xref: /openbmc/linux/drivers/media/usb/gspca/ov534.c (revision de2bdb3d)
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  * PS3 Eye camera - FPS range extended by Joseph Howse
16  *                  <josephhowse@nummist.com> http://nummist.com
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31  */
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #define MODULE_NAME "ov534"
36 
37 #include "gspca.h"
38 
39 #include <linux/fixp-arith.h>
40 #include <media/v4l2-ctrls.h>
41 
42 #define OV534_REG_ADDRESS	0xf1	/* sensor address */
43 #define OV534_REG_SUBADDR	0xf2
44 #define OV534_REG_WRITE		0xf3
45 #define OV534_REG_READ		0xf4
46 #define OV534_REG_OPERATION	0xf5
47 #define OV534_REG_STATUS	0xf6
48 
49 #define OV534_OP_WRITE_3	0x37
50 #define OV534_OP_WRITE_2	0x33
51 #define OV534_OP_READ_2		0xf9
52 
53 #define CTRL_TIMEOUT 500
54 #define DEFAULT_FRAME_RATE 30
55 
56 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
57 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
58 MODULE_LICENSE("GPL");
59 
60 /* specific webcam descriptor */
61 struct sd {
62 	struct gspca_dev gspca_dev;	/* !! must be the first item */
63 
64 	struct v4l2_ctrl_handler ctrl_handler;
65 	struct v4l2_ctrl *hue;
66 	struct v4l2_ctrl *saturation;
67 	struct v4l2_ctrl *brightness;
68 	struct v4l2_ctrl *contrast;
69 	struct { /* gain control cluster */
70 		struct v4l2_ctrl *autogain;
71 		struct v4l2_ctrl *gain;
72 	};
73 	struct v4l2_ctrl *autowhitebalance;
74 	struct { /* exposure control cluster */
75 		struct v4l2_ctrl *autoexposure;
76 		struct v4l2_ctrl *exposure;
77 	};
78 	struct v4l2_ctrl *sharpness;
79 	struct v4l2_ctrl *hflip;
80 	struct v4l2_ctrl *vflip;
81 	struct v4l2_ctrl *plfreq;
82 
83 	__u32 last_pts;
84 	u16 last_fid;
85 	u8 frame_rate;
86 
87 	u8 sensor;
88 };
89 enum sensors {
90 	SENSOR_OV767x,
91 	SENSOR_OV772x,
92 	NSENSORS
93 };
94 
95 static int sd_start(struct gspca_dev *gspca_dev);
96 static void sd_stopN(struct gspca_dev *gspca_dev);
97 
98 
99 static const struct v4l2_pix_format ov772x_mode[] = {
100 	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
101 	 .bytesperline = 320 * 2,
102 	 .sizeimage = 320 * 240 * 2,
103 	 .colorspace = V4L2_COLORSPACE_SRGB,
104 	 .priv = 1},
105 	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
106 	 .bytesperline = 640 * 2,
107 	 .sizeimage = 640 * 480 * 2,
108 	 .colorspace = V4L2_COLORSPACE_SRGB,
109 	 .priv = 0},
110 };
111 static const struct v4l2_pix_format ov767x_mode[] = {
112 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 		.bytesperline = 320,
114 		.sizeimage = 320 * 240 * 3 / 8 + 590,
115 		.colorspace = V4L2_COLORSPACE_JPEG},
116 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
117 		.bytesperline = 640,
118 		.sizeimage = 640 * 480 * 3 / 8 + 590,
119 		.colorspace = V4L2_COLORSPACE_JPEG},
120 };
121 
122 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
123 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
124 
125 static const struct framerates ov772x_framerates[] = {
126 	{ /* 320x240 */
127 		.rates = qvga_rates,
128 		.nrates = ARRAY_SIZE(qvga_rates),
129 	},
130 	{ /* 640x480 */
131 		.rates = vga_rates,
132 		.nrates = ARRAY_SIZE(vga_rates),
133 	},
134 };
135 
136 struct reg_array {
137 	const u8 (*val)[2];
138 	int len;
139 };
140 
141 static const u8 bridge_init_767x[][2] = {
142 /* comments from the ms-win file apollo7670.set */
143 /* str1 */
144 	{0xf1, 0x42},
145 	{0x88, 0xf8},
146 	{0x89, 0xff},
147 	{0x76, 0x03},
148 	{0x92, 0x03},
149 	{0x95, 0x10},
150 	{0xe2, 0x00},
151 	{0xe7, 0x3e},
152 	{0x8d, 0x1c},
153 	{0x8e, 0x00},
154 	{0x8f, 0x00},
155 	{0x1f, 0x00},
156 	{0xc3, 0xf9},
157 	{0x89, 0xff},
158 	{0x88, 0xf8},
159 	{0x76, 0x03},
160 	{0x92, 0x01},
161 	{0x93, 0x18},
162 	{0x1c, 0x00},
163 	{0x1d, 0x48},
164 	{0x1d, 0x00},
165 	{0x1d, 0xff},
166 	{0x1d, 0x02},
167 	{0x1d, 0x58},
168 	{0x1d, 0x00},
169 	{0x1c, 0x0a},
170 	{0x1d, 0x0a},
171 	{0x1d, 0x0e},
172 	{0xc0, 0x50},	/* HSize 640 */
173 	{0xc1, 0x3c},	/* VSize 480 */
174 	{0x34, 0x05},	/* enable Audio Suspend mode */
175 	{0xc2, 0x0c},	/* Input YUV */
176 	{0xc3, 0xf9},	/* enable PRE */
177 	{0x34, 0x05},	/* enable Audio Suspend mode */
178 	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
179 	{0x31, 0xf9},	/* enable 1.8V Suspend */
180 	{0x35, 0x02},	/* turn on JPEG */
181 	{0xd9, 0x10},
182 	{0x25, 0x42},	/* GPIO[8]:Input */
183 	{0x94, 0x11},	/* If the default setting is loaded when
184 			 * system boots up, this flag is closed here */
185 };
186 static const u8 sensor_init_767x[][2] = {
187 	{0x12, 0x80},
188 	{0x11, 0x03},
189 	{0x3a, 0x04},
190 	{0x12, 0x00},
191 	{0x17, 0x13},
192 	{0x18, 0x01},
193 	{0x32, 0xb6},
194 	{0x19, 0x02},
195 	{0x1a, 0x7a},
196 	{0x03, 0x0a},
197 	{0x0c, 0x00},
198 	{0x3e, 0x00},
199 	{0x70, 0x3a},
200 	{0x71, 0x35},
201 	{0x72, 0x11},
202 	{0x73, 0xf0},
203 	{0xa2, 0x02},
204 	{0x7a, 0x2a},	/* set Gamma=1.6 below */
205 	{0x7b, 0x12},
206 	{0x7c, 0x1d},
207 	{0x7d, 0x2d},
208 	{0x7e, 0x45},
