1 /* 2 * ov534-ov7xxx gspca driver 3 * 4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it> 5 * Copyright (C) 2008 Jim Paris <jim@jtan.com> 6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr 7 * 8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com> 9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com> 10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ 11 * 12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr 13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls 14 * added by Max Thrun <bear24rw@gmail.com> 15 * PS3 Eye camera - FPS range extended by Joseph Howse 16 * <josephhowse@nummist.com> http://nummist.com 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #define MODULE_NAME "ov534" 36 37 #include "gspca.h" 38 39 #include <linux/fixp-arith.h> 40 #include <media/v4l2-ctrls.h> 41 42 #define OV534_REG_ADDRESS 0xf1 /* sensor address */ 43 #define OV534_REG_SUBADDR 0xf2 44 #define OV534_REG_WRITE 0xf3 45 #define OV534_REG_READ 0xf4 46 #define OV534_REG_OPERATION 0xf5 47 #define OV534_REG_STATUS 0xf6 48 49 #define OV534_OP_WRITE_3 0x37 50 #define OV534_OP_WRITE_2 0x33 51 #define OV534_OP_READ_2 0xf9 52 53 #define CTRL_TIMEOUT 500 54 55 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>"); 56 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); 57 MODULE_LICENSE("GPL"); 58 59 /* specific webcam descriptor */ 60 struct sd { 61 struct gspca_dev gspca_dev; /* !! must be the first item */ 62 63 struct v4l2_ctrl_handler ctrl_handler; 64 struct v4l2_ctrl *hue; 65 struct v4l2_ctrl *saturation; 66 struct v4l2_ctrl *brightness; 67 struct v4l2_ctrl *contrast; 68 struct { /* gain control cluster */ 69 struct v4l2_ctrl *autogain; 70 struct v4l2_ctrl *gain; 71 }; 72 struct v4l2_ctrl *autowhitebalance; 73 struct { /* exposure control cluster */ 74 struct v4l2_ctrl *autoexposure; 75 struct v4l2_ctrl *exposure; 76 }; 77 struct v4l2_ctrl *sharpness; 78 struct v4l2_ctrl *hflip; 79 struct v4l2_ctrl *vflip; 80 struct v4l2_ctrl *plfreq; 81 82 __u32 last_pts; 83 u16 last_fid; 84 u8 frame_rate; 85 86 u8 sensor; 87 }; 88 enum sensors { 89 SENSOR_OV767x, 90 SENSOR_OV772x, 91 NSENSORS 92 }; 93 94 static int sd_start(struct gspca_dev *gspca_dev); 95 static void sd_stopN(struct gspca_dev *gspca_dev); 96 97 98 static const struct v4l2_pix_format ov772x_mode[] = { 99 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 100 .bytesperline = 320 * 2, 101 .sizeimage = 320 * 240 * 2, 102 .colorspace = V4L2_COLORSPACE_SRGB, 103 .priv = 1}, 104 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 105 .bytesperline = 640 * 2, 106 .sizeimage = 640 * 480 * 2, 107 .colorspace = V4L2_COLORSPACE_SRGB, 108 .priv = 0}, 109 }; 110 static const struct v4l2_pix_format ov767x_mode[] = { 111 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 112 .bytesperline = 320, 113 .sizeimage = 320 * 240 * 3 / 8 + 590, 114 .colorspace = V4L2_COLORSPACE_JPEG}, 115 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 116 .bytesperline = 640, 117 .sizeimage = 640 * 480 * 3 / 8 + 590, 118 .colorspace = V4L2_COLORSPACE_JPEG}, 119 }; 120 121 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30}; 122 static const u8 vga_rates[] = {60, 50, 40, 30, 15}; 123 124 static const struct framerates ov772x_framerates[] = { 125 { /* 320x240 */ 126 .rates = qvga_rates, 127 .nrates = ARRAY_SIZE(qvga_rates), 128 }, 129 { /* 640x480 */ 130 .rates = vga_rates, 131 .nrates = ARRAY_SIZE(vga_rates), 132 }, 133 }; 134 135 struct reg_array { 136 const u8 (*val)[2]; 137 int len; 138 }; 139 140 static const u8 bridge_init_767x[][2] = { 141 /* comments from the ms-win file apollo7670.set */ 142 /* str1 */ 143 {0xf1, 0x42}, 144 {0x88, 0xf8}, 145 {0x89, 0xff}, 146 {0x76, 0x03}, 147 {0x92, 0x03}, 148 {0x95, 0x10}, 149 {0xe2, 0x00}, 150 {0xe7, 0x3e}, 151 {0x8d, 0x1c}, 152 {0x8e, 0x00}, 153 {0x8f, 0x00}, 154 {0x1f, 0x00}, 155 {0xc3, 0xf9}, 156 {0x89, 0xff}, 157 {0x88, 0xf8}, 158 {0x76, 0x03}, 159 {0x92, 0x01}, 160 {0x93, 0x18}, 161 {0x1c, 0x00}, 162 {0x1d, 0x48}, 163 {0x1d, 0x00}, 164 {0x1d, 0xff}, 165 {0x1d, 0x02}, 166 {0x1d, 0x58}, 167 {0x1d, 0x00}, 168 {0x1c, 0x0a}, 169 {0x1d, 0x0a}, 170 {0x1d, 0x0e}, 171 {0xc0, 0x50}, /* HSize 640 */ 172 {0xc1, 0x3c}, /* VSize 480 */ 173 {0x34, 0x05}, /* enable Audio Suspend mode */ 174 {0xc2, 0x0c}, /* Input YUV */ 175 {0xc3, 0xf9}, /* enable PRE */ 176 {0x34, 0x05}, /* enable Audio Suspend mode */ 177 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ 178 {0x31, 0xf9}, /* enable 1.8V Suspend */ 179 {0x35, 0x02}, /* turn on JPEG */ 180 {0xd9, 0x10}, 181 {0x25, 0x42}, /* GPIO[8]:Input */ 182 {0x94, 0x11}, /* If the default setting is loaded when 183 * system boots up, this flag is closed here */ 184 }; 185 static const u8 sensor_init_767x[][2] = { 186 {0x12, 0x80}, 187 {0x11, 0x03}, 188 {0x3a, 0x04}, 189 {0x12, 0x00}, 190 {0x17, 0x13}, 191 {0x18, 0x01}, 192 {0x32, 0xb6}, 193 {0x19, 0x02}, 194 {0x1a, 0x7a}, 195 {0x03, 0x0a}, 196 {0x0c, 0x00}, 197 {0x3e, 0x00}, 198 {0x70, 0x3a}, 199 {0x71, 0x35}, 200 {0x72, 0x11}, 201 {0x73, 0xf0}, 202 {0xa2, 0x02}, 203 {0x7a, 0x2a}, /* set Gamma=1.6 below */ 204 {0x7b, 0x12}, 205 {0x7c, 0x1d}, 206 {0x7d, 0x2d}, 207 {0x7e, 0x45}, 208 {0x7f, 0x50}, 209 {0x80, 0x59}, 210 {0x81, 0x62}, 211 {0x82, 0x6b}, 212 {0x83, 0x73}, 213 {0x84, 0x7b}, 214 {0x85, 0x8a}, 215 {0x86, 0x98}, 216 {0x87, 0xb2}, 217 {0x88, 0xca}, 218 {0x89, 0xe0}, 219 {0x13, 0xe0}, 220 {0x00, 0x00}, 221 {0x10, 0x00}, 222 {0x0d, 0x40}, 223 {0x14, 0x38}, /* gain max 16x */ 224 {0xa5, 0x05}, 225 {0xab, 0x07}, 226 {0x24, 0x95}, 227 {0x25, 0x33}, 228 {0x26, 0xe3}, 229 {0x9f, 0x78}, 230 {0xa0, 0x68}, 231 {0xa1, 0x03}, 232 {0xa6, 0xd8}, 233 {0xa7, 0xd8}, 234 {0xa8, 0xf0}, 235 {0xa9, 0x90}, 236 {0xaa, 0x94}, 237 {0x13, 0xe5}, 238 {0x0e, 0x61}, 239 {0x0f, 0x4b}, 240 {0x16, 0x02}, 241 {0x21, 0x02}, 242 {0x22, 0x91}, 243 {0x29, 0x07}, 244 {0x33, 0x0b}, 245 {0x35, 0x0b}, 246 {0x37, 0x1d}, 247 {0x38, 0x71}, 248 {0x39, 0x2a}, 249 {0x3c, 0x78}, 250 {0x4d, 0x40}, 251 {0x4e, 0x20}, 252 {0x69, 0x00}, 253 {0x6b, 0x4a}, 254 {0x74, 0x10}, 255 {0x8d, 0x4f}, 256 {0x8e, 0x00}, 257 {0x8f, 0x00}, 258 {0x90, 0x00}, 259 {0x91, 0x00}, 260 {0x96, 0x00}, 261 {0x9a, 0x80}, 262 {0xb0, 0x84}, 263 {0xb1, 0x0c}, 264 {0xb2, 0x0e}, 265 {0xb3, 0x82}, 266 {0xb8, 0x0a}, 267 {0x43, 0x0a}, 268 {0x44, 0xf0}, 269 {0x45, 0x34}, 270 {0x46, 0x58}, 271 {0x47, 0x28}, 272 {0x48, 0x3a}, 273 {0x59, 0x88}, 274 {0x5a, 0x88}, 275 {0x5b, 0x44}, 276 {0x5c, 0x67}, 277 {0x5d, 0x49}, 278 {0x5e, 0x0e}, 279 {0x6c, 0x0a}, 280 {0x6d, 0x55}, 281 {0x6e, 0x11}, 282 {0x6f, 0x9f}, 283 {0x6a, 0x40}, 284 {0x01, 0x40}, 285 {0x02, 0x40}, 286 {0x13, 0xe7}, 287 {0x4f, 0x80}, 288 {0x50, 0x80}, 289 {0x51, 0x00}, 290 {0x52, 0x22}, 291 {0x53, 0x5e}, 292 {0x54, 0x80}, 293 {0x58, 0x9e}, 294 {0x41, 0x08}, 295 {0x3f, 0x00}, 296 {0x75, 0x04}, 297 {0x76, 0xe1}, 298 {0x4c, 0x00}, 299 {0x77, 0x01}, 300 {0x3d, 0xc2}, 301 {0x4b, 0x09}, 302 {0xc9, 0x60}, 303 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ 304 {0x56, 0x40}, 305 {0x34, 0x11}, 306 {0x3b, 0xc2}, 307 {0xa4, 0x8a}, /* Night mode trigger point */ 308 {0x96, 0x00}, 309 {0x97, 0x30}, 310 {0x98, 0x20}, 311 {0x99, 0x20}, 312 {0x9a, 0x84}, 313 {0x9b, 0x29}, 314 {0x9c, 0x03}, 315 {0x9d, 0x4c}, 316 {0x9e, 0x3f}, 317 {0x78, 0x04}, 318 {0x79, 0x01}, 319 {0xc8, 0xf0}, 320 {0x79, 0x0f}, 321 {0xc8, 0x00}, 322 {0x79, 0x10}, 323 {0xc8, 0x7e}, 324 {0x79, 0x0a}, 325 {0xc8, 0x80}, 326 {0x79, 0x0b}, 327 {0xc8, 0x01}, 328 {0x79, 0x0c}, 329 {0xc8, 0x0f}, 330 {0x79, 0x0d}, 331 {0xc8, 0x20}, 332 {0x79, 0x09}, 333 {0xc8, 0x80}, 334 {0x79, 0x02}, 335 {0xc8, 0xc0}, 336 {0x79, 0x03}, 337 {0xc8, 0x20}, 338 {0x79, 0x26}, 339 }; 340 static const u8 bridge_start_vga_767x[][2] = { 341 /* str59 JPG */ 342 {0x94, 0xaa}, 343 {0xf1, 0x42}, 344 {0xe5, 0x04}, 345 {0xc0, 0x50}, 346 {0xc1, 0x3c}, 347 {0xc2, 0x0c}, 348 {0x35, 0x02}, /* turn on JPEG */ 349 {0xd9, 0x10}, 350 {0xda, 0x00}, /* for higher clock rate(30fps) */ 351 {0x34, 0x05}, /* enable Audio Suspend mode */ 352 {0xc3, 0xf9}, /* enable PRE */ 353 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 354 {0x8d, 0x1c}, /* output YUV */ 355 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ 356 {0x50, 0x00}, /* H/V divider=0 */ 357 {0x51, 0xa0}, /* input H=640/4 */ 358 {0x52, 0x3c}, /* input V=480/4 */ 359 {0x53, 0x00}, /* offset X=0 */ 360 {0x54, 0x00}, /* offset Y=0 */ 361 {0x55, 0x00}, /* H/V size[8]=0 */ 362 {0x57, 0x00}, /* H-size[9]=0 */ 363 {0x5c, 0x00}, /* output size[9:8]=0 */ 364 {0x5a, 0xa0}, /* output H=640/4 */ 365 {0x5b, 0x78}, /* output V=480/4 */ 366 {0x1c, 0x0a}, 367 {0x1d, 0x0a}, 368 {0x94, 0x11}, 369 }; 370 static const u8 sensor_start_vga_767x[][2] = { 371 {0x11, 0x01}, 372 {0x1e, 0x04}, 373 {0x19, 0x02}, 374 {0x1a, 0x7a}, 375 }; 376 static const u8 bridge_start_qvga_767x[][2] = { 377 /* str86 JPG */ 378 {0x94, 0xaa}, 379 {0xf1, 0x42}, 380 {0xe5, 0x04}, 381 {0xc0, 0x80}, 382 {0xc1, 0x60}, 383 {0xc2, 0x0c}, 384 {0x35, 0x02}, /* turn on JPEG */ 385 {0xd9, 0x10}, 386 {0xc0, 0x50}, /* CIF HSize 640 */ 387 {0xc1, 0x3c}, /* CIF VSize 480 */ 388 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 389 {0x8d, 0x1c}, /* output YUV */ 390 {0x34, 0x05}, /* enable Audio Suspend mode */ 391 {0xc2, 0x4c}, /* output YUV and Enable DCW */ 392 {0xc3, 0xf9}, /* enable PRE */ 393 {0x1c, 0x00}, /* indirect addressing */ 394 {0x1d, 0x48}, /* output YUV422 */ 395 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ 396 {0x51, 0xa0}, /* DCW input H=640/4 */ 397 {0x52, 0x78}, /* DCW input V=480/4 */ 398 {0x53, 0x00}, /* offset X=0 */ 399 {0x54, 0x00}, /* offset Y=0 */ 400 {0x55, 0x00}, /* H/V size[8]=0 */ 401 {0x57, 0x00}, /* H-size[9]=0 */ 402 {0x5c, 0x00}, /* DCW output size[9:8]=0 */ 403 {0x5a, 0x50}, /* DCW output H=320/4 */ 404 {0x5b, 0x3c}, /* DCW output V=240/4 */ 405 {0x1c, 0x0a}, 406 {0x1d, 0x0a}, 407 {0x94, 0x11}, 408 }; 409 static const u8 sensor_start_qvga_767x[][2] = { 410 {0x11, 0x01}, 411 {0x1e, 0x04}, 412 {0x19, 0x02}, 413 {0x1a, 0x7a}, 414 }; 415 416 static const u8 bridge_init_772x[][2] = { 417 { 0xc2, 0x0c }, 418 { 0x88, 0xf8 }, 419 { 0xc3, 0x69 }, 420 { 0x89, 0xff }, 421 { 0x76, 0x03 }, 422 { 0x92, 0x01 }, 423 { 0x93, 0x18 }, 424 { 0x94, 0x10 }, 425 { 0x95, 0x10 }, 426 { 0xe2, 0x00 }, 427 { 0xe7, 0x3e }, 428 429 { 0x96, 0x00 }, 430 431 { 0x97, 0x20 }, 432 { 0x97, 0x20 }, 433 { 0x97, 0x20 }, 434 { 0x97, 0x0a }, 