1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2001 Jean-Fredric Clere, Nikolas Zimmermann, Georg Acher 4 * Mark Cave-Ayland, Carlo E Prelz, Dick Streefland 5 * Copyright (c) 2002, 2003 Tuukka Toivonen 6 * Copyright (c) 2008 Erik Andrén 7 * Copyright (c) 2008 Chia-I Wu 8 * 9 * P/N 861037: Sensor HDCS1000 ASIC STV0600 10 * P/N 861050-0010: Sensor HDCS1000 ASIC STV0600 11 * P/N 861050-0020: Sensor Photobit PB100 ASIC STV0600-1 - QuickCam Express 12 * P/N 861055: Sensor ST VV6410 ASIC STV0610 - LEGO cam 13 * P/N 861075-0040: Sensor HDCS1000 ASIC 14 * P/N 961179-0700: Sensor ST VV6410 ASIC STV0602 - Dexxa WebCam USB 15 * P/N 861040-0000: Sensor ST VV6410 ASIC STV0610 - QuickCam Web 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include "stv06xx_hdcs.h" 21 22 static struct v4l2_pix_format hdcs1x00_mode[] = { 23 { 24 HDCS_1X00_DEF_WIDTH, 25 HDCS_1X00_DEF_HEIGHT, 26 V4L2_PIX_FMT_SGRBG8, 27 V4L2_FIELD_NONE, 28 .sizeimage = 29 HDCS_1X00_DEF_WIDTH * HDCS_1X00_DEF_HEIGHT, 30 .bytesperline = HDCS_1X00_DEF_WIDTH, 31 .colorspace = V4L2_COLORSPACE_SRGB, 32 .priv = 1 33 } 34 }; 35 36 static struct v4l2_pix_format hdcs1020_mode[] = { 37 { 38 HDCS_1020_DEF_WIDTH, 39 HDCS_1020_DEF_HEIGHT, 40 V4L2_PIX_FMT_SGRBG8, 41 V4L2_FIELD_NONE, 42 .sizeimage = 43 HDCS_1020_DEF_WIDTH * HDCS_1020_DEF_HEIGHT, 44 .bytesperline = HDCS_1020_DEF_WIDTH, 45 .colorspace = V4L2_COLORSPACE_SRGB, 46 .priv = 1 47 } 48 }; 49 50 enum hdcs_power_state { 51 HDCS_STATE_SLEEP, 52 HDCS_STATE_IDLE, 53 HDCS_STATE_RUN 54 }; 55 56 /* no lock? */ 57 struct hdcs { 58 enum hdcs_power_state state; 59 int w, h; 60 61 /* visible area of the sensor array */ 62 struct { 63 int left, top; 64 int width, height; 65 int border; 66 } array; 67 68 struct { 69 /* Column timing overhead */ 70 u8 cto; 71 /* Column processing overhead */ 72 u8 cpo; 73 /* Row sample period constant */ 74 u16 rs; 75 /* Exposure reset duration */ 76 u16 er; 77 } exp; 78 79 int psmp; 80 }; 81 82 static int hdcs_reg_write_seq(struct sd *sd, u8 reg, u8 *vals, u8 len) 83 { 84 u8 regs[I2C_MAX_BYTES * 2]; 85 int i; 86 87 if (unlikely((len <= 0) || (len >= I2C_MAX_BYTES) || 88 (reg + len > 0xff))) 89 return -EINVAL; 90 91 for (i = 0; i < len; i++) { 92 regs[2 * i] = reg; 93 regs[2 * i + 1] = vals[i]; 94 /* All addresses are shifted left one bit 95 * as bit 0 toggles r/w */ 96 reg += 2; 97 } 98 99 return stv06xx_write_sensor_bytes(sd, regs, len); 100 } 101 102 static int hdcs_set_state(struct sd *sd, enum hdcs_power_state state) 103 { 104 struct hdcs *hdcs = sd->sensor_priv; 105 u8 val; 106 int ret; 107 108 if (hdcs->state == state) 109 return 0; 110 111 /* we need to go idle before running or sleeping */ 112 if (hdcs->state != HDCS_STATE_IDLE) { 113 ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0); 114 if (ret) 115 return ret; 116 } 117 118 hdcs->state = HDCS_STATE_IDLE; 119 120 if (state == HDCS_STATE_IDLE) 121 return 0; 122 123 switch (state) { 124 case HDCS_STATE_SLEEP: 125 val = HDCS_SLEEP_MODE; 126 break; 127 128 case HDCS_STATE_RUN: 129 val = HDCS_RUN_ENABLE; 130 break; 131 132 default: 133 return -EINVAL; 134 } 135 136 ret = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), val); 137 138 /* Update the state if the write succeeded */ 139 if (!ret) 140 hdcs->state = state; 141 142 return ret; 143 } 144 145 static int hdcs_reset(struct sd *sd) 146 { 147 struct hdcs *hdcs = sd->sensor_priv; 148 int err; 149 150 err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 1); 151 if (err < 0) 152 return err; 153 154 err = stv06xx_write_sensor(sd, HDCS_REG_CONTROL(sd), 0); 155 if (err < 0) 156 hdcs->state = HDCS_STATE_IDLE; 157 158 return err; 159 } 160 161 static int hdcs_set_exposure(struct gspca_dev *gspca_dev, __s32 val) 162 { 163 struct sd *sd = (struct sd *) gspca_dev; 164 struct hdcs *hdcs = sd->sensor_priv; 165 int rowexp, srowexp; 166 int max_srowexp; 167 /* Column time period */ 168 int ct; 169 /* Column processing period */ 170 int cp; 171 /* Row processing period */ 172 int rp; 173 /* Minimum number of column timing periods 174 within the column processing period */ 175 int mnct; 176 int cycles, err; 177 u8 exp[14]; 178 179 cycles = val * HDCS_CLK_FREQ_MHZ * 257; 180 181 ct = hdcs->exp.cto + hdcs->psmp + (HDCS_ADC_START_SIG_DUR + 2); 182 cp = hdcs->exp.cto + (hdcs->w * ct / 2); 183 184 /* the cycles one row takes */ 185 rp = hdcs->exp.rs + cp; 186 187 rowexp = cycles / rp; 188 189 /* the remaining cycles */ 190 cycles -= rowexp * rp; 191 192 /* calculate sub-row exposure */ 193 if (IS_1020(sd)) { 194 /* see HDCS-1020 datasheet 3.5.6.4, p. 63 */ 195 srowexp = hdcs->w - (cycles + hdcs->exp.er + 13) / ct; 196 197 mnct = (hdcs->exp.er + 12 + ct - 1) / ct; 198 max_srowexp = hdcs->w - mnct; 199 } else { 200 /* see HDCS-1000 datasheet 3.4.5.5, p. 61 */ 201 srowexp = cp - hdcs->exp.er - 6 - cycles; 202 203 mnct = (hdcs->exp.er + 5 + ct - 1) / ct; 204 max_srowexp = cp - mnct * ct - 1; 205 } 206 207 if (srowexp < 0) 208 srowexp = 0; 209 else if (srowexp > max_srowexp) 210 srowexp = max_srowexp; 211 212 if (IS_1020(sd)) { 213 exp[0] = HDCS20_CONTROL; 214 exp[1] = 0x00; /* Stop streaming */ 215 exp[2] = HDCS_ROWEXPL; 216 exp[3] = rowexp & 0xff; 217 exp[4] = HDCS_ROWEXPH; 218 exp[5] = rowexp >> 8; 219 exp[6] = HDCS20_SROWEXP; 220 exp[7] = (srowexp >> 2) & 0xff; 221 exp[8] = HDCS20_ERROR; 222 exp[9] = 0x10; /* Clear exposure error flag*/ 