or a negative error code if an error occurred. As header data have 949 * already been processed by uvc_video_decode_start, this functions isn't 950 * required to perform sanity checks a second time. 951 * 952 * For isochronous transfers where a payload is always transferred in a single 953 * URB, the three functions will be called in a row. 954 * 955 * To let the decoder process header data and update its internal state even 956 * when no video buffer is available, uvc_video_decode_start must be prepared 957 * to be called with a NULL buf parameter. uvc_video_decode_data and 958 * uvc_video_decode_end will never be called with a NULL buffer. 959 */ 960 static int uvc_video_decode_start(struct uvc_streaming *stream, 961 struct uvc_buffer *buf, const __u8 *data, int len) 962 { 963 __u8 fid; 964 965 /* Sanity checks: 966 * - packet must be at least 2 bytes long 967 * - bHeaderLength value must be at least 2 bytes (see above) 968 * - bHeaderLength value can't be larger than the packet size. 969 */ 970 if (len < 2 || data[0] < 2 || data[0] > len) { 971 stream->stats.frame.nb_invalid++; 972 return -EINVAL; 973 } 974 975 fid = data[1] & UVC_STREAM_FID; 976 977 /* Increase the sequence number regardless of any buffer states, so 978 * that discontinuous sequence numbers always indicate lost frames. 979 */ 980 if (stream->last_fid != fid) { 981 stream->sequence++; 982 if (stream->sequence) 983 uvc_video_stats_update(stream); 984 } 985 986 uvc_video_clock_decode(stream, buf, data, len); 987 uvc_video_stats_decode(stream, data, len); 988 989 /* Store the payload FID bit and return immediately when the buffer is 990 * NULL. 991 */ 992 if (buf == NULL) { 993 stream->last_fid = fid; 994 return -ENODATA; 995 } 996 997 /* Mark the buffer as bad if the error bit is set. */ 998 if (data[1] & UVC_STREAM_ERR) { 999 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1000 "set).\n"); 1001 buf->error = 1; 1002 } 1003 1004 /* Synchronize to the input stream by waiting for the FID bit to be 1005 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1006 * stream->last_fid is initialized to -1, so the first isochronous 1007 * frame will always be in sync. 1008 * 1009 * If the device doesn't toggle the FID bit, invert stream->last_fid 1010 * when the EOF bit is set to force synchronisation on the next packet. 1011 */ 1012 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1013 struct timespec ts; 1014 1015 if (fid == stream->last_fid) { 1016 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1017 "sync).\n"); 1018 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1019 (data[1] & UVC_STREAM_EOF)) 1020 stream->last_fid ^= UVC_STREAM_FID; 1021 return -ENODATA; 1022 } 1023 1024 uvc_video_get_ts(&ts); 1025 1026 buf->buf.field = V4L2_FIELD_NONE; 1027 buf->buf.sequence = stream->sequence; 1028 buf->buf.vb2_buf.timestamp = timespec_to_ns(&ts); 1029 1030 /* TODO: Handle PTS and SCR. */ 1031 buf->state = UVC_BUF_STATE_ACTIVE; 1032 } 1033 1034 /* Mark the buffer as done if we're at the beginning of a new frame. 1035 * End of frame detection is better implemented by checking the EOF 1036 * bit (FID bit toggling is delayed by one frame compared to the EOF 1037 * bit), but some devices don't set the bit at end of frame (and the 1038 * last payload can be lost anyway). We thus must check if the FID has 1039 * been toggled. 1040 * 1041 * stream->last_fid is initialized to -1, so the first isochronous 1042 * frame will never trigger an end of frame detection. 1043 * 1044 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1045 * as it doesn't make sense to return an empty buffer. This also 1046 * avoids detecting end of frame conditions at FID toggling if the 1047 * previous payload had the EOF bit set. 1048 */ 1049 if (fid != stream->last_fid && buf->bytesused != 0) { 1050 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1051 "toggled).