1 /* 2 * ov534-ov7xxx gspca driver 3 * 4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it> 5 * Copyright (C) 2008 Jim Paris <jim@jtan.com> 6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr 7 * 8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com> 9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com> 10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ 11 * 12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr 13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls 14 * added by Max Thrun <bear24rw@gmail.com> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License as published by 18 * the Free Software Foundation; either version 2 of the License, or 19 * any later version. 20 * 21 * This program is distributed in the hope that it will be useful, 22 * but WITHOUT ANY WARRANTY; without even the implied warranty of 23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 24 * GNU General Public License for more details. 25 * 26 * You should have received a copy of the GNU General Public License 27 * along with this program; if not, write to the Free Software 28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #define MODULE_NAME "ov534" 34 35 #include "gspca.h" 36 37 #include <linux/fixp-arith.h> 38 #include <media/v4l2-ctrls.h> 39 40 #define OV534_REG_ADDRESS 0xf1 /* sensor address */ 41 #define OV534_REG_SUBADDR 0xf2 42 #define OV534_REG_WRITE 0xf3 43 #define OV534_REG_READ 0xf4 44 #define OV534_REG_OPERATION 0xf5 45 #define OV534_REG_STATUS 0xf6 46 47 #define OV534_OP_WRITE_3 0x37 48 #define OV534_OP_WRITE_2 0x33 49 #define OV534_OP_READ_2 0xf9 50 51 #define CTRL_TIMEOUT 500 52 53 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>"); 54 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); 55 MODULE_LICENSE("GPL"); 56 57 /* specific webcam descriptor */ 58 struct sd { 59 struct gspca_dev gspca_dev; /* !! must be the first item */ 60 61 struct v4l2_ctrl_handler ctrl_handler; 62 struct v4l2_ctrl *hue; 63 struct v4l2_ctrl *saturation; 64 struct v4l2_ctrl *brightness; 65 struct v4l2_ctrl *contrast; 66 struct { /* gain control cluster */ 67 struct v4l2_ctrl *autogain; 68 struct v4l2_ctrl *gain; 69 }; 70 struct v4l2_ctrl *autowhitebalance; 71 struct { /* exposure control cluster */ 72 struct v4l2_ctrl *autoexposure; 73 struct v4l2_ctrl *exposure; 74 }; 75 struct v4l2_ctrl *sharpness; 76 struct v4l2_ctrl *hflip; 77 struct v4l2_ctrl *vflip; 78 struct v4l2_ctrl *plfreq; 79 80 __u32 last_pts; 81 u16 last_fid; 82 u8 frame_rate; 83 84 u8 sensor; 85 }; 86 enum sensors { 87 SENSOR_OV767x, 88 SENSOR_OV772x, 89 NSENSORS 90 }; 91 92 static int sd_start(struct gspca_dev *gspca_dev); 93 static void sd_stopN(struct gspca_dev *gspca_dev); 94 95 96 static const struct v4l2_pix_format ov772x_mode[] = { 97 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 98 .bytesperline = 320 * 2, 99 .sizeimage = 320 * 240 * 2, 100 .colorspace = V4L2_COLORSPACE_SRGB, 101 .priv = 1}, 102 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 103 .bytesperline = 640 * 2, 104 .sizeimage = 640 * 480 * 2, 105 .colorspace = V4L2_COLORSPACE_SRGB, 106 .priv = 0}, 107 }; 108 static const struct v4l2_pix_format ov767x_mode[] = { 109 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 110 .bytesperline = 320, 111 .sizeimage = 320 * 240 * 3 / 8 + 590, 112 .colorspace = V4L2_COLORSPACE_JPEG}, 113 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 114 .bytesperline = 640, 115 .sizeimage = 640 * 480 * 3 / 8 + 590, 116 .colorspace = V4L2_COLORSPACE_JPEG}, 117 }; 118 119 static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30}; 120 static const u8 vga_rates[] = {60, 50, 40, 30, 15}; 121 122 static const struct framerates ov772x_framerates[] = { 123 { /* 320x240 */ 124 .rates = qvga_rates, 125 .nrates = ARRAY_SIZE(qvga_rates), 126 }, 127 { /* 640x480 */ 128 .rates = vga_rates, 129 .nrates = ARRAY_SIZE(vga_rates), 130 }, 131 }; 132 133 struct reg_array { 134 const u8 (*val)[2]; 135 int len; 136 }; 137 138 static const u8 bridge_init_767x[][2] = { 139 /* comments from the ms-win file apollo7670.set */ 140 /* str1 */ 141 {0xf1, 0x42}, 142 {0x88, 0xf8}, 143 {0x89, 0xff}, 144 {0x76, 0x03}, 145 {0x92, 0x03}, 146 {0x95, 0x10}, 147 {0xe2, 0x00}, 148 {0xe7, 0x3e}, 149 {0x8d, 0x1c}, 150 {0x8e, 0x00}, 151 {0x8f, 0x00}, 152 {0x1f, 0x00}, 153 {0xc3, 0xf9}, 154 {0x89, 0xff}, 155 {0x88, 0xf8}, 156 {0x76, 0x03}, 157 {0x92, 0x01}, 158 {0x93, 0x18}, 159 {0x1c, 0x00}, 160 {0x1d, 0x48}, 161 {0x1d, 0x00}, 162 {0x1d, 0xff}, 163 {0x1d, 0x02}, 164 {0x1d, 0x58}, 165 {0x1d, 0x00}, 166 {0x1c, 0x0a}, 167 {0x1d, 0x0a}, 168 {0x1d, 0x0e}, 169 {0xc0, 0x50}, /* HSize 640 */ 170 {0xc1, 0x3c}, /* VSize 480 */ 171 {0x34, 0x05}, /* enable Audio Suspend mode */ 172 {0xc2, 0x0c}, /* Input YUV */ 173 {0xc3, 0xf9}, /* enable PRE */ 174 {0x34, 0x05}, /* enable Audio Suspend mode */ 175 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ 176 {0x31, 0xf9}, /* enable 1.8V Suspend */ 177 {0x35, 0x02}, /* turn on JPEG */ 178 {0xd9, 0x10}, 179 {0x25, 0x42}, /* GPIO[8]:Input */ 180 {0x94, 0x11}, /* If the default setting is loaded when 181 * system boots up, this flag is closed here */ 182 }; 183 static const u8 sensor_init_767x[][2] = { 