xref: /openbmc/linux/drivers/media/usb/gspca/ov534.c (revision de3a9980)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ov534-ov7xxx gspca driver
4  *
5  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
6  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
7  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
8  *
9  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
10  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
11  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
12  *
13  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
14  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
15  *                  added by Max Thrun <bear24rw@gmail.com>
16  * PS3 Eye camera - FPS range extended by Joseph Howse
17  *                  <josephhowse@nummist.com> https://nummist.com
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #define MODULE_NAME "ov534"
23 
24 #include "gspca.h"
25 
26 #include <linux/fixp-arith.h>
27 #include <media/v4l2-ctrls.h>
28 
29 #define OV534_REG_ADDRESS	0xf1	/* sensor address */
30 #define OV534_REG_SUBADDR	0xf2
31 #define OV534_REG_WRITE		0xf3
32 #define OV534_REG_READ		0xf4
33 #define OV534_REG_OPERATION	0xf5
34 #define OV534_REG_STATUS	0xf6
35 
36 #define OV534_OP_WRITE_3	0x37
37 #define OV534_OP_WRITE_2	0x33
38 #define OV534_OP_READ_2		0xf9
39 
40 #define CTRL_TIMEOUT 500
41 #define DEFAULT_FRAME_RATE 30
42 
43 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
44 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
45 MODULE_LICENSE("GPL");
46 
47 /* specific webcam descriptor */
48 struct sd {
49 	struct gspca_dev gspca_dev;	/* !! must be the first item */
50 
51 	struct v4l2_ctrl_handler ctrl_handler;
52 	struct v4l2_ctrl *hue;
53 	struct v4l2_ctrl *saturation;
54 	struct v4l2_ctrl *brightness;
55 	struct v4l2_ctrl *contrast;
56 	struct { /* gain control cluster */
57 		struct v4l2_ctrl *autogain;
58 		struct v4l2_ctrl *gain;
59 	};
60 	struct v4l2_ctrl *autowhitebalance;
61 	struct { /* exposure control cluster */
62 		struct v4l2_ctrl *autoexposure;
63 		struct v4l2_ctrl *exposure;
64 	};
65 	struct v4l2_ctrl *sharpness;
66 	struct v4l2_ctrl *hflip;
67 	struct v4l2_ctrl *vflip;
68 	struct v4l2_ctrl *plfreq;
69 
70 	__u32 last_pts;
71 	u16 last_fid;
72 	u8 frame_rate;
73 
74 	u8 sensor;
75 };
76 enum sensors {
77 	SENSOR_OV767x,
78 	SENSOR_OV772x,
79 	NSENSORS
80 };
81 
82 static int sd_start(struct gspca_dev *gspca_dev);
83 static void sd_stopN(struct gspca_dev *gspca_dev);
84 
85 
86 static const struct v4l2_pix_format ov772x_mode[] = {
87 	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
88 	 .bytesperline = 320 * 2,
89 	 .sizeimage = 320 * 240 * 2,
90 	 .colorspace = V4L2_COLORSPACE_SRGB,
91 	 .priv = 1},
92 	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
93 	 .bytesperline = 640 * 2,
94 	 .sizeimage = 640 * 480 * 2,
95 	 .colorspace = V4L2_COLORSPACE_SRGB,
96 	 .priv = 0},
97 	{320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
98 	 .bytesperline = 320,
99 	 .sizeimage = 320 * 240,
100 	 .colorspace = V4L2_COLORSPACE_SRGB,
101 	 .priv = 1},
102 	{640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
103 	 .bytesperline = 640,
104 	 .sizeimage = 640 * 480,
105 	 .colorspace = V4L2_COLORSPACE_SRGB,
106 	 .priv = 0},
107 };
108 static const struct v4l2_pix_format ov767x_mode[] = {
109 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110 		.bytesperline = 320,
111 		.sizeimage = 320 * 240 * 3 / 8 + 590,
112 		.colorspace = V4L2_COLORSPACE_JPEG},
113 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114 		.bytesperline = 640,
115 		.sizeimage = 640 * 480 * 3 / 8 + 590,
116 		.colorspace = V4L2_COLORSPACE_JPEG},
117 };
118 
119 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
120 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121 
122 static const struct framerates ov772x_framerates[] = {
123 	{ /* 320x240 */
124 		.rates = qvga_rates,
125 		.nrates = ARRAY_SIZE(qvga_rates),
126 	},
127 	{ /* 640x480 */
128 		.rates = vga_rates,
129 		.nrates = ARRAY_SIZE(vga_rates),
130 	},
131 	{ /* 320x240 SGBRG8 */
132 		.rates = qvga_rates,
133 		.nrates = ARRAY_SIZE(qvga_rates),
134 	},
135 	{ /* 640x480 SGBRG8 */
136 		.rates = vga_rates,
137 		.nrates = ARRAY_SIZE(vga_rates),
138 	},
139 };
140 
141 struct reg_array {