223 exp[10] = HDCS20_CONTROL; 224 exp[11] = 0x04; /* Restart streaming */ 225 err = stv06xx_write_sensor_bytes(sd, exp, 6); 226 } else { 227 exp[0] = HDCS00_CONTROL; 228 exp[1] = 0x00; /* Stop streaming */ 229 exp[2] = HDCS_ROWEXPL; 230 exp[3] = rowexp & 0xff; 231 exp[4] = HDCS_ROWEXPH; 232 exp[5] = rowexp >> 8; 233 exp[6] = HDCS00_SROWEXPL; 234 exp[7] = srowexp & 0xff; 235 exp[8] = HDCS00_SROWEXPH; 236 exp[9] = srowexp >> 8; 237 exp[10] = HDCS_STATUS; 238 exp[11] = 0x10; /* Clear exposure error flag*/ 239 exp[12] = HDCS00_CONTROL; 240 exp[13] = 0x04; /* Restart streaming */ 241 err = stv06xx_write_sensor_bytes(sd, exp, 7); 242 if (err < 0) 243 return err; 244 } 245 gspca_dbg(gspca_dev, D_CONF, "Writing exposure %d, rowexp %d, srowexp %d\n", 246 val, rowexp, srowexp); 247 return err; 248 } 249 250 static int hdcs_set_gains(struct sd *sd, u8 g) 251 { 252 int err; 253 u8 gains[4]; 254 255 /* the voltage gain Av = (1 + 19 * val / 127) * (1 + bit7) */ 256 if (g > 127) 257 g = 0x80 | (g / 2); 258 259 gains[0] = g; 260 gains[1] = g; 261 gains[2] = g; 262 gains[3] = g; 263 264 err = hdcs_reg_write_seq(sd, HDCS_ERECPGA, gains, 4); 265 return err; 266 } 267 268 static int hdcs_set_gain(struct gspca_dev *gspca_dev, __s32 val) 269 { 270 gspca_dbg(gspca_dev, D_CONF, "Writing gain %d\n", val); 271 return hdcs_set_gains((struct sd *) gspca_dev, 272 val & 0xff); 273 } 274 275 static int hdcs_set_size(struct sd *sd, 276 unsigned int width, unsigned int height) 277 { 278 struct hdcs *hdcs = sd->sensor_priv; 279 u8 win[4]; 280 unsigned int x, y; 281 int err; 282 283 /* must be multiple of 4 */ 284 width = (width + 3) & ~0x3; 285 height = (height + 3) & ~0x3; 286 287 if (width > hdcs->array.width) 288 width = hdcs->array.width; 289 290 if (IS_1020(sd)) { 291 /* the borders are also invalid */ 292 if (height + 2 * hdcs->array.border + HDCS_1020_BOTTOM_Y_SKIP 293 > hdcs->array.height) 294 height = hdcs->array.height - 2 * hdcs->array.border - 295 HDCS_1020_BOTTOM_Y_SKIP; 296 297 y = (hdcs->array.height - HDCS_1020_BOTTOM_Y_SKIP - height) / 2 298 + hdcs->array.top; 299 } else { 300 if (height > hdcs->array.height) 301 height = hdcs->array.height; 302 303 y = hdcs->array.top + (hdcs->array.height - height) / 2; 304 } 305 306 x = hdcs->array.left + (hdcs->array.width - width) / 2; 307 308 win[0] = y / 4; 309 win[1] = x / 4; 310 win[2] = (y + height) / 4 - 1; 311 win[3] = (x + width) / 4 - 1; 312 313 err = hdcs_reg_write_seq(sd, HDCS_FWROW, win, 4); 314 if (err < 0) 315 return err; 316 317 /* Update the current width and height */ 318 hdcs->w = width; 319 hdcs->h = height; 320 return err; 321 } 322 323 static int hdcs_s_ctrl(struct v4l2_ctrl *ctrl) 324 { 