184 {0x12, 0x80}, 185 {0x11, 0x03}, 186 {0x3a, 0x04}, 187 {0x12, 0x00}, 188 {0x17, 0x13}, 189 {0x18, 0x01}, 190 {0x32, 0xb6}, 191 {0x19, 0x02}, 192 {0x1a, 0x7a}, 193 {0x03, 0x0a}, 194 {0x0c, 0x00}, 195 {0x3e, 0x00}, 196 {0x70, 0x3a}, 197 {0x71, 0x35}, 198 {0x72, 0x11}, 199 {0x73, 0xf0}, 200 {0xa2, 0x02}, 201 {0x7a, 0x2a}, /* set Gamma=1.6 below */ 202 {0x7b, 0x12}, 203 {0x7c, 0x1d}, 204 {0x7d, 0x2d}, 205 {0x7e, 0x45}, 206 {0x7f, 0x50}, 207 {0x80, 0x59}, 208 {0x81, 0x62}, 209 {0x82, 0x6b}, 210 {0x83, 0x73}, 211 {0x84, 0x7b}, 212 {0x85, 0x8a}, 213 {0x86, 0x98}, 214 {0x87, 0xb2}, 215 {0x88, 0xca}, 216 {0x89, 0xe0}, 217 {0x13, 0xe0}, 218 {0x00, 0x00}, 219 {0x10, 0x00}, 220 {0x0d, 0x40}, 221 {0x14, 0x38}, /* gain max 16x */ 222 {0xa5, 0x05}, 223 {0xab, 0x07}, 224 {0x24, 0x95}, 225 {0x25, 0x33}, 226 {0x26, 0xe3}, 227 {0x9f, 0x78}, 228 {0xa0, 0x68}, 229 {0xa1, 0x03}, 230 {0xa6, 0xd8}, 231 {0xa7, 0xd8}, 232 {0xa8, 0xf0}, 233 {0xa9, 0x90}, 234 {0xaa, 0x94}, 235 {0x13, 0xe5}, 236 {0x0e, 0x61}, 237 {0x0f, 0x4b}, 238 {0x16, 0x02}, 239 {0x21, 0x02}, 240 {0x22, 0x91}, 241 {0x29, 0x07}, 242 {0x33, 0x0b}, 243 {0x35, 0x0b}, 244 {0x37, 0x1d}, 245 {0x38, 0x71}, 246 {0x39, 0x2a}, 247 {0x3c, 0x78}, 248 {0x4d, 0x40}, 249 {0x4e, 0x20}, 250 {0x69, 0x00}, 251 {0x6b, 0x4a}, 252 {0x74, 0x10}, 253 {0x8d, 0x4f}, 254 {0x8e, 0x00}, 255 {0x8f, 0x00}, 256 {0x90, 0x00}, 257 {0x91, 0x00}, 258 {0x96, 0x00}, 259 {0x9a, 0x80}, 260 {0xb0, 0x84}, 261 {0xb1, 0x0c}, 262 {0xb2, 0x0e}, 263 {0xb3, 0x82}, 264 {0xb8, 0x0a}, 265 {0x43, 0x0a}, 266 {0x44, 0xf0}, 267 {0x45, 0x34}, 268 {0x46, 0x58}, 269 {0x47, 0x28}, 270 {0x48, 0x3a}, 271 {0x59, 0x88}, 272 {0x5a, 0x88}, 273 {0x5b, 0x44}, 274 {0x5c, 0x67}, 275 {0x5d, 0x49}, 276 {0x5e, 0x0e}, 277 {0x6c, 0x0a}, 278 {0x6d, 0x55}, 279 {0x6e, 0x11}, 280 {0x6f, 0x9f}, 281 {0x6a, 0x40}, 282 {0x01, 0x40}, 283 {0x02, 0x40}, 284 {0x13, 0xe7}, 285 {0x4f, 0x80}, 286 {0x50, 0x80}, 287 {0x51, 0x00}, 288 {0x52, 0x22}, 289 {0x53, 0x5e}, 290 {0x54, 0x80}, 291 {0x58, 0x9e}, 292 {0x41, 0x08}, 293 {0x3f, 0x00}, 294 {0x75, 0x04}, 295 {0x76, 0xe1}, 296 {0x4c, 0x00}, 297 {0x77, 0x01}, 298 {0x3d, 0xc2}, 299 {0x4b, 0x09}, 300 {0xc9, 0x60}, 301 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ 302 {0x56, 0x40}, 303 {0x34, 0x11}, 304 {0x3b, 0xc2}, 305 {0xa4, 0x8a}, /* Night mode trigger point */ 306 {0x96, 0x00}, 307 {0x97, 0x30}, 308 {0x98, 0x20}, 309 {0x99, 0x20}, 310 {0x9a, 0x84}, 311 {0x9b, 0x29}, 312 {0x9c, 0x03}, 313 {0x9d, 0x4c}, 314 {0x9e, 0x3f}, 315 {0x78, 0x04}, 316 {0x79, 0x01}, 317 {0xc8, 0xf0}, 318 {0x79, 0x0f}, 319 {0xc8, 0x00}, 320 {0x79, 0x10}, 321 {0xc8, 0x7e}, 322 {0x79, 0x0a}, 323 {0xc8, 0x80}, 324 {0x79, 0x0b}, 325 {0xc8, 0x01}, 326 {0x79, 0x0c}, 327 {0xc8, 0x0f}, 328 {0x79, 0x0d}, 329 {0xc8, 0x20}, 330 {0x79, 0x09}, 331 {0xc8, 0x80}, 332 {0x79, 0x02}, 333 {0xc8, 0xc0}, 334 {0x79, 0x03}, 335 {0xc8, 0x20}, 336 {0x79, 0x26}, 337 }; 338 static const u8 bridge_start_vga_767x[][2] = { 339 /* str59 JPG */ 340 {0x94, 0xaa}, 341 {0xf1, 0x42}, 342 {0xe5, 0x04}, 343 {0xc0, 0x50}, 344 {0xc1, 0x3c}, 345 {0xc2, 0x0c}, 346 {0x35, 0x02}, /* turn on JPEG */ 347 {0xd9, 0x10}, 348 {0xda, 0x00}, /* for higher clock rate(30fps) */ 349 {0x34, 0x05}, /* enable Audio Suspend mode */ 350 {0xc3, 0xf9}, /* enable PRE */ 351 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 352 {0x8d, 0x1c}, /* output YUV */ 353 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ 354 {0x50, 0x00}, /* H/V divider=0 */ 355 {0x51, 0xa0}, /* input H=640/4 */ 356 {0x52, 0x3c}, /* input V=480/4 */ 357 {0x53, 0x00}, /* offset X=0 */ 358 {0x54, 0x00}, /* offset Y=0 */ 359 {0x55, 0x00}, /* H/V size[8]=0 */ 360 {0x57, 0x00}, /* H-size[9]=0 */ 361 {0x5c, 0x00}, /* output size[9:8]=0 */ 362 {0x5a, 0xa0}, /* output H=640/4 */ 363 {0x5b, 0x78}, /* output V=480/4 */ 364 {0x1c, 0x0a}, 365 {0x1d, 0x0a}, 366 {0x94, 0x11}, 367 }; 368 static const u8 sensor_start_vga_767x[][2] = { 369 {0x11, 0x01}, 370 {0x1e, 0x04}, 371 {0x19, 0x02}, 372 {0x1a, 0x7a}, 373 }; 374 static const u8 bridge_start_qvga_767x[][2] = { 375 /* str86 JPG */ 376 {0x94, 0xaa}, 377 {0xf1, 0x42}, 378 {0xe5, 0x04}, 379 {0xc0, 0x80}, 380 {0xc1, 0x60}, 381 {0xc2, 0x0c}, 382 {0x35, 0x02}, /* turn on JPEG */ 383 {0xd9, 0x10}, 384 {0xc0, 0x50}, /* CIF HSize 640 */ 385 {0xc1, 0x3c}, /* CIF VSize 480 */ 386 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 387 {0x8d, 0x1c}, /* output YUV */ 388 {0x34, 0x05}, /* enable Audio Suspend mode */ 389 {0xc2, 0x4c}, /* output YUV and Enable DCW */ 390 {0xc3, 0xf9}, /* enable PRE */ 391 {0x1c, 0x00}, /* indirect addressing */ 392 {0x1d, 0x48}, /* output YUV422 */ 393 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ 394 {0x51, 0xa0}, /* DCW input H=640/4 */ 395 {0x52, 0x78}, /* DCW input V=480/4 */ 396 {0x53, 0x00}, /* offset X=0 */ 397 {0x54, 0x00}, /* offset Y=0 */ 398 {0x55, 0x00}, /* H/V size[8]=0 */ 399 {0x57, 0x00}, /* H-size[9]=0 */ 400 {0x5c, 0x00}, /* DCW output size[9:8]=0 */ 401 {0x5a, 0x50}, /* DCW output H=320/4 */ 402 {0x5b, 0x3c}, /* DCW output V=240/4 */ 403 {0x1c, 0x0a}, 404 {0x1d, 0x0a}, 405 {0x94, 0x11}, 406 }; 407 static const u8 sensor_start_qvga_767x[][2] = { 408 {0x11, 0x01}, 409 {0x1e, 0x04}, 410 {0x19, 0x02}, 411 {0x1a, 0x7a}, 412 }; 413 414 static const u8 bridge_init_772x[][2] = { 415 { 0xc2, 0x0c }, 416 { 0x88, 0xf8 }, 417 { 0xc3, 0x69 }, 418 { 0x89, 0xff }, 419 { 0x76, 0x03 }, 420 { 0x92, 0x01 }, 421 { 0x93, 0x18 }, 422 { 0x94, 0x10 }, 423 { 0x95, 0x10 }, 424 { 0xe2, 0x00 }, 425 { 0xe7, 0x3e }, 426 427 { 0x96, 0x00 }, 428 429 { 0x97, 0x20 }, 430 { 0x97, 0x20 }, 431 { 0x97, 0x20 }, 432 { 0x97, 0x0a }, 433 { 0x97, 0x3f }, 434 { 0x97, 0x4a }, 435 { 0x97, 0x20 }, 436 { 0x97, 0x15 }, 437 { 0x97, 0x0b }, 438 439 { 0x8e, 0x40 }, 440 { 0x1f, 0x81 }, 441 { 0x34, 0x05 }, 442 { 0xe3, 0x04 }, 443 { 0x88, 0x00 }, 444 { 0x89, 0x00 }, 445 { 0x76, 0x00 }, 446 { 0xe7, 0x2e }, 447 { 0x31, 0xf9 }, 448 { 0x25, 0x42 }, 449 { 0x21, 0xf0 }, 450 451 { 0x1c, 0x00 }, 452 { 0x1d, 0x40 }, 453 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */ 454 { 0x1d, 0x00 }, /* payload size */ 455 456 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */ 457 { 0x1d, 0x58 }, /* frame size */ 458 { 0x1d, 0x00 }, /* frame size */ 459 460 { 0x1c, 0x0a }, 461 { 0x1d, 0x08 }, /* turn on UVC header */ 462 { 0x1d, 0x0e }, /* .. */ 463 464 { 0x8d, 0x1c }, 465 { 0x8e, 0x80 }, 466 { 0xe5, 0x04 }, 467 468 { 0xc0, 0x50 }, 469 { 0xc1, 0x3c }, 470 { 0xc2, 0x0c }, 471 }; 472 static const u8 sensor_init_772x[][2] = { 473 { 0x12, 0x80 }, 474 { 0x11, 0x01 }, 475 /*fixme: better have a delay?*/ 476 { 0x11, 0x01 }, 477 { 0x11, 0x01 }, 478 { 0x11, 0x01 }, 479 { 0x11, 0x01 }, 480 { 0x11, 0x01 }, 481 { 0x11, 0x01 }, 482 { 0x11, 0x01 }, 483 { 0x11, 0x01 }, 484 { 0x11, 0x01 }, 485 { 0x11, 0x01 }, 486 487 { 0x3d, 0x03 }, 488 { 0x17, 0x26 }, 489 { 0x18, 0xa0 }, 490 { 0x19, 0x07 }, 491 { 0x1a, 0xf0 }, 492 { 0x32, 0x00 }, 493 { 0x29, 0xa0 }, 494 { 0x2c, 0xf0 }, 495 { 0x65, 0x20 }, 496 { 0x11, 0x01 }, 497 { 0x42, 0x7f }, 498 { 0x63, 0xaa }, /* AWB - was e0 */ 499 { 0x64, 0xff }, 500 { 0x66, 0x00 }, 501 { 0x13, 0xf0 }, /* com8 */ 502 { 0x0d, 0x41 }, 503 { 0x0f, 0xc5 }, 504 { 0x14, 0x11 }, 505 506 { 0x22, 0x7f }, 507 { 0x23, 0x03 }, 508 { 0x24, 0x40 }, 509 { 0x25, 0x30 }, 510 { 0x26, 0xa1 }, 511 { 0x2a, 0x00 }, 512 { 0x2b, 0x00 }, 513 { 0x6b, 0xaa }, 514 { 0x13, 0xff }, /* AWB */ 515 516 { 0x90, 0x05 }, 517 { 0x91, 0x01 }, 518 { 0x92, 0x03 }, 519 { 0x93, 0x00 }, 520 { 0x94, 0x60 }, 521 { 0x95, 0x3c }, 522 { 0x96, 0x24 }, 523 { 0x97, 0x1e }, 524 { 0x98, 0x62 }, 525 { 0x99, 0x80 }, 526 { 0x9a, 0x1e }, 527 { 0x9b, 0x08 }, 528 { 0x9c, 0x20 }, 529 { 0x9e, 0x81 }, 530 531 { 0xa6, 0x07 }, 532 { 0x7e, 0x0c }, 533 { 0x7f, 0x16 }, 534 { 0x80, 0x2a }, 535 { 0x81, 0x4e }, 536 { 0x82, 0x61 }, 537 { 0x83, 0x6f }, 538 { 0x84, 0x7b }, 539 { 0x85, 0x86 }, 540 { 0x86, 0x8e }, 541 { 0x87, 0x97 }, 542 { 0x88, 0xa4 }, 543 { 0x89, 0xaf }, 544 { 0x8a, 0xc5 }, 545 { 0x8b, 0xd7 }, 546 { 0x8c, 0xe8 }, 547 { 0x8d, 0x20 }, 548 549 { 0x0c, 0x90 }, 550 551 { 0x2b, 0x00 }, 552 { 0x22, 0x7f }, 553 { 0x23, 0x03 }, 554 { 0x11, 0x01 }, 555 { 0x0c, 0xd0 }, 556 { 0x64, 0xff }, 557 { 0x0d, 0x41 }, 558 559 { 0x14, 0x41 }, 560 { 0x0e, 0xcd }, 561 { 0xac, 0xbf }, 562 { 0x8e, 0x00 }, /* De-noise threshold */ 563 { 0x0c, 0xd0 } 564 }; 565 static const u8 bridge_start_vga_772x[][2] = { 566 {0x1c, 0x00}, 567 {0x1d, 0x40}, 568 {0x1d, 0x02}, 569 {0x1d, 0x00}, 570 {0x1d, 0x02}, 571 {0x1d, 0x58}, 572 {0x1d, 0x00}, 573 {0xc0, 0x50}, 574 {0xc1, 0x3c}, 575 }; 576 static const u8 sensor_start_vga_772x[][2] = { 577 {0x12, 0x00}, 578 {0x17, 0x26}, 579 {0x18, 0xa0}, 580 {0x19, 0x07}, 581 {0x1a, 0xf0}, 582 {0x29, 0xa0}, 583 {0x2c, 0xf0}, 584 {0x65, 0x20}, 585 }; 586 static const u8 bridge_start_qvga_772x[][2] = { 587 {0x1c, 0x00}, 588 {0x1d, 0x40}, 589 {0x1d, 0x02}, 590 {0x1d, 0x00}, 591 {0x1d, 0x01}, 592 {0x1d, 0x4b}, 593 {0x1d, 0x00}, 594 {0xc0, 0x28}, 595 {0xc1, 0x1e}, 596 }; 597 static const u8 sensor_start_qvga_772x[][2] = { 598 {0x12, 0x40}, 599 {0x17, 0x3f}, 600 {0x18, 0x50}, 601 {0x19, 0x03}, 602 {0x1a, 0x78}, 603 {0x29, 0x50}, 604 {0x2c, 0x78}, 605 {0x65, 0x2f}, 606 }; 607 608 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) 609 { 610 struct usb_device *udev = gspca_dev->dev; 611 int ret; 612 613 if (gspca_dev->usb_err < 0) 614 return; 615 616 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val); 617 gspca_dev->usb_buf[0] = val; 618 ret = usb_control_msg(udev, 619 usb_sndctrlpipe(udev, 0), 620 0x01, 621 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 622 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 623 if (ret < 0) { 624 pr_err("write failed %d\n", ret); 625 gspca_dev->usb_err = ret; 626 } 627 } 628 629 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) 630 { 631 struct usb_device *udev = gspca_dev->dev; 632 int ret; 633 634 if (gspca_dev->usb_err < 0) 635 return 0; 636 ret = usb_control_msg(udev, 637 usb_rcvctrlpipe(udev, 0), 638 0x01, 639 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 640 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 641 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]); 642 if (ret < 0) { 643 pr_err("read failed %d\n", ret); 644 gspca_dev->usb_err = ret; 645 } 646 return gspca_dev->usb_buf[0]; 647 } 648 649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. 