435 { 0x97, 0x3f }, 436 { 0x97, 0x4a }, 437 { 0x97, 0x20 }, 438 { 0x97, 0x15 }, 439 { 0x97, 0x0b }, 440 441 { 0x8e, 0x40 }, 442 { 0x1f, 0x81 }, 443 { 0x34, 0x05 }, 444 { 0xe3, 0x04 }, 445 { 0x88, 0x00 }, 446 { 0x89, 0x00 }, 447 { 0x76, 0x00 }, 448 { 0xe7, 0x2e }, 449 { 0x31, 0xf9 }, 450 { 0x25, 0x42 }, 451 { 0x21, 0xf0 }, 452 453 { 0x1c, 0x00 }, 454 { 0x1d, 0x40 }, 455 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */ 456 { 0x1d, 0x00 }, /* payload size */ 457 458 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */ 459 { 0x1d, 0x58 }, /* frame size */ 460 { 0x1d, 0x00 }, /* frame size */ 461 462 { 0x1c, 0x0a }, 463 { 0x1d, 0x08 }, /* turn on UVC header */ 464 { 0x1d, 0x0e }, /* .. */ 465 466 { 0x8d, 0x1c }, 467 { 0x8e, 0x80 }, 468 { 0xe5, 0x04 }, 469 470 { 0xc0, 0x50 }, 471 { 0xc1, 0x3c }, 472 { 0xc2, 0x0c }, 473 }; 474 static const u8 sensor_init_772x[][2] = { 475 { 0x12, 0x80 }, 476 { 0x11, 0x01 }, 477 /*fixme: better have a delay?*/ 478 { 0x11, 0x01 }, 479 { 0x11, 0x01 }, 480 { 0x11, 0x01 }, 481 { 0x11, 0x01 }, 482 { 0x11, 0x01 }, 483 { 0x11, 0x01 }, 484 { 0x11, 0x01 }, 485 { 0x11, 0x01 }, 486 { 0x11, 0x01 }, 487 { 0x11, 0x01 }, 488 489 { 0x3d, 0x03 }, 490 { 0x17, 0x26 }, 491 { 0x18, 0xa0 }, 492 { 0x19, 0x07 }, 493 { 0x1a, 0xf0 }, 494 { 0x32, 0x00 }, 495 { 0x29, 0xa0 }, 496 { 0x2c, 0xf0 }, 497 { 0x65, 0x20 }, 498 { 0x11, 0x01 }, 499 { 0x42, 0x7f }, 500 { 0x63, 0xaa }, /* AWB - was e0 */ 501 { 0x64, 0xff }, 502 { 0x66, 0x00 }, 503 { 0x13, 0xf0 }, /* com8 */ 504 { 0x0d, 0x41 }, 505 { 0x0f, 0xc5 }, 506 { 0x14, 0x11 }, 507 508 { 0x22, 0x7f }, 509 { 0x23, 0x03 }, 510 { 0x24, 0x40 }, 511 { 0x25, 0x30 }, 512 { 0x26, 0xa1 }, 513 { 0x2a, 0x00 }, 514 { 0x2b, 0x00 }, 515 { 0x6b, 0xaa }, 516 { 0x13, 0xff }, /* AWB */ 517 518 { 0x90, 0x05 }, 519 { 0x91, 0x01 }, 520 { 0x92, 0x03 }, 521 { 0x93, 0x00 }, 522 { 0x94, 0x60 }, 523 { 0x95, 0x3c }, 524 { 0x96, 0x24 }, 525 { 0x97, 0x1e }, 526 { 0x98, 0x62 }, 527 { 0x99, 0x80 }, 528 { 0x9a, 0x1e }, 529 { 0x9b, 0x08 }, 530 { 0x9c, 0x20 }, 531 { 0x9e, 0x81 }, 532 533 { 0xa6, 0x07 }, 534 { 0x7e, 0x0c }, 535 { 0x7f, 0x16 }, 536 { 0x80, 0x2a }, 537 { 0x81, 0x4e }, 538 { 0x82, 0x61 }, 539 { 0x83, 0x6f }, 540 { 0x84, 0x7b }, 541 { 0x85, 0x86 }, 542 { 0x86, 0x8e }, 543 { 0x87, 0x97 }, 544 { 0x88, 0xa4 }, 545 { 0x89, 0xaf }, 546 { 0x8a, 0xc5 }, 547 { 0x8b, 0xd7 }, 548 { 0x8c, 0xe8 }, 549 { 0x8d, 0x20 }, 550 551 { 0x0c, 0x90 }, 552 553 { 0x2b, 0x00 }, 554 { 0x22, 0x7f }, 555 { 0x23, 0x03 }, 556 { 0x11, 0x01 }, 557 { 0x0c, 0xd0 }, 558 { 0x64, 0xff }, 559 { 0x0d, 0x41 }, 560 561 { 0x14, 0x41 }, 562 { 0x0e, 0xcd }, 563 { 0xac, 0xbf }, 564 { 0x8e, 0x00 }, /* De-noise threshold */ 565 { 0x0c, 0xd0 } 566 }; 567 static const u8 bridge_start_vga_772x[][2] = { 568 {0x1c, 0x00}, 569 {0x1d, 0x40}, 570 {0x1d, 0x02}, 571 {0x1d, 0x00}, 572 {0x1d, 0x02}, 573 {0x1d, 0x58}, 574 {0x1d, 0x00}, 575 {0xc0, 0x50}, 576 {0xc1, 0x3c}, 577 }; 578 static const u8 sensor_start_vga_772x[][2] = { 579 {0x12, 0x00}, 580 {0x17, 0x26}, 581 {0x18, 0xa0}, 582 {0x19, 0x07}, 583 {0x1a, 0xf0}, 584 {0x29, 0xa0}, 585 {0x2c, 0xf0}, 586 {0x65, 0x20}, 587 }; 588 static const u8 bridge_start_qvga_772x[][2] = { 589 {0x1c, 0x00}, 590 {0x1d, 0x40}, 591 {0x1d, 0x02}, 592 {0x1d, 0x00}, 593 {0x1d, 0x01}, 594 {0x1d, 0x4b}, 595 {0x1d, 0x00}, 596 {0xc0, 0x28}, 597 {0xc1, 0x1e}, 598 }; 599 static const u8 sensor_start_qvga_772x[][2] = { 600 {0x12, 0x40}, 601 {0x17, 0x3f}, 602 {0x18, 0x50}, 603 {0x19, 0x03}, 604 {0x1a, 0x78}, 605 {0x29, 0x50}, 606 {0x2c, 0x78}, 607 {0x65, 0x2f}, 608 }; 609 610 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) 611 { 612 struct usb_device *udev = gspca_dev->dev; 613 int ret; 614 615 if (gspca_dev->usb_err < 0) 616 return; 617 618 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val); 619 gspca_dev->usb_buf[0] = val; 620 ret = usb_control_msg(udev, 621 usb_sndctrlpipe(udev, 0), 622 0x01, 623 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 624 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 625 if (ret < 0) { 626 pr_err("write failed %d\n", ret); 627 gspca_dev->usb_err = ret; 628 } 629 } 630 631 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) 632 { 633 struct usb_device *udev = gspca_dev->dev; 634 int ret; 635 636 if (gspca_dev->usb_err < 0) 637 return 0; 638 ret = usb_control_msg(udev, 639 usb_rcvctrlpipe(udev, 0), 640 0x01, 641 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 642 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 643 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]); 644 if (ret < 0) { 645 pr_err("read failed %d\n", ret); 646 gspca_dev->usb_err = ret; 647 } 648 return gspca_dev->usb_buf[0]; 649 } 650 651 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. 