209 	{0x7f, 0x50},
210 	{0x80, 0x59},
211 	{0x81, 0x62},
212 	{0x82, 0x6b},
213 	{0x83, 0x73},
214 	{0x84, 0x7b},
215 	{0x85, 0x8a},
216 	{0x86, 0x98},
217 	{0x87, 0xb2},
218 	{0x88, 0xca},
219 	{0x89, 0xe0},
220 	{0x13, 0xe0},
221 	{0x00, 0x00},
222 	{0x10, 0x00},
223 	{0x0d, 0x40},
224 	{0x14, 0x38},	/* gain max 16x */
225 	{0xa5, 0x05},
226 	{0xab, 0x07},
227 	{0x24, 0x95},
228 	{0x25, 0x33},
229 	{0x26, 0xe3},
230 	{0x9f, 0x78},
231 	{0xa0, 0x68},
232 	{0xa1, 0x03},
233 	{0xa6, 0xd8},
234 	{0xa7, 0xd8},
235 	{0xa8, 0xf0},
236 	{0xa9, 0x90},
237 	{0xaa, 0x94},
238 	{0x13, 0xe5},
239 	{0x0e, 0x61},
240 	{0x0f, 0x4b},
241 	{0x16, 0x02},
242 	{0x21, 0x02},
243 	{0x22, 0x91},
244 	{0x29, 0x07},
245 	{0x33, 0x0b},
246 	{0x35, 0x0b},
247 	{0x37, 0x1d},
248 	{0x38, 0x71},
249 	{0x39, 0x2a},
250 	{0x3c, 0x78},
251 	{0x4d, 0x40},
252 	{0x4e, 0x20},
253 	{0x69, 0x00},
254 	{0x6b, 0x4a},
255 	{0x74, 0x10},
256 	{0x8d, 0x4f},
257 	{0x8e, 0x00},
258 	{0x8f, 0x00},
259 	{0x90, 0x00},
260 	{0x91, 0x00},
261 	{0x96, 0x00},
262 	{0x9a, 0x80},
263 	{0xb0, 0x84},
264 	{0xb1, 0x0c},
265 	{0xb2, 0x0e},
266 	{0xb3, 0x82},
267 	{0xb8, 0x0a},
268 	{0x43, 0x0a},
269 	{0x44, 0xf0},
270 	{0x45, 0x34},
271 	{0x46, 0x58},
272 	{0x47, 0x28},
273 	{0x48, 0x3a},
274 	{0x59, 0x88},
275 	{0x5a, 0x88},
276 	{0x5b, 0x44},
277 	{0x5c, 0x67},
278 	{0x5d, 0x49},
279 	{0x5e, 0x0e},
280 	{0x6c, 0x0a},
281 	{0x6d, 0x55},
282 	{0x6e, 0x11},
283 	{0x6f, 0x9f},
284 	{0x6a, 0x40},
285 	{0x01, 0x40},
286 	{0x02, 0x40},
287 	{0x13, 0xe7},
288 	{0x4f, 0x80},
289 	{0x50, 0x80},
290 	{0x51, 0x00},
291 	{0x52, 0x22},
292 	{0x53, 0x5e},
293 	{0x54, 0x80},
294 	{0x58, 0x9e},
295 	{0x41, 0x08},
296 	{0x3f, 0x00},
297 	{0x75, 0x04},
298 	{0x76, 0xe1},
299 	{0x4c, 0x00},
300 	{0x77, 0x01},
301 	{0x3d, 0xc2},
302 	{0x4b, 0x09},
303 	{0xc9, 0x60},
304 	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
305 	{0x56, 0x40},
306 	{0x34, 0x11},
307 	{0x3b, 0xc2},
308 	{0xa4, 0x8a},	/* Night mode trigger point */
309 	{0x96, 0x00},
310 	{0x97, 0x30},
311 	{0x98, 0x20},
312 	{0x99, 0x20},
313 	{0x9a, 0x84},
314 	{0x9b, 0x29},
315 	{0x9c, 0x03},
316 	{0x9d, 0x4c},
317 	{0x9e, 0x3f},
318 	{0x78, 0x04},
319 	{0x79, 0x01},
320 	{0xc8, 0xf0},
321 	{0x79, 0x0f},
322 	{0xc8, 0x00},
323 	{0x79, 0x10},
324 	{0xc8, 0x7e},
325 	{0x79, 0x0a},
326 	{0xc8, 0x80},
327 	{0x79, 0x0b},
328 	{0xc8, 0x01},
329 	{0x79, 0x0c},
330 	{0xc8, 0x0f},
331 	{0x79, 0x0d},
332 	{0xc8, 0x20},
333 	{0x79, 0x09},
334 	{0xc8, 0x80},
335 	{0x79, 0x02},
336 	{0xc8, 0xc0},
337 	{0x79, 0x03},
338 	{0xc8, 0x20},
339 	{0x79, 0x26},
340 };
341 static const u8 bridge_start_vga_767x[][2] = {
342 /* str59 JPG */
343 	{0x94, 0xaa},
344 	{0xf1, 0x42},
345 	{0xe5, 0x04},
346 	{0xc0, 0x50},
347 	{0xc1, 0x3c},
348 	{0xc2, 0x0c},
349 	{0x35, 0x02},	/* turn on JPEG */
350 	{0xd9, 0x10},
351 	{0xda, 0x00},	/* for higher clock rate(30fps) */
352 	{0x34, 0x05},	/* enable Audio Suspend mode */
353 	{0xc3, 0xf9},	/* enable PRE */
354 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
355 	{0x8d, 0x1c},	/* output YUV */
356 /*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
357 	{0x50, 0x00},	/* H/V divider=0 */
358 	{0x51, 0xa0},	/* input H=640/4 */
359 	{0x52, 0x3c},	/* input V=480/4 */
360 	{0x53, 0x00},	/* offset X=0 */
361 	{0x54, 0x00},	/* offset Y=0 */
362 	{0x55, 0x00},	/* H/V size[8]=0 */
363 	{0x57, 0x00},	/* H-size[9]=0 */
364 	{0x5c, 0x00},	/* output size[9:8]=0 */
365 	{0x5a, 0xa0},	/* output H=640/4 */
366 	{0x5b, 0x78},	/* output V=480/4 */
367 	{0x1c, 0x0a},
368 	{0x1d, 0x0a},
369 	{0x94, 0x11},
370 };
371 static const u8 sensor_start_vga_767x[][2] = {
372 	{0x11, 0x01},
373 	{0x1e, 0x04},
374 	{0x19, 0x02},
375 	{0x1a, 0x7a},
376 };
377 static const u8 bridge_start_qvga_767x[][2] = {
378 /* str86 JPG */
379 	{0x94, 0xaa},
380 	{0xf1, 0x42},
381 	{0xe5, 0x04},
382 	{0xc0, 0x80},
383 	{0xc1, 0x60},
384 	{0xc2, 0x0c},
385 	{0x35, 0x02},	/* turn on JPEG */
386 	{0xd9, 0x10},
387 	{0xc0, 0x50},	/* CIF HSize 640 */
388 	{0xc1, 0x3c},	/* CIF VSize 480 */
389 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
390 	{0x8d, 0x1c},	/* output YUV */
391 	{0x34, 0x05},	/* enable Audio Suspend mode */
392 	{0xc2, 0x4c},	/* output YUV and Enable DCW */
393 	{0xc3, 0xf9},	/* enable PRE */
394 	{0x1c, 0x00},	/* indirect addressing */
395 	{0x1d, 0x48},	/* output YUV422 */
396 	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
397 	{0x51, 0xa0},	/* DCW input H=640/4 */
398 	{0x52, 0x78},	/* DCW input V=480/4 */
399 	{0x53, 0x00},	/* offset X=0 */
400 	{0x54, 0x00},	/* offset Y=0 */
401 	{0x55, 0x00},	/* H/V size[8]=0 */
402 	{0x57, 0x00},	/* H-size[9]=0 */
403 	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
404 	{0x5a, 0x50},	/* DCW output H=320/4 */
405 	{0x5b, 0x3c},	/* DCW output V=240/4 */
406 	{0x1c, 0x0a},
407 	{0x1d, 0x0a},
408 	{0x94, 0x11},
409 };
410 static const u8 sensor_start_qvga_767x[][2] = {
411 	{0x11, 0x01},
412 	{0x1e, 0x04},
413 	{0x19, 0x02},
414 	{0x1a, 0x7a},
415 };
416 