650 * (direction and output)? */ 651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status) 652 { 653 u8 data; 654 655 PDEBUG(D_CONF, "led status: %d", status); 656 657 data = ov534_reg_read(gspca_dev, 0x21); 658 data |= 0x80; 659 ov534_reg_write(gspca_dev, 0x21, data); 660 661 data = ov534_reg_read(gspca_dev, 0x23); 662 if (status) 663 data |= 0x80; 664 else 665 data &= ~0x80; 666 667 ov534_reg_write(gspca_dev, 0x23, data); 668 669 if (!status) { 670 data = ov534_reg_read(gspca_dev, 0x21); 671 data &= ~0x80; 672 ov534_reg_write(gspca_dev, 0x21, data); 673 } 674 } 675 676 static int sccb_check_status(struct gspca_dev *gspca_dev) 677 { 678 u8 data; 679 int i; 680 681 for (i = 0; i < 5; i++) { 682 msleep(10); 683 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); 684 685 switch (data) { 686 case 0x00: 687 return 1; 688 case 0x04: 689 return 0; 690 case 0x03: 691 break; 692 default: 693 PERR("sccb status 0x%02x, attempt %d/5", 694 data, i + 1); 695 } 696 } 697 return 0; 698 } 699 700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) 701 { 702 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val); 703 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 704 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); 705 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); 706 707 if (!sccb_check_status(gspca_dev)) { 708 pr_err("sccb_reg_write failed\n"); 709 gspca_dev->usb_err = -EIO; 710 } 711 } 712 713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) 714 { 715 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 716 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); 717 if (!sccb_check_status(gspca_dev)) 718 pr_err("sccb_reg_read failed 1\n"); 719 720 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); 721 if (!sccb_check_status(gspca_dev)) 722 pr_err("sccb_reg_read failed 2\n"); 723 724 return ov534_reg_read(gspca_dev, OV534_REG_READ); 725 } 726 727 /* output a bridge sequence (reg - val) */ 728 static void reg_w_array(struct gspca_dev *gspca_dev, 729 const u8 (*data)[2], int len) 730 { 731 while (--len >= 0) { 732 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); 733 data++; 734 } 735 } 736 737 /* output a sensor sequence (reg - val) */ 738 static void sccb_w_array(struct gspca_dev *gspca_dev, 739 const u8 (*data)[2], int len) 740 { 741 while (--len >= 0) { 742 if ((*data)[0] != 0xff) { 743 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); 744 } else { 745 sccb_reg_read(gspca_dev, (*data)[1]); 746 sccb_reg_write(gspca_dev, 0xff, 0x00); 747 } 748 data++; 749 } 750 } 751 752 /* ov772x specific controls */ 753 static void set_frame_rate(struct gspca_dev *gspca_dev) 754 { 755 struct sd *sd = (struct sd *) gspca_dev; 756 int i; 757 struct rate_s { 758 u8 fps; 759 u8 r11; 760 u8 r0d; 761 u8 re5; 762 }; 763 const struct rate_s *r; 764 static const struct rate_s rate_0[] = { /* 640x480 */ 765 {60, 0x01, 0xc1, 0x04}, 766 {50, 0x01, 0x41, 0x02}, 767 {40, 0x02, 0xc1, 0x04}, 768 {30, 0x04, 0x81, 0x02}, 769 {15, 0x03, 0x41, 0x04}, 770 }; 771 static const struct rate_s rate_1[] = { /* 320x240 */ 772 {125, 0x02, 0x81, 0x02}, 773 {100, 0x02, 0xc1, 0x04}, 774 {75, 0x03, 0xc1, 0x04}, 775 {60, 0x04, 0xc1, 0x04}, 776 {50, 0x02, 0x41, 0x04}, 777 {40, 0x03, 0x41, 0x04}, 778 {30, 0x04, 0x41, 0x04}, 779 }; 780 781 if (sd->sensor != SENSOR_OV772x) 782 return; 783 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { 784 r = rate_0; 785 i = ARRAY_SIZE(rate_0); 786 } else { 787 r = rate_1; 788 i = ARRAY_SIZE(rate_1); 789 } 790 while (--i > 0) { 791 if (sd->frame_rate >= r->fps) 792 break; 793 r++; 794 } 795 796 sccb_reg_write(gspca_dev, 0x11, r->r11); 797 sccb_reg_write(gspca_dev, 0x0d, r->r0d); 798 ov534_reg_write(gspca_dev, 0xe5, r->re5); 799 800 PDEBUG(D_PROBE, "frame_rate: %d", r->fps); 801 } 802 803 static void sethue(struct gspca_dev *gspca_dev, s32 val) 804 { 805 struct sd *sd = (struct sd *) gspca_dev; 806 807 if (sd->sensor == SENSOR_OV767x) { 808 /* TBD */ 809 } else { 810 s16 huesin; 811 s16 huecos; 812 813 /* fixp_sin and fixp_cos accept only positive values, while 814 * our val is between -90 and 90 815 */ 816 val += 360; 817 818 /* According to the datasheet the registers expect HUESIN and 819 * HUECOS to be the result of the trigonometric functions, 820 * scaled by 0x80. 821 * 822 * The 0x100 here represents the maximun absolute value 823 * returned byt fixp_sin and fixp_cos, so the scaling will 824 * consider the result like in the interval [-1.0, 1.0]. 825 */ 826 huesin = fixp_sin(val) * 0x80 / 0x100; 827 huecos = fixp_cos(val) * 0x80 / 0x100; 828 829 if (huesin < 0) { 830 sccb_reg_write(gspca_dev, 0xab, 831 sccb_reg_read(gspca_dev, 0xab) | 0x2); 832 huesin = -huesin; 833 } else { 834 sccb_reg_write(gspca_dev, 0xab, 835 sccb_reg_read(gspca_dev, 0xab) & ~0x2); 836 837 } 838 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); 839 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); 840 } 841 } 842 843 static void setsaturation(struct gspca_dev *gspca_dev, s32 val) 844 { 845 struct sd *sd = (struct sd *) gspca_dev; 846 847 if (sd->sensor == SENSOR_OV767x) { 848 int i; 849 static u8 color_tb[][6] = { 850 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, 851 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, 852 