652 * (direction and output)? */ 653 static void ov534_set_led(struct gspca_dev *gspca_dev, int status) 654 { 655 u8 data; 656 657 PDEBUG(D_CONF, "led status: %d", status); 658 659 data = ov534_reg_read(gspca_dev, 0x21); 660 data |= 0x80; 661 ov534_reg_write(gspca_dev, 0x21, data); 662 663 data = ov534_reg_read(gspca_dev, 0x23); 664 if (status) 665 data |= 0x80; 666 else 667 data &= ~0x80; 668 669 ov534_reg_write(gspca_dev, 0x23, data); 670 671 if (!status) { 672 data = ov534_reg_read(gspca_dev, 0x21); 673 data &= ~0x80; 674 ov534_reg_write(gspca_dev, 0x21, data); 675 } 676 } 677 678 static int sccb_check_status(struct gspca_dev *gspca_dev) 679 { 680 u8 data; 681 int i; 682 683 for (i = 0; i < 5; i++) { 684 msleep(10); 685 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); 686 687 switch (data) { 688 case 0x00: 689 return 1; 690 case 0x04: 691 return 0; 692 case 0x03: 693 break; 694 default: 695 PERR("sccb status 0x%02x, attempt %d/5", 696 data, i + 1); 697 } 698 } 699 return 0; 700 } 701 702 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) 703 { 704 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val); 705 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 706 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); 707 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); 708 709 if (!sccb_check_status(gspca_dev)) { 710 pr_err("sccb_reg_write failed\n"); 711 gspca_dev->usb_err = -EIO; 712 } 713 } 714 715 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) 716 { 717 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 718 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); 719 if (!sccb_check_status(gspca_dev)) 720 pr_err("sccb_reg_read failed 1\n"); 721 722 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); 723 if (!sccb_check_status(gspca_dev)) 724 pr_err("sccb_reg_read failed 2\n"); 725 726 return ov534_reg_read(gspca_dev, OV534_REG_READ); 727 } 728 729 /* output a bridge sequence (reg - val) */ 730 static void reg_w_array(struct gspca_dev *gspca_dev, 731 const u8 (*data)[2], int len) 732 { 733 while (--len >= 0) { 734 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); 735 data++; 736 } 737 } 738 739 /* output a sensor sequence (reg - val) */ 740 static void sccb_w_array(struct gspca_dev *gspca_dev, 741 const u8 (*data)[2], int len) 742 { 743 while (--len >= 0) { 744 if ((*data)[0] != 0xff) { 745 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); 746 } else { 747 sccb_reg_read(gspca_dev, (*data)[1]); 748 sccb_reg_write(gspca_dev, 0xff, 0x00); 749 } 750 data++; 751 } 752 } 753 754 /* ov772x specific controls */ 755 static void set_frame_rate(struct gspca_dev *gspca_dev) 756 { 757 struct sd *sd = (struct sd *) gspca_dev; 758 int i; 759 struct rate_s { 760 u8 fps; 761 u8 r11; 762 u8 r0d; 763 u8 re5; 764 }; 765 const struct rate_s *r; 766 static const struct rate_s rate_0[] = { /* 640x480 */ 767 {60, 0x01, 0xc1, 0x04}, 768 {50, 0x01, 0x41, 0x02}, 769 {40, 0x02, 0xc1, 0x04}, 770 {30, 0x04, 0x81, 0x02}, 771 {15, 0x03, 0x41, 0x04}, 772 }; 773 static const struct rate_s rate_1[] = { /* 320x240 */ 774 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */ 775 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */ 776 {150, 0x01, 0xc1, 0x04}, 777 {137, 0x02, 0xc1, 0x02}, 778 {125, 0x02, 0x81, 0x02}, 779 {100, 0x02, 0xc1, 0x04}, 780 {75, 0x03, 0xc1, 0x04}, 781 {60, 0x04, 0xc1, 0x04}, 782 {50, 0x02, 0x41, 0x04}, 783 {37, 0x03, 0x41, 0x04}, 784 {30, 0x04, 0x41, 0x04}, 785 }; 786 787 if (sd->sensor != SENSOR_OV772x) 788 return; 789 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { 790 r = rate_0; 791 i = ARRAY_SIZE(rate_0); 792 } else { 793 r = rate_1; 794 i = ARRAY_SIZE(rate_1); 795 } 796 while (--i > 0) { 797 if (sd->frame_rate >= r->fps) 798 break; 799 r++; 800 } 801 802 sccb_reg_write(gspca_dev, 0x11, r->r11); 803 sccb_reg_write(gspca_dev, 0x0d, r->r0d); 804 ov534_reg_write(gspca_dev, 0xe5, r->re5); 805 806 PDEBUG(D_PROBE, "frame_rate: %d", r->fps); 807 } 808 809 static void sethue(struct gspca_dev *gspca_dev, s32 val) 810 { 811 struct sd *sd = (struct sd *) gspca_dev; 812 813 if (sd->sensor == SENSOR_OV767x) { 814 /* TBD */ 815 } else { 816 s16 huesin; 817 s16 huecos; 818 819 /* fixp_sin and fixp_cos accept only positive values, while 820 * our val is between -90 and 90 821 */ 822 val += 360; 823 824 /* According to the datasheet the registers expect HUESIN and 825 * HUECOS to be the result of the trigonometric functions, 826 * scaled by 0x80. 827 * 828 * The 0x100 here represents the maximun absolute value 829 * returned byt fixp_sin and fixp_cos, so the scaling will 830 * consider the result like in the interval [-1.0, 1.0]. 831 */ 832 huesin = fixp_sin(val) * 0x80 / 0x100; 833 huecos = fixp_cos(val) * 0x80 / 0x100; 834 835 if (huesin < 0) { 836 sccb_reg_write(gspca_dev, 0xab, 837 sccb_reg_read(gspca_dev, 0xab) | 0x2); 838 huesin = -huesin; 839 } else { 840 sccb_reg_write(gspca_dev, 0xab, 841 sccb_reg_read(gspca_dev, 0xab) & ~0x2); 842 843 } 844 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); 845 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); 846 } 847 } 848 849 static void setsaturation(struct gspca_dev *gspca_dev, s32 val) 850 { 851 struct sd *sd = (struct sd *) gspca_dev; 852 853 if (sd->sensor == SENSOR_OV767x) { 854 int i; 855 static u8 color_tb[][6] = { 856 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, 857 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, 858 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, 859 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, 860 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, 