142 	const u8 (*val)[2];
143 	int len;
144 };
145 
146 static const u8 bridge_init_767x[][2] = {
147 /* comments from the ms-win file apollo7670.set */
148 /* str1 */
149 	{0xf1, 0x42},
150 	{0x88, 0xf8},
151 	{0x89, 0xff},
152 	{0x76, 0x03},
153 	{0x92, 0x03},
154 	{0x95, 0x10},
155 	{0xe2, 0x00},
156 	{0xe7, 0x3e},
157 	{0x8d, 0x1c},
158 	{0x8e, 0x00},
159 	{0x8f, 0x00},
160 	{0x1f, 0x00},
161 	{0xc3, 0xf9},
162 	{0x89, 0xff},
163 	{0x88, 0xf8},
164 	{0x76, 0x03},
165 	{0x92, 0x01},
166 	{0x93, 0x18},
167 	{0x1c, 0x00},
168 	{0x1d, 0x48},
169 	{0x1d, 0x00},
170 	{0x1d, 0xff},
171 	{0x1d, 0x02},
172 	{0x1d, 0x58},
173 	{0x1d, 0x00},
174 	{0x1c, 0x0a},
175 	{0x1d, 0x0a},
176 	{0x1d, 0x0e},
177 	{0xc0, 0x50},	/* HSize 640 */
178 	{0xc1, 0x3c},	/* VSize 480 */
179 	{0x34, 0x05},	/* enable Audio Suspend mode */
180 	{0xc2, 0x0c},	/* Input YUV */
181 	{0xc3, 0xf9},	/* enable PRE */
182 	{0x34, 0x05},	/* enable Audio Suspend mode */
183 	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
184 	{0x31, 0xf9},	/* enable 1.8V Suspend */
185 	{0x35, 0x02},	/* turn on JPEG */
186 	{0xd9, 0x10},
187 	{0x25, 0x42},	/* GPIO[8]:Input */
188 	{0x94, 0x11},	/* If the default setting is loaded when
189 			 * system boots up, this flag is closed here */
190 };
191 static const u8 sensor_init_767x[][2] = {
192 	{0x12, 0x80},
193 	{0x11, 0x03},
194 	{0x3a, 0x04},
195 	{0x12, 0x00},
196 	{0x17, 0x13},
197 	{0x18, 0x01},
198 	{0x32, 0xb6},
199 	{0x19, 0x02},
200 	{0x1a, 0x7a},
201 	{0x03, 0x0a},
202 	{0x0c, 0x00},
203 	{0x3e, 0x00},
204 	{0x70, 0x3a},
205 	{0x71, 0x35},
206 	{0x72, 0x11},
207 	{0x73, 0xf0},
208 	{0xa2, 0x02},
209 	{0x7a, 0x2a},	/* set Gamma=1.6 below */
210 	{0x7b, 0x12},
211 	{0x7c, 0x1d},
212 	{0x7d, 0x2d},
213 	{0x7e, 0x45},
214 	{0x7f, 0x50},
215 	{0x80, 0x59},
216 	{0x81, 0x62},
217 	{0x82, 0x6b},
218 	{0x83, 0x73},
219 	{0x84, 0x7b},
220 	{0x85, 0x8a},
221 	{0x86, 0x98},
222 	{0x87, 0xb2},
223 	{0x88, 0xca},
224 	{0x89, 0xe0},
225 	{0x13, 0xe0},
226 	{0x00, 0x00},
227 	{0x10, 0x00},
228 	{0x0d, 0x40},
229 	{0x14, 0x38},	/* gain max 16x */
230 	{0xa5, 0x05},
231 	{0xab, 0x07},
232 	{0x24, 0x95},
233 	{0x25, 0x33},
234 	{0x26, 0xe3},
235 	{0x9f, 0x78},
236 	{0xa0, 0x68},
237 	{0xa1, 0x03},
238 	{0xa6, 0xd8},
239 	{0xa7, 0xd8},
240 	{0xa8, 0xf0},
241 	{0xa9, 0x90},
242 	{0xaa, 0x94},
243 	{0x13, 0xe5},
244 	{0x0e, 0x61},
245 	{0x0f, 0x4b},
246 	{0x16, 0x02},
247 	{0x21, 0x02},
248 	{0x22, 0x91},
249 	{0x29, 0x07},
250 	{0x33, 0x0b},
251 	{0x35, 0x0b},
252 	{0x37, 0x1d},
253 	{0x38, 0x71},
254 	{0x39, 0x2a},
255 	{0x3c, 0x78},
256 	{0x4d, 0x40},
257 	{0x4e, 0x20},
258 	{0x69, 0x00},
259 	{0x6b, 0x4a},
260 	{0x74, 0x10},
261 	{0x8d, 0x4f},
262 	{0x8e, 0x00},
263 	{0x8f, 0x00},
264 	{0x90, 0x00},
265 	{0x91, 0x00},
266 	{0x96, 0x00},
267 	{0x9a, 0x80},
268 	{0xb0, 0x84},
269 	{0xb1, 0x0c},
270 	{0xb2, 0x0e},
271 	{0xb3, 0x82},
272 	{0xb8, 0x0a},
273 	{0x43, 0x0a},
274 	{0x44, 0xf0},
275 	{0x45, 0x34},
276 	{0x46, 0x58},
277 	{0x47, 0x28},
278 	{0x48, 0x3a},
279 	{0x59, 0x88},
280 	{0x5a, 0x88},
281 	{0x5b, 0x44},
282 	{0x5c, 0x67},
283 	{0x5d, 0x49},
284 	{0x5e, 0x0e},
285 	{0x6c, 0x0a},
286 	{0x6d, 0x55},
287 	{0x6e, 0x11},
288 	{0x6f, 0x9f},
289 	{0x6a, 0x40},
290 	{0x01, 0x40},
291 	{0x02, 0x40},
292 	{0x13, 0xe7},
293 	{0x4f, 0x80},
294 	{0x50, 0x80},
295 	{0x51, 0x00},
296 	{0x52, 0x22},
297 	{0x53, 0x5e},
298 	{0x54, 0x80},
299 	{0x58, 0x9e},
300 	{0x41, 0x08},
301 	{0x3f, 0x00},
302 	{0x75, 0x04},
303 	{0x76, 0xe1},
304 	{0x4c, 0x00},
305 	{0x77, 0x01},
306 	{0x3d, 0xc2},
307 	{0x4b, 0x09},
308 	{0xc9, 0x60},
309 	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
310 	{0x56, 0x40},
311 	{0x34, 0x11},
312 	{0x3b, 0xc2},
313 	{0xa4, 0x8a},	/* Night mode trigger point */
314 	{0x96, 0x00},
315 	{0x97, 0x30},
316 	{0x98, 0x20},
317 	{0x99, 0x20},
318 	{0x9a, 0x84},
319 	{0x9b, 0x29},
320 	{0x9c, 0x03},
321 	{0x9d, 0x4c},
322 	{0x9e, 0x3f},
323 	{0x78, 0x04},
324 	{0x79, 0x01},
325 	{0xc8, 0xf0},
326 	{0x79, 0x0f},
327 	{0xc8, 0x00},
328 	{0x79, 0x10},
329 	{0xc8, 0x7e},
330 	{0x79, 0x0a},
331 	{0xc8, 0x80},
332 	{0x79, 0x0b},
333 	{0xc8, 0x01},
334 	{0x79, 0x0c},
335 	{0xc8, 0x0f},
336 	{0x79, 0x0d},
337 	{0xc8, 0x20},
338 	{0x79, 0x09},
339 	{0xc8, 0x80},
340 	{0x79, 0x02},
341 	{0xc8, 0xc0},
342 	{0x79, 0x03},
343 	{0xc8, 0x20},