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, 853 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, 854 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, 855 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, 856 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, 857 }; 858 859 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) 860 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); 861 } else { 862 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ 863 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ 864 } 865 } 866 867 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 868 { 869 struct sd *sd = (struct sd *) gspca_dev; 870 871 if (sd->sensor == SENSOR_OV767x) { 872 if (val < 0) 873 val = 0x80 - val; 874 sccb_reg_write(gspca_dev, 0x55, val); /* bright */ 875 } else { 876 sccb_reg_write(gspca_dev, 0x9b, val); 877 } 878 } 879 880 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 881 { 882 struct sd *sd = (struct sd *) gspca_dev; 883 884 if (sd->sensor == SENSOR_OV767x) 885 sccb_reg_write(gspca_dev, 0x56, val); /* contras */ 886 else 887 sccb_reg_write(gspca_dev, 0x9c, val); 888 } 889 890 static void setgain(struct gspca_dev *gspca_dev, s32 val) 891 { 892 switch (val & 0x30) { 893 case 0x00: 894 val &= 0x0f; 895 break; 896 case 0x10: 897 val &= 0x0f; 898 val |= 0x30; 899 break; 900 case 0x20: 901 val &= 0x0f; 902 val |= 0x70; 903 break; 904 default: 905 /* case 0x30: */ 906 val &= 0x0f; 907 val |= 0xf0; 908 break; 909 } 910 sccb_reg_write(gspca_dev, 0x00, val); 911 } 912 913 static s32 getgain(struct gspca_dev *gspca_dev) 914 { 915 return sccb_reg_read(gspca_dev, 0x00); 916 } 917 918 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 919 { 920 struct sd *sd = (struct sd *) gspca_dev; 921 922 if (sd->sensor == SENSOR_OV767x) { 923 924 /* set only aec[9:2] */ 925 sccb_reg_write(gspca_dev, 0x10, val); /* aech */ 926 } else { 927 928 /* 'val' is one byte and represents half of the exposure value 929 * we are going to set into registers, a two bytes value: 930 * 931 * MSB: ((u16) val << 1) >> 8 == val >> 7 932 * LSB: ((u16) val << 1) & 0xff == val << 1 933 */ 934 sccb_reg_write(gspca_dev, 0x08, val >> 7); 935 sccb_reg_write(gspca_dev, 0x10, val << 1); 936 } 937 } 938 939 static s32 getexposure(struct gspca_dev *gspca_dev) 940 { 941 struct sd *sd = (struct sd *) gspca_dev; 942 943 if (sd->sensor == SENSOR_OV767x) { 944 /* get only aec[9:2] */ 945 return sccb_reg_read(gspca_dev, 0x10); /* aech */ 946 } else { 947 u8 hi = sccb_reg_read(gspca_dev, 0x08); 948 u8 lo = sccb_reg_read(gspca_dev, 0x10); 949 return (hi << 8 | lo) >> 1; 950 } 951 } 952 953 static void setagc(struct gspca_dev *gspca_dev, s32 val) 954 { 955 if (val) { 956 sccb_reg_write(gspca_dev, 0x13, 957 sccb_reg_read(gspca_dev, 0x13) | 0x04); 958 sccb_reg_write(gspca_dev, 0x64, 959 sccb_reg_read(gspca_dev, 0x64) | 0x03); 960 } else { 961 sccb_reg_write(gspca_dev, 0x13, 962 sccb_reg_read(gspca_dev, 0x13) & ~0x04); 963 sccb_reg_write(gspca_dev, 0x64, 964 sccb_reg_read(gspca_dev, 0x64) & ~0x03); 965 } 966 } 967 968 static void setawb(struct gspca_dev *gspca_dev, s32 val) 969 { 970 struct sd *sd = (struct sd *) gspca_dev; 971 972 if (val) { 973 sccb_reg_write(gspca_dev, 0x13, 974 sccb_reg_read(gspca_dev, 0x13) | 0x02); 975 if (sd->sensor == SENSOR_OV772x) 976 sccb_reg_write(gspca_dev, 0x63, 977 sccb_reg_read(gspca_dev, 0x63) | 0xc0); 978 } else { 979 sccb_reg_write(gspca_dev, 0x13, 980 sccb_reg_read(gspca_dev, 0x13) & ~0x02); 981 if (sd->sensor == SENSOR_OV772x) 982 sccb_reg_write(gspca_dev, 0x63, 983 sccb_reg_read(gspca_dev, 0x63) & ~0xc0); 984 } 985 } 986 987 static void setaec(struct gspca_dev *gspca_dev, s32 val) 988 { 989 struct sd *sd = (struct sd *) gspca_dev; 990 u8 data; 991 992 data = sd->sensor == SENSOR_OV767x ? 993 0x05 : /* agc + aec */ 994 0x01; /* agc */ 995 switch (val) { 996 case V4L2_EXPOSURE_AUTO: 997 sccb_reg_write(gspca_dev, 0x13, 998 sccb_reg_read(gspca_dev, 0x13) | data); 999 break; 1000 case V4L2_EXPOSURE_MANUAL: 1001 sccb_reg_write(gspca_dev, 0x13, 1002 sccb_reg_read(gspca_dev, 0x13) & ~data); 1003 break; 1004 } 1005 } 1006 1007 static void setsharpness(struct gspca_dev *gspca_dev, s32 val) 1008 { 1009 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ 1010 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ 1011 } 1012 1013 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 1014 { 1015 struct sd *sd = (struct sd *) gspca_dev; 1016 u8 val; 1017 1018 if (sd->sensor == SENSOR_OV767x) { 1019 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ 1020 val &= ~0x30; 1021 if (hflip) 1022 val |= 0x20; 1023 if (vflip) 1024 val |= 0x10; 1025 sccb_reg_write(gspca_dev, 0x1e, val); 1026 } else { 1027 val = sccb_reg_read(gspca_dev, 0x0c); 1028 val &= ~0xc0; 1029 if (hflip == 0) 1030 val |= 0x40; 1031 if (vflip == 0) 1032 val |= 0x80; 1033 sccb_reg_write(gspca_dev, 0x0c, val); 1034 } 1035 } 1036 1037 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) 1038 { 1039 struct sd *sd = (struct sd *) gspca_dev; 1040 1041 val = val ? 