xref: /openbmc/linux/drivers/media/usb/gspca/ov534.c (revision feac8c8b)
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  * PS3 Eye camera - FPS range extended by Joseph Howse
16  *                  <josephhowse@nummist.com> http://nummist.com
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #define MODULE_NAME "ov534"
32 
33 #include "gspca.h"
34 
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
37 
38 #define OV534_REG_ADDRESS	0xf1	/* sensor address */
39 #define OV534_REG_SUBADDR	0xf2
40 #define OV534_REG_WRITE		0xf3
41 #define OV534_REG_READ		0xf4
42 #define OV534_REG_OPERATION	0xf5
43 #define OV534_REG_STATUS	0xf6
44 
45 #define OV534_OP_WRITE_3	0x37
46 #define OV534_OP_WRITE_2	0x33
47 #define OV534_OP_READ_2		0xf9
48 
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
51 
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55 
56 /* specific webcam descriptor */
57 struct sd {
58 	struct gspca_dev gspca_dev;	/* !! must be the first item */
59 
60 	struct v4l2_ctrl_handler ctrl_handler;
61 	struct v4l2_ctrl *hue;
62 	struct v4l2_ctrl *saturation;
63 	struct v4l2_ctrl *brightness;
64 	struct v4l2_ctrl *contrast;
65 	struct { /* gain control cluster */
66 		struct v4l2_ctrl *autogain;
67 		struct v4l2_ctrl *gain;
68 	};
69 	struct v4l2_ctrl *autowhitebalance;
70 	struct { /* exposure control cluster */
71 		struct v4l2_ctrl *autoexposure;
72 		struct v4l2_ctrl *exposure;
73 	};
74 	struct v4l2_ctrl *sharpness;
75 	struct v4l2_ctrl *hflip;
76 	struct v4l2_ctrl *vflip;
77 	struct v4l2_ctrl *plfreq;
78 
79 	__u32 last_pts;
80 	u16 last_fid;
81 	u8 frame_rate;
82 
83 	u8 sensor;
84 };
85 enum sensors {
86 	SENSOR_OV767x,
87 	SENSOR_OV772x,
88 	NSENSORS
89 };
90 
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
93 
94 
95 static const struct v4l2_pix_format ov772x_mode[] = {
96 	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97 	 .bytesperline = 320 * 2,
98 	 .sizeimage = 320 * 240 * 2,
99 	 .colorspace = V4L2_COLORSPACE_SRGB,
100 	 .priv = 1},
101 	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102 	 .bytesperline = 640 * 2,
103 	 .sizeimage = 640 * 480 * 2,
104 	 .colorspace = V4L2_COLORSPACE_SRGB,
105 	 .priv = 0},
106 };
107 static const struct v4l2_pix_format ov767x_mode[] = {
108 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109 		.bytesperline = 320,
110 		.sizeimage = 320 * 240 * 3 / 8 + 590,
111 		.colorspace = V4L2_COLORSPACE_JPEG},
112 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 		.bytesperline = 640,
114 		.sizeimage = 640 * 480 * 3 / 8 + 590,
115 		.colorspace = V4L2_COLORSPACE_JPEG},
116 };
117 
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
120 
121 static const struct framerates ov772x_framerates[] = {
122 	{ /* 320x240 */
123 		.rates = qvga_rates,
124 		.nrates = ARRAY_SIZE(qvga_rates),
125 	},
126 	{ /* 640x480 */
127 		.rates = vga_rates,
128 		.nrates = ARRAY_SIZE(vga_rates),
129 	},
130 };
131 
132 struct reg_array {
133 	const u8 (*val)[2];
134 	int len;
135 };
136 
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140 	{0xf1, 0x42},
141 	{0x88, 0xf8},
142 	{0x89, 0xff},
143 	{0x76, 0x03},
144 	{0x92, 0x03},
145 	{0x95, 0x10},
146 	{0xe2, 0x00},
147 	{0xe7, 0x3e},
148 	{0x8d, 0x1c},
149 	{0x8e, 0x00},
150 	{0x8f, 0x00},
151 	{0x1f, 0x00},
152 	{0xc3, 0xf9},
153 	{0x89, 0xff},
154 	{0x88, 0xf8},
155 	{0x76, 0x03},
156 	{0x92, 0x01},
157 	{0x93, 0x18},
158 	{0x1c, 0x00},
159 	{0x1d, 0x48},
160 	{0x1d, 0x00},
161 	{0x1d, 0xff},
162 	{0x1d, 0x02},
163 	{0x1d, 0x58},
164 	{0x1d, 0x00},
165 	{0x1c, 0x0a},
166 	{0x1d, 0x0a},
167 	{0x1d, 0x0e},
168 	{0xc0, 0x50},	/* HSize 640 */
169 	{0xc1, 0x3c},	/* VSize 480 */
170 	{0x34, 0x05},	/* enable Audio Suspend mode */
171 	{0xc2, 0x0c},	/* Input YUV */
172 	{0xc3, 0xf9},	/* enable PRE */
173 	{0x34, 0x05},	/* enable Audio Suspend mode */
174 	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
175 	{0x31, 0xf9},	/* enable 1.8V Suspend */
176 	{0x35, 0x02},	/* turn on JPEG */
177 	{0xd9, 0x10},
178 	{0x25, 0x42},	/* GPIO[8]:Input */
179 	{0x94, 0x11},	/* If the default setting is loaded when
180 			 * system boots up, this flag is closed here */
181 };
182 static const u8 sensor_init_767x[][2] = {
183 	{0x12, 0x80},
184 	{0x11, 0x03},
185 	{0x3a, 0x04},
186 	{0x12, 0x00},
187 	{0x17, 0x13},
188 	{0x18, 0x01},
189 	{0x32, 0xb6},
190 	{0x19, 0x02},
191 	{0x1a, 0x7a},
192 	{0x03, 0x0a},
193 	{0x0c, 0x00},
194 	{0x3e, 0x00},
195 	{0x70, 0x3a},
196 	{0x71, 0x35},
197 	{0x72, 0x11},
198 	{0x73, 0xf0},
199 	{0xa2, 0x02},
200 	{0x7a, 0x2a},	/* set Gamma=1.6 below */
201 	{0x7b, 0x12},
202 	{0x7c, 0x1d},
203 	{0x7d, 0x2d},
204 	{0x7e, 0x45},
205 	{0x7f, 0x50},
206 	{0x80, 0x59},
207 	{0x81, 0x62},
208 	{0x82, 0x6b},
209 	{0x83, 0x73},
210 	{0x84, 0x7b},
211 	{0x85, 0x8a},