861 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, 862 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, 863 }; 864 865 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) 866 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); 867 } else { 868 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ 869 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ 870 } 871 } 872 873 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 874 { 875 struct sd *sd = (struct sd *) gspca_dev; 876 877 if (sd->sensor == SENSOR_OV767x) { 878 if (val < 0) 879 val = 0x80 - val; 880 sccb_reg_write(gspca_dev, 0x55, val); /* bright */ 881 } else { 882 sccb_reg_write(gspca_dev, 0x9b, val); 883 } 884 } 885 886 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 887 { 888 struct sd *sd = (struct sd *) gspca_dev; 889 890 if (sd->sensor == SENSOR_OV767x) 891 sccb_reg_write(gspca_dev, 0x56, val); /* contras */ 892 else 893 sccb_reg_write(gspca_dev, 0x9c, val); 894 } 895 896 static void setgain(struct gspca_dev *gspca_dev, s32 val) 897 { 898 switch (val & 0x30) { 899 case 0x00: 900 val &= 0x0f; 901 break; 902 case 0x10: 903 val &= 0x0f; 904 val |= 0x30; 905 break; 906 case 0x20: 907 val &= 0x0f; 908 val |= 0x70; 909 break; 910 default: 911 /* case 0x30: */ 912 val &= 0x0f; 913 val |= 0xf0; 914 break; 915 } 916 sccb_reg_write(gspca_dev, 0x00, val); 917 } 918 919 static s32 getgain(struct gspca_dev *gspca_dev) 920 { 921 return sccb_reg_read(gspca_dev, 0x00); 922 } 923 924 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 925 { 926 struct sd *sd = (struct sd *) gspca_dev; 927 928 if (sd->sensor == SENSOR_OV767x) { 929 930 /* set only aec[9:2] */ 931 sccb_reg_write(gspca_dev, 0x10, val); /* aech */ 932 } else { 933 934 /* 'val' is one byte and represents half of the exposure value 935 * we are going to set into registers, a two bytes value: 936 * 937 * MSB: ((u16) val << 1) >> 8 == val >> 7 938 * LSB: ((u16) val << 1) & 0xff == val << 1 939 */ 940 sccb_reg_write(gspca_dev, 0x08, val >> 7); 941 sccb_reg_write(gspca_dev, 0x10, val << 1); 942 } 943 } 944 945 static s32 getexposure(struct gspca_dev *gspca_dev) 946 { 947 struct sd *sd = (struct sd *) gspca_dev; 948 949 if (sd->sensor == SENSOR_OV767x) { 950 /* get only aec[9:2] */ 951 return sccb_reg_read(gspca_dev, 0x10); /* aech */ 952 } else { 953 u8 hi = sccb_reg_read(gspca_dev, 0x08); 954 u8 lo = sccb_reg_read(gspca_dev, 0x10); 955 return (hi << 8 | lo) >> 1; 956 } 957 } 958 959 static void setagc(struct gspca_dev *gspca_dev, s32 val) 960 { 961 if (val) { 962 sccb_reg_write(gspca_dev, 0x13, 963 sccb_reg_read(gspca_dev, 0x13) | 0x04); 964 sccb_reg_write(gspca_dev, 0x64, 965 sccb_reg_read(gspca_dev, 0x64) | 0x03); 966 } else { 967 sccb_reg_write(gspca_dev, 0x13, 968 sccb_reg_read(gspca_dev, 0x13) & ~0x04); 969 sccb_reg_write(gspca_dev, 0x64, 970 sccb_reg_read(gspca_dev, 0x64) & ~0x03); 971 } 972 } 973 974 static void setawb(struct gspca_dev *gspca_dev, s32 val) 975 { 976 struct sd *sd = (struct sd *) gspca_dev; 977 978 if (val) { 979 sccb_reg_write(gspca_dev, 0x13, 980 sccb_reg_read(gspca_dev, 0x13) | 0x02); 981 if (sd->sensor == SENSOR_OV772x) 982 sccb_reg_write(gspca_dev, 0x63, 983 sccb_reg_read(gspca_dev, 0x63) | 0xc0); 984 } else { 985 sccb_reg_write(gspca_dev, 0x13, 986 sccb_reg_read(gspca_dev, 0x13) & ~0x02); 987 if (sd->sensor == SENSOR_OV772x) 988 sccb_reg_write(gspca_dev, 0x63, 989 sccb_reg_read(gspca_dev, 0x63) & ~0xc0); 990 } 991 } 992 993 static void setaec(struct gspca_dev *gspca_dev, s32 val) 994 { 995 struct sd *sd = (struct sd *) gspca_dev; 996 u8 data; 997 998 data = sd->sensor == SENSOR_OV767x ? 999 0x05 : /* agc + aec */ 1000 0x01; /* agc */ 1001 switch (val) { 1002 case V4L2_EXPOSURE_AUTO: 1003 sccb_reg_write(gspca_dev, 0x13, 1004 sccb_reg_read(gspca_dev, 0x13) | data); 1005 break; 1006 case V4L2_EXPOSURE_MANUAL: 1007 sccb_reg_write(gspca_dev, 0x13, 1008 sccb_reg_read(gspca_dev, 0x13) & ~data); 1009 break; 1010 } 1011 } 1012 1013 static void setsharpness(struct gspca_dev *gspca_dev, s32 val) 1014 { 1015 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ 1016 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ 1017 } 1018 1019 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 1020 { 1021 struct sd *sd = (struct sd *) gspca_dev; 1022 u8 val; 1023 1024 if (sd->sensor == SENSOR_OV767x) { 1025 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ 1026 val &= ~0x30; 1027 if (hflip) 1028 val |= 0x20; 1029 if (vflip) 1030 val |= 0x10; 1031 sccb_reg_write(gspca_dev, 0x1e, val); 1032 } else { 1033 val = sccb_reg_read(gspca_dev, 0x0c); 1034 val &= ~0xc0; 1035 if (hflip == 0) 1036 val |= 0x40; 1037 if (vflip == 0) 1038 val |= 0x80; 1039 sccb_reg_write(gspca_dev, 0x0c, val); 1040 } 1041 } 1042 1043 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) 1044 { 1045 struct sd *sd = (struct sd *) gspca_dev; 1046 1047 val = val ? 