\n"); 1052 buf->state = UVC_BUF_STATE_READY; 1053 return -EAGAIN; 1054 } 1055 1056 stream->last_fid = fid; 1057 1058 return data[0]; 1059 } 1060 1061 static void uvc_video_decode_data(struct uvc_streaming *stream, 1062 struct uvc_buffer *buf, const __u8 *data, int len) 1063 { 1064 unsigned int maxlen, nbytes; 1065 void *mem; 1066 1067 if (len <= 0) 1068 return; 1069 1070 /* Copy the video data to the buffer. */ 1071 maxlen = buf->length - buf->bytesused; 1072 mem = buf->mem + buf->bytesused; 1073 nbytes = min((unsigned int)len, maxlen); 1074 memcpy(mem, data, nbytes); 1075 buf->bytesused += nbytes; 1076 1077 /* Complete the current frame if the buffer size was exceeded. */ 1078 if (len > maxlen) { 1079 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1080 buf->state = UVC_BUF_STATE_READY; 1081 } 1082 } 1083 1084 static void uvc_video_decode_end(struct uvc_streaming *stream, 1085 struct uvc_buffer *buf, const __u8 *data, int len) 1086 { 1087 /* Mark the buffer as done if the EOF marker is set. */ 1088 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1089 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1090 if (data[0] == len) 1091 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1092 buf->state = UVC_BUF_STATE_READY; 1093 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1094 stream->last_fid ^= UVC_STREAM_FID; 1095 } 1096 } 1097 1098 /* Video payload encoding is handled by uvc_video_encode_header() and 1099 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1100 * 1101 * uvc_video_encode_header is called at the start of a payload. It adds header 1102 * data to the transfer buffer and returns the header size. As the only known 1103 * UVC output device transfers a whole frame in a single payload, the EOF bit 1104 * is always set in the header. 1105 * 1106 * uvc_video_encode_data is called for every URB and copies the data from the 1107 * video buffer to the transfer buffer. 1108 */ 1109 static int uvc_video_encode_header(struct uvc_streaming *stream, 1110 struct uvc_buffer *buf, __u8 *data, int len) 1111 { 1112 data[0] = 2; /* Header length */ 1113 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1114 | (stream->last_fid & UVC_STREAM_FID); 1115 return 2; 1116 } 1117 1118 static int uvc_video_encode_data(struct uvc_streaming *stream, 1119 struct uvc_buffer *buf, __u8 *data, int len) 1120 { 1121 struct uvc_video_queue *queue = &stream->queue; 1122 unsigned int nbytes; 1123 void *mem; 1124 1125 /* Copy video data to the URB buffer. */ 1126 mem = buf->mem + queue->buf_used; 1127 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1128 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1129 nbytes); 1130 memcpy(data, mem, nbytes); 1131 1132 queue->buf_used += nbytes; 1133 1134 return nbytes; 1135 } 1136 1137 /* ------------------------------------------------------------------------ 1138 * URB handling 1139 */ 1140 1141 /* 1142 * Set error flag for incomplete buffer. 1143 */ 1144 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1145 struct uvc_buffer *buf) 1146 { 1147 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1148 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1149 buf->error = 1; 1150 } 1151 1152 /* 1153 * Completion handler for video URBs. 1154 */ 1155 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1156 struct uvc_buffer *buf) 1157 { 1158 u8 *mem; 1159 int ret, i; 1160 1161 for (i = 0; i < urb->number_of_packets; ++i) { 1162 if (urb->iso_frame_desc[i].status < 0) { 1163 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1164 "lost (%d).\n", urb->iso_frame_desc[i].status); 1165 /* Mark the buffer as faulty. */ 1166 if (buf != NULL) 1167 buf->error = 1; 1168 continue; 1169 } 1170 1171 /* Decode the payload header. */ 1172 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1173 do { 1174 ret = uvc_video_decode_start(stream, buf, mem, 1175 urb->iso_frame_desc[i].actual_length); 1176 if (ret == -EAGAIN) { 1177 uvc_video_validate_buffer(stream, buf); 1178 buf = uvc_queue_next_buffer(&stream->queue, 1179 buf); 1180 } 1181 } while (ret == -EAGAIN); 1182 1183 if (ret < 0) 1184 continue; 1185 1186 /* Decode the payload data. */ 1187 uvc_video_decode_data(stream, buf, mem + ret, 1188 urb->iso_frame_desc[i].actual_length - ret); 1189 1190 /* Process the header again. */ 1191 uvc_video_decode_end(stream, buf, mem, 1192 urb->iso_frame_desc[i].actual_length); 1193 1194 if (buf->state == UVC_BUF_STATE_READY) { 1195 uvc_video_validate_buffer(stream, buf); 1196 buf = uvc_queue_next_buffer(&stream->queue, buf); 1197 } 1198 } 1199 } 1200 1201 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1202 struct uvc_buffer *buf) 1203 { 1204 u8 *mem; 1205 int len, ret; 1206 1207 /* 1208 * Ignore ZLPs if they're not part of a frame, otherwise process them 1209 * to trigger the end of payload detection. 