344 	{0x79, 0x26},
345 };
346 static const u8 bridge_start_vga_767x[][2] = {
347 /* str59 JPG */
348 	{0x94, 0xaa},
349 	{0xf1, 0x42},
350 	{0xe5, 0x04},
351 	{0xc0, 0x50},
352 	{0xc1, 0x3c},
353 	{0xc2, 0x0c},
354 	{0x35, 0x02},	/* turn on JPEG */
355 	{0xd9, 0x10},
356 	{0xda, 0x00},	/* for higher clock rate(30fps) */
357 	{0x34, 0x05},	/* enable Audio Suspend mode */
358 	{0xc3, 0xf9},	/* enable PRE */
359 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
360 	{0x8d, 0x1c},	/* output YUV */
361 /*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
362 	{0x50, 0x00},	/* H/V divider=0 */
363 	{0x51, 0xa0},	/* input H=640/4 */
364 	{0x52, 0x3c},	/* input V=480/4 */
365 	{0x53, 0x00},	/* offset X=0 */
366 	{0x54, 0x00},	/* offset Y=0 */
367 	{0x55, 0x00},	/* H/V size[8]=0 */
368 	{0x57, 0x00},	/* H-size[9]=0 */
369 	{0x5c, 0x00},	/* output size[9:8]=0 */
370 	{0x5a, 0xa0},	/* output H=640/4 */
371 	{0x5b, 0x78},	/* output V=480/4 */
372 	{0x1c, 0x0a},
373 	{0x1d, 0x0a},
374 	{0x94, 0x11},
375 };
376 static const u8 sensor_start_vga_767x[][2] = {
377 	{0x11, 0x01},
378 	{0x1e, 0x04},
379 	{0x19, 0x02},
380 	{0x1a, 0x7a},
381 };
382 static const u8 bridge_start_qvga_767x[][2] = {
383 /* str86 JPG */
384 	{0x94, 0xaa},
385 	{0xf1, 0x42},
386 	{0xe5, 0x04},
387 	{0xc0, 0x80},
388 	{0xc1, 0x60},
389 	{0xc2, 0x0c},
390 	{0x35, 0x02},	/* turn on JPEG */
391 	{0xd9, 0x10},
392 	{0xc0, 0x50},	/* CIF HSize 640 */
393 	{0xc1, 0x3c},	/* CIF VSize 480 */
394 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
395 	{0x8d, 0x1c},	/* output YUV */
396 	{0x34, 0x05},	/* enable Audio Suspend mode */
397 	{0xc2, 0x4c},	/* output YUV and Enable DCW */
398 	{0xc3, 0xf9},	/* enable PRE */
399 	{0x1c, 0x00},	/* indirect addressing */
400 	{0x1d, 0x48},	/* output YUV422 */
401 	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
402 	{0x51, 0xa0},	/* DCW input H=640/4 */
403 	{0x52, 0x78},	/* DCW input V=480/4 */
404 	{0x53, 0x00},	/* offset X=0 */
405 	{0x54, 0x00},	/* offset Y=0 */
406 	{0x55, 0x00},	/* H/V size[8]=0 */
407 	{0x57, 0x00},	/* H-size[9]=0 */
408 	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
409 	{0x5a, 0x50},	/* DCW output H=320/4 */
410 	{0x5b, 0x3c},	/* DCW output V=240/4 */
411 	{0x1c, 0x0a},
412 	{0x1d, 0x0a},
413 	{0x94, 0x11},
414 };
415 static const u8 sensor_start_qvga_767x[][2] = {
416 	{0x11, 0x01},
417 	{0x1e, 0x04},
418 	{0x19, 0x02},
419 	{0x1a, 0x7a},
420 };
421 
422 static const u8 bridge_init_772x[][2] = {
423 	{ 0x88, 0xf8 },
424 	{ 0x89, 0xff },
425 	{ 0x76, 0x03 },
426 	{ 0x92, 0x01 },
427 	{ 0x93, 0x18 },
428 	{ 0x94, 0x10 },
429 	{ 0x95, 0x10 },
430 	{ 0xe2, 0x00 },
431 	{ 0xe7, 0x3e },
432 
433 	{ 0x96, 0x00 },
434 
435 	{ 0x97, 0x20 },
436 	{ 0x97, 0x20 },
437 	{ 0x97, 0x20 },
438 	{ 0x97, 0x0a },
439 	{ 0x97, 0x3f },
440 	{ 0x97, 0x4a },
441 	{ 0x97, 0x20 },
442 	{ 0x97, 0x15 },
443 	{ 0x97, 0x0b },
444 
445 	{ 0x8e, 0x40 },
446 	{ 0x1f, 0x81 },
447 	{ 0x34, 0x05 },
448 	{ 0xe3, 0x04 },
449 	{ 0x89, 0x00 },
450 	{ 0x76, 0x00 },
451 	{ 0xe7, 0x2e },
452 	{ 0x31, 0xf9 },
453 	{ 0x25, 0x42 },
454 	{ 0x21, 0xf0 },
455 
456 	{ 0x1c, 0x0a },
457 	{ 0x1d, 0x08 }, /* turn on UVC header */
458 	{ 0x1d, 0x0e }, /* .. */
459 };
460 static const u8 sensor_init_772x[][2] = {
461 	{ 0x12, 0x80 },
462 	{ 0x11, 0x01 },
463 /*fixme: better have a delay?*/
464 	{ 0x11, 0x01 },
465 	{ 0x11, 0x01 },
466 	{ 0x11, 0x01 },
467 	{ 0x11, 0x01 },
468 	{ 0x11, 0x01 },
469 	{ 0x11, 0x01 },
470 	{ 0x11, 0x01 },
471 	{ 0x11, 0x01 },
472 	{ 0x11, 0x01 },
473 	{ 0x11, 0x01 },
474 
475 	{ 0x3d, 0x03 },
476 	{ 0x17, 0x26 },
477 	{ 0x18, 0xa0 },
478 	{ 0x19, 0x07 },
479 	{ 0x1a, 0xf0 },
480 	{ 0x32, 0x00 },
481 	{ 0x29, 0xa0 },
482 	{ 0x2c, 0xf0 },
483 	{ 0x65, 0x20 },
484 	{ 0x11, 0x01 },
485 	{ 0x42, 0x7f },
486 	{ 0x63, 0xaa },		/* AWB - was e0 */
487 	{ 0x64, 0xff },
488 	{ 0x66, 0x00 },
489 	{ 0x13, 0xf0 },		/* com8 */
490 	{ 0x0d, 0x41 },
491 	{ 0x0f, 0xc5 },
492 	{ 0x14, 0x11 },
493 
494 	{ 0x22, 0x7f },
495 	{ 0x23, 0x03 },
496 	{ 0x24, 0x40 },
497 	{ 0x25, 0x30 },
498 	{ 0x26, 0xa1 },
499 	{ 0x2a, 0x00 },
500 	{ 0x2b, 0x00 },
501 	{ 0x6b, 0xaa },
502 	{ 0x13, 0xff },		/* AWB */
503 
504 	{ 0x90, 0x05 },
505 	{ 0x91, 0x01 },
506 	{ 0x92, 0x03 },
507 	{ 0x93, 0x00 },
508 	{ 0x94, 0x60 },
509 	{ 0x95, 0x3c },