0x9e : 0x00; 1048 if (sd->sensor == SENSOR_OV767x) { 1049 sccb_reg_write(gspca_dev, 0x2a, 0x00); 1050 if (val) 1051 val = 0x9d; /* insert dummy to 25fps for 50Hz */ 1052 } 1053 sccb_reg_write(gspca_dev, 0x2b, val); 1054 } 1055 1056 1057 /* this function is called at probe time */ 1058 static int sd_config(struct gspca_dev *gspca_dev, 1059 const struct usb_device_id *id) 1060 { 1061 struct sd *sd = (struct sd *) gspca_dev; 1062 struct cam *cam; 1063 1064 cam = &gspca_dev->cam; 1065 1066 cam->cam_mode = ov772x_mode; 1067 cam->nmodes = ARRAY_SIZE(ov772x_mode); 1068 1069 sd->frame_rate = 30; 1070 1071 return 0; 1072 } 1073 1074 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1075 { 1076 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1077 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1078 1079 switch (ctrl->id) { 1080 case V4L2_CID_AUTOGAIN: 1081 gspca_dev->usb_err = 0; 1082 if (ctrl->val && sd->gain && gspca_dev->streaming) 1083 sd->gain->val = getgain(gspca_dev); 1084 return gspca_dev->usb_err; 1085 1086 case V4L2_CID_EXPOSURE_AUTO: 1087 gspca_dev->usb_err = 0; 1088 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && 1089 gspca_dev->streaming) 1090 sd->exposure->val = getexposure(gspca_dev); 1091 return gspca_dev->usb_err; 1092 } 1093 return -EINVAL; 1094 } 1095 1096 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) 1097 { 1098 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1099 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1100 1101 gspca_dev->usb_err = 0; 1102 if (!gspca_dev->streaming) 1103 return 0; 1104 1105 switch (ctrl->id) { 1106 case V4L2_CID_HUE: 1107 sethue(gspca_dev, ctrl->val); 1108 break; 1109 case V4L2_CID_SATURATION: 1110 setsaturation(gspca_dev, ctrl->val); 1111 break; 1112 case V4L2_CID_BRIGHTNESS: 1113 setbrightness(gspca_dev, ctrl->val); 1114 break; 1115 case V4L2_CID_CONTRAST: 1116 setcontrast(gspca_dev, ctrl->val); 1117 break; 1118 case V4L2_CID_AUTOGAIN: 1119 /* case V4L2_CID_GAIN: */ 1120 setagc(gspca_dev, ctrl->val); 1121 if (!gspca_dev->usb_err && !ctrl->val && sd->gain) 1122 setgain(gspca_dev, sd->gain->val); 1123 break; 1124 case V4L2_CID_AUTO_WHITE_BALANCE: 1125 setawb(gspca_dev, ctrl->val); 1126 break; 1127 case V4L2_CID_EXPOSURE_AUTO: 1128 /* case V4L2_CID_EXPOSURE: */ 1129 setaec(gspca_dev, ctrl->val); 1130 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && 1131 sd->exposure) 1132 setexposure(gspca_dev, sd->exposure->val); 1133 break; 1134 case V4L2_CID_SHARPNESS: 1135 setsharpness(gspca_dev, ctrl->val); 1136 break; 1137 case V4L2_CID_HFLIP: 1138 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 1139 break; 1140 case V4L2_CID_VFLIP: 1141 sethvflip(gspca_dev, sd->hflip->val, ctrl->val); 1142 break; 1143 case V4L2_CID_POWER_LINE_FREQUENCY: 1144 setlightfreq(gspca_dev, ctrl->val); 1145 break; 1146 } 1147 return gspca_dev->usb_err; 1148 } 1149 1150 static const struct v4l2_ctrl_ops ov534_ctrl_ops = { 1151 .g_volatile_ctrl = ov534_g_volatile_ctrl, 1152 .s_ctrl = ov534_s_ctrl, 1153 }; 1154 1155 static int sd_init_controls(struct gspca_dev *gspca_dev) 1156 { 1157 struct sd *sd = (struct sd *) gspca_dev; 1158 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; 1159 /* parameters with different values between the supported sensors */ 1160 int saturation_min; 1161 int saturation_max; 1162 int saturation_def; 1163 int brightness_min; 1164 int brightness_max; 1165 int brightness_def; 1166 int contrast_max; 1167 int contrast_def; 1168 int exposure_min; 1169 int exposure_max; 1170 int exposure_def; 1171 int hflip_def; 1172 1173 if (sd->sensor == SENSOR_OV767x) { 1174 saturation_min = 0, 1175 saturation_max = 6, 1176 saturation_def = 3, 1177 brightness_min = -127; 1178 brightness_max = 127; 1179 brightness_def = 0; 1180 contrast_max = 0x80; 1181 contrast_def = 0x40; 1182 exposure_min = 0x08; 1183 exposure_max = 0x60; 1184 exposure_def = 0x13; 1185 hflip_def = 1; 1186 } else { 1187 saturation_min = 0, 1188 saturation_max = 255, 1189 saturation_def = 64, 1190 brightness_min = 0; 1191 brightness_max = 255; 1192 brightness_def = 0; 1193 contrast_max = 255; 1194 contrast_def = 32; 1195 exposure_min = 0; 1196 exposure_max = 255; 1197 exposure_def = 120; 1198 hflip_def = 0; 1199 } 1200 1201 gspca_dev->vdev.ctrl_handler = hdl; 1202 1203 v4l2_ctrl_handler_init(hdl, 13); 1204 1205 if (sd->sensor == SENSOR_OV772x) 1206 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1207 V4L2_CID_HUE, -90, 90, 1, 0); 1208 1209 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1210 V4L2_CID_SATURATION, saturation_min, saturation_max, 1, 1211 saturation_def); 1212 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1213 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, 1214 brightness_def); 1215 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1216 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); 1217 1218 if (sd->sensor == SENSOR_OV772x) { 1219 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1220 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1221 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1222 V4L2_CID_GAIN, 0, 63, 1, 20); 1223 } 1224 1225 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1226 V4L2_CID_EXPOSURE_AUTO, 1227 V4L2_EXPOSURE_MANUAL, 0, 1228 V4L2_EXPOSURE_AUTO); 1229 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1230 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, 1231 exposure_def); 1232 1233 