1210 */ 1211 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1212 return; 1213 1214 mem = urb->transfer_buffer; 1215 len = urb->actual_length; 1216 stream->bulk.payload_size += len; 1217 1218 /* If the URB is the first of its payload, decode and save the 1219 * header. 1220 */ 1221 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1222 do { 1223 ret = uvc_video_decode_start(stream, buf, mem, len); 1224 if (ret == -EAGAIN) 1225 buf = uvc_queue_next_buffer(&stream->queue, 1226 buf); 1227 } while (ret == -EAGAIN); 1228 1229 /* If an error occurred skip the rest of the payload. */ 1230 if (ret < 0 || buf == NULL) { 1231 stream->bulk.skip_payload = 1; 1232 } else { 1233 memcpy(stream->bulk.header, mem, ret); 1234 stream->bulk.header_size = ret; 1235 1236 mem += ret; 1237 len -= ret; 1238 } 1239 } 1240 1241 /* The buffer queue might have been cancelled while a bulk transfer 1242 * was in progress, so we can reach here with buf equal to NULL. Make 1243 * sure buf is never dereferenced if NULL. 1244 */ 1245 1246 /* Process video data. */ 1247 if (!stream->bulk.skip_payload && buf != NULL) 1248 uvc_video_decode_data(stream, buf, mem, len); 1249 1250 /* Detect the payload end by a URB smaller than the maximum size (or 1251 * a payload size equal to the maximum) and process the header again. 1252 */ 1253 if (urb->actual_length < urb->transfer_buffer_length || 1254 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1255 if (!stream->bulk.skip_payload && buf != NULL) { 1256 uvc_video_decode_end(stream, buf, stream->bulk.header, 1257 stream->bulk.payload_size); 1258 if (buf->state == UVC_BUF_STATE_READY) 1259 uvc_queue_next_buffer(&stream->queue, buf); 1260 } 1261 1262 stream->bulk.header_size = 0; 1263 stream->bulk.skip_payload = 0; 1264 stream->bulk.payload_size = 0; 1265 } 1266 } 1267 1268 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1269 struct uvc_buffer *buf) 1270 { 1271 u8 *mem = urb->transfer_buffer; 1272 int len = stream->urb_size, ret; 1273 1274 if (buf == NULL) { 1275 urb->transfer_buffer_length = 0; 1276 return; 1277 } 1278 1279 /* If the URB is the first of its payload, add the header. */ 1280 if (stream->bulk.header_size == 0) { 1281 ret = uvc_video_encode_header(stream, buf, mem, len); 1282 stream->bulk.header_size = ret; 1283 stream->bulk.payload_size += ret; 1284 mem += ret; 1285 len -= ret; 1286 } 1287 1288 /* Process video data. */ 1289 ret = uvc_video_encode_data(stream, buf, mem, len); 1290 1291 stream->bulk.payload_size += ret; 1292 len -= ret; 1293 1294 if (buf->bytesused == stream->queue.buf_used || 1295 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1296 if (buf->bytesused == stream->queue.buf_used) { 1297 stream->queue.buf_used = 0; 1298 buf->state = UVC_BUF_STATE_READY; 1299 buf->buf.sequence = ++stream->sequence; 1300 uvc_queue_next_buffer(&stream->queue, buf); 1301 stream->last_fid ^= UVC_STREAM_FID; 1302 } 1303 1304 stream->bulk.header_size = 0; 1305 stream->bulk.payload_size = 0; 1306 } 1307 1308 urb->transfer_buffer_length = stream->urb_size - len; 1309 } 1310 1311 static void uvc_video_complete(struct urb *urb) 1312 { 1313 struct uvc_streaming *stream = urb->context; 1314 struct uvc_video_queue *queue = &stream->queue; 1315 struct uvc_buffer *buf = NULL; 1316 unsigned long flags; 1317 int ret; 1318 1319 switch (urb->status) { 1320 case 0: 1321 break; 1322 1323 default: 1324 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1325 "completion handler.\n", urb->status); 1326 /* fall through */ 1327 case -ENOENT: /* usb_kill_urb() called. */ 1328 if (stream->frozen) 1329 return; 1330 /* fall through */ 1331 case -ECONNRESET: /* usb_unlink_urb() called. */ 1332 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1333 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1334 return; 1335 } 1336 1337 spin_lock_irqsave(&queue->irqlock, flags); 1338 if (!list_empty(&queue->irqqueue)) 1339 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1340 queue); 1341 spin_unlock_irqrestore(&queue->irqlock, flags); 1342 1343 stream->decode(urb, stream, buf); 1344 1345 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1346 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1347 ret); 1348 } 1349 } 1350 1351 /* 1352 * Free transfer buffers. 