417 static const u8 bridge_init_772x[][2] = {
418 	{ 0xc2, 0x0c },
419 	{ 0x88, 0xf8 },
420 	{ 0xc3, 0x69 },
421 	{ 0x89, 0xff },
422 	{ 0x76, 0x03 },
423 	{ 0x92, 0x01 },
424 	{ 0x93, 0x18 },
425 	{ 0x94, 0x10 },
426 	{ 0x95, 0x10 },
427 	{ 0xe2, 0x00 },
428 	{ 0xe7, 0x3e },
429 
430 	{ 0x96, 0x00 },
431 
432 	{ 0x97, 0x20 },
433 	{ 0x97, 0x20 },
434 	{ 0x97, 0x20 },
435 	{ 0x97, 0x0a },
436 	{ 0x97, 0x3f },
437 	{ 0x97, 0x4a },
438 	{ 0x97, 0x20 },
439 	{ 0x97, 0x15 },
440 	{ 0x97, 0x0b },
441 
442 	{ 0x8e, 0x40 },
443 	{ 0x1f, 0x81 },
444 	{ 0x34, 0x05 },
445 	{ 0xe3, 0x04 },
446 	{ 0x88, 0x00 },
447 	{ 0x89, 0x00 },
448 	{ 0x76, 0x00 },
449 	{ 0xe7, 0x2e },
450 	{ 0x31, 0xf9 },
451 	{ 0x25, 0x42 },
452 	{ 0x21, 0xf0 },
453 
454 	{ 0x1c, 0x00 },
455 	{ 0x1d, 0x40 },
456 	{ 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
457 	{ 0x1d, 0x00 }, /* payload size */
458 
459 	{ 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
460 	{ 0x1d, 0x58 }, /* frame size */
461 	{ 0x1d, 0x00 }, /* frame size */
462 
463 	{ 0x1c, 0x0a },
464 	{ 0x1d, 0x08 }, /* turn on UVC header */
465 	{ 0x1d, 0x0e }, /* .. */
466 
467 	{ 0x8d, 0x1c },
468 	{ 0x8e, 0x80 },
469 	{ 0xe5, 0x04 },
470 
471 	{ 0xc0, 0x50 },
472 	{ 0xc1, 0x3c },
473 	{ 0xc2, 0x0c },
474 };
475 static const u8 sensor_init_772x[][2] = {
476 	{ 0x12, 0x80 },
477 	{ 0x11, 0x01 },
478 /*fixme: better have a delay?*/
479 	{ 0x11, 0x01 },
480 	{ 0x11, 0x01 },
481 	{ 0x11, 0x01 },
482 	{ 0x11, 0x01 },
483 	{ 0x11, 0x01 },
484 	{ 0x11, 0x01 },
485 	{ 0x11, 0x01 },
486 	{ 0x11, 0x01 },
487 	{ 0x11, 0x01 },
488 	{ 0x11, 0x01 },
489 
490 	{ 0x3d, 0x03 },
491 	{ 0x17, 0x26 },
492 	{ 0x18, 0xa0 },
493 	{ 0x19, 0x07 },
494 	{ 0x1a, 0xf0 },
495 	{ 0x32, 0x00 },
496 	{ 0x29, 0xa0 },
497 	{ 0x2c, 0xf0 },
498 	{ 0x65, 0x20 },
499 	{ 0x11, 0x01 },
500 	{ 0x42, 0x7f },
501 	{ 0x63, 0xaa },		/* AWB - was e0 */
502 	{ 0x64, 0xff },
503 	{ 0x66, 0x00 },
504 	{ 0x13, 0xf0 },		/* com8 */
505 	{ 0x0d, 0x41 },
506 	{ 0x0f, 0xc5 },
507 	{ 0x14, 0x11 },
508 
509 	{ 0x22, 0x7f },
510 	{ 0x23, 0x03 },
511 	{ 0x24, 0x40 },
512 	{ 0x25, 0x30 },
513 	{ 0x26, 0xa1 },
514 	{ 0x2a, 0x00 },
515 	{ 0x2b, 0x00 },
516 	{ 0x6b, 0xaa },
517 	{ 0x13, 0xff },		/* AWB */
518 
519 	{ 0x90, 0x05 },
520 	{ 0x91, 0x01 },
521 	{ 0x92, 0x03 },
522 	{ 0x93, 0x00 },
523 	{ 0x94, 0x60 },
524 	{ 0x95, 0x3c },
525 	{ 0x96, 0x24 },
526 	{ 0x97, 0x1e },
527 	{ 0x98, 0x62 },
528 	{ 0x99, 0x80 },
529 	{ 0x9a, 0x1e },
530 	{ 0x9b, 0x08 },
531 	{ 0x9c, 0x20 },
532 	{ 0x9e, 0x81 },
533 
534 	{ 0xa6, 0x07 },
535 	{ 0x7e, 0x0c },
536 	{ 0x7f, 0x16 },
537 	{ 0x80, 0x2a },
538 	{ 0x81, 0x4e },
539 	{ 0x82, 0x61 },
540 	{ 0x83, 0x6f },
541 	{ 0x84, 0x7b },
542 	{ 0x85, 0x86 },
543 	{ 0x86, 0x8e },
544 	{ 0x87, 0x97 },
545 	{ 0x88, 0xa4 },
546 	{ 0x89, 0xaf },
547 	{ 0x8a, 0xc5 },
548 	{ 0x8b, 0xd7 },
549 	{ 0x8c, 0xe8 },
550 	{ 0x8d, 0x20 },
551 
552 	{ 0x0c, 0x90 },
553 
554 	{ 0x2b, 0x00 },
555 	{ 0x22, 0x7f },
556 	{ 0x23, 0x03 },
557 	{ 0x11, 0x01 },
558 	{ 0x0c, 0xd0 },
559 	{ 0x64, 0xff },
560 	{ 0x0d, 0x41 },
561 
562 	{ 0x14, 0x41 },
563 	{ 0x0e, 0xcd },
564 	{ 0xac, 0xbf },
565 	{ 0x8e, 0x00 },		/* De-noise threshold */
566 	{ 0x0c, 0xd0 }
567 };
568 static const u8 bridge_start_vga_772x[][2] = {
569 	{0x1c, 0x00},
570 	{0x1d, 0x40},
571 	{0x1d, 0x02},
572 	{0x1d, 0x00},
573 	{0x1d, 0x02},
574 	{0x1d, 0x58},
575 	{0x1d, 0x00},
576 	{0xc0, 0x50},
577 	{0xc1, 0x3c},
578 };
579 static const u8 sensor_start_vga_772x[][2] = {
580 	{0x12, 0x00},
581 	{0x17, 0x26},
582 	{0x18, 0xa0},
583 	{0x19, 0x07},
584 	{0x1a, 0xf0},
585 	{0x29, 0xa0},
586 	{0x2c, 0xf0},
587 	{0x65, 0x20},
588 };
589 static const u8 bridge_start_qvga_772x[][2] = {
590 	{0x1c, 0x00},
591 	{0x1d, 0x40},
592 	{0x1d, 0x02},
593 	{0x1d, 0x00},
594 	{0x1d, 0x01},
595 	{0x1d, 0x4b},
596 	{0x1d, 0x00},
597 	{0xc0, 0x28},
598 	{0xc1, 0x1e},
599 };
600 static const u8 sensor_start_qvga_772x[][2] = {
601 	{0x12, 0x40},
602 	{0x17, 0x3f},
603 	{0x18, 0x50},
604 	{0x19, 0x03},
605 	{0x1a, 0x78},
606 	{0x29, 0x50},
607 	{0x2c, 0x78},
608 	{0x65, 0x2f},
609 };
610 
611 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
612 {
613 	struct usb_device *udev = gspca_dev->dev;
614 	int ret;
615 
616 	if (gspca_dev->usb_err < 0)
617 		return;
618 
619 	PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
620 	gspca_dev->usb_buf[0] = val;
621 	ret = usb_control_msg(udev,
622 			      usb_sndctrlpipe(udev, 0),
623 			      0x01,
624 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
625 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
626 	if (ret < 0) {
627 		pr_err("write failed %d\n", ret);
628 		gspca_dev->usb_err = ret;
629 	}
630 }
631 
632 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
633 {
634 	struct usb_device *udev = gspca_dev->dev;
635 	int ret;
636 
637 	if (gspca_dev->usb_err < 0)
638 		return 0;
639 	ret = usb_control_msg(udev,
640 			      usb_rcvctrlpipe(udev, 0),
641 			      0x01,
642 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