212 	{0x86, 0x98},
213 	{0x87, 0xb2},
214 	{0x88, 0xca},
215 	{0x89, 0xe0},
216 	{0x13, 0xe0},
217 	{0x00, 0x00},
218 	{0x10, 0x00},
219 	{0x0d, 0x40},
220 	{0x14, 0x38},	/* gain max 16x */
221 	{0xa5, 0x05},
222 	{0xab, 0x07},
223 	{0x24, 0x95},
224 	{0x25, 0x33},
225 	{0x26, 0xe3},
226 	{0x9f, 0x78},
227 	{0xa0, 0x68},
228 	{0xa1, 0x03},
229 	{0xa6, 0xd8},
230 	{0xa7, 0xd8},
231 	{0xa8, 0xf0},
232 	{0xa9, 0x90},
233 	{0xaa, 0x94},
234 	{0x13, 0xe5},
235 	{0x0e, 0x61},
236 	{0x0f, 0x4b},
237 	{0x16, 0x02},
238 	{0x21, 0x02},
239 	{0x22, 0x91},
240 	{0x29, 0x07},
241 	{0x33, 0x0b},
242 	{0x35, 0x0b},
243 	{0x37, 0x1d},
244 	{0x38, 0x71},
245 	{0x39, 0x2a},
246 	{0x3c, 0x78},
247 	{0x4d, 0x40},
248 	{0x4e, 0x20},
249 	{0x69, 0x00},
250 	{0x6b, 0x4a},
251 	{0x74, 0x10},
252 	{0x8d, 0x4f},
253 	{0x8e, 0x00},
254 	{0x8f, 0x00},
255 	{0x90, 0x00},
256 	{0x91, 0x00},
257 	{0x96, 0x00},
258 	{0x9a, 0x80},
259 	{0xb0, 0x84},
260 	{0xb1, 0x0c},
261 	{0xb2, 0x0e},
262 	{0xb3, 0x82},
263 	{0xb8, 0x0a},
264 	{0x43, 0x0a},
265 	{0x44, 0xf0},
266 	{0x45, 0x34},
267 	{0x46, 0x58},
268 	{0x47, 0x28},
269 	{0x48, 0x3a},
270 	{0x59, 0x88},
271 	{0x5a, 0x88},
272 	{0x5b, 0x44},
273 	{0x5c, 0x67},
274 	{0x5d, 0x49},
275 	{0x5e, 0x0e},
276 	{0x6c, 0x0a},
277 	{0x6d, 0x55},
278 	{0x6e, 0x11},
279 	{0x6f, 0x9f},
280 	{0x6a, 0x40},
281 	{0x01, 0x40},
282 	{0x02, 0x40},
283 	{0x13, 0xe7},
284 	{0x4f, 0x80},
285 	{0x50, 0x80},
286 	{0x51, 0x00},
287 	{0x52, 0x22},
288 	{0x53, 0x5e},
289 	{0x54, 0x80},
290 	{0x58, 0x9e},
291 	{0x41, 0x08},
292 	{0x3f, 0x00},
293 	{0x75, 0x04},
294 	{0x76, 0xe1},
295 	{0x4c, 0x00},
296 	{0x77, 0x01},
297 	{0x3d, 0xc2},
298 	{0x4b, 0x09},
299 	{0xc9, 0x60},
300 	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
301 	{0x56, 0x40},
302 	{0x34, 0x11},
303 	{0x3b, 0xc2},
304 	{0xa4, 0x8a},	/* Night mode trigger point */
305 	{0x96, 0x00},
306 	{0x97, 0x30},
307 	{0x98, 0x20},
308 	{0x99, 0x20},
309 	{0x9a, 0x84},
310 	{0x9b, 0x29},
311 	{0x9c, 0x03},
312 	{0x9d, 0x4c},
313 	{0x9e, 0x3f},
314 	{0x78, 0x04},
315 	{0x79, 0x01},
316 	{0xc8, 0xf0},
317 	{0x79, 0x0f},
318 	{0xc8, 0x00},
319 	{0x79, 0x10},
320 	{0xc8, 0x7e},
321 	{0x79, 0x0a},
322 	{0xc8, 0x80},
323 	{0x79, 0x0b},
324 	{0xc8, 0x01},
325 	{0x79, 0x0c},
326 	{0xc8, 0x0f},
327 	{0x79, 0x0d},
328 	{0xc8, 0x20},
329 	{0x79, 0x09},
330 	{0xc8, 0x80},
331 	{0x79, 0x02},
332 	{0xc8, 0xc0},
333 	{0x79, 0x03},
334 	{0xc8, 0x20},
335 	{0x79, 0x26},
336 };
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339 	{0x94, 0xaa},
340 	{0xf1, 0x42},
341 	{0xe5, 0x04},
342 	{0xc0, 0x50},
343 	{0xc1, 0x3c},
344 	{0xc2, 0x0c},
345 	{0x35, 0x02},	/* turn on JPEG */
346 	{0xd9, 0x10},
347 	{0xda, 0x00},	/* for higher clock rate(30fps) */
348 	{0x34, 0x05},	/* enable Audio Suspend mode */
349 	{0xc3, 0xf9},	/* enable PRE */
350 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
351 	{0x8d, 0x1c},	/* output YUV */
352 /*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
353 	{0x50, 0x00},	/* H/V divider=0 */
354 	{0x51, 0xa0},	/* input H=640/4 */
355 	{0x52, 0x3c},	/* input V=480/4 */
356 	{0x53, 0x00},	/* offset X=0 */
357 	{0x54, 0x00},	/* offset Y=0 */
358 	{0x55, 0x00},	/* H/V size[8]=0 */
359 	{0x57, 0x00},	/* H-size[9]=0 */
360 	{0x5c, 0x00},	/* output size[9:8]=0 */
361 	{0x5a, 0xa0},	/* output H=640/4 */
362 	{0x5b, 0x78},	/* output V=480/4 */
363 	{0x1c, 0x0a},
364 	{0x1d, 0x0a},
365 	{0x94, 0x11},
366 };
367 static const u8 sensor_start_vga_767x[][2] = {
368 	{0x11, 0x01},
369 	{0x1e, 0x04},
370 	{0x19, 0x02},
371 	{0x1a, 0x7a},
372 };
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375 	{0x94, 0xaa},
376 	{0xf1, 0x42},
377 	{0xe5, 0x04},
378 	{0xc0, 0x80},
379 	{0xc1, 0x60},
380 	{0xc2, 0x0c},
381 	{0x35, 0x02},	/* turn on JPEG */
382 	{0xd9, 0x10},
383 	{0xc0, 0x50},	/* CIF HSize 640 */
384 	{0xc1, 0x3c},	/* CIF VSize 480 */
385 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
386 	{0x8d, 0x1c},	/* output YUV */
387 	{0x34, 0x05},	/* enable Audio Suspend mode */
388 	{0xc2, 0x4c},	/* output YUV and Enable DCW */
389 	{0xc3, 0xf9},	/* enable PRE */
390 	{0x1c, 0x00},	/* indirect addressing */
391 	{0x1d, 0x48},	/* output YUV422 */
392 	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
393 	{0x51, 0xa0},	/* DCW input H=640/4 */
394 	{0x52, 0x78},	/* DCW input V=480/4 */
395 	{0x53, 0x00},	/* offset X=0 */
396 	{0x54, 0x00},	/* offset Y=0 */
397 	{0x55, 0x00},	/* H/V size[8]=0 */
398 	{0x57, 0x00},	/* H-size[9]=0 */
399 	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
400 	{0x5a, 0x50},	/* DCW output H=320/4 */
401 	{0x5b, 0x3c},	/* DCW output V=240/4 */
402 	{0x1c, 0x0a},
403 	{0x1d, 0x0a},
404 	{0x94, 0x11},
405 };
406 static const u8 sensor_start_qvga_767x[][2] = {
407 	{0x11, 0x01},
408 	{0x1e, 0x04},