0x9e : 0x00; 1042 if (sd->sensor == SENSOR_OV767x) { 1043 sccb_reg_write(gspca_dev, 0x2a, 0x00); 1044 if (val) 1045 val = 0x9d; /* insert dummy to 25fps for 50Hz */ 1046 } 1047 sccb_reg_write(gspca_dev, 0x2b, val); 1048 } 1049 1050 1051 /* this function is called at probe time */ 1052 static int sd_config(struct gspca_dev *gspca_dev, 1053 const struct usb_device_id *id) 1054 { 1055 struct sd *sd = (struct sd *) gspca_dev; 1056 struct cam *cam; 1057 1058 cam = &gspca_dev->cam; 1059 1060 cam->cam_mode = ov772x_mode; 1061 cam->nmodes = ARRAY_SIZE(ov772x_mode); 1062 1063 sd->frame_rate = 30; 1064 1065 return 0; 1066 } 1067 1068 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1069 { 1070 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1071 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1072 1073 switch (ctrl->id) { 1074 case V4L2_CID_AUTOGAIN: 1075 gspca_dev->usb_err = 0; 1076 if (ctrl->val && sd->gain && gspca_dev->streaming) 1077 sd->gain->val = getgain(gspca_dev); 1078 return gspca_dev->usb_err; 1079 1080 case V4L2_CID_EXPOSURE_AUTO: 1081 gspca_dev->usb_err = 0; 1082 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && 1083 gspca_dev->streaming) 1084 sd->exposure->val = getexposure(gspca_dev); 1085 return gspca_dev->usb_err; 1086 } 1087 return -EINVAL; 1088 } 1089 1090 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) 1091 { 1092 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1093 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1094 1095 gspca_dev->usb_err = 0; 1096 if (!gspca_dev->streaming) 1097 return 0; 1098 1099 switch (ctrl->id) { 1100 case V4L2_CID_HUE: 1101 sethue(gspca_dev, ctrl->val); 1102 break; 1103 case V4L2_CID_SATURATION: 1104 setsaturation(gspca_dev, ctrl->val); 1105 break; 1106 case V4L2_CID_BRIGHTNESS: 1107 setbrightness(gspca_dev, ctrl->val); 1108 break; 1109 case V4L2_CID_CONTRAST: 1110 setcontrast(gspca_dev, ctrl->val); 1111 break; 1112 case V4L2_CID_AUTOGAIN: 1113 /* case V4L2_CID_GAIN: */ 1114 setagc(gspca_dev, ctrl->val); 1115 if (!gspca_dev->usb_err && !ctrl->val && sd->gain) 1116 setgain(gspca_dev, sd->gain->val); 1117 break; 1118 case V4L2_CID_AUTO_WHITE_BALANCE: 1119 setawb(gspca_dev, ctrl->val); 1120 break; 1121 case V4L2_CID_EXPOSURE_AUTO: 1122 /* case V4L2_CID_EXPOSURE: */ 1123 setaec(gspca_dev, ctrl->val); 1124 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && 1125 sd->exposure) 1126 setexposure(gspca_dev, sd->exposure->val); 1127 break; 1128 case V4L2_CID_SHARPNESS: 1129 setsharpness(gspca_dev, ctrl->val); 1130 break; 1131 case V4L2_CID_HFLIP: 1132 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 1133 break; 1134 case V4L2_CID_VFLIP: 1135 sethvflip(gspca_dev, sd->hflip->val, ctrl->val); 1136 break; 1137 case V4L2_CID_POWER_LINE_FREQUENCY: 1138 setlightfreq(gspca_dev, ctrl->val); 1139 break; 1140 } 1141 return gspca_dev->usb_err; 1142 } 1143 1144 static const struct v4l2_ctrl_ops ov534_ctrl_ops = { 1145 .g_volatile_ctrl = ov534_g_volatile_ctrl, 1146 .s_ctrl = ov534_s_ctrl, 1147 }; 1148 1149 static int sd_init_controls(struct gspca_dev *gspca_dev) 1150 { 1151 struct sd *sd = (struct sd *) gspca_dev; 1152 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; 1153 /* parameters with different values between the supported sensors */ 1154 int saturation_min; 1155 int saturation_max; 1156 int saturation_def; 1157 int brightness_min; 1158 int brightness_max; 1159 int brightness_def; 1160 int contrast_max; 1161 int contrast_def; 1162 int exposure_min; 1163 int exposure_max; 1164 int exposure_def; 1165 int hflip_def; 1166 1167 if (sd->sensor == SENSOR_OV767x) { 1168 saturation_min = 0, 1169 saturation_max = 6, 1170 saturation_def = 3, 1171 brightness_min = -127; 1172 brightness_max = 127; 1173 brightness_def = 0; 1174 contrast_max = 0x80; 1175 contrast_def = 0x40; 1176 exposure_min = 0x08; 1177 exposure_max = 0x60; 1178 exposure_def = 0x13; 1179 hflip_def = 1; 1180 } else { 1181 saturation_min = 0, 1182 saturation_max = 255, 1183 saturation_def = 64, 1184 brightness_min = 0; 1185 brightness_max = 255; 1186 brightness_def = 0; 1187 contrast_max = 255; 1188 contrast_def = 32; 1189 exposure_min = 0; 1190 exposure_max = 255; 1191 exposure_def = 120; 1192 hflip_def = 0; 1193 } 1194 1195 gspca_dev->vdev.ctrl_handler = hdl; 1196 1197 v4l2_ctrl_handler_init(hdl, 13); 1198 1199 if (sd->sensor == SENSOR_OV772x) 1200 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1201 V4L2_CID_HUE, -90, 90, 1, 0); 1202 1203 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1204 V4L2_CID_SATURATION, saturation_min, saturation_max, 1, 1205 saturation_def); 1206 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1207 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, 1208 brightness_def); 1209 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1210 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); 1211 1212 if (sd->sensor == SENSOR_OV772x) { 1213 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1214 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1215 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1216 V4L2_CID_GAIN, 0, 63, 1, 20); 1217 } 1218 1219 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1220 V4L2_CID_EXPOSURE_AUTO, 1221 V4L2_EXPOSURE_MANUAL, 0, 1222 V4L2_EXPOSURE_AUTO); 1223 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1224 