510 	{ 0x96, 0x24 },
511 	{ 0x97, 0x1e },
512 	{ 0x98, 0x62 },
513 	{ 0x99, 0x80 },
514 	{ 0x9a, 0x1e },
515 	{ 0x9b, 0x08 },
516 	{ 0x9c, 0x20 },
517 	{ 0x9e, 0x81 },
518 
519 	{ 0xa6, 0x07 },
520 	{ 0x7e, 0x0c },
521 	{ 0x7f, 0x16 },
522 	{ 0x80, 0x2a },
523 	{ 0x81, 0x4e },
524 	{ 0x82, 0x61 },
525 	{ 0x83, 0x6f },
526 	{ 0x84, 0x7b },
527 	{ 0x85, 0x86 },
528 	{ 0x86, 0x8e },
529 	{ 0x87, 0x97 },
530 	{ 0x88, 0xa4 },
531 	{ 0x89, 0xaf },
532 	{ 0x8a, 0xc5 },
533 	{ 0x8b, 0xd7 },
534 	{ 0x8c, 0xe8 },
535 	{ 0x8d, 0x20 },
536 
537 	{ 0x2b, 0x00 },
538 	{ 0x22, 0x7f },
539 	{ 0x23, 0x03 },
540 	{ 0x11, 0x01 },
541 	{ 0x64, 0xff },
542 	{ 0x0d, 0x41 },
543 
544 	{ 0x14, 0x41 },
545 	{ 0x0e, 0xcd },
546 	{ 0xac, 0xbf },
547 	{ 0x8e, 0x00 },		/* De-noise threshold */
548 };
549 static const u8 bridge_start_vga_yuyv_772x[][2] = {
550 	{0x88, 0x00},
551 	{0x1c, 0x00},
552 	{0x1d, 0x40},
553 	{0x1d, 0x02},
554 	{0x1d, 0x00},
555 	{0x1d, 0x02},
556 	{0x1d, 0x58},
557 	{0x1d, 0x00},
558 	{0x8d, 0x1c},
559 	{0x8e, 0x80},
560 	{0xc0, 0x50},
561 	{0xc1, 0x3c},
562 	{0xc2, 0x0c},
563 	{0xc3, 0x69},
564 };
565 static const u8 sensor_start_vga_yuyv_772x[][2] = {
566 	{0x12, 0x00},
567 	{0x17, 0x26},
568 	{0x18, 0xa0},
569 	{0x19, 0x07},
570 	{0x1a, 0xf0},
571 	{0x29, 0xa0},
572 	{0x2c, 0xf0},
573 	{0x65, 0x20},
574 	{0x67, 0x00},
575 };
576 static const u8 bridge_start_qvga_yuyv_772x[][2] = {
577 	{0x88, 0x00},
578 	{0x1c, 0x00},
579 	{0x1d, 0x40},
580 	{0x1d, 0x02},
581 	{0x1d, 0x00},
582 	{0x1d, 0x01},
583 	{0x1d, 0x4b},
584 	{0x1d, 0x00},
585 	{0x8d, 0x1c},
586 	{0x8e, 0x80},
587 	{0xc0, 0x28},
588 	{0xc1, 0x1e},
589 	{0xc2, 0x0c},
590 	{0xc3, 0x69},
591 };
592 static const u8 sensor_start_qvga_yuyv_772x[][2] = {
593 	{0x12, 0x40},
594 	{0x17, 0x3f},
595 	{0x18, 0x50},
596 	{0x19, 0x03},
597 	{0x1a, 0x78},
598 	{0x29, 0x50},
599 	{0x2c, 0x78},
600 	{0x65, 0x2f},
601 	{0x67, 0x00},
602 };
603 static const u8 bridge_start_vga_gbrg_772x[][2] = {
604 	{0x88, 0x08},
605 	{0x1c, 0x00},
606 	{0x1d, 0x00},
607 	{0x1d, 0x02},
608 	{0x1d, 0x00},
609 	{0x1d, 0x01},
610 	{0x1d, 0x2c},
611 	{0x1d, 0x00},
612 	{0x8d, 0x00},
613 	{0x8e, 0x00},
614 	{0xc0, 0x50},
615 	{0xc1, 0x3c},
616 	{0xc2, 0x01},
617 	{0xc3, 0x01},
618 };
619 static const u8 sensor_start_vga_gbrg_772x[][2] = {
620 	{0x12, 0x01},
621 	{0x17, 0x26},
622 	{0x18, 0xa0},
623 	{0x19, 0x07},
624 	{0x1a, 0xf0},
625 	{0x29, 0xa0},
626 	{0x2c, 0xf0},
627 	{0x65, 0x20},
628 	{0x67, 0x02},
629 };
630 static const u8 bridge_start_qvga_gbrg_772x[][2] = {
631 	{0x88, 0x08},
632 	{0x1c, 0x00},
633 	{0x1d, 0x00},
634 	{0x1d, 0x02},
635 	{0x1d, 0x00},
636 	{0x1d, 0x00},
637 	{0x1d, 0x4b},
638 	{0x1d, 0x00},
639 	{0x8d, 0x00},
640 	{0x8e, 0x00},
641 	{0xc0, 0x28},
642 	{0xc1, 0x1e},
643 	{0xc2, 0x01},
644 	{0xc3, 0x01},
645 };
646 static const u8 sensor_start_qvga_gbrg_772x[][2] = {
647 	{0x12, 0x41},
648 	{0x17, 0x3f},
649 	{0x18, 0x50},
650 	{0x19, 0x03},
651 	{0x1a, 0x78},
652 	{0x29, 0x50},
653 	{0x2c, 0x78},
654 	{0x65, 0x2f},
655 	{0x67, 0x02},
656 };
657 
658 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
659 {
660 	struct usb_device *udev = gspca_dev->dev;
661 	int ret;
662 
663 	if (gspca_dev->usb_err < 0)
664 		return;
665 
666 	gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
667 	gspca_dev->usb_buf[0] = val;
668 	ret = usb_control_msg(udev,
669 			      usb_sndctrlpipe(udev, 0),
670 			      0x01,
671 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
672 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
673 	if (ret < 0) {
674 		pr_err("write failed %d\n", ret);
675 		gspca_dev->usb_err = ret;
676 	}
677 }
678 
679 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
680 {
681 	struct usb_device *udev = gspca_dev->dev;
682 	int ret;
683 
684 	if (gspca_dev->usb_err < 0)
685 		return 0;
686 	ret = usb_control_msg(udev,
687 			      usb_rcvctrlpipe(udev, 0),
688 			      0x01,
689 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
690 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
691 	gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
692 		  reg, gspca_dev->usb_buf[0]);
693 	if (ret < 0) {
694 		pr_err("read failed %d\n", ret);
695 		gspca_dev->usb_err = ret;
696 		/*
697 		 * Make sure the result is zeroed to avoid uninitialized
698 		 * values.