409 	{0x19, 0x02},
410 	{0x1a, 0x7a},
411 };
412 
413 static const u8 bridge_init_772x[][2] = {
414 	{ 0xc2, 0x0c },
415 	{ 0x88, 0xf8 },
416 	{ 0xc3, 0x69 },
417 	{ 0x89, 0xff },
418 	{ 0x76, 0x03 },
419 	{ 0x92, 0x01 },
420 	{ 0x93, 0x18 },
421 	{ 0x94, 0x10 },
422 	{ 0x95, 0x10 },
423 	{ 0xe2, 0x00 },
424 	{ 0xe7, 0x3e },
425 
426 	{ 0x96, 0x00 },
427 
428 	{ 0x97, 0x20 },
429 	{ 0x97, 0x20 },
430 	{ 0x97, 0x20 },
431 	{ 0x97, 0x0a },
432 	{ 0x97, 0x3f },
433 	{ 0x97, 0x4a },
434 	{ 0x97, 0x20 },
435 	{ 0x97, 0x15 },
436 	{ 0x97, 0x0b },
437 
438 	{ 0x8e, 0x40 },
439 	{ 0x1f, 0x81 },
440 	{ 0x34, 0x05 },
441 	{ 0xe3, 0x04 },
442 	{ 0x88, 0x00 },
443 	{ 0x89, 0x00 },
444 	{ 0x76, 0x00 },
445 	{ 0xe7, 0x2e },
446 	{ 0x31, 0xf9 },
447 	{ 0x25, 0x42 },
448 	{ 0x21, 0xf0 },
449 
450 	{ 0x1c, 0x00 },
451 	{ 0x1d, 0x40 },
452 	{ 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 	{ 0x1d, 0x00 }, /* payload size */
454 
455 	{ 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 	{ 0x1d, 0x58 }, /* frame size */
457 	{ 0x1d, 0x00 }, /* frame size */
458 
459 	{ 0x1c, 0x0a },
460 	{ 0x1d, 0x08 }, /* turn on UVC header */
461 	{ 0x1d, 0x0e }, /* .. */
462 
463 	{ 0x8d, 0x1c },
464 	{ 0x8e, 0x80 },
465 	{ 0xe5, 0x04 },
466 
467 	{ 0xc0, 0x50 },
468 	{ 0xc1, 0x3c },
469 	{ 0xc2, 0x0c },
470 };
471 static const u8 sensor_init_772x[][2] = {
472 	{ 0x12, 0x80 },
473 	{ 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475 	{ 0x11, 0x01 },
476 	{ 0x11, 0x01 },
477 	{ 0x11, 0x01 },
478 	{ 0x11, 0x01 },
479 	{ 0x11, 0x01 },
480 	{ 0x11, 0x01 },
481 	{ 0x11, 0x01 },
482 	{ 0x11, 0x01 },
483 	{ 0x11, 0x01 },
484 	{ 0x11, 0x01 },
485 
486 	{ 0x3d, 0x03 },
487 	{ 0x17, 0x26 },
488 	{ 0x18, 0xa0 },
489 	{ 0x19, 0x07 },
490 	{ 0x1a, 0xf0 },
491 	{ 0x32, 0x00 },
492 	{ 0x29, 0xa0 },
493 	{ 0x2c, 0xf0 },
494 	{ 0x65, 0x20 },
495 	{ 0x11, 0x01 },
496 	{ 0x42, 0x7f },
497 	{ 0x63, 0xaa },		/* AWB - was e0 */
498 	{ 0x64, 0xff },
499 	{ 0x66, 0x00 },
500 	{ 0x13, 0xf0 },		/* com8 */
501 	{ 0x0d, 0x41 },
502 	{ 0x0f, 0xc5 },
503 	{ 0x14, 0x11 },
504 
505 	{ 0x22, 0x7f },
506 	{ 0x23, 0x03 },
507 	{ 0x24, 0x40 },
508 	{ 0x25, 0x30 },
509 	{ 0x26, 0xa1 },
510 	{ 0x2a, 0x00 },
511 	{ 0x2b, 0x00 },
512 	{ 0x6b, 0xaa },
513 	{ 0x13, 0xff },		/* AWB */
514 
515 	{ 0x90, 0x05 },
516 	{ 0x91, 0x01 },
517 	{ 0x92, 0x03 },
518 	{ 0x93, 0x00 },
519 	{ 0x94, 0x60 },
520 	{ 0x95, 0x3c },
521 	{ 0x96, 0x24 },
522 	{ 0x97, 0x1e },
523 	{ 0x98, 0x62 },
524 	{ 0x99, 0x80 },
525 	{ 0x9a, 0x1e },
526 	{ 0x9b, 0x08 },
527 	{ 0x9c, 0x20 },
528 	{ 0x9e, 0x81 },
529 
530 	{ 0xa6, 0x07 },
531 	{ 0x7e, 0x0c },
532 	{ 0x7f, 0x16 },
533 	{ 0x80, 0x2a },
534 	{ 0x81, 0x4e },
535 	{ 0x82, 0x61 },
536 	{ 0x83, 0x6f },
537 	{ 0x84, 0x7b },
538 	{ 0x85, 0x86 },
539 	{ 0x86, 0x8e },
540 	{ 0x87, 0x97 },
541 	{ 0x88, 0xa4 },
542 	{ 0x89, 0xaf },
543 	{ 0x8a, 0xc5 },
544 	{ 0x8b, 0xd7 },
545 	{ 0x8c, 0xe8 },
546 	{ 0x8d, 0x20 },
547 
548 	{ 0x0c, 0x90 },
549 
550 	{ 0x2b, 0x00 },
551 	{ 0x22, 0x7f },
552 	{ 0x23, 0x03 },
553 	{ 0x11, 0x01 },
554 	{ 0x0c, 0xd0 },
555 	{ 0x64, 0xff },
556 	{ 0x0d, 0x41 },
557 
558 	{ 0x14, 0x41 },
559 	{ 0x0e, 0xcd },
560 	{ 0xac, 0xbf },
561 	{ 0x8e, 0x00 },		/* De-noise threshold */
562 	{ 0x0c, 0xd0 }
563 };
564 static const u8 bridge_start_vga_772x[][2] = {
565 	{0x1c, 0x00},
566 	{0x1d, 0x40},
567 	{0x1d, 0x02},
568 	{0x1d, 0x00},
569 	{0x1d, 0x02},
570 	{0x1d, 0x58},
571 	{0x1d, 0x00},
572 	{0xc0, 0x50},
573 	{0xc1, 0x3c},
574 };
575 static const u8 sensor_start_vga_772x[][2] = {
576 	{0x12, 0x00},
577 	{0x17, 0x26},
578 	{0x18, 0xa0},
579 	{0x19, 0x07},
580 	{0x1a, 0xf0},
581 	{0x29, 0xa0},
582 	{0x2c, 0xf0},
583 	{0x65, 0x20},
584 };
585 static const u8 bridge_start_qvga_772x[][2] = {
586 	{0x1c, 0x00},
587 	{0x1d, 0x40},
588 	{0x1d, 0x02},
589 	{0x1d, 0x00},
590 	{0x1d, 0x01},
591 	{0x1d, 0x4b},
592 	{0x1d, 0x00},
593 	{0xc0, 0x28},
594 	{0xc1, 0x1e},
595 };
596 static const u8 sensor_start_qvga_772x[][2] = {
597 	{0x12, 0x40},
598 	{0x17, 0x3f},
599 	{0x18, 0x50},
600 	{0x19, 0x03},
601 	{0x1a, 0x78},
602 	{0x29, 0x50},
603 	{0x2c, 0x78},
604 	{0x65, 0x2f},
605 };
606 
607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
608 {
609 	struct usb_device *udev = gspca_dev->dev;
610 	int ret;
611 
612 	if (gspca_dev->usb_err < 0)
613 		return;
614 
615 	gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
616 	gspca_dev->usb_buf[0] = val;
617 	ret = usb_control_msg(udev,
618 			      usb_sndctrlpipe(udev, 0),
619 			      0x01,
620 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622 	if (ret < 0) {
623 		pr_err("write failed %d\n", ret);
624 		gspca_dev->usb_err = ret;
625 	}
626 }
627 
628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
629 {
630 	struct usb_device *udev = gspca_dev->dev;
631 	int ret;