643 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
644 	PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
645 	if (ret < 0) {
646 		pr_err("read failed %d\n", ret);
647 		gspca_dev->usb_err = ret;
648 	}
649 	return gspca_dev->usb_buf[0];
650 }
651 
652 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
653  * (direction and output)? */
654 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
655 {
656 	u8 data;
657 
658 	PDEBUG(D_CONF, "led status: %d", status);
659 
660 	data = ov534_reg_read(gspca_dev, 0x21);
661 	data |= 0x80;
662 	ov534_reg_write(gspca_dev, 0x21, data);
663 
664 	data = ov534_reg_read(gspca_dev, 0x23);
665 	if (status)
666 		data |= 0x80;
667 	else
668 		data &= ~0x80;
669 
670 	ov534_reg_write(gspca_dev, 0x23, data);
671 
672 	if (!status) {
673 		data = ov534_reg_read(gspca_dev, 0x21);
674 		data &= ~0x80;
675 		ov534_reg_write(gspca_dev, 0x21, data);
676 	}
677 }
678 
679 static int sccb_check_status(struct gspca_dev *gspca_dev)
680 {
681 	u8 data;
682 	int i;
683 
684 	for (i = 0; i < 5; i++) {
685 		msleep(10);
686 		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
687 
688 		switch (data) {
689 		case 0x00:
690 			return 1;
691 		case 0x04:
692 			return 0;
693 		case 0x03:
694 			break;
695 		default:
696 			PERR("sccb status 0x%02x, attempt %d/5",
697 			       data, i + 1);
698 		}
699 	}
700 	return 0;
701 }
702 
703 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
704 {
705 	PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
706 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
707 	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
708 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
709 
710 	if (!sccb_check_status(gspca_dev)) {
711 		pr_err("sccb_reg_write failed\n");
712 		gspca_dev->usb_err = -EIO;
713 	}
714 }
715 
716 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
717 {
718 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
719 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
720 	if (!sccb_check_status(gspca_dev))
721 		pr_err("sccb_reg_read failed 1\n");
722 
723 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
724 	if (!sccb_check_status(gspca_dev))
725 		pr_err("sccb_reg_read failed 2\n");
726 
727 	return ov534_reg_read(gspca_dev, OV534_REG_READ);
728 }
729 
730 /* output a bridge sequence (reg - val) */
731 static void reg_w_array(struct gspca_dev *gspca_dev,
732 			const u8 (*data)[2], int len)
733 {
734 	while (--len >= 0) {
735 		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
736 		data++;
737 	}
738 }
739 
740 /* output a sensor sequence (reg - val) */
741 static void sccb_w_array(struct gspca_dev *gspca_dev,
742 			const u8 (*data)[2], int len)
743 {
744 	while (--len >= 0) {
745 		if ((*data)[0] != 0xff) {
746 			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
747 		} else {
748 			sccb_reg_read(gspca_dev, (*data)[1]);
749 			sccb_reg_write(gspca_dev, 0xff, 0x00);
750 		}
751 		data++;
752 	}
753 }
754 
755 /* ov772x specific controls */
756 static void set_frame_rate(struct gspca_dev *gspca_dev)
757 {
758 	struct sd *sd = (struct sd *) gspca_dev;
759 	int i;
760 	struct rate_s {
761 		u8 fps;
762 		u8 r11;
763 		u8 r0d;
764 		u8 re5;
765 	};
766 	const struct rate_s *r;
767 	static const struct rate_s rate_0[] = {	/* 640x480 */
768 		{60, 0x01, 0xc1, 0x04},
769 		{50, 0x01, 0x41, 0x02},
770 		{40, 0x02, 0xc1, 0x04},
771 		{30, 0x04, 0x81, 0x02},
772 		{15, 0x03, 0x41, 0x04},
773 	};
774 	static const struct rate_s rate_1[] = {	/* 320x240 */
775 /*		{205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
776 		{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
777 		{150, 0x01, 0xc1, 0x04},
778 		{137, 0x02, 0xc1, 0x02},
779 		{125, 0x02, 0x81, 0x02},
780 		{100, 0x02, 0xc1, 0x04},
781 		{75, 0x03, 0xc1, 0x04},
782 		{60, 0x04, 0xc1, 0x04},
783 		{50, 0x02, 0x41, 0x04},
784 		{37, 0x03, 0x41, 0x04},
785 		{30, 0x04, 0x41, 0x04},
786 	};
787 
788 	if (sd->sensor != SENSOR_OV772x)
789 		return;
790 	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
791 		r = rate_0;
792 		i = ARRAY_SIZE(rate_0);
793 	} else {
794 		r = rate_1;
795 		i = ARRAY_SIZE(rate_1);
796 	}
797 	while (--i > 0) {
798 		if (sd->frame_rate >= r->fps)
799 			break;
800 		r++;
801 	}
802 
803 	sccb_reg_write(gspca_dev, 0x11, r->r11);
804 	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
805 	ov534_reg_write(gspca_dev, 0xe5, r->re5);
806 
807 	PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
808 }
809 
810 static void sethue(struct gspca_dev *gspca_dev, s32 val)
811 {
812 	struct sd *sd = (struct sd *) gspca_dev;
813 
814 	if (sd->sensor == SENSOR_OV767x) {
815 		/* TBD */
816 	} else {
817 		s16 huesin;
818 		s16 huecos;
819 
820 		/* According to the datasheet the registers expect HUESIN and
821 		 * HUECOS to be the result of the trigonometric functions,
822 		 * scaled by 0x80.
823 		 *
824 		 * The 0x7fff here represents the maximum absolute value
825 		 * returned byt fixp_sin and fixp_cos, so the scaling will