1353 */ 1354 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1355 { 1356 unsigned int i; 1357 1358 for (i = 0; i < UVC_URBS; ++i) { 1359 if (stream->urb_buffer[i]) { 1360 #ifndef CONFIG_DMA_NONCOHERENT 1361 usb_free_coherent(stream->dev->udev, stream->urb_size, 1362 stream->urb_buffer[i], stream->urb_dma[i]); 1363 #else 1364 kfree(stream->urb_buffer[i]); 1365 #endif 1366 stream->urb_buffer[i] = NULL; 1367 } 1368 } 1369 1370 stream->urb_size = 0; 1371 } 1372 1373 /* 1374 * Allocate transfer buffers. This function can be called with buffers 1375 * already allocated when resuming from suspend, in which case it will 1376 * return without touching the buffers. 1377 * 1378 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1379 * system is too low on memory try successively smaller numbers of packets 1380 * until allocation succeeds. 1381 * 1382 * Return the number of allocated packets on success or 0 when out of memory. 1383 */ 1384 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1385 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1386 { 1387 unsigned int npackets; 1388 unsigned int i; 1389 1390 /* Buffers are already allocated, bail out. */ 1391 if (stream->urb_size) 1392 return stream->urb_size / psize; 1393 1394 /* Compute the number of packets. Bulk endpoints might transfer UVC 1395 * payloads across multiple URBs. 1396 */ 1397 npackets = DIV_ROUND_UP(size, psize); 1398 if (npackets > UVC_MAX_PACKETS) 1399 npackets = UVC_MAX_PACKETS; 1400 1401 /* Retry allocations until one succeed. */ 1402 for (; npackets > 1; npackets /= 2) { 1403 for (i = 0; i < UVC_URBS; ++i) { 1404 stream->urb_size = psize * npackets; 1405 #ifndef CONFIG_DMA_NONCOHERENT 1406 stream->urb_buffer[i] = usb_alloc_coherent( 1407 stream->dev->udev, stream->urb_size, 1408 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1409 #else 1410 stream->urb_buffer[i] = 1411 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1412 #endif 1413 if (!stream->urb_buffer[i]) { 1414 uvc_free_urb_buffers(stream); 1415 break; 1416 } 1417 } 1418 1419 if (i == UVC_URBS) { 1420 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1421 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1422 psize); 1423 return npackets; 1424 } 1425 } 1426 1427 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1428 "per packet).\n", psize); 1429 return 0; 1430 } 1431 1432 /* 1433 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1434 */ 1435 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1436 { 1437 struct urb *urb; 1438 unsigned int i; 1439 1440 uvc_video_stats_stop(stream); 1441 1442 for (i = 0; i < UVC_URBS; ++i) { 1443 urb = stream->urb[i]; 1444 if (urb == NULL) 1445 continue; 1446 1447 usb_kill_urb(urb); 1448 usb_free_urb(urb); 1449 stream->urb[i] = NULL; 1450 } 1451 1452 if (free_buffers) 1453 uvc_free_urb_buffers(stream); 1454 } 1455 1456 /* 1457 * Compute the maximum number of bytes per interval for an endpoint. 1458 */ 1459 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1460 struct usb_host_endpoint *ep) 1461 { 1462 u16 psize; 1463 u16 mult; 1464 1465 switch (dev->speed) { 1466 case USB_SPEED_SUPER: 1467 case USB_SPEED_SUPER_PLUS: 1468 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1469 case USB_SPEED_HIGH: 1470 psize = usb_endpoint_maxp(&ep->desc); 1471 mult = usb_endpoint_maxp_mult(&ep->desc); 1472 return (psize & 0x07ff) * mult; 1473 case USB_SPEED_WIRELESS: 1474 psize = usb_endpoint_maxp(&ep->desc); 1475 return psize; 1476 default: 1477 psize = usb_endpoint_maxp(&ep->desc); 1478 return psize & 0x07ff; 1479 } 1480 } 1481 1482 /* 1483 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1484 * is given by the endpoint. 