632 
633 	if (gspca_dev->usb_err < 0)
634 		return 0;
635 	ret = usb_control_msg(udev,
636 			      usb_rcvctrlpipe(udev, 0),
637 			      0x01,
638 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640 	gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
641 		  reg, gspca_dev->usb_buf[0]);
642 	if (ret < 0) {
643 		pr_err("read failed %d\n", ret);
644 		gspca_dev->usb_err = ret;
645 	}
646 	return gspca_dev->usb_buf[0];
647 }
648 
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650  * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
652 {
653 	u8 data;
654 
655 	gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
656 
657 	data = ov534_reg_read(gspca_dev, 0x21);
658 	data |= 0x80;
659 	ov534_reg_write(gspca_dev, 0x21, data);
660 
661 	data = ov534_reg_read(gspca_dev, 0x23);
662 	if (status)
663 		data |= 0x80;
664 	else
665 		data &= ~0x80;
666 
667 	ov534_reg_write(gspca_dev, 0x23, data);
668 
669 	if (!status) {
670 		data = ov534_reg_read(gspca_dev, 0x21);
671 		data &= ~0x80;
672 		ov534_reg_write(gspca_dev, 0x21, data);
673 	}
674 }
675 
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
677 {
678 	u8 data;
679 	int i;
680 
681 	for (i = 0; i < 5; i++) {
682 		msleep(10);
683 		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
684 
685 		switch (data) {
686 		case 0x00:
687 			return 1;
688 		case 0x04:
689 			return 0;
690 		case 0x03:
691 			break;
692 		default:
693 			gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
694 				  data, i + 1);
695 		}
696 	}
697 	return 0;
698 }
699 
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
701 {
702 	gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
703 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704 	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
706 
707 	if (!sccb_check_status(gspca_dev)) {
708 		pr_err("sccb_reg_write failed\n");
709 		gspca_dev->usb_err = -EIO;
710 	}
711 }
712 
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
714 {
715 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717 	if (!sccb_check_status(gspca_dev))
718 		pr_err("sccb_reg_read failed 1\n");
719 
720 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721 	if (!sccb_check_status(gspca_dev))
722 		pr_err("sccb_reg_read failed 2\n");
723 
724 	return ov534_reg_read(gspca_dev, OV534_REG_READ);
725 }
726 
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729 			const u8 (*data)[2], int len)
730 {
731 	while (--len >= 0) {
732 		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733 		data++;
734 	}
735 }
736 
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739 			const u8 (*data)[2], int len)
740 {
741 	while (--len >= 0) {
742 		if ((*data)[0] != 0xff) {
743 			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744 		} else {
745 			sccb_reg_read(gspca_dev, (*data)[1]);
746 			sccb_reg_write(gspca_dev, 0xff, 0x00);
747 		}
748 		data++;
749 	}
750 }
751 
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
754 {
755 	struct sd *sd = (struct sd *) gspca_dev;
756 	int i;
757 	struct rate_s {
758 		u8 fps;
759 		u8 r11;
760 		u8 r0d;
761 		u8 re5;
762 	};
763 	const struct rate_s *r;
764 	static const struct rate_s rate_0[] = {	/* 640x480 */
765 		{60, 0x01, 0xc1, 0x04},
766 		{50, 0x01, 0x41, 0x02},
767 		{40, 0x02, 0xc1, 0x04},
768 		{30, 0x04, 0x81, 0x02},
769 		{15, 0x03, 0x41, 0x04},
770 	};
771 	static const struct rate_s rate_1[] = {	/* 320x240 */
772 /*		{205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
773 		{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
774 		{150, 0x01, 0xc1, 0x04},
775 		{137, 0x02, 0xc1, 0x02},
776 		{125, 0x02, 0x81, 0x02},
777 		{100, 0x02, 0xc1, 0x04},
778 		{75, 0x03, 0xc1, 0x04},
779 		{60, 0x04, 0xc1, 0x04},
780 		{50, 0x02, 0x41, 0x04},
781 		{37, 0x03, 0x41, 0x04},
782 		{30, 0x04, 0x41, 0x04},
783 	};
784 
785 	if (sd->sensor != SENSOR_OV772x)
786 		return;
787 	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
788 		r = rate_0;
789 		i = ARRAY_SIZE(rate_0);
790 	} else {
791 		r = rate_1;
792 		i = ARRAY_SIZE(rate_1);
793 	}
794 	while (--i > 0) {
795 		if (sd->frame_rate >= r->fps)
796 			break;
797 		r++;
798 	}
799 
800 	sccb_reg_write(gspca_dev, 0x11, r->r11);
801 	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
802 	ov534_reg_write(gspca_dev, 0xe5, r->re5);
803 
804 	gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
805 }
806 
807 static void sethue(struct gspca_dev *gspca_dev, s32 val)
808 {
809 	struct sd *sd = (struct sd *) gspca_dev;
810 
811 	if (sd->sensor == SENSOR_OV767x) {
812 		/* TBD */
813 	} else {
814 		s16 huesin;
815 		s16 huecos;
816 
817 		/* According to the datasheet the registers expect HUESIN and
818 		 * HUECOS to be the result of the trigonometric functions,
819 		 * scaled by 0x80.