325 struct gspca_dev *gspca_dev = 326 container_of(ctrl->handler, struct gspca_dev, ctrl_handler); 327 int err = -EINVAL; 328 329 switch (ctrl->id) { 330 case V4L2_CID_GAIN: 331 err = hdcs_set_gain(gspca_dev, ctrl->val); 332 break; 333 case V4L2_CID_EXPOSURE: 334 err = hdcs_set_exposure(gspca_dev, ctrl->val); 335 break; 336 } 337 return err; 338 } 339 340 static const struct v4l2_ctrl_ops hdcs_ctrl_ops = { 341 .s_ctrl = hdcs_s_ctrl, 342 }; 343 344 static int hdcs_init_controls(struct sd *sd) 345 { 346 struct v4l2_ctrl_handler *hdl = &sd->gspca_dev.ctrl_handler; 347 348 v4l2_ctrl_handler_init(hdl, 2); 349 v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops, 350 V4L2_CID_EXPOSURE, 0, 0xff, 1, HDCS_DEFAULT_EXPOSURE); 351 v4l2_ctrl_new_std(hdl, &hdcs_ctrl_ops, 352 V4L2_CID_GAIN, 0, 0xff, 1, HDCS_DEFAULT_GAIN); 353 return hdl->error; 354 } 355 356 static int hdcs_probe_1x00(struct sd *sd) 357 { 358 struct hdcs *hdcs; 359 u16 sensor; 360 int ret; 361 362 ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor); 363 if (ret < 0 || sensor != 0x08) 364 return -ENODEV; 365 366 pr_info("HDCS-1000/1100 sensor detected\n"); 367 368 sd->gspca_dev.cam.cam_mode = hdcs1x00_mode; 369 sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1x00_mode); 370 371 hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL); 372 if (!hdcs) 373 return -ENOMEM; 374 375 hdcs->array.left = 8; 376 hdcs->array.top = 8; 377 hdcs->array.width = HDCS_1X00_DEF_WIDTH; 378 hdcs->array.height = HDCS_1X00_DEF_HEIGHT; 379 hdcs->array.border = 4; 380 381 hdcs->exp.cto = 4; 382 hdcs->exp.cpo = 2; 383 hdcs->exp.rs = 186; 384 hdcs->exp.er = 100; 385 386 /* 387 * Frame rate on HDCS-1000 with STV600 depends on PSMP: 388 * 4 = doesn't work at all 389 * 5 = 7.8 fps, 390 * 6 = 6.9 fps, 391 * 8 = 6.3 fps, 392 * 10 = 5.5 fps, 393 * 15 = 4.4 fps, 394 * 31 = 2.8 fps 395 * 396 * Frame rate on HDCS-1000 with STV602 depends on PSMP: 397 * 15 = doesn't work at all 398 * 18 = doesn't work at all 399 * 19 = 7.3 fps 400 * 20 = 7.4 fps 401 * 21 = 7.4 fps 402 * 22 = 7.4 fps 403 * 24 = 6.3 fps 404 * 30 = 5.4 fps 405 */ 406 hdcs->psmp = (sd->bridge == BRIDGE_STV602) ? 20 : 5; 407 408 sd->sensor_priv = hdcs; 409 410 return 0; 411 } 412 413 static int hdcs_probe_1020(struct sd *sd) 414 { 415 struct hdcs *hdcs; 416 u16 sensor; 417 int ret; 418 419 ret = stv06xx_read_sensor(sd, HDCS_IDENT, &sensor); 420 if (ret < 0 || sensor != 0x10) 421 return -ENODEV; 422 423 pr_info("HDCS-1020 sensor detected\n"); 424 425 sd->gspca_dev.cam.cam_mode = hdcs1020_mode; 426 sd->gspca_dev.cam.nmodes = ARRAY_SIZE(hdcs1020_mode); 427 428 hdcs = kmalloc(sizeof(struct hdcs), GFP_KERNEL); 429 if (!hdcs) 430 return -ENOMEM; 431 432 /* 433 * From Andrey's test image: looks like HDCS-1020 upper-left 434 * visible pixel is at 24,8 (y maybe even smaller?) and lower-right 435 * visible pixel at 375,299 (x maybe even larger?) 