1485 */ 1486 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1487 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1488 { 1489 struct urb *urb; 1490 unsigned int npackets, i, j; 1491 u16 psize; 1492 u32 size; 1493 1494 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1495 size = stream->ctrl.dwMaxVideoFrameSize; 1496 1497 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1498 if (npackets == 0) 1499 return -ENOMEM; 1500 1501 size = npackets * psize; 1502 1503 for (i = 0; i < UVC_URBS; ++i) { 1504 urb = usb_alloc_urb(npackets, gfp_flags); 1505 if (urb == NULL) { 1506 uvc_uninit_video(stream, 1); 1507 return -ENOMEM; 1508 } 1509 1510 urb->dev = stream->dev->udev; 1511 urb->context = stream; 1512 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1513 ep->desc.bEndpointAddress); 1514 #ifndef CONFIG_DMA_NONCOHERENT 1515 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1516 urb->transfer_dma = stream->urb_dma[i]; 1517 #else 1518 urb->transfer_flags = URB_ISO_ASAP; 1519 #endif 1520 urb->interval = ep->desc.bInterval; 1521 urb->transfer_buffer = stream->urb_buffer[i]; 1522 urb->complete = uvc_video_complete; 1523 urb->number_of_packets = npackets; 1524 urb->transfer_buffer_length = size; 1525 1526 for (j = 0; j < npackets; ++j) { 1527 urb->iso_frame_desc[j].offset = j * psize; 1528 urb->iso_frame_desc[j].length = psize; 1529 } 1530 1531 stream->urb[i] = urb; 1532 } 1533 1534 return 0; 1535 } 1536 1537 /* 1538 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1539 * given by the endpoint. 1540 */ 1541 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1542 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1543 { 1544 struct urb *urb; 1545 unsigned int npackets, pipe, i; 1546 u16 psize; 1547 u32 size; 1548 1549 psize = usb_endpoint_maxp(&ep->desc); 1550 size = stream->ctrl.dwMaxPayloadTransferSize; 1551 stream->bulk.max_payload_size = size; 1552 1553 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1554 if (npackets == 0) 1555 return -ENOMEM; 1556 1557 size = npackets * psize; 1558 1559 if (usb_endpoint_dir_in(&ep->desc)) 1560 pipe = usb_rcvbulkpipe(stream->dev->udev, 1561 ep->desc.bEndpointAddress); 1562 else 1563 pipe = usb_sndbulkpipe(stream->dev->udev, 1564 ep->desc.bEndpointAddress); 1565 1566 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1567 size = 0; 1568 1569 for (i = 0; i < UVC_URBS; ++i) { 1570 urb = usb_alloc_urb(0, gfp_flags); 1571 if (urb == NULL) { 1572 uvc_uninit_video(stream, 1); 1573 return -ENOMEM; 1574 } 1575 1576 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1577 stream->urb_buffer[i], size, uvc_video_complete, 1578 stream); 1579 #ifndef CONFIG_DMA_NONCOHERENT 1580 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1581 urb->transfer_dma = stream->urb_dma[i]; 1582 #endif 1583 1584 stream->urb[i] = urb; 1585 } 1586 1587 return 0; 1588 } 1589 1590 /* 1591 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1592 */ 1593 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1594 { 1595 struct usb_interface *intf = stream->intf; 1596 struct usb_host_endpoint *ep; 1597 unsigned int i; 1598 int ret; 1599 1600 stream->sequence = -1; 1601 stream->last_fid = -1; 1602 stream->bulk.header_size = 0; 1603 stream->bulk.skip_payload = 0; 1604 stream->bulk.payload_size = 0; 1605 1606 uvc_video_stats_start(stream); 1607 1608 if (intf->num_altsetting > 1) { 1609 struct usb_host_endpoint *best_ep = NULL; 1610 unsigned int best_psize = UINT_MAX; 1611 unsigned int bandwidth; 1612 unsigned int uninitialized_var(altsetting); 1613 int intfnum = stream->intfnum; 1614 1615 /* Isochronous endpoint, select the alternate setting. */ 1616 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1617 1618 if (bandwidth == 0) { 1619 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1620 "bandwidth, defaulting to lowest.\n"); 1621 bandwidth = 1; 1622 } else { 1623 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1624 "B/frame bandwidth.\n", bandwidth); 1625 } 1626 1627 for (i = 0; i < intf->num_altsetting; ++i) { 1628 struct usb_host_interface *alts; 1629 unsigned int psize; 1630 1631 alts = &intf->altsetting[i]; 1632 ep = uvc_find_endpoint(alts, 1633 stream->header.bEndpointAddress); 1634 if (ep == NULL) 1635 continue; 1636 1637 /* Check if the bandwidth is high enough. */ 1638 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1639 if (psize >= bandwidth && psize <= best_psize) { 1640 altsetting = alts->desc.bAlternateSetting; 1641 best_psize = psize; 1642 best_ep = ep; 1643 } 1644 } 1645 1646 if (best_ep == NULL) { 1647 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1648 "for requested bandwidth.