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1234 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); 1235 1236 if (sd->sensor == SENSOR_OV772x) 1237 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1238 V4L2_CID_SHARPNESS, 0, 63, 1, 0); 1239 1240 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1241 V4L2_CID_HFLIP, 0, 1, 1, hflip_def); 1242 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1243 V4L2_CID_VFLIP, 0, 1, 1, 0); 1244 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1245 V4L2_CID_POWER_LINE_FREQUENCY, 1246 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, 1247 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1248 1249 if (hdl->error) { 1250 pr_err("Could not initialize controls\n"); 1251 return hdl->error; 1252 } 1253 1254 if (sd->sensor == SENSOR_OV772x) 1255 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); 1256 1257 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, 1258 true); 1259 1260 return 0; 1261 } 1262 1263 /* this function is called at probe and resume time */ 1264 static int sd_init(struct gspca_dev *gspca_dev) 1265 { 1266 struct sd *sd = (struct sd *) gspca_dev; 1267 u16 sensor_id; 1268 static const struct reg_array bridge_init[NSENSORS] = { 1269 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, 1270 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, 1271 }; 1272 static const struct reg_array sensor_init[NSENSORS] = { 1273 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, 1274 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, 1275 }; 1276 1277 /* reset bridge */ 1278 ov534_reg_write(gspca_dev, 0xe7, 0x3a); 1279 ov534_reg_write(gspca_dev, 0xe0, 0x08); 1280 msleep(100); 1281 1282 /* initialize the sensor address */ 1283 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); 1284 1285 /* reset sensor */ 1286 sccb_reg_write(gspca_dev, 0x12, 0x80); 1287 msleep(10); 1288 1289 /* probe the sensor */ 1290 sccb_reg_read(gspca_dev, 0x0a); 1291 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; 1292 sccb_reg_read(gspca_dev, 0x0b); 1293 sensor_id |= sccb_reg_read(gspca_dev, 0x0b); 1294 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id); 1295 1296 if ((sensor_id & 0xfff0) == 0x7670) { 1297 sd->sensor = SENSOR_OV767x; 1298 gspca_dev->cam.cam_mode = ov767x_mode; 1299 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); 1300 } else { 1301 sd->sensor = SENSOR_OV772x; 1302 gspca_dev->cam.bulk = 1; 1303 gspca_dev->cam.bulk_size = 16384; 1304 gspca_dev->cam.bulk_nurbs = 2; 1305 gspca_dev->cam.mode_framerates = ov772x_framerates; 1306 } 1307 1308 /* initialize */ 1309 reg_w_array(gspca_dev, bridge_init[sd->sensor].val, 1310 bridge_init[sd->sensor].len); 1311 ov534_set_led(gspca_dev, 1); 1312 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, 1313 sensor_init[sd->sensor].len); 1314 1315 sd_stopN(gspca_dev); 1316 /* set_frame_rate(gspca_dev); */ 1317 1318 return gspca_dev->usb_err; 1319 } 1320 1321 static int sd_start(struct gspca_dev *gspca_dev) 1322 { 1323 struct sd *sd = (struct sd *) gspca_dev; 1324 int mode; 1325 static const struct reg_array bridge_start[NSENSORS][2] = { 1326 [SENSOR_OV767x] = {{bridge_start_qvga_767x, 1327 ARRAY_SIZE(bridge_start_qvga_767x)}, 1328 {bridge_start_vga_767x, 1329 ARRAY_SIZE(bridge_start_vga_767x)}}, 1330 [SENSOR_OV772x] = {{bridge_start_qvga_772x, 1331 ARRAY_SIZE(bridge_start_qvga_772x)}, 1332 {bridge_start_vga_772x, 1333 ARRAY_SIZE(bridge_start_vga_772x)}}, 1334 }; 1335 static const struct reg_array sensor_start[NSENSORS][2] = { 1336 [SENSOR_OV767x] = {{sensor_start_qvga_767x, 1337 ARRAY_SIZE(sensor_start_qvga_767x)}, 1338 {sensor_start_vga_767x, 1339 ARRAY_SIZE(sensor_start_vga_767x)}}, 1340 [SENSOR_OV772x] = {{sensor_start_qvga_772x, 1341 ARRAY_SIZE(sensor_start_qvga_772x)}, 1342 {sensor_start_vga_772x, 1343 ARRAY_SIZE(sensor_start_vga_772x)}}, 1344 }; 1345 1346 /* (from ms-win trace) */ 1347 if (sd->sensor == SENSOR_OV767x) 1348 sccb_reg_write(gspca_dev, 0x1e, 0x04); 1349 /* black sun enable ? */ 1350 1351 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ 1352 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, 1353 bridge_start[sd->sensor][mode].len); 1354 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, 1355 sensor_start[sd->sensor][mode].len); 1356 1357 set_frame_rate(gspca_dev); 1358 1359 if (sd->hue) 1360 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); 1361 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); 1362 if (sd->autogain) 1363 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); 1364 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); 1365 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); 1366 if (sd->gain) 1367 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); 1368 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); 1369 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); 1370 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); 1371 if (sd->sharpness) 1372 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); 1373 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), 1374 v4l2_ctrl_g_ctrl(sd->vflip)); 1375 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); 1376 1377 