820 		 *
821 		 * The 0x7fff here represents the maximum absolute value
822 		 * returned byt fixp_sin and fixp_cos, so the scaling will
823 		 * consider the result like in the interval [-1.0, 1.0].
824 		 */
825 		huesin = fixp_sin16(val) * 0x80 / 0x7fff;
826 		huecos = fixp_cos16(val) * 0x80 / 0x7fff;
827 
828 		if (huesin < 0) {
829 			sccb_reg_write(gspca_dev, 0xab,
830 				sccb_reg_read(gspca_dev, 0xab) | 0x2);
831 			huesin = -huesin;
832 		} else {
833 			sccb_reg_write(gspca_dev, 0xab,
834 				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
835 
836 		}
837 		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
838 		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
839 	}
840 }
841 
842 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
843 {
844 	struct sd *sd = (struct sd *) gspca_dev;
845 
846 	if (sd->sensor == SENSOR_OV767x) {
847 		int i;
848 		static u8 color_tb[][6] = {
849 			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
850 			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
851 			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
852 			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
853 			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
854 			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
855 			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
856 		};
857 
858 		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
859 			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
860 	} else {
861 		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
862 		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
863 	}
864 }
865 
866 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
867 {
868 	struct sd *sd = (struct sd *) gspca_dev;
869 
870 	if (sd->sensor == SENSOR_OV767x) {
871 		if (val < 0)
872 			val = 0x80 - val;
873 		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
874 	} else {
875 		sccb_reg_write(gspca_dev, 0x9b, val);
876 	}
877 }
878 
879 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
880 {
881 	struct sd *sd = (struct sd *) gspca_dev;
882 
883 	if (sd->sensor == SENSOR_OV767x)
884 		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
885 	else
886 		sccb_reg_write(gspca_dev, 0x9c, val);
887 }
888 
889 static void setgain(struct gspca_dev *gspca_dev, s32 val)
890 {
891 	switch (val & 0x30) {
892 	case 0x00:
893 		val &= 0x0f;
894 		break;
895 	case 0x10:
896 		val &= 0x0f;
897 		val |= 0x30;
898 		break;
899 	case 0x20:
900 		val &= 0x0f;
901 		val |= 0x70;
902 		break;
903 	default:
904 /*	case 0x30: */
905 		val &= 0x0f;
906 		val |= 0xf0;
907 		break;
908 	}
909 	sccb_reg_write(gspca_dev, 0x00, val);
910 }
911 
912 static s32 getgain(struct gspca_dev *gspca_dev)
913 {
914 	return sccb_reg_read(gspca_dev, 0x00);
915 }
916 
917 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
918 {
919 	struct sd *sd = (struct sd *) gspca_dev;
920 
921 	if (sd->sensor == SENSOR_OV767x) {
922 
923 		/* set only aec[9:2] */
924 		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
925 	} else {
926 
927 		/* 'val' is one byte and represents half of the exposure value
928 		 * we are going to set into registers, a two bytes value:
929 		 *
930 		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
931 		 *    LSB: ((u16) val << 1) & 0xff == val << 1
932 		 */
933 		sccb_reg_write(gspca_dev, 0x08, val >> 7);
934 		sccb_reg_write(gspca_dev, 0x10, val << 1);
935 	}
936 }
937 
938 static s32 getexposure(struct gspca_dev *gspca_dev)
939 {
940 	struct sd *sd = (struct sd *) gspca_dev;
941 
942 	if (sd->sensor == SENSOR_OV767x) {
943 		/* get only aec[9:2] */
944 		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
945 	} else {
946 		u8 hi = sccb_reg_read(gspca_dev, 0x08);
947 		u8 lo = sccb_reg_read(gspca_dev, 0x10);
948 		return (hi << 8 | lo) >> 1;
949 	}
950 }
951 
952 static void setagc(struct gspca_dev *gspca_dev, s32 val)
953 {
954 	if (val) {
955 		sccb_reg_write(gspca_dev, 0x13,
956 				sccb_reg_read(gspca_dev, 0x13) | 0x04);
957 		sccb_reg_write(gspca_dev, 0x64,
958 				sccb_reg_read(gspca_dev, 0x64) | 0x03);
959 	} else {
960 		sccb_reg_write(gspca_dev, 0x13,
961 				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
962 		sccb_reg_write(gspca_dev, 0x64,
963 				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
964 	}
965 }
966 
967 static void setawb(struct gspca_dev *gspca_dev, s32 val)
968 {
969 	struct sd *sd = (struct sd *) gspca_dev;
970 
971 	if (val) {
972 		sccb_reg_write(gspca_dev, 0x13,
973 				sccb_reg_read(gspca_dev, 0x13) | 0x02);
974 		if (sd->sensor == SENSOR_OV772x)
975 			sccb_reg_write(gspca_dev, 0x63,
976 				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
977 	} else {
978 		sccb_reg_write(gspca_dev, 0x13,
979 				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
980 		if (sd->sensor == SENSOR_OV772x)
981 			sccb_reg_write(gspca_dev, 0x63,
982 				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
983 	}
984 }
985 
986 static void setaec(struct gspca_dev *gspca_dev, s32 val)
987 {
988 	struct sd *sd = (struct sd *) gspca_dev;
989 	u8 data;
990 
991 	data = sd->sensor == SENSOR_OV767x ?