826 		 * consider the result like in the interval [-1.0, 1.0].
827 		 */
828 		huesin = fixp_sin16(val) * 0x80 / 0x7fff;
829 		huecos = fixp_cos16(val) * 0x80 / 0x7fff;
830 
831 		if (huesin < 0) {
832 			sccb_reg_write(gspca_dev, 0xab,
833 				sccb_reg_read(gspca_dev, 0xab) | 0x2);
834 			huesin = -huesin;
835 		} else {
836 			sccb_reg_write(gspca_dev, 0xab,
837 				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
838 
839 		}
840 		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
841 		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
842 	}
843 }
844 
845 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
846 {
847 	struct sd *sd = (struct sd *) gspca_dev;
848 
849 	if (sd->sensor == SENSOR_OV767x) {
850 		int i;
851 		static u8 color_tb[][6] = {
852 			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
853 			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
854 			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
855 			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
856 			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
857 			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
858 			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
859 		};
860 
861 		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
862 			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
863 	} else {
864 		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
865 		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
866 	}
867 }
868 
869 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
870 {
871 	struct sd *sd = (struct sd *) gspca_dev;
872 
873 	if (sd->sensor == SENSOR_OV767x) {
874 		if (val < 0)
875 			val = 0x80 - val;
876 		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
877 	} else {
878 		sccb_reg_write(gspca_dev, 0x9b, val);
879 	}
880 }
881 
882 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
883 {
884 	struct sd *sd = (struct sd *) gspca_dev;
885 
886 	if (sd->sensor == SENSOR_OV767x)
887 		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
888 	else
889 		sccb_reg_write(gspca_dev, 0x9c, val);
890 }
891 
892 static void setgain(struct gspca_dev *gspca_dev, s32 val)
893 {
894 	switch (val & 0x30) {
895 	case 0x00:
896 		val &= 0x0f;
897 		break;
898 	case 0x10:
899 		val &= 0x0f;
900 		val |= 0x30;
901 		break;
902 	case 0x20:
903 		val &= 0x0f;
904 		val |= 0x70;
905 		break;
906 	default:
907 /*	case 0x30: */
908 		val &= 0x0f;
909 		val |= 0xf0;
910 		break;
911 	}
912 	sccb_reg_write(gspca_dev, 0x00, val);
913 }
914 
915 static s32 getgain(struct gspca_dev *gspca_dev)
916 {
917 	return sccb_reg_read(gspca_dev, 0x00);
918 }
919 
920 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
921 {
922 	struct sd *sd = (struct sd *) gspca_dev;
923 
924 	if (sd->sensor == SENSOR_OV767x) {
925 
926 		/* set only aec[9:2] */
927 		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
928 	} else {
929 
930 		/* 'val' is one byte and represents half of the exposure value
931 		 * we are going to set into registers, a two bytes value:
932 		 *
933 		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
934 		 *    LSB: ((u16) val << 1) & 0xff == val << 1
935 		 */
936 		sccb_reg_write(gspca_dev, 0x08, val >> 7);
937 		sccb_reg_write(gspca_dev, 0x10, val << 1);
938 	}
939 }
940 
941 static s32 getexposure(struct gspca_dev *gspca_dev)
942 {
943 	struct sd *sd = (struct sd *) gspca_dev;
944 
945 	if (sd->sensor == SENSOR_OV767x) {
946 		/* get only aec[9:2] */
947 		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
948 	} else {
949 		u8 hi = sccb_reg_read(gspca_dev, 0x08);
950 		u8 lo = sccb_reg_read(gspca_dev, 0x10);
951 		return (hi << 8 | lo) >> 1;
952 	}
953 }
954 
955 static void setagc(struct gspca_dev *gspca_dev, s32 val)
956 {
957 	if (val) {
958 		sccb_reg_write(gspca_dev, 0x13,
959 				sccb_reg_read(gspca_dev, 0x13) | 0x04);
960 		sccb_reg_write(gspca_dev, 0x64,
961 				sccb_reg_read(gspca_dev, 0x64) | 0x03);
962 	} else {
963 		sccb_reg_write(gspca_dev, 0x13,
964 				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
965 		sccb_reg_write(gspca_dev, 0x64,
966 				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
967 	}
968 }
969 
970 static void setawb(struct gspca_dev *gspca_dev, s32 val)
971 {
972 	struct sd *sd = (struct sd *) gspca_dev;
973 
974 	if (val) {
975 		sccb_reg_write(gspca_dev, 0x13,
976 				sccb_reg_read(gspca_dev, 0x13) | 0x02);
977 		if (sd->sensor == SENSOR_OV772x)
978 			sccb_reg_write(gspca_dev, 0x63,
979 				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
980 	} else {
981 		sccb_reg_write(gspca_dev, 0x13,
982 				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
983 		if (sd->sensor == SENSOR_OV772x)
984 			sccb_reg_write(gspca_dev, 0x63,
985 				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
986 	}
987 }
988 
989 static void setaec(struct gspca_dev *gspca_dev, s32 val)
990 {
991 	struct sd *sd = (struct sd *) gspca_dev;
992 	u8 data;
993 
994 	data = sd->sensor == SENSOR_OV767x ?