699 		 */
700 		gspca_dev->usb_buf[0] = 0;
701 	}
702 	return gspca_dev->usb_buf[0];
703 }
704 
705 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
706  * (direction and output)? */
707 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
708 {
709 	u8 data;
710 
711 	gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
712 
713 	data = ov534_reg_read(gspca_dev, 0x21);
714 	data |= 0x80;
715 	ov534_reg_write(gspca_dev, 0x21, data);
716 
717 	data = ov534_reg_read(gspca_dev, 0x23);
718 	if (status)
719 		data |= 0x80;
720 	else
721 		data &= ~0x80;
722 
723 	ov534_reg_write(gspca_dev, 0x23, data);
724 
725 	if (!status) {
726 		data = ov534_reg_read(gspca_dev, 0x21);
727 		data &= ~0x80;
728 		ov534_reg_write(gspca_dev, 0x21, data);
729 	}
730 }
731 
732 static int sccb_check_status(struct gspca_dev *gspca_dev)
733 {
734 	u8 data;
735 	int i;
736 
737 	for (i = 0; i < 5; i++) {
738 		usleep_range(10000, 20000);
739 		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
740 
741 		switch (data) {
742 		case 0x00:
743 			return 1;
744 		case 0x04:
745 			return 0;
746 		case 0x03:
747 			break;
748 		default:
749 			gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
750 				  data, i + 1);
751 		}
752 	}
753 	return 0;
754 }
755 
756 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
757 {
758 	gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
759 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
760 	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
761 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
762 
763 	if (!sccb_check_status(gspca_dev)) {
764 		pr_err("sccb_reg_write failed\n");
765 		gspca_dev->usb_err = -EIO;
766 	}
767 }
768 
769 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
770 {
771 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
772 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
773 	if (!sccb_check_status(gspca_dev))
774 		pr_err("sccb_reg_read failed 1\n");
775 
776 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
777 	if (!sccb_check_status(gspca_dev))
778 		pr_err("sccb_reg_read failed 2\n");
779 
780 	return ov534_reg_read(gspca_dev, OV534_REG_READ);
781 }
782 
783 /* output a bridge sequence (reg - val) */
784 static void reg_w_array(struct gspca_dev *gspca_dev,
785 			const u8 (*data)[2], int len)
786 {
787 	while (--len >= 0) {
788 		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
789 		data++;
790 	}
791 }
792 
793 /* output a sensor sequence (reg - val) */
794 static void sccb_w_array(struct gspca_dev *gspca_dev,
795 			const u8 (*data)[2], int len)
796 {
797 	while (--len >= 0) {
798 		if ((*data)[0] != 0xff) {
799 			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
800 		} else {
801 			sccb_reg_read(gspca_dev, (*data)[1]);
802 			sccb_reg_write(gspca_dev, 0xff, 0x00);
803 		}
804 		data++;
805 	}
806 }
807 
808 /* ov772x specific controls */
809 static void set_frame_rate(struct gspca_dev *gspca_dev)
810 {
811 	struct sd *sd = (struct sd *) gspca_dev;
812 	int i;
813 	struct rate_s {
814 		u8 fps;
815 		u8 r11;
816 		u8 r0d;
817 		u8 re5;
818 	};
819 	const struct rate_s *r;
820 	static const struct rate_s rate_0[] = {	/* 640x480 */
821 		{60, 0x01, 0xc1, 0x04},
822 		{50, 0x01, 0x41, 0x02},
823 		{40, 0x02, 0xc1, 0x04},
824 		{30, 0x04, 0x81, 0x02},
825 		{15, 0x03, 0x41, 0x04},
826 	};
827 	static const struct rate_s rate_1[] = {	/* 320x240 */
828 /*		{205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
829 		{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
830 		{150, 0x01, 0xc1, 0x04},
831 		{137, 0x02, 0xc1, 0x02},
832 		{125, 0x02, 0x81, 0x02},
833 		{100, 0x02, 0xc1, 0x04},
834 		{75, 0x03, 0xc1, 0x04},
835 		{60, 0x04, 0xc1, 0x04},
836 		{50, 0x02, 0x41, 0x04},
837 		{37, 0x03, 0x41, 0x04},
838 		{30, 0x04, 0x41, 0x04},
839 	};
840 
841 	if (sd->sensor != SENSOR_OV772x)
842 		return;
843 	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
844 		r = rate_0;
845 		i = ARRAY_SIZE(rate_0);
846 	} else {
847 		r = rate_1;
848 		i = ARRAY_SIZE(rate_1);
849 	}
850 	while (--i > 0) {
851 		if (sd->frame_rate >= r->fps)
852 			break;
853 		r++;
854 	}
855 
856 	sccb_reg_write(gspca_dev, 0x11, r->r11);
857 	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
858 	ov534_reg_write(gspca_dev, 0xe5, r->re5);
859 
860 	gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
861 }
862 
863 static void sethue(struct gspca_dev *gspca_dev, s32 val)
864 {
865 	struct sd *sd = (struct sd *) gspca_dev;
866 
867 	if (sd->sensor == SENSOR_OV767x) {
868 		/* TBD */
869 	} else {
870 		s16 huesin;
871 		s16 huecos;
872 
873 		/* According to the datasheet the registers expect HUESIN and
874 		 * HUECOS to be the result of the trigonometric functions,
875 		 * scaled by 0x80.
876 		 *
877 		 * The 0x7fff here represents the maximum absolute value
878 		 * returned byt fixp_sin and fixp_cos, so the scaling will
879 		 * consider the result like in the interval [-1.0, 1.0].
880 		 */
881 		huesin = fixp_sin16(val) * 0x80 / 0x7fff;
882 		huecos = fixp_cos16(val) * 0x80 / 0x7fff;
883 
884 		if (huesin < 0) {
885 			sccb_reg_write(gspca_dev, 0xab,
886 				sccb_reg_read(gspca_dev, 0xab) | 0x2);
887 			huesin = -huesin;
888 		} else {
889 			sccb_reg_write(gspca_dev, 0xab,
890 				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
891 
892 		}
893 		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
894 		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
895 	}
896 }
897 
898 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
899 {
900 	struct sd *sd = (struct sd *) gspca_dev;
901 
902 	if (sd->sensor == SENSOR_OV767x) {
903 		int i;
904 		static u8 color_tb[][6] = {
905 			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
906 			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
907 			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
908 			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
909 			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
910 			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
911 			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
912 		};
913 
914 		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
915 			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
916 	} else {
917 		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
918 		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
919 	}
920 }
921 
922 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
923 {
924 	struct sd *sd = (struct sd *) gspca_dev;
925 
926 	if (sd->sensor == SENSOR_OV767x) {
927 		if (val < 0)
928 			val = 0x80 - val;
929 		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
930 	} else {
931 		sccb_reg_write(gspca_dev, 0x9b, val);
932 	}
933 }
934 
935 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
936 {
937 	struct sd *sd = (struct sd *) gspca_dev;
938 
939 	if (sd->sensor == SENSOR_OV767x)
940 		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
941 	else
942 		sccb_reg_write(gspca_dev, 0x9c, val);
943 }
944 
945 static void setgain(struct gspca_dev *gspca_dev, s32 val)
946 {
947 	switch (val & 0x30) {
948 	case 0x00:
949 		val &= 0x0f;
950 		break;
951 	case 0x10:
952 		val &= 0x0f;
953 		val |= 0x30;
954 		break;
955 	case 0x20:
956 		val &= 0x0f;
957 		val |= 0x70;
958 		break;
959 	default:
960 /*	case 0x30: */
961 		val &= 0x0f;
962 		val |= 0xf0;
963 		break;
964 	}
965 	sccb_reg_write(gspca_dev, 0x00, val);
966 }
967 
968 static s32 getgain(struct gspca_dev *gspca_dev)
969 {
970 	return sccb_reg_read(gspca_dev, 0x00);
971 }
972 
973 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
974 {
975 	struct sd *sd = (struct sd *) gspca_dev;
976 
977 	if (sd->sensor == SENSOR_OV767x) {
978 
979 		/* set only aec[9:2] */
980 		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
981 	} else {
982 
983 		/* 'val' is one byte and represents half of the exposure value
984 		 * we are going to set into registers, a two bytes value:
985 		 *
986 		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
987 		 *    LSB: ((u16) val << 1) & 0xff == val << 1
988 		 */
989 		sccb_reg_write(gspca_dev, 0x08, val >> 7);
990 		sccb_reg_write(gspca_dev, 0x10, val << 1);
991 	}
992 }
993 
994 static s32 getexposure(struct gspca_dev *gspca_dev)
995 {
996 	struct sd *sd = (struct sd *) gspca_dev;
997 
998 	if (sd->sensor == SENSOR_OV767x) {
999 		/* get only aec[9:2] */
1000 		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
1001 	} else {
1002 		u8 hi = sccb_reg_read(gspca_dev, 0x08);
1003 		u8 lo = sccb_reg_read(gspca_dev, 0x10);
1004 		return (hi << 8 | lo) >> 1;
1005 	}
1006 }
1007 
1008 static void setagc(struct gspca_dev *gspca_dev, s32 val)
1009 {
1010 	if (val) {
1011 		sccb_reg_write(gspca_dev, 0x13,
1012 				sccb_reg_read(gspca_dev, 0x13) | 0x04);
1013 		sccb_reg_write(gspca_dev, 0x64,
1014 				sccb_reg_read(gspca_dev, 0x64) | 0x03);
1015 	} else {
1016 		sccb_reg_write(gspca_dev, 0x13,
1017 				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
1018 		sccb_reg_write(gspca_dev, 0x64,
1019 				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
1020 	}
1021 }
1022 
1023 static void setawb(struct gspca_dev *gspca_dev, s32 val)
1024 {
1025 	struct sd *sd = (struct sd *) gspca_dev;
1026 
1027 	if (val) {
1028 		sccb_reg_write(gspca_dev, 0x13,
1029 				sccb_reg_read(gspca_dev, 0x13) | 0x02);
1030 		if (sd->sensor == SENSOR_OV772x)
1031 			sccb_reg_write(gspca_dev, 0x63,
1032 				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
1033 	} else {
1034 		sccb_reg_write(gspca_dev, 0x13,
1035 				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
1036 		if (sd->sensor == SENSOR_OV772x)
1037 			sccb_reg_write(gspca_dev, 0x63,
1038 				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
1039 	}
1040 }
1041 
1042 static void setaec(struct gspca_dev *gspca_dev, s32 val)
1043 {
1044 	struct sd *sd = (struct sd *) gspca_dev;
1045 	u8 data;
1046 
1047 	data = sd->sensor == SENSOR_OV767x ?