\n"); 1649 return -EIO; 1650 } 1651 1652 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1653 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1654 1655 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1656 if (ret < 0) 1657 return ret; 1658 1659 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1660 } else { 1661 /* Bulk endpoint, proceed to URB initialization. */ 1662 ep = uvc_find_endpoint(&intf->altsetting[0], 1663 stream->header.bEndpointAddress); 1664 if (ep == NULL) 1665 return -EIO; 1666 1667 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1668 } 1669 1670 if (ret < 0) 1671 return ret; 1672 1673 /* Submit the URBs. */ 1674 for (i = 0; i < UVC_URBS; ++i) { 1675 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1676 if (ret < 0) { 1677 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1678 "(%d).\n", i, ret); 1679 uvc_uninit_video(stream, 1); 1680 return ret; 1681 } 1682 } 1683 1684 /* The Logitech C920 temporarily forgets that it should not be adjusting 1685 * Exposure Absolute during init so restore controls to stored values. 1686 */ 1687 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1688 uvc_ctrl_restore_values(stream->dev); 1689 1690 return 0; 1691 } 1692 1693 /* -------------------------------------------------------------------------- 1694 * Suspend/resume 1695 */ 1696 1697 /* 1698 * Stop streaming without disabling the video queue. 1699 * 1700 * To let userspace applications resume without trouble, we must not touch the 1701 * video buffers in any way. We mark the device as frozen to make sure the URB 1702 * completion handler won't try to cancel the queue when we kill the URBs. 1703 */ 1704 int uvc_video_suspend(struct uvc_streaming *stream) 1705 { 1706 if (!uvc_queue_streaming(&stream->queue)) 1707 return 0; 1708 1709 stream->frozen = 1; 1710 uvc_uninit_video(stream, 0); 1711 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1712 return 0; 1713 } 1714 1715 /* 1716 * Reconfigure the video interface and restart streaming if it was enabled 1717 * before suspend. 1718 * 1719 * If an error occurs, disable the video queue. This will wake all pending 1720 * buffers, making sure userspace applications are notified of the problem 1721 * instead of waiting forever. 1722 */ 1723 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1724 { 1725 int ret; 1726 1727 /* If the bus has been reset on resume, set the alternate setting to 0. 1728 * This should be the default value, but some devices crash or otherwise 1729 * misbehave if they don't receive a SET_INTERFACE request before any 1730 * other video control request. 1731 */ 1732 if (reset) 1733 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1734 1735 stream->frozen = 0; 1736 1737 uvc_video_clock_reset(stream); 1738 1739 if (!uvc_queue_streaming(&stream->queue)) 1740 return 0; 1741 1742 ret = uvc_commit_video(stream, &stream->ctrl); 1743 if (ret < 0) 1744 return ret; 1745 1746 return uvc_init_video(stream, GFP_NOIO); 1747 } 1748 1749 /* ------------------------------------------------------------------------ 1750 * Video device 1751 */ 1752 1753 /* 1754 * Initialize the UVC video device by switching to alternate setting 0 and 1755 * retrieve the default format. 1756 * 1757 * Some cameras (namely the Fuji Finepix) set the format and frame 1758 * indexes to zero. The UVC standard doesn't clearly make this a spec 1759 * violation, so try to silently fix the values if possible. 1760 * 1761 * This function is called before registering the device with V4L. 1762 */ 1763 int uvc_video_init(struct uvc_streaming *stream) 1764 { 1765 struct uvc_streaming_control *probe = &stream->ctrl; 1766 struct uvc_format *format = NULL; 1767 struct uvc_frame *frame = NULL; 1768 unsigned int i; 1769 int ret; 1770 1771 if (stream->nformats == 0) { 1772 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1773 return -EINVAL; 1774 } 1775 1776 atomic_set(&stream->active, 0); 1777 1778 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1779 * Cam (and possibly other devices) crash or otherwise misbehave if 1780 * they don't receive a SET_INTERFACE request before any other video 1781 * control request. 