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, 1225 exposure_def); 1226 1227 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1228 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); 1229 1230 if (sd->sensor == SENSOR_OV772x) 1231 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1232 V4L2_CID_SHARPNESS, 0, 63, 1, 0); 1233 1234 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1235 V4L2_CID_HFLIP, 0, 1, 1, hflip_def); 1236 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1237 V4L2_CID_VFLIP, 0, 1, 1, 0); 1238 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1239 V4L2_CID_POWER_LINE_FREQUENCY, 1240 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, 1241 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1242 1243 if (hdl->error) { 1244 pr_err("Could not initialize controls\n"); 1245 return hdl->error; 1246 } 1247 1248 if (sd->sensor == SENSOR_OV772x) 1249 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); 1250 1251 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, 1252 true); 1253 1254 return 0; 1255 } 1256 1257 /* this function is called at probe and resume time */ 1258 static int sd_init(struct gspca_dev *gspca_dev) 1259 { 1260 struct sd *sd = (struct sd *) gspca_dev; 1261 u16 sensor_id; 1262 static const struct reg_array bridge_init[NSENSORS] = { 1263 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, 1264 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, 1265 }; 1266 static const struct reg_array sensor_init[NSENSORS] = { 1267 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, 1268 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, 1269 }; 1270 1271 /* reset bridge */ 1272 ov534_reg_write(gspca_dev, 0xe7, 0x3a); 1273 ov534_reg_write(gspca_dev, 0xe0, 0x08); 1274 msleep(100); 1275 1276 /* initialize the sensor address */ 1277 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); 1278 1279 /* reset sensor */ 1280 sccb_reg_write(gspca_dev, 0x12, 0x80); 1281 msleep(10); 1282 1283 /* probe the sensor */ 1284 sccb_reg_read(gspca_dev, 0x0a); 1285 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; 1286 sccb_reg_read(gspca_dev, 0x0b); 1287 sensor_id |= sccb_reg_read(gspca_dev, 0x0b); 1288 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id); 1289 1290 if ((sensor_id & 0xfff0) == 0x7670) { 1291 sd->sensor = SENSOR_OV767x; 1292 gspca_dev->cam.cam_mode = ov767x_mode; 1293 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); 1294 } else { 1295 sd->sensor = SENSOR_OV772x; 1296 gspca_dev->cam.bulk = 1; 1297 gspca_dev->cam.bulk_size = 16384; 1298 gspca_dev->cam.bulk_nurbs = 2; 1299 gspca_dev->cam.mode_framerates = ov772x_framerates; 1300 } 1301 1302 /* initialize */ 1303 reg_w_array(gspca_dev, bridge_init[sd->sensor].val, 1304 bridge_init[sd->sensor].len); 1305 ov534_set_led(gspca_dev, 1); 1306 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, 1307 sensor_init[sd->sensor].len); 1308 1309 sd_stopN(gspca_dev); 1310 /* set_frame_rate(gspca_dev); */ 1311 1312 return gspca_dev->usb_err; 1313 } 1314 1315 static int sd_start(struct gspca_dev *gspca_dev) 1316 { 1317 struct sd *sd = (struct sd *) gspca_dev; 1318 int mode; 1319 static const struct reg_array bridge_start[NSENSORS][2] = { 1320 [SENSOR_OV767x] = {{bridge_start_qvga_767x, 1321 ARRAY_SIZE(bridge_start_qvga_767x)}, 1322 {bridge_start_vga_767x, 1323 ARRAY_SIZE(bridge_start_vga_767x)}}, 1324 [SENSOR_OV772x] = {{bridge_start_qvga_772x, 1325 ARRAY_SIZE(bridge_start_qvga_772x)}, 1326 {bridge_start_vga_772x, 1327 ARRAY_SIZE(bridge_start_vga_772x)}}, 1328 }; 1329 static const struct reg_array sensor_start[NSENSORS][2] = { 1330 [SENSOR_OV767x] = {{sensor_start_qvga_767x, 1331 ARRAY_SIZE(sensor_start_qvga_767x)}, 1332 {sensor_start_vga_767x, 1333 ARRAY_SIZE(sensor_start_vga_767x)}}, 1334 [SENSOR_OV772x] = {{sensor_start_qvga_772x, 1335 ARRAY_SIZE(sensor_start_qvga_772x)}, 1336 {sensor_start_vga_772x, 1337 ARRAY_SIZE(sensor_start_vga_772x)}}, 1338 }; 1339 1340 /* (from ms-win trace) */ 1341 if (sd->sensor == SENSOR_OV767x) 1342 sccb_reg_write(gspca_dev, 0x1e, 0x04); 1343 /* black sun enable ? */ 1344 1345 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ 1346 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, 1347 bridge_start[sd->sensor][mode].len); 1348 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, 1349 sensor_start[sd->sensor][mode].len); 1350 1351 set_frame_rate(gspca_dev); 1352 1353 if (sd->hue) 1354 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); 1355 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); 1356 if (sd->autogain) 1357 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); 1358 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); 1359 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); 1360 if (sd->gain) 1361 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); 1362 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); 1363 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); 1364 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); 1365 if (sd->sharpness) 1366 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); 1367 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), 1368 v4l2_ctrl_g_ctrl(sd->vflip)); 1369 