1048 			0x05 :		/* agc + aec */
1049 			0x01;		/* agc */
1050 	switch (val) {
1051 	case V4L2_EXPOSURE_AUTO:
1052 		sccb_reg_write(gspca_dev, 0x13,
1053 				sccb_reg_read(gspca_dev, 0x13) | data);
1054 		break;
1055 	case V4L2_EXPOSURE_MANUAL:
1056 		sccb_reg_write(gspca_dev, 0x13,
1057 				sccb_reg_read(gspca_dev, 0x13) & ~data);
1058 		break;
1059 	}
1060 }
1061 
1062 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1063 {
1064 	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1065 	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1066 }
1067 
1068 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1069 {
1070 	struct sd *sd = (struct sd *) gspca_dev;
1071 	u8 val;
1072 
1073 	if (sd->sensor == SENSOR_OV767x) {
1074 		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1075 		val &= ~0x30;
1076 		if (hflip)
1077 			val |= 0x20;
1078 		if (vflip)
1079 			val |= 0x10;
1080 		sccb_reg_write(gspca_dev, 0x1e, val);
1081 	} else {
1082 		val = sccb_reg_read(gspca_dev, 0x0c);
1083 		val &= ~0xc0;
1084 		if (hflip == 0)
1085 			val |= 0x40;
1086 		if (vflip == 0)
1087 			val |= 0x80;
1088 		sccb_reg_write(gspca_dev, 0x0c, val);
1089 	}
1090 }
1091 
1092 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1093 {
1094 	struct sd *sd = (struct sd *) gspca_dev;
1095 
1096 	val = val ? 0x9e : 0x00;
1097 	if (sd->sensor == SENSOR_OV767x) {
1098 		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1099 		if (val)
1100 			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1101 	}
1102 	sccb_reg_write(gspca_dev, 0x2b, val);
1103 }
1104 
1105 
1106 /* this function is called at probe time */
1107 static int sd_config(struct gspca_dev *gspca_dev,
1108 		     const struct usb_device_id *id)
1109 {
1110 	struct sd *sd = (struct sd *) gspca_dev;
1111 	struct cam *cam;
1112 
1113 	cam = &gspca_dev->cam;
1114 
1115 	cam->cam_mode = ov772x_mode;
1116 	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1117 
1118 	sd->frame_rate = DEFAULT_FRAME_RATE;
1119 
1120 	return 0;
1121 }
1122 
1123 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1124 {
1125 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1126 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1127 
1128 	switch (ctrl->id) {
1129 	case V4L2_CID_AUTOGAIN:
1130 		gspca_dev->usb_err = 0;
1131 		if (ctrl->val && sd->gain && gspca_dev->streaming)
1132 			sd->gain->val = getgain(gspca_dev);
1133 		return gspca_dev->usb_err;
1134 
1135 	case V4L2_CID_EXPOSURE_AUTO:
1136 		gspca_dev->usb_err = 0;
1137 		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1138 		    gspca_dev->streaming)
1139 			sd->exposure->val = getexposure(gspca_dev);
1140 		return gspca_dev->usb_err;
1141 	}
1142 	return -EINVAL;
1143 }
1144 
1145 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1146 {
1147 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1148 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1149 
1150 	gspca_dev->usb_err = 0;
1151 	if (!gspca_dev->streaming)
1152 		return 0;
1153 
1154 	switch (ctrl->id) {
1155 	case V4L2_CID_HUE:
1156 		sethue(gspca_dev, ctrl->val);
1157 		break;
1158 	case V4L2_CID_SATURATION:
1159 		setsaturation(gspca_dev, ctrl->val);
1160 		break;
1161 	case V4L2_CID_BRIGHTNESS:
1162 		setbrightness(gspca_dev, ctrl->val);
1163 		break;
1164 	case V4L2_CID_CONTRAST:
1165 		setcontrast(gspca_dev, ctrl->val);
1166 		break;
1167 	case V4L2_CID_AUTOGAIN:
1168 	/* case V4L2_CID_GAIN: */
1169 		setagc(gspca_dev, ctrl->val);
1170 		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1171 			setgain(gspca_dev, sd->gain->val);
1172 		break;
1173 	case V4L2_CID_AUTO_WHITE_BALANCE:
1174 		setawb(gspca_dev, ctrl->val);
1175 		break;
1176 	case V4L2_CID_EXPOSURE_AUTO:
1177 	/* case V4L2_CID_EXPOSURE: */
1178 		setaec(gspca_dev, ctrl->val);
1179 		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1180 		    sd->exposure)
1181 			setexposure(gspca_dev, sd->exposure->val);
1182 		break;
1183 	case V4L2_CID_SHARPNESS:
1184 		setsharpness(gspca_dev, ctrl->val);
1185 		break;
1186 	case V4L2_CID_HFLIP:
1187 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1188 		break;
1189 	case V4L2_CID_VFLIP:
1190 		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1191 		break;
1192 	case V4L2_CID_POWER_LINE_FREQUENCY:
1193 		setlightfreq(gspca_dev, ctrl->val);
1194 		break;
1195 	}
1196 	return gspca_dev->usb_err;
1197 }
1198 
1199 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1200 	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1201 	.s_ctrl = ov534_s_ctrl,
1202 };
1203 
1204 static int sd_init_controls(struct gspca_dev *gspca_dev)
1205 {
1206 	struct sd *sd = (struct sd *) gspca_dev;
1207 	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1208 	/* parameters with different values between the supported sensors */
1209 	int saturation_min;
1210 	int saturation_max;
1211 	int saturation_def;
1212 	int brightness_min;
1213 	int brightness_max;
1214 	int brightness_def;
1215 	int contrast_max;
1216 	int contrast_def;
1217 	int exposure_min;
1218 	int exposure_max;
1219 	int exposure_def;
1220 	int hflip_def;
1221 
1222 	if (sd->sensor == SENSOR_OV767x) {
1223 		saturation_min = 0;
1224 		saturation_max = 6;
1225 		saturation_def = 3;
1226 		brightness_min = -127;
1227 		brightness_max = 127;
1228 		brightness_def = 0;
1229 		contrast_max = 0x80;
1230 		contrast_def = 0x40;
1231 		exposure_min = 0x08;
1232 		exposure_max = 0x60;
1233 		exposure_def = 0x13;
1234 		hflip_def = 1;
1235 	} else {
1236 		saturation_min = 0;
1237 		saturation_max = 255;
1238 		saturation_def = 64;
1239 		brightness_min = 0;
1240 		brightness_max = 255;
1241 		brightness_def = 0;
1242 		contrast_max = 255;
1243 		contrast_def = 32;
1244 		exposure_min = 0;
1245 		exposure_max = 255;
1246 		exposure_def = 120;
1247 		hflip_def = 0;
1248 	}
1249 
1250 	gspca_dev->vdev.ctrl_handler = hdl;
1251 
1252 	v4l2_ctrl_handler_init(hdl, 13);
1253 
1254 	if (sd->sensor == SENSOR_OV772x)
1255 		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1256 				V4L2_CID_HUE, -90, 90, 1, 0);
1257 
1258 	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1259 			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1260 			saturation_def);