1782 */ 1783 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1784 1785 /* Set the streaming probe control with default streaming parameters 1786 * retrieved from the device. Webcams that don't suport GET_DEF 1787 * requests on the probe control will just keep their current streaming 1788 * parameters. 1789 */ 1790 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1791 uvc_set_video_ctrl(stream, probe, 1); 1792 1793 /* Initialize the streaming parameters with the probe control current 1794 * value. This makes sure SET_CUR requests on the streaming commit 1795 * control will always use values retrieved from a successful GET_CUR 1796 * request on the probe control, as required by the UVC specification. 1797 */ 1798 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1799 if (ret < 0) 1800 return ret; 1801 1802 /* Check if the default format descriptor exists. Use the first 1803 * available format otherwise. 1804 */ 1805 for (i = stream->nformats; i > 0; --i) { 1806 format = &stream->format[i-1]; 1807 if (format->index == probe->bFormatIndex) 1808 break; 1809 } 1810 1811 if (format->nframes == 0) { 1812 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1813 "default format.\n"); 1814 return -EINVAL; 1815 } 1816 1817 /* Zero bFrameIndex might be correct. Stream-based formats (including 1818 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1819 * descriptor with bFrameIndex set to zero. If the default frame 1820 * descriptor is not found, use the first available frame. 1821 */ 1822 for (i = format->nframes; i > 0; --i) { 1823 frame = &format->frame[i-1]; 1824 if (frame->bFrameIndex == probe->bFrameIndex) 1825 break; 1826 } 1827 1828 probe->bFormatIndex = format->index; 1829 probe->bFrameIndex = frame->bFrameIndex; 1830 1831 stream->def_format = format; 1832 stream->cur_format = format; 1833 stream->cur_frame = frame; 1834 1835 /* Select the video decoding function */ 1836 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1837 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1838 stream->decode = uvc_video_decode_isight; 1839 else if (stream->intf->num_altsetting > 1) 1840 stream->decode = uvc_video_decode_isoc; 1841 else 1842 stream->decode = uvc_video_decode_bulk; 1843 } else { 1844 if (stream->intf->num_altsetting == 1) 1845 stream->decode = uvc_video_encode_bulk; 1846 else { 1847 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1848 "supported for video output devices.\n"); 1849 return -EINVAL; 1850 } 1851 } 1852 1853 return 0; 1854 } 1855 1856 /* 1857 * Enable or disable the video stream. 1858 */ 1859 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1860 { 1861 int ret; 1862 1863 if (!enable) { 1864 uvc_uninit_video(stream, 1); 1865 if (stream->intf->num_altsetting > 1) { 1866 usb_set_interface(stream->dev->udev, 1867 stream->intfnum, 0); 1868 } else { 1869 /* UVC doesn't specify how to inform a bulk-based device 1870 * when the video stream is stopped. Windows sends a 1871 * CLEAR_FEATURE(HALT) request to the video streaming 1872 * bulk endpoint, mimic the same behaviour. 1873 */ 1874 unsigned int epnum = stream->header.bEndpointAddress 1875 & USB_ENDPOINT_NUMBER_MASK; 1876 unsigned int dir = stream->header.bEndpointAddress 1877 & USB_ENDPOINT_DIR_MASK; 1878 unsigned int pipe; 1879 1880 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 1881 usb_clear_halt(stream->dev->udev, pipe); 1882 } 1883 1884 uvc_video_clock_cleanup(stream); 1885 return 0; 1886 } 1887 1888 ret = uvc_video_clock_init(stream); 1889 if (ret < 0) 1890 return ret; 1891 1892 /* Commit the streaming parameters. */ 1893 ret = uvc_commit_video(stream, &stream->ctrl); 1894 if (ret < 0) 1895 goto error_commit; 1896 1897 ret = uvc_init_video(stream, GFP_KERNEL); 1898 if (ret < 0) 1899 goto error_video; 1900 1901 return 0; 1902 1903 error_video: 1904 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1905 error_commit: 1906 uvc_video_clock_cleanup(stream); 1907 1908 return ret; 1909 } 1910