ov534_set_led(gspca_dev, 1); 1378 ov534_reg_write(gspca_dev, 0xe0, 0x00); 1379 return gspca_dev->usb_err; 1380 } 1381 1382 static void sd_stopN(struct gspca_dev *gspca_dev) 1383 { 1384 ov534_reg_write(gspca_dev, 0xe0, 0x09); 1385 ov534_set_led(gspca_dev, 0); 1386 } 1387 1388 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ 1389 #define UVC_STREAM_EOH (1 << 7) 1390 #define UVC_STREAM_ERR (1 << 6) 1391 #define UVC_STREAM_STI (1 << 5) 1392 #define UVC_STREAM_RES (1 << 4) 1393 #define UVC_STREAM_SCR (1 << 3) 1394 #define UVC_STREAM_PTS (1 << 2) 1395 #define UVC_STREAM_EOF (1 << 1) 1396 #define UVC_STREAM_FID (1 << 0) 1397 1398 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1399 u8 *data, int len) 1400 { 1401 struct sd *sd = (struct sd *) gspca_dev; 1402 __u32 this_pts; 1403 u16 this_fid; 1404 int remaining_len = len; 1405 int payload_len; 1406 1407 payload_len = gspca_dev->cam.bulk ? 2048 : 2040; 1408 do { 1409 len = min(remaining_len, payload_len); 1410 1411 /* Payloads are prefixed with a UVC-style header. We 1412 consider a frame to start when the FID toggles, or the PTS 1413 changes. A frame ends when EOF is set, and we've received 1414 the correct number of bytes. */ 1415 1416 /* Verify UVC header. Header length is always 12 */ 1417 if (data[0] != 12 || len < 12) { 1418 PDEBUG(D_PACK, "bad header"); 1419 goto discard; 1420 } 1421 1422 /* Check errors */ 1423 if (data[1] & UVC_STREAM_ERR) { 1424 PDEBUG(D_PACK, "payload error"); 1425 goto discard; 1426 } 1427 1428 /* Extract PTS and FID */ 1429 if (!(data[1] & UVC_STREAM_PTS)) { 1430 PDEBUG(D_PACK, "PTS not present"); 1431 goto discard; 1432 } 1433 this_pts = (data[5] << 24) | (data[4] << 16) 1434 | (data[3] << 8) | data[2]; 1435 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; 1436 1437 /* If PTS or FID has changed, start a new frame. */ 1438 if (this_pts != sd->last_pts || this_fid != sd->last_fid) { 1439 if (gspca_dev->last_packet_type == INTER_PACKET) 1440 gspca_frame_add(gspca_dev, LAST_PACKET, 1441 NULL, 0); 1442 sd->last_pts = this_pts; 1443 sd->last_fid = this_fid; 1444 gspca_frame_add(gspca_dev, FIRST_PACKET, 1445 data + 12, len - 12); 1446 /* If this packet is marked as EOF, end the frame */ 1447 } else if (data[1] & UVC_STREAM_EOF) { 1448 sd->last_pts = 0; 1449 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV 1450 && gspca_dev->image_len + len - 12 != 1451 gspca_dev->pixfmt.width * 1452 gspca_dev->pixfmt.height * 2) { 1453 PDEBUG(D_PACK, "wrong sized frame"); 1454 goto discard; 1455 } 1456 gspca_frame_add(gspca_dev, LAST_PACKET, 1457 data + 12, len - 12); 1458 } else { 1459 1460 /* Add the data from this payload */ 1461 gspca_frame_add(gspca_dev, INTER_PACKET, 1462 data + 12, len - 12); 1463 } 1464 1465 /* Done this payload */ 1466 goto scan_next; 1467 1468 discard: 1469 /* Discard data until a new frame starts. */ 1470 gspca_dev->last_packet_type = DISCARD_PACKET; 1471 1472 scan_next: 1473 remaining_len -= len; 1474 data += len; 1475 } while (remaining_len > 0); 1476 } 1477 1478 /* get stream parameters (framerate) */ 1479 static void sd_get_streamparm(struct gspca_dev *gspca_dev, 1480 struct v4l2_streamparm *parm) 1481 { 1482 struct v4l2_captureparm *cp = &parm->parm.capture; 1483 struct v4l2_fract *tpf = &cp->timeperframe; 1484 struct sd *sd = (struct sd *) gspca_dev; 1485 1486 cp->capability |= V4L2_CAP_TIMEPERFRAME; 1487 tpf->numerator = 1; 1488 tpf->denominator = sd->frame_rate; 1489 } 1490 1491 /* set stream parameters (framerate) */ 1492 static void sd_set_streamparm(struct gspca_dev *gspca_dev, 1493 struct v4l2_streamparm *parm) 1494 { 1495 struct v4l2_captureparm *cp = &parm->parm.capture; 1496 struct v4l2_fract *tpf = &cp->timeperframe; 1497 struct sd *sd = (struct sd *) gspca_dev; 1498 1499 /* Set requested framerate */ 1500 sd->frame_rate = tpf->denominator / tpf->numerator; 1501 if (gspca_dev->streaming) 1502 set_frame_rate(gspca_dev); 1503 1504 /* Return the actual framerate */ 1505 tpf->numerator = 1; 1506 tpf->denominator = sd->frame_rate; 1507 } 1508 1509 /* sub-driver description */ 1510 static const struct sd_desc sd_desc = { 1511 .name = MODULE_NAME, 1512 .config = sd_config, 1513 .init = sd_init, 1514 .init_controls = sd_init_controls, 1515 .start = sd_start, 1516 .stopN = sd_stopN, 1517 .pkt_scan = sd_pkt_scan, 1518 .get_streamparm = sd_get_streamparm, 1519 .set_streamparm = sd_set_streamparm, 1520 }; 1521 1522 /* -- module initialisation -- */ 1523 static const struct usb_device_id device_table[] = { 1524 {USB_DEVICE(0x1415, 0x2000)}, 1525 {USB_DEVICE(0x06f8, 0x3002)}, 1526 {} 1527 }; 1528 1529 MODULE_DEVICE_TABLE(usb, device_table); 1530 1531 /* -- device connect -- */ 1532 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) 1533 { 1534 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1535 THIS_MODULE); 1536 } 1537 1538 static struct usb_driver sd_driver = { 1539 .name = MODULE_NAME, 1540 .id_table = device_table, 1541 .probe = sd_probe, 1542 .disconnect = gspca_disconnect, 1543 #ifdef CONFIG_PM 1544 .suspend = gspca_suspend, 1545 .resume = gspca_resume, 1546 .reset_resume = gspca_resume, 1547 #endif 1548 }; 1549 1550 module_usb_driver(sd_driver); 1551