1261 	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1262 			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1263 			brightness_def);
1264 	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1265 			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1266 
1267 	if (sd->sensor == SENSOR_OV772x) {
1268 		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1269 				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1270 		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1271 				V4L2_CID_GAIN, 0, 63, 1, 20);
1272 	}
1273 
1274 	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1275 			V4L2_CID_EXPOSURE_AUTO,
1276 			V4L2_EXPOSURE_MANUAL, 0,
1277 			V4L2_EXPOSURE_AUTO);
1278 	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1279 			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1280 			exposure_def);
1281 
1282 	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1283 			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1284 
1285 	if (sd->sensor == SENSOR_OV772x)
1286 		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1287 				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1288 
1289 	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1290 			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1291 	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1292 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1293 	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1294 			V4L2_CID_POWER_LINE_FREQUENCY,
1295 			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1296 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1297 
1298 	if (hdl->error) {
1299 		pr_err("Could not initialize controls\n");
1300 		return hdl->error;
1301 	}
1302 
1303 	if (sd->sensor == SENSOR_OV772x)
1304 		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1305 
1306 	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1307 			       true);
1308 
1309 	return 0;
1310 }
1311 
1312 /* this function is called at probe and resume time */
1313 static int sd_init(struct gspca_dev *gspca_dev)
1314 {
1315 	struct sd *sd = (struct sd *) gspca_dev;
1316 	u16 sensor_id;
1317 	static const struct reg_array bridge_init[NSENSORS] = {
1318 	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1319 	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1320 	};
1321 	static const struct reg_array sensor_init[NSENSORS] = {
1322 	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1323 	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1324 	};
1325 
1326 	/* reset bridge */
1327 	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1328 	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1329 	msleep(100);
1330 
1331 	/* initialize the sensor address */
1332 	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1333 
1334 	/* reset sensor */
1335 	sccb_reg_write(gspca_dev, 0x12, 0x80);
1336 	usleep_range(10000, 20000);
1337 
1338 	/* probe the sensor */
1339 	sccb_reg_read(gspca_dev, 0x0a);
1340 	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1341 	sccb_reg_read(gspca_dev, 0x0b);
1342 	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1343 	gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1344 
1345 	if ((sensor_id & 0xfff0) == 0x7670) {
1346 		sd->sensor = SENSOR_OV767x;
1347 		gspca_dev->cam.cam_mode = ov767x_mode;
1348 		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1349 	} else {
1350 		sd->sensor = SENSOR_OV772x;
1351 		gspca_dev->cam.bulk = 1;
1352 		gspca_dev->cam.bulk_size = 16384;
1353 		gspca_dev->cam.bulk_nurbs = 2;
1354 		gspca_dev->cam.mode_framerates = ov772x_framerates;
1355 	}
1356 
1357 	/* initialize */
1358 	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1359 			bridge_init[sd->sensor].len);
1360 	ov534_set_led(gspca_dev, 1);
1361 	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1362 			sensor_init[sd->sensor].len);
1363 
1364 	sd_stopN(gspca_dev);
1365 /*	set_frame_rate(gspca_dev);	*/
1366 
1367 	return gspca_dev->usb_err;
1368 }
1369 
1370 static int sd_start(struct gspca_dev *gspca_dev)
1371 {
1372 	struct sd *sd = (struct sd *) gspca_dev;
1373 	int mode;
1374 	static const struct reg_array bridge_start[NSENSORS][4] = {
1375 	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1376 					ARRAY_SIZE(bridge_start_qvga_767x)},
1377 			{bridge_start_vga_767x,
1378 					ARRAY_SIZE(bridge_start_vga_767x)}},
1379 	[SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x,
1380 				ARRAY_SIZE(bridge_start_qvga_yuyv_772x)},
1381 			{bridge_start_vga_yuyv_772x,
1382 				ARRAY_SIZE(bridge_start_vga_yuyv_772x)},
1383 			{bridge_start_qvga_gbrg_772x,
1384 				ARRAY_SIZE(bridge_start_qvga_gbrg_772x)},
1385 			{bridge_start_vga_gbrg_772x,
1386 				ARRAY_SIZE(bridge_start_vga_gbrg_772x)} },
1387 	};
1388 	static const struct reg_array sensor_start[NSENSORS][4] = {
1389 	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1390 					ARRAY_SIZE(sensor_start_qvga_767x)},
1391 			{sensor_start_vga_767x,
1392 					ARRAY_SIZE(sensor_start_vga_767x)}},
1393 	[SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x,
1394 				ARRAY_SIZE(sensor_start_qvga_yuyv_772x)},
1395 			{sensor_start_vga_yuyv_772x,
1396 				ARRAY_SIZE(sensor_start_vga_yuyv_772x)},
1397 			{sensor_start_qvga_gbrg_772x,
1398 				ARRAY_SIZE(sensor_start_qvga_gbrg_772x)},
1399 			{sensor_start_vga_gbrg_772x,
1400 				ARRAY_SIZE(sensor_start_vga_gbrg_772x)} },
1401 	};
1402 
1403 	/* (from ms-win trace) */
1404 	if (sd->sensor == SENSOR_OV767x)
1405 		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1406 					/* black sun enable ? */
1407 
1408 	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1409 	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1410 				bridge_start[sd->sensor][mode].len);
1411 	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1412 				sensor_start[sd->sensor][mode].len);
1413 
1414 	set_frame_rate(gspca_dev);
1415 
1416 	if (sd->hue)
1417 		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1418 	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1419 	if (sd->autogain)