995 			0x05 :		/* agc + aec */
996 			0x01;		/* agc */
997 	switch (val) {
998 	case V4L2_EXPOSURE_AUTO:
999 		sccb_reg_write(gspca_dev, 0x13,
1000 				sccb_reg_read(gspca_dev, 0x13) | data);
1001 		break;
1002 	case V4L2_EXPOSURE_MANUAL:
1003 		sccb_reg_write(gspca_dev, 0x13,
1004 				sccb_reg_read(gspca_dev, 0x13) & ~data);
1005 		break;
1006 	}
1007 }
1008 
1009 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1010 {
1011 	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1012 	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1013 }
1014 
1015 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1016 {
1017 	struct sd *sd = (struct sd *) gspca_dev;
1018 	u8 val;
1019 
1020 	if (sd->sensor == SENSOR_OV767x) {
1021 		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1022 		val &= ~0x30;
1023 		if (hflip)
1024 			val |= 0x20;
1025 		if (vflip)
1026 			val |= 0x10;
1027 		sccb_reg_write(gspca_dev, 0x1e, val);
1028 	} else {
1029 		val = sccb_reg_read(gspca_dev, 0x0c);
1030 		val &= ~0xc0;
1031 		if (hflip == 0)
1032 			val |= 0x40;
1033 		if (vflip == 0)
1034 			val |= 0x80;
1035 		sccb_reg_write(gspca_dev, 0x0c, val);
1036 	}
1037 }
1038 
1039 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1040 {
1041 	struct sd *sd = (struct sd *) gspca_dev;
1042 
1043 	val = val ? 0x9e : 0x00;
1044 	if (sd->sensor == SENSOR_OV767x) {
1045 		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1046 		if (val)
1047 			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1048 	}
1049 	sccb_reg_write(gspca_dev, 0x2b, val);
1050 }
1051 
1052 
1053 /* this function is called at probe time */
1054 static int sd_config(struct gspca_dev *gspca_dev,
1055 		     const struct usb_device_id *id)
1056 {
1057 	struct sd *sd = (struct sd *) gspca_dev;
1058 	struct cam *cam;
1059 
1060 	cam = &gspca_dev->cam;
1061 
1062 	cam->cam_mode = ov772x_mode;
1063 	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1064 
1065 	sd->frame_rate = DEFAULT_FRAME_RATE;
1066 
1067 	return 0;
1068 }
1069 
1070 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1071 {
1072 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1073 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1074 
1075 	switch (ctrl->id) {
1076 	case V4L2_CID_AUTOGAIN:
1077 		gspca_dev->usb_err = 0;
1078 		if (ctrl->val && sd->gain && gspca_dev->streaming)
1079 			sd->gain->val = getgain(gspca_dev);
1080 		return gspca_dev->usb_err;
1081 
1082 	case V4L2_CID_EXPOSURE_AUTO:
1083 		gspca_dev->usb_err = 0;
1084 		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1085 		    gspca_dev->streaming)
1086 			sd->exposure->val = getexposure(gspca_dev);
1087 		return gspca_dev->usb_err;
1088 	}
1089 	return -EINVAL;
1090 }
1091 
1092 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1093 {
1094 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1095 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1096 
1097 	gspca_dev->usb_err = 0;
1098 	if (!gspca_dev->streaming)
1099 		return 0;
1100 
1101 	switch (ctrl->id) {
1102 	case V4L2_CID_HUE:
1103 		sethue(gspca_dev, ctrl->val);
1104 		break;
1105 	case V4L2_CID_SATURATION:
1106 		setsaturation(gspca_dev, ctrl->val);
1107 		break;
1108 	case V4L2_CID_BRIGHTNESS:
1109 		setbrightness(gspca_dev, ctrl->val);
1110 		break;
1111 	case V4L2_CID_CONTRAST:
1112 		setcontrast(gspca_dev, ctrl->val);
1113 		break;
1114 	case V4L2_CID_AUTOGAIN:
1115 	/* case V4L2_CID_GAIN: */
1116 		setagc(gspca_dev, ctrl->val);
1117 		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1118 			setgain(gspca_dev, sd->gain->val);
1119 		break;
1120 	case V4L2_CID_AUTO_WHITE_BALANCE:
1121 		setawb(gspca_dev, ctrl->val);
1122 		break;
1123 	case V4L2_CID_EXPOSURE_AUTO:
1124 	/* case V4L2_CID_EXPOSURE: */
1125 		setaec(gspca_dev, ctrl->val);
1126 		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1127 		    sd->exposure)
1128 			setexposure(gspca_dev, sd->exposure->val);
1129 		break;
1130 	case V4L2_CID_SHARPNESS:
1131 		setsharpness(gspca_dev, ctrl->val);
1132 		break;
1133 	case V4L2_CID_HFLIP:
1134 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1135 		break;
1136 	case V4L2_CID_VFLIP:
1137 		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1138 		break;
1139 	case V4L2_CID_POWER_LINE_FREQUENCY:
1140 		setlightfreq(gspca_dev, ctrl->val);
1141 		break;
1142 	}
1143 	return gspca_dev->usb_err;
1144 }
1145 
1146 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1147 	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1148 	.s_ctrl = ov534_s_ctrl,
1149 };
1150 
1151 static int sd_init_controls(struct gspca_dev *gspca_dev)
1152 {
1153 	struct sd *sd = (struct sd *) gspca_dev;
1154 	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1155 	/* parameters with different values between the supported sensors */
1156 	int saturation_min;
1157 	int saturation_max;
1158 	int saturation_def;
1159 	int brightness_min;
1160 	int brightness_max;
1161 	int brightness_def;
1162 	int contrast_max;
1163 	int contrast_def;
1164 	int exposure_min;
1165 	int exposure_max;
1166 	int exposure_def;
1167 	int hflip_def;
1168 
1169 	if (sd->sensor == SENSOR_OV767x) {
1170 		saturation_min = 0,
1171 		saturation_max = 6,
1172 		saturation_def = 3,
1173 		brightness_min = -127;
1174 		brightness_max = 127;
1175 		brightness_def = 0;
1176 		contrast_max = 0x80;
1177 		contrast_def = 0x40;
1178 		exposure_min = 0x08;
1179 		exposure_max = 0x60;
1180 		exposure_def = 0x13;
1181 		hflip_def = 1;
1182 	} else {
1183 		saturation_min = 0,
1184 		saturation_max = 255,
1185 		saturation_def = 64,
1186 		brightness_min = 0;
1187 		brightness_max = 255;
1188 		brightness_def = 0;
1189 		contrast_max = 255;
1190 		contrast_def = 32;
1191 		exposure_min = 0;
1192 		exposure_max = 255;
1193 		exposure_def = 120;
1194 		hflip_def = 0;
1195 	}
1196 
1197 	gspca_dev->vdev.ctrl_handler = hdl;
1198 
1199 	v4l2_ctrl_handler_init(hdl, 13);
1200 
1201 	if (sd->sensor == SENSOR_OV772x)
1202 		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1203 				V4L2_CID_HUE, -90, 90, 1, 0);