992 			0x05 :		/* agc + aec */
993 			0x01;		/* agc */
994 	switch (val) {
995 	case V4L2_EXPOSURE_AUTO:
996 		sccb_reg_write(gspca_dev, 0x13,
997 				sccb_reg_read(gspca_dev, 0x13) | data);
998 		break;
999 	case V4L2_EXPOSURE_MANUAL:
1000 		sccb_reg_write(gspca_dev, 0x13,
1001 				sccb_reg_read(gspca_dev, 0x13) & ~data);
1002 		break;
1003 	}
1004 }
1005 
1006 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1007 {
1008 	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1009 	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1010 }
1011 
1012 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1013 {
1014 	struct sd *sd = (struct sd *) gspca_dev;
1015 	u8 val;
1016 
1017 	if (sd->sensor == SENSOR_OV767x) {
1018 		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1019 		val &= ~0x30;
1020 		if (hflip)
1021 			val |= 0x20;
1022 		if (vflip)
1023 			val |= 0x10;
1024 		sccb_reg_write(gspca_dev, 0x1e, val);
1025 	} else {
1026 		val = sccb_reg_read(gspca_dev, 0x0c);
1027 		val &= ~0xc0;
1028 		if (hflip == 0)
1029 			val |= 0x40;
1030 		if (vflip == 0)
1031 			val |= 0x80;
1032 		sccb_reg_write(gspca_dev, 0x0c, val);
1033 	}
1034 }
1035 
1036 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1037 {
1038 	struct sd *sd = (struct sd *) gspca_dev;
1039 
1040 	val = val ? 0x9e : 0x00;
1041 	if (sd->sensor == SENSOR_OV767x) {
1042 		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1043 		if (val)
1044 			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1045 	}
1046 	sccb_reg_write(gspca_dev, 0x2b, val);
1047 }
1048 
1049 
1050 /* this function is called at probe time */
1051 static int sd_config(struct gspca_dev *gspca_dev,
1052 		     const struct usb_device_id *id)
1053 {
1054 	struct sd *sd = (struct sd *) gspca_dev;
1055 	struct cam *cam;
1056 
1057 	cam = &gspca_dev->cam;
1058 
1059 	cam->cam_mode = ov772x_mode;
1060 	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1061 
1062 	sd->frame_rate = DEFAULT_FRAME_RATE;
1063 
1064 	return 0;
1065 }
1066 
1067 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1068 {
1069 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1070 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1071 
1072 	switch (ctrl->id) {
1073 	case V4L2_CID_AUTOGAIN:
1074 		gspca_dev->usb_err = 0;
1075 		if (ctrl->val && sd->gain && gspca_dev->streaming)
1076 			sd->gain->val = getgain(gspca_dev);
1077 		return gspca_dev->usb_err;
1078 
1079 	case V4L2_CID_EXPOSURE_AUTO:
1080 		gspca_dev->usb_err = 0;
1081 		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1082 		    gspca_dev->streaming)
1083 			sd->exposure->val = getexposure(gspca_dev);
1084 		return gspca_dev->usb_err;
1085 	}
1086 	return -EINVAL;
1087 }
1088 
1089 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1090 {
1091 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1092 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1093 
1094 	gspca_dev->usb_err = 0;
1095 	if (!gspca_dev->streaming)
1096 		return 0;
1097 
1098 	switch (ctrl->id) {
1099 	case V4L2_CID_HUE:
1100 		sethue(gspca_dev, ctrl->val);
1101 		break;
1102 	case V4L2_CID_SATURATION:
1103 		setsaturation(gspca_dev, ctrl->val);
1104 		break;
1105 	case V4L2_CID_BRIGHTNESS:
1106 		setbrightness(gspca_dev, ctrl->val);
1107 		break;
1108 	case V4L2_CID_CONTRAST:
1109 		setcontrast(gspca_dev, ctrl->val);
1110 		break;
1111 	case V4L2_CID_AUTOGAIN:
1112 	/* case V4L2_CID_GAIN: */
1113 		setagc(gspca_dev, ctrl->val);
1114 		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1115 			setgain(gspca_dev, sd->gain->val);
1116 		break;
1117 	case V4L2_CID_AUTO_WHITE_BALANCE:
1118 		setawb(gspca_dev, ctrl->val);
1119 		break;
1120 	case V4L2_CID_EXPOSURE_AUTO:
1121 	/* case V4L2_CID_EXPOSURE: */
1122 		setaec(gspca_dev, ctrl->val);
1123 		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1124 		    sd->exposure)
1125 			setexposure(gspca_dev, sd->exposure->val);
1126 		break;
1127 	case V4L2_CID_SHARPNESS:
1128 		setsharpness(gspca_dev, ctrl->val);
1129 		break;
1130 	case V4L2_CID_HFLIP:
1131 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1132 		break;
1133 	case V4L2_CID_VFLIP:
1134 		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1135 		break;
1136 	case V4L2_CID_POWER_LINE_FREQUENCY:
1137 		setlightfreq(gspca_dev, ctrl->val);
1138 		break;
1139 	}
1140 	return gspca_dev->usb_err;
1141 }
1142 
1143 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1144 	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1145 	.s_ctrl = ov534_s_ctrl,
1146 };
1147 
1148 static int sd_init_controls(struct gspca_dev *gspca_dev)
1149 {
1150 	struct sd *sd = (struct sd *) gspca_dev;
1151 	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1152 	/* parameters with different values between the supported sensors */
1153 	int saturation_min;
1154 	int saturation_max;
1155 	int saturation_def;
1156 	int brightness_min;
1157 	int brightness_max;
1158 	int brightness_def;
1159 	int contrast_max;
1160 	int contrast_def;
1161 	int exposure_min;
1162 	int exposure_max;
1163 	int exposure_def;
1164 	int hflip_def;
1165 
1166 	if (sd->sensor == SENSOR_OV767x) {
1167 		saturation_min = 0,
1168 		saturation_max = 6,
1169 		saturation_def = 3,
1170 		brightness_min = -127;
1171 		brightness_max = 127;
1172 		brightness_def = 0;
1173 		contrast_max = 0x80;
1174 		contrast_def = 0x40;
1175 		exposure_min = 0x08;
1176 		exposure_max = 0x60;
1177 		exposure_def = 0x13;
1178 		hflip_def = 1;
1179 	} else {
1180 		saturation_min = 0,
1181 		saturation_max = 255,
1182 		saturation_def = 64,
1183 		brightness_min = 0;
1184 		brightness_max = 255;
1185 		brightness_def = 0;
1186 		contrast_max = 255;
1187 		contrast_def = 32;
1188 		exposure_min = 0;
1189 		exposure_max = 255;
1190 		exposure_def = 120;
1191 		hflip_def = 0;
1192 	}
1193 
1194 	gspca_dev->vdev.ctrl_handler = hdl;
1195 
1196 	v4l2_ctrl_handler_init(hdl, 13);
1197 
1198 	if (sd->sensor == SENSOR_OV772x)
1199 		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1200 				V4L2_CID_HUE, -90, 90, 1, 0);
1201 