1420 		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1421 	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1422 	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1423 	if (sd->gain)
1424 		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1425 	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1426 	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1427 	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1428 	if (sd->sharpness)
1429 		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1430 	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1431 		  v4l2_ctrl_g_ctrl(sd->vflip));
1432 	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1433 
1434 	ov534_set_led(gspca_dev, 1);
1435 	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1436 	return gspca_dev->usb_err;
1437 }
1438 
1439 static void sd_stopN(struct gspca_dev *gspca_dev)
1440 {
1441 	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1442 	ov534_set_led(gspca_dev, 0);
1443 }
1444 
1445 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1446 #define UVC_STREAM_EOH	(1 << 7)
1447 #define UVC_STREAM_ERR	(1 << 6)
1448 #define UVC_STREAM_STI	(1 << 5)
1449 #define UVC_STREAM_RES	(1 << 4)
1450 #define UVC_STREAM_SCR	(1 << 3)
1451 #define UVC_STREAM_PTS	(1 << 2)
1452 #define UVC_STREAM_EOF	(1 << 1)
1453 #define UVC_STREAM_FID	(1 << 0)
1454 
1455 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1456 			u8 *data, int len)
1457 {
1458 	struct sd *sd = (struct sd *) gspca_dev;
1459 	__u32 this_pts;
1460 	u16 this_fid;
1461 	int remaining_len = len;
1462 	int payload_len;
1463 
1464 	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1465 	do {
1466 		len = min(remaining_len, payload_len);
1467 
1468 		/* Payloads are prefixed with a UVC-style header.  We
1469 		   consider a frame to start when the FID toggles, or the PTS
1470 		   changes.  A frame ends when EOF is set, and we've received
1471 		   the correct number of bytes. */
1472 
1473 		/* Verify UVC header.  Header length is always 12 */
1474 		if (data[0] != 12 || len < 12) {
1475 			gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1476 			goto discard;
1477 		}
1478 
1479 		/* Check errors */
1480 		if (data[1] & UVC_STREAM_ERR) {
1481 			gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1482 			goto discard;
1483 		}
1484 
1485 		/* Extract PTS and FID */
1486 		if (!(data[1] & UVC_STREAM_PTS)) {
1487 			gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1488 			goto discard;
1489 		}
1490 		this_pts = (data[5] << 24) | (data[4] << 16)
1491 						| (data[3] << 8) | data[2];
1492 		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1493 
1494 		/* If PTS or FID has changed, start a new frame. */
1495 		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1496 			if (gspca_dev->last_packet_type == INTER_PACKET)
1497 				gspca_frame_add(gspca_dev, LAST_PACKET,
1498 						NULL, 0);
1499 			sd->last_pts = this_pts;
1500 			sd->last_fid = this_fid;
1501 			gspca_frame_add(gspca_dev, FIRST_PACKET,
1502 					data + 12, len - 12);
1503 		/* If this packet is marked as EOF, end the frame */
1504 		} else if (data[1] & UVC_STREAM_EOF) {
1505 			sd->last_pts = 0;
1506 			if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG
1507 			 && gspca_dev->image_len + len - 12 !=
1508 			    gspca_dev->pixfmt.sizeimage) {
1509 				gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1510 				goto discard;
1511 			}
1512 			gspca_frame_add(gspca_dev, LAST_PACKET,
1513 					data + 12, len - 12);
1514 		} else {
1515 
1516 			/* Add the data from this payload */
1517 			gspca_frame_add(gspca_dev, INTER_PACKET,
1518 					data + 12, len - 12);
1519 		}
1520 
1521 		/* Done this payload */
1522 		goto scan_next;
1523 
1524 discard:
1525 		/* Discard data until a new frame starts. */
1526 		gspca_dev->last_packet_type = DISCARD_PACKET;
1527 
1528 scan_next:
1529 		remaining_len -= len;
1530 		data += len;
1531 	} while (remaining_len > 0);
1532 }
1533 
1534 /* get stream parameters (framerate) */
1535 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1536 			     struct v4l2_streamparm *parm)
1537 {
1538 	struct v4l2_captureparm *cp = &parm->parm.capture;
1539 	struct v4l2_fract *tpf = &cp->timeperframe;
1540 	struct sd *sd = (struct sd *) gspca_dev;
1541 
1542 	tpf->numerator = 1;
1543 	tpf->denominator = sd->frame_rate;
1544 }
1545 
1546 /* set stream parameters (framerate) */
1547 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1548 			     struct v4l2_streamparm *parm)
1549 {
1550 	struct v4l2_captureparm *cp = &parm->parm.capture;
1551 	struct v4l2_fract *tpf = &cp->timeperframe;
1552 	struct sd *sd = (struct sd *) gspca_dev;
1553 
1554 	if (tpf->numerator == 0 || tpf->denominator == 0)
1555 		sd->frame_rate = DEFAULT_FRAME_RATE;
1556 	else
1557 		sd->frame_rate = tpf->denominator / tpf->numerator;
1558 
1559 	if (gspca_dev->streaming)
1560 		set_frame_rate(gspca_dev);
1561 
1562 	/* Return the actual framerate */
1563 	tpf->numerator = 1;
1564 	tpf->denominator = sd->frame_rate;
1565 }
1566 
1567 /* sub-driver description */
1568 static const struct sd_desc sd_desc = {
1569 	.name     = MODULE_NAME,
1570 	.config   = sd_config,
1571 	.init     = sd_init,
1572 	.init_controls = sd_init_controls,
1573 	.start    = sd_start,
1574 	.stopN    = sd_stopN,
1575 	.pkt_scan = sd_pkt_scan,
1576 	.get_streamparm = sd_get_streamparm,
1577 	.set_streamparm = sd_set_streamparm,
1578 };
1579 
1580 /* -- module initialisation -- */
1581 static const struct usb_device_id device_table[] = {
1582 	{USB_DEVICE(0x1415, 0x2000)},
1583 	{USB_DEVICE(0x06f8, 0x3002)},
1584 	{}
1585 };
1586 
1587 MODULE_DEVICE_TABLE(usb, device_table);
1588 
1589 /* -- device connect -- */
1590 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1591 {
1592 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1593 				THIS_MODULE);
1594 }
1595 
1596 static struct usb_driver sd_driver = {
1597 	.name       = MODULE_NAME,
1598 	.id_table   = device_table,
1599 	.probe      = sd_probe,
1600 	.disconnect = gspca_disconnect,
1601 #ifdef CONFIG_PM
1602 	.suspend    = gspca_suspend,
1603 	.resume     = gspca_resume,
1604 	.reset_resume = gspca_resume,
1605 #endif
1606 };
1607 
1608 module_usb_driver(sd_driver);
1609