1204 
1205 	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1206 			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1207 			saturation_def);
1208 	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1209 			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1210 			brightness_def);
1211 	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1212 			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1213 
1214 	if (sd->sensor == SENSOR_OV772x) {
1215 		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216 				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1217 		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1218 				V4L2_CID_GAIN, 0, 63, 1, 20);
1219 	}
1220 
1221 	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1222 			V4L2_CID_EXPOSURE_AUTO,
1223 			V4L2_EXPOSURE_MANUAL, 0,
1224 			V4L2_EXPOSURE_AUTO);
1225 	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1226 			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1227 			exposure_def);
1228 
1229 	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1230 			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1231 
1232 	if (sd->sensor == SENSOR_OV772x)
1233 		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1234 				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1235 
1236 	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237 			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1238 	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1239 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1240 	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1241 			V4L2_CID_POWER_LINE_FREQUENCY,
1242 			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1243 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1244 
1245 	if (hdl->error) {
1246 		pr_err("Could not initialize controls\n");
1247 		return hdl->error;
1248 	}
1249 
1250 	if (sd->sensor == SENSOR_OV772x)
1251 		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1252 
1253 	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1254 			       true);
1255 
1256 	return 0;
1257 }
1258 
1259 /* this function is called at probe and resume time */
1260 static int sd_init(struct gspca_dev *gspca_dev)
1261 {
1262 	struct sd *sd = (struct sd *) gspca_dev;
1263 	u16 sensor_id;
1264 	static const struct reg_array bridge_init[NSENSORS] = {
1265 	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1266 	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1267 	};
1268 	static const struct reg_array sensor_init[NSENSORS] = {
1269 	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1270 	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1271 	};
1272 
1273 	/* reset bridge */
1274 	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1275 	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1276 	msleep(100);
1277 
1278 	/* initialize the sensor address */
1279 	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1280 
1281 	/* reset sensor */
1282 	sccb_reg_write(gspca_dev, 0x12, 0x80);
1283 	msleep(10);
1284 
1285 	/* probe the sensor */
1286 	sccb_reg_read(gspca_dev, 0x0a);
1287 	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1288 	sccb_reg_read(gspca_dev, 0x0b);
1289 	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1290 	PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1291 
1292 	if ((sensor_id & 0xfff0) == 0x7670) {
1293 		sd->sensor = SENSOR_OV767x;
1294 		gspca_dev->cam.cam_mode = ov767x_mode;
1295 		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1296 	} else {
1297 		sd->sensor = SENSOR_OV772x;
1298 		gspca_dev->cam.bulk = 1;
1299 		gspca_dev->cam.bulk_size = 16384;
1300 		gspca_dev->cam.bulk_nurbs = 2;
1301 		gspca_dev->cam.mode_framerates = ov772x_framerates;
1302 	}
1303 
1304 	/* initialize */
1305 	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1306 			bridge_init[sd->sensor].len);
1307 	ov534_set_led(gspca_dev, 1);
1308 	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1309 			sensor_init[sd->sensor].len);
1310 
1311 	sd_stopN(gspca_dev);
1312 /*	set_frame_rate(gspca_dev);	*/
1313 
1314 	return gspca_dev->usb_err;
1315 }
1316 
1317 static int sd_start(struct gspca_dev *gspca_dev)
1318 {
1319 	struct sd *sd = (struct sd *) gspca_dev;
1320 	int mode;
1321 	static const struct reg_array bridge_start[NSENSORS][2] = {
1322 	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1323 					ARRAY_SIZE(bridge_start_qvga_767x)},
1324 			{bridge_start_vga_767x,
1325 					ARRAY_SIZE(bridge_start_vga_767x)}},
1326 	[SENSOR_OV772x] = {{bridge_start_qvga_772x,
1327 					ARRAY_SIZE(bridge_start_qvga_772x)},
1328 			{bridge_start_vga_772x,
1329 					ARRAY_SIZE(bridge_start_vga_772x)}},
1330 	};
1331 	static const struct reg_array sensor_start[NSENSORS][2] = {
1332 	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1333 					ARRAY_SIZE(sensor_start_qvga_767x)},
1334 			{sensor_start_vga_767x,
1335 					ARRAY_SIZE(sensor_start_vga_767x)}},
1336 	[SENSOR_OV772x] = {{sensor_start_qvga_772x,
1337 					ARRAY_SIZE(sensor_start_qvga_772x)},
1338 			{sensor_start_vga_772x,
1339 					ARRAY_SIZE(sensor_start_vga_772x)}},
1340 	};
1341 
1342 	/* (from ms-win trace) */
1343 	if (sd->sensor == SENSOR_OV767x)
1344 		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1345 					/* black sun enable ? */
1346 
1347 	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1348 	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1349 				bridge_start[sd->sensor][mode].len);
1350 	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1351 				sensor_start[sd->sensor][mode].len);
1352 
1353 	set_frame_rate(gspca_dev);
1354 
1355 	if (sd->hue)
1356 		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1357 	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1358 	if (sd->autogain)
1359 		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1360 	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1361 	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1362 	if (sd->gain)