1202 	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203 			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1204 			saturation_def);
1205 	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206 			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1207 			brightness_def);
1208 	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209 			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1210 
1211 	if (sd->sensor == SENSOR_OV772x) {
1212 		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1213 				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1214 		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1215 				V4L2_CID_GAIN, 0, 63, 1, 20);
1216 	}
1217 
1218 	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1219 			V4L2_CID_EXPOSURE_AUTO,
1220 			V4L2_EXPOSURE_MANUAL, 0,
1221 			V4L2_EXPOSURE_AUTO);
1222 	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1223 			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1224 			exposure_def);
1225 
1226 	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1227 			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1228 
1229 	if (sd->sensor == SENSOR_OV772x)
1230 		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1231 				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1232 
1233 	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234 			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1235 	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1236 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1237 	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1238 			V4L2_CID_POWER_LINE_FREQUENCY,
1239 			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1240 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1241 
1242 	if (hdl->error) {
1243 		pr_err("Could not initialize controls\n");
1244 		return hdl->error;
1245 	}
1246 
1247 	if (sd->sensor == SENSOR_OV772x)
1248 		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1249 
1250 	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1251 			       true);
1252 
1253 	return 0;
1254 }
1255 
1256 /* this function is called at probe and resume time */
1257 static int sd_init(struct gspca_dev *gspca_dev)
1258 {
1259 	struct sd *sd = (struct sd *) gspca_dev;
1260 	u16 sensor_id;
1261 	static const struct reg_array bridge_init[NSENSORS] = {
1262 	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1263 	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1264 	};
1265 	static const struct reg_array sensor_init[NSENSORS] = {
1266 	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1267 	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1268 	};
1269 
1270 	/* reset bridge */
1271 	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1272 	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1273 	msleep(100);
1274 
1275 	/* initialize the sensor address */
1276 	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1277 
1278 	/* reset sensor */
1279 	sccb_reg_write(gspca_dev, 0x12, 0x80);
1280 	msleep(10);
1281 
1282 	/* probe the sensor */
1283 	sccb_reg_read(gspca_dev, 0x0a);
1284 	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1285 	sccb_reg_read(gspca_dev, 0x0b);
1286 	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1287 	gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1288 
1289 	if ((sensor_id & 0xfff0) == 0x7670) {
1290 		sd->sensor = SENSOR_OV767x;
1291 		gspca_dev->cam.cam_mode = ov767x_mode;
1292 		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1293 	} else {
1294 		sd->sensor = SENSOR_OV772x;
1295 		gspca_dev->cam.bulk = 1;
1296 		gspca_dev->cam.bulk_size = 16384;
1297 		gspca_dev->cam.bulk_nurbs = 2;
1298 		gspca_dev->cam.mode_framerates = ov772x_framerates;
1299 	}
1300 
1301 	/* initialize */
1302 	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1303 			bridge_init[sd->sensor].len);
1304 	ov534_set_led(gspca_dev, 1);
1305 	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1306 			sensor_init[sd->sensor].len);
1307 
1308 	sd_stopN(gspca_dev);
1309 /*	set_frame_rate(gspca_dev);	*/
1310 
1311 	return gspca_dev->usb_err;
1312 }
1313 
1314 static int sd_start(struct gspca_dev *gspca_dev)
1315 {
1316 	struct sd *sd = (struct sd *) gspca_dev;
1317 	int mode;
1318 	static const struct reg_array bridge_start[NSENSORS][2] = {
1319 	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1320 					ARRAY_SIZE(bridge_start_qvga_767x)},
1321 			{bridge_start_vga_767x,
1322 					ARRAY_SIZE(bridge_start_vga_767x)}},
1323 	[SENSOR_OV772x] = {{bridge_start_qvga_772x,
1324 					ARRAY_SIZE(bridge_start_qvga_772x)},
1325 			{bridge_start_vga_772x,
1326 					ARRAY_SIZE(bridge_start_vga_772x)}},
1327 	};
1328 	static const struct reg_array sensor_start[NSENSORS][2] = {
1329 	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1330 					ARRAY_SIZE(sensor_start_qvga_767x)},
1331 			{sensor_start_vga_767x,
1332 					ARRAY_SIZE(sensor_start_vga_767x)}},
1333 	[SENSOR_OV772x] = {{sensor_start_qvga_772x,
1334 					ARRAY_SIZE(sensor_start_qvga_772x)},
1335 			{sensor_start_vga_772x,
1336 					ARRAY_SIZE(sensor_start_vga_772x)}},
1337 	};
1338 
1339 	/* (from ms-win trace) */
1340 	if (sd->sensor == SENSOR_OV767x)
1341 		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1342 					/* black sun enable ? */
1343 
1344 	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1345 	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1346 				bridge_start[sd->sensor][mode].len);
1347 	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1348 				sensor_start[sd->sensor][mode].len);
1349 
1350 	set_frame_rate(gspca_dev);
1351 
1352 	if (sd->hue)
1353 		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1354 	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1355 	if (sd->autogain)
1356 		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1357 	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1358 	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1359 	if (sd->gain)