436 */ 437 hdcs->array.left = 24; 438 hdcs->array.top = 4; 439 hdcs->array.width = HDCS_1020_DEF_WIDTH; 440 hdcs->array.height = 304; 441 hdcs->array.border = 4; 442 443 hdcs->psmp = 6; 444 445 hdcs->exp.cto = 3; 446 hdcs->exp.cpo = 3; 447 hdcs->exp.rs = 155; 448 hdcs->exp.er = 96; 449 450 sd->sensor_priv = hdcs; 451 452 return 0; 453 } 454 455 static int hdcs_start(struct sd *sd) 456 { 457 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 458 459 gspca_dbg(gspca_dev, D_STREAM, "Starting stream\n"); 460 461 return hdcs_set_state(sd, HDCS_STATE_RUN); 462 } 463 464 static int hdcs_stop(struct sd *sd) 465 { 466 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 467 468 gspca_dbg(gspca_dev, D_STREAM, "Halting stream\n"); 469 470 return hdcs_set_state(sd, HDCS_STATE_SLEEP); 471 } 472 473 static int hdcs_init(struct sd *sd) 474 { 475 struct hdcs *hdcs = sd->sensor_priv; 476 int i, err = 0; 477 478 /* Set the STV0602AA in STV0600 emulation mode */ 479 if (sd->bridge == BRIDGE_STV602) 480 stv06xx_write_bridge(sd, STV_STV0600_EMULATION, 1); 481 482 /* Execute the bridge init */ 483 for (i = 0; i < ARRAY_SIZE(stv_bridge_init) && !err; i++) { 484 err = stv06xx_write_bridge(sd, stv_bridge_init[i][0], 485 stv_bridge_init[i][1]); 486 } 487 if (err < 0) 488 return err; 489 490 /* sensor soft reset */ 491 hdcs_reset(sd); 492 493 /* Execute the sensor init */ 494 for (i = 0; i < ARRAY_SIZE(stv_sensor_init) && !err; i++) { 495 err = stv06xx_write_sensor(sd, stv_sensor_init[i][0], 496 stv_sensor_init[i][1]); 497 } 498 if (err < 0) 499 return err; 500 501 /* Enable continuous frame capture, bit 2: stop when frame complete */ 502 err = stv06xx_write_sensor(sd, HDCS_REG_CONFIG(sd), BIT(3)); 503 if (err < 0) 504 return err; 505 506 /* Set PGA sample duration 507 (was 0x7E for the STV602, but caused slow framerate with HDCS-1020) */ 508 if (IS_1020(sd)) 509 err = stv06xx_write_sensor(sd, HDCS_TCTRL, 510 (HDCS_ADC_START_SIG_DUR << 6) | hdcs->psmp); 511 else 512 err = stv06xx_write_sensor(sd, HDCS_TCTRL, 513 (HDCS_ADC_START_SIG_DUR << 5) | hdcs->psmp); 514 if (err < 0) 515 return err; 516 517 return hdcs_set_size(sd, hdcs->array.width, hdcs->array.height); 518 } 519 520 static int hdcs_dump(struct sd *sd) 521 { 522 u16 reg, val; 523 524 pr_info("Dumping sensor registers:\n"); 525 526 for (reg = HDCS_IDENT; reg <= HDCS_ROWEXPH; reg++) { 527 stv06xx_read_sensor(sd, reg, &val); 528 pr_info("reg 0x%02x = 0x%02x\n", reg, val); 529 } 530 return 0; 531 } 532