1363 		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1364 	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1365 	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1366 	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1367 	if (sd->sharpness)
1368 		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1369 	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1370 		  v4l2_ctrl_g_ctrl(sd->vflip));
1371 	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1372 
1373 	ov534_set_led(gspca_dev, 1);
1374 	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1375 	return gspca_dev->usb_err;
1376 }
1377 
1378 static void sd_stopN(struct gspca_dev *gspca_dev)
1379 {
1380 	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1381 	ov534_set_led(gspca_dev, 0);
1382 }
1383 
1384 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1385 #define UVC_STREAM_EOH	(1 << 7)
1386 #define UVC_STREAM_ERR	(1 << 6)
1387 #define UVC_STREAM_STI	(1 << 5)
1388 #define UVC_STREAM_RES	(1 << 4)
1389 #define UVC_STREAM_SCR	(1 << 3)
1390 #define UVC_STREAM_PTS	(1 << 2)
1391 #define UVC_STREAM_EOF	(1 << 1)
1392 #define UVC_STREAM_FID	(1 << 0)
1393 
1394 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1395 			u8 *data, int len)
1396 {
1397 	struct sd *sd = (struct sd *) gspca_dev;
1398 	__u32 this_pts;
1399 	u16 this_fid;
1400 	int remaining_len = len;
1401 	int payload_len;
1402 
1403 	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1404 	do {
1405 		len = min(remaining_len, payload_len);
1406 
1407 		/* Payloads are prefixed with a UVC-style header.  We
1408 		   consider a frame to start when the FID toggles, or the PTS
1409 		   changes.  A frame ends when EOF is set, and we've received
1410 		   the correct number of bytes. */
1411 
1412 		/* Verify UVC header.  Header length is always 12 */
1413 		if (data[0] != 12 || len < 12) {
1414 			PDEBUG(D_PACK, "bad header");
1415 			goto discard;
1416 		}
1417 
1418 		/* Check errors */
1419 		if (data[1] & UVC_STREAM_ERR) {
1420 			PDEBUG(D_PACK, "payload error");
1421 			goto discard;
1422 		}
1423 
1424 		/* Extract PTS and FID */
1425 		if (!(data[1] & UVC_STREAM_PTS)) {
1426 			PDEBUG(D_PACK, "PTS not present");
1427 			goto discard;
1428 		}
1429 		this_pts = (data[5] << 24) | (data[4] << 16)
1430 						| (data[3] << 8) | data[2];
1431 		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1432 
1433 		/* If PTS or FID has changed, start a new frame. */
1434 		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1435 			if (gspca_dev->last_packet_type == INTER_PACKET)
1436 				gspca_frame_add(gspca_dev, LAST_PACKET,
1437 						NULL, 0);
1438 			sd->last_pts = this_pts;
1439 			sd->last_fid = this_fid;
1440 			gspca_frame_add(gspca_dev, FIRST_PACKET,
1441 					data + 12, len - 12);
1442 		/* If this packet is marked as EOF, end the frame */
1443 		} else if (data[1] & UVC_STREAM_EOF) {
1444 			sd->last_pts = 0;
1445 			if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1446 			 && gspca_dev->image_len + len - 12 !=
1447 				   gspca_dev->pixfmt.width *
1448 					gspca_dev->pixfmt.height * 2) {
1449 				PDEBUG(D_PACK, "wrong sized frame");
1450 				goto discard;
1451 			}
1452 			gspca_frame_add(gspca_dev, LAST_PACKET,
1453 					data + 12, len - 12);
1454 		} else {
1455 
1456 			/* Add the data from this payload */
1457 			gspca_frame_add(gspca_dev, INTER_PACKET,
1458 					data + 12, len - 12);
1459 		}
1460 
1461 		/* Done this payload */
1462 		goto scan_next;
1463 
1464 discard:
1465 		/* Discard data until a new frame starts. */
1466 		gspca_dev->last_packet_type = DISCARD_PACKET;
1467 
1468 scan_next:
1469 		remaining_len -= len;
1470 		data += len;
1471 	} while (remaining_len > 0);
1472 }
1473 
1474 /* get stream parameters (framerate) */
1475 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1476 			     struct v4l2_streamparm *parm)
1477 {
1478 	struct v4l2_captureparm *cp = &parm->parm.capture;
1479 	struct v4l2_fract *tpf = &cp->timeperframe;
1480 	struct sd *sd = (struct sd *) gspca_dev;
1481 
1482 	cp->capability |= V4L2_CAP_TIMEPERFRAME;
1483 	tpf->numerator = 1;
1484 	tpf->denominator = sd->frame_rate;
1485 }
1486 
1487 /* set stream parameters (framerate) */
1488 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1489 			     struct v4l2_streamparm *parm)
1490 {
1491 	struct v4l2_captureparm *cp = &parm->parm.capture;
1492 	struct v4l2_fract *tpf = &cp->timeperframe;
1493 	struct sd *sd = (struct sd *) gspca_dev;
1494 
1495 	if (tpf->numerator == 0 || tpf->denominator == 0)
1496 		sd->frame_rate = DEFAULT_FRAME_RATE;
1497 	else
1498 		sd->frame_rate = tpf->denominator / tpf->numerator;
1499 
1500 	if (gspca_dev->streaming)
1501 		set_frame_rate(gspca_dev);
1502 
1503 	/* Return the actual framerate */
1504 	tpf->numerator = 1;
1505 	tpf->denominator = sd->frame_rate;
1506 }
1507 
1508 /* sub-driver description */
1509 static const struct sd_desc sd_desc = {
1510 	.name     = MODULE_NAME,
1511 	.config   = sd_config,
1512 	.init     = sd_init,
1513 	.init_controls = sd_init_controls,
1514 	.start    = sd_start,
1515 	.stopN    = sd_stopN,
1516 	.pkt_scan = sd_pkt_scan,
1517 	.get_streamparm = sd_get_streamparm,
1518 	.set_streamparm = sd_set_streamparm,
1519 };
1520 
1521 /* -- module initialisation -- */
1522 static const struct usb_device_id device_table[] = {
1523 	{USB_DEVICE(0x1415, 0x2000)},
1524 	{USB_DEVICE(0x06f8, 0x3002)},
1525 	{}
1526 };
1527 
1528 MODULE_DEVICE_TABLE(usb, device_table);
1529 
1530 /* -- device connect -- */
1531 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1532 {
1533 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1534 				THIS_MODULE);
1535 }
1536 
1537 static struct usb_driver sd_driver = {
1538 	.name       = MODULE_NAME,
1539 	.id_table   = device_table,
1540 	.probe      = sd_probe,
1541 	.disconnect = gspca_disconnect,
1542 #ifdef CONFIG_PM
1543 	.suspend    = gspca_suspend,
1544 	.resume     = gspca_resume,
1545 	.reset_resume = gspca_resume,
1546 #endif
1547 };
1548 
1549 module_usb_driver(sd_driver);
1550