1360 		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1361 	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1362 	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1363 	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1364 	if (sd->sharpness)
1365 		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1366 	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1367 		  v4l2_ctrl_g_ctrl(sd->vflip));
1368 	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1369 
1370 	ov534_set_led(gspca_dev, 1);
1371 	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1372 	return gspca_dev->usb_err;
1373 }
1374 
1375 static void sd_stopN(struct gspca_dev *gspca_dev)
1376 {
1377 	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1378 	ov534_set_led(gspca_dev, 0);
1379 }
1380 
1381 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1382 #define UVC_STREAM_EOH	(1 << 7)
1383 #define UVC_STREAM_ERR	(1 << 6)
1384 #define UVC_STREAM_STI	(1 << 5)
1385 #define UVC_STREAM_RES	(1 << 4)
1386 #define UVC_STREAM_SCR	(1 << 3)
1387 #define UVC_STREAM_PTS	(1 << 2)
1388 #define UVC_STREAM_EOF	(1 << 1)
1389 #define UVC_STREAM_FID	(1 << 0)
1390 
1391 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1392 			u8 *data, int len)
1393 {
1394 	struct sd *sd = (struct sd *) gspca_dev;
1395 	__u32 this_pts;
1396 	u16 this_fid;
1397 	int remaining_len = len;
1398 	int payload_len;
1399 
1400 	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1401 	do {
1402 		len = min(remaining_len, payload_len);
1403 
1404 		/* Payloads are prefixed with a UVC-style header.  We
1405 		   consider a frame to start when the FID toggles, or the PTS
1406 		   changes.  A frame ends when EOF is set, and we've received
1407 		   the correct number of bytes. */
1408 
1409 		/* Verify UVC header.  Header length is always 12 */
1410 		if (data[0] != 12 || len < 12) {
1411 			gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1412 			goto discard;
1413 		}
1414 
1415 		/* Check errors */
1416 		if (data[1] & UVC_STREAM_ERR) {
1417 			gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1418 			goto discard;
1419 		}
1420 
1421 		/* Extract PTS and FID */
1422 		if (!(data[1] & UVC_STREAM_PTS)) {
1423 			gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1424 			goto discard;
1425 		}
1426 		this_pts = (data[5] << 24) | (data[4] << 16)
1427 						| (data[3] << 8) | data[2];
1428 		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1429 
1430 		/* If PTS or FID has changed, start a new frame. */
1431 		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1432 			if (gspca_dev->last_packet_type == INTER_PACKET)
1433 				gspca_frame_add(gspca_dev, LAST_PACKET,
1434 						NULL, 0);
1435 			sd->last_pts = this_pts;
1436 			sd->last_fid = this_fid;
1437 			gspca_frame_add(gspca_dev, FIRST_PACKET,
1438 					data + 12, len - 12);
1439 		/* If this packet is marked as EOF, end the frame */
1440 		} else if (data[1] & UVC_STREAM_EOF) {
1441 			sd->last_pts = 0;
1442 			if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1443 			 && gspca_dev->image_len + len - 12 !=
1444 				   gspca_dev->pixfmt.width *
1445 					gspca_dev->pixfmt.height * 2) {
1446 				gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1447 				goto discard;
1448 			}
1449 			gspca_frame_add(gspca_dev, LAST_PACKET,
1450 					data + 12, len - 12);
1451 		} else {
1452 
1453 			/* Add the data from this payload */
1454 			gspca_frame_add(gspca_dev, INTER_PACKET,
1455 					data + 12, len - 12);
1456 		}
1457 
1458 		/* Done this payload */
1459 		goto scan_next;
1460 
1461 discard:
1462 		/* Discard data until a new frame starts. */
1463 		gspca_dev->last_packet_type = DISCARD_PACKET;
1464 
1465 scan_next:
1466 		remaining_len -= len;
1467 		data += len;
1468 	} while (remaining_len > 0);
1469 }
1470 
1471 /* get stream parameters (framerate) */
1472 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1473 			     struct v4l2_streamparm *parm)
1474 {
1475 	struct v4l2_captureparm *cp = &parm->parm.capture;
1476 	struct v4l2_fract *tpf = &cp->timeperframe;
1477 	struct sd *sd = (struct sd *) gspca_dev;
1478 
1479 	cp->capability |= V4L2_CAP_TIMEPERFRAME;
1480 	tpf->numerator = 1;
1481 	tpf->denominator = sd->frame_rate;
1482 }
1483 
1484 /* set stream parameters (framerate) */
1485 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1486 			     struct v4l2_streamparm *parm)
1487 {
1488 	struct v4l2_captureparm *cp = &parm->parm.capture;
1489 	struct v4l2_fract *tpf = &cp->timeperframe;
1490 	struct sd *sd = (struct sd *) gspca_dev;
1491 
1492 	if (tpf->numerator == 0 || tpf->denominator == 0)
1493 		sd->frame_rate = DEFAULT_FRAME_RATE;
1494 	else
1495 		sd->frame_rate = tpf->denominator / tpf->numerator;
1496 
1497 	if (gspca_dev->streaming)
1498 		set_frame_rate(gspca_dev);
1499 
1500 	/* Return the actual framerate */
1501 	tpf->numerator = 1;
1502 	tpf->denominator = sd->frame_rate;
1503 }
1504 
1505 /* sub-driver description */
1506 static const struct sd_desc sd_desc = {
1507 	.name     = MODULE_NAME,
1508 	.config   = sd_config,
1509 	.init     = sd_init,
1510 	.init_controls = sd_init_controls,
1511 	.start    = sd_start,
1512 	.stopN    = sd_stopN,
1513 	.pkt_scan = sd_pkt_scan,
1514 	.get_streamparm = sd_get_streamparm,
1515 	.set_streamparm = sd_set_streamparm,
1516 };
1517 
1518 /* -- module initialisation -- */
1519 static const struct usb_device_id device_table[] = {
1520 	{USB_DEVICE(0x1415, 0x2000)},
1521 	{USB_DEVICE(0x06f8, 0x3002)},
1522 	{}
1523 };
1524 
1525 MODULE_DEVICE_TABLE(usb, device_table);
1526 
1527 /* -- device connect -- */
1528 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1529 {
1530 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1531 				THIS_MODULE);
1532 }
1533 
1534 static struct usb_driver sd_driver = {
1535 	.name       = MODULE_NAME,
1536 	.id_table   = device_table,
1537 	.probe      = sd_probe,
1538 	.disconnect = gspca_disconnect,
1539 #ifdef CONFIG_PM
1540 	.suspend    = gspca_suspend,
1541 	.resume     = gspca_resume,
1542 	.reset_resume = gspca_resume,
1543 #endif
1544 };
1545 
1546 module_usb_driver(sd_driver);
1547