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); 1370 1371 ov534_set_led(gspca_dev, 1); 1372 ov534_reg_write(gspca_dev, 0xe0, 0x00); 1373 return gspca_dev->usb_err; 1374 } 1375 1376 static void sd_stopN(struct gspca_dev *gspca_dev) 1377 { 1378 ov534_reg_write(gspca_dev, 0xe0, 0x09); 1379 ov534_set_led(gspca_dev, 0); 1380 } 1381 1382 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ 1383 #define UVC_STREAM_EOH (1 << 7) 1384 #define UVC_STREAM_ERR (1 << 6) 1385 #define UVC_STREAM_STI (1 << 5) 1386 #define UVC_STREAM_RES (1 << 4) 1387 #define UVC_STREAM_SCR (1 << 3) 1388 #define UVC_STREAM_PTS (1 << 2) 1389 #define UVC_STREAM_EOF (1 << 1) 1390 #define UVC_STREAM_FID (1 << 0) 1391 1392 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1393 u8 *data, int len) 1394 { 1395 struct sd *sd = (struct sd *) gspca_dev; 1396 __u32 this_pts; 1397 u16 this_fid; 1398 int remaining_len = len; 1399 int payload_len; 1400 1401 payload_len = gspca_dev->cam.bulk ? 2048 : 2040; 1402 do { 1403 len = min(remaining_len, payload_len); 1404 1405 /* Payloads are prefixed with a UVC-style header. We 1406 consider a frame to start when the FID toggles, or the PTS 1407 changes. A frame ends when EOF is set, and we've received 1408 the correct number of bytes. */ 1409 1410 /* Verify UVC header. Header length is always 12 */ 1411 if (data[0] != 12 || len < 12) { 1412 PDEBUG(D_PACK, "bad header"); 1413 goto discard; 1414 } 1415 1416 /* Check errors */ 1417 if (data[1] & UVC_STREAM_ERR) { 1418 PDEBUG(D_PACK, "payload error"); 1419 goto discard; 1420 } 1421 1422 /* Extract PTS and FID */ 1423 if (!(data[1] & UVC_STREAM_PTS)) { 1424 PDEBUG(D_PACK, "PTS not present"); 1425 goto discard; 1426 } 1427 this_pts = (data[5] << 24) | (data[4] << 16) 1428 | (data[3] << 8) | data[2]; 1429 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; 1430 1431 /* If PTS or FID has changed, start a new frame. */ 1432 if (this_pts != sd->last_pts || this_fid != sd->last_fid) { 1433 if (gspca_dev->last_packet_type == INTER_PACKET) 1434 gspca_frame_add(gspca_dev, LAST_PACKET, 1435 NULL, 0); 1436 sd->last_pts = this_pts; 1437 sd->last_fid = this_fid; 1438 gspca_frame_add(gspca_dev, FIRST_PACKET, 1439 data + 12, len - 12); 1440 /* If this packet is marked as EOF, end the frame */ 1441 } else if (data[1] & UVC_STREAM_EOF) { 1442 sd->last_pts = 0; 1443 if (gspca_dev->pixfmt == V4L2_PIX_FMT_YUYV 1444 && gspca_dev->image_len + len - 12 != 1445 gspca_dev->width * gspca_dev->height * 2) { 1446 PDEBUG(D_PACK, "wrong sized frame"); 1447 goto discard; 1448 } 1449 gspca_frame_add(gspca_dev, LAST_PACKET, 1450 data + 12, len - 12); 1451 } else { 1452 1453 /* Add the data from this payload */ 1454 gspca_frame_add(gspca_dev, INTER_PACKET, 1455 data + 12, len - 12); 1456 } 1457 1458 /* Done this payload */ 1459 goto scan_next; 1460 1461 discard: 1462 /* Discard data until a new frame starts. */ 1463 gspca_dev->last_packet_type = DISCARD_PACKET; 1464 1465 scan_next: 1466 remaining_len -= len; 1467 data += len; 1468 } while (remaining_len > 0); 1469 } 1470 1471 /* get stream parameters (framerate) */ 1472 static void sd_get_streamparm(struct gspca_dev *gspca_dev, 1473 struct v4l2_streamparm *parm) 1474 { 1475 struct v4l2_captureparm *cp = &parm->parm.capture; 1476 struct v4l2_fract *tpf = &cp->timeperframe; 1477 struct sd *sd = (struct sd *) gspca_dev; 1478 1479 cp->capability |= V4L2_CAP_TIMEPERFRAME; 1480 tpf->numerator = 1; 1481 tpf->denominator = sd->frame_rate; 1482 } 1483 1484 /* set stream parameters (framerate) */ 1485 static void sd_set_streamparm(struct gspca_dev *gspca_dev, 1486 struct v4l2_streamparm *parm) 1487 { 1488 struct v4l2_captureparm *cp = &parm->parm.capture; 1489 struct v4l2_fract *tpf = &cp->timeperframe; 1490 struct sd *sd = (struct sd *) gspca_dev; 1491 1492 /* Set requested framerate */ 1493 sd->frame_rate = tpf->denominator / tpf->numerator; 1494 if (gspca_dev->streaming) 1495 set_frame_rate(gspca_dev); 1496 1497 /* Return the actual framerate */ 1498 tpf->numerator = 1; 1499 tpf->denominator = sd->frame_rate; 1500 } 1501 1502 /* sub-driver description */ 1503 static const struct sd_desc sd_desc = { 1504 .name = MODULE_NAME, 1505 .config = sd_config, 1506 .init = sd_init, 1507 .init_controls = sd_init_controls, 1508 .start = sd_start, 1509 .stopN = sd_stopN, 1510 .pkt_scan = sd_pkt_scan, 1511 .get_streamparm = sd_get_streamparm, 1512 .set_streamparm = sd_set_streamparm, 1513 }; 1514 1515 /* -- module initialisation -- */ 1516 static const struct usb_device_id device_table[] = { 1517 {USB_DEVICE(0x1415, 0x2000)}, 1518 {USB_DEVICE(0x06f8, 0x3002)}, 1519 {} 1520 }; 1521 1522 MODULE_DEVICE_TABLE(usb, device_table); 1523 1524 /* -- device connect -- */ 1525 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) 1526 { 1527 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1528 THIS_MODULE); 1529 } 1530 1531 static struct usb_driver sd_driver = { 1532 .name = MODULE_NAME, 1533 .id_table = device_table, 1534 .probe = sd_probe, 1535 .disconnect = gspca_disconnect, 1536 #ifdef CONFIG_PM 1537 .suspend = gspca_suspend, 1538 .resume = gspca_resume, 1539 .reset_resume = gspca_resume, 1540 #endif 1541 }; 1542 1543 module_usb_driver(sd_driver); 1544