1 /* 2 * ov534-ov7xxx gspca driver 3 * 4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it> 5 * Copyright (C) 2008 Jim Paris <jim@jtan.com> 6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr 7 * 8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com> 9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com> 10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ 11 * 12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr 13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls 14 * added by Max Thrun <bear24rw@gmail.com> 15 * PS3 Eye camera - FPS range extended by Joseph Howse 16 * <josephhowse@nummist.com> http://nummist.com 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #define MODULE_NAME "ov534" 32 33 #include "gspca.h" 34 35 #include <linux/fixp-arith.h> 36 #include <media/v4l2-ctrls.h> 37 38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */ 39 #define OV534_REG_SUBADDR 0xf2 40 #define OV534_REG_WRITE 0xf3 41 #define OV534_REG_READ 0xf4 42 #define OV534_REG_OPERATION 0xf5 43 #define OV534_REG_STATUS 0xf6 44 45 #define OV534_OP_WRITE_3 0x37 46 #define OV534_OP_WRITE_2 0x33 47 #define OV534_OP_READ_2 0xf9 48 49 #define CTRL_TIMEOUT 500 50 #define DEFAULT_FRAME_RATE 30 51 52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>"); 53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); 54 MODULE_LICENSE("GPL"); 55 56 /* specific webcam descriptor */ 57 struct sd { 58 struct gspca_dev gspca_dev; /* !! must be the first item */ 59 60 struct v4l2_ctrl_handler ctrl_handler; 61 struct v4l2_ctrl *hue; 62 struct v4l2_ctrl *saturation; 63 struct v4l2_ctrl *brightness; 64 struct v4l2_ctrl *contrast; 65 struct { /* gain control cluster */ 66 struct v4l2_ctrl *autogain; 67 struct v4l2_ctrl *gain; 68 }; 69 struct v4l2_ctrl *autowhitebalance; 70 struct { /* exposure control cluster */ 71 struct v4l2_ctrl *autoexposure; 72 struct v4l2_ctrl *exposure; 73 }; 74 struct v4l2_ctrl *sharpness; 75 struct v4l2_ctrl *hflip; 76 struct v4l2_ctrl *vflip; 77 struct v4l2_ctrl *plfreq; 78 79 __u32 last_pts; 80 u16 last_fid; 81 u8 frame_rate; 82 83 u8 sensor; 84 }; 85 enum sensors { 86 SENSOR_OV767x, 87 SENSOR_OV772x, 88 NSENSORS 89 }; 90 91 static int sd_start(struct gspca_dev *gspca_dev); 92 static void sd_stopN(struct gspca_dev *gspca_dev); 93 94 95 static const struct v4l2_pix_format ov772x_mode[] = { 96 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 97 .bytesperline = 320 * 2, 98 .sizeimage = 320 * 240 * 2, 99 .colorspace = V4L2_COLORSPACE_SRGB, 100 .priv = 1}, 101 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 102 .bytesperline = 640 * 2, 103 .sizeimage = 640 * 480 * 2, 104 .colorspace = V4L2_COLORSPACE_SRGB, 105 .priv = 0}, 106 }; 107 static const struct v4l2_pix_format ov767x_mode[] = { 108 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 109 .bytesperline = 320, 110 .sizeimage = 320 * 240 * 3 / 8 + 590, 111 .colorspace = V4L2_COLORSPACE_JPEG}, 112 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 113 .bytesperline = 640, 114 .sizeimage = 640 * 480 * 3 / 8 + 590, 115 .colorspace = V4L2_COLORSPACE_JPEG}, 116 }; 117 118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30}; 119 static const u8 vga_rates[] = {60, 50, 40, 30, 15}; 120 121 static const struct framerates ov772x_framerates[] = { 122 { /* 320x240 */ 123 .rates = qvga_rates, 124 .nrates = ARRAY_SIZE(qvga_rates), 125 }, 126 { /* 640x480 */ 127 .rates = vga_rates, 128 .nrates = ARRAY_SIZE(vga_rates), 129 }, 130 }; 131 132 struct reg_array { 133 const u8 (*val)[2]; 134 int len; 135 }; 136 137 static const u8 bridge_init_767x[][2] = { 138 /* comments from the ms-win file apollo7670.set */ 139 /* str1 */ 140 {0xf1, 0x42}, 141 {0x88, 0xf8}, 142 {0x89, 0xff}, 143 {0x76, 0x03}, 144 {0x92, 0x03}, 145 {0x95, 0x10}, 146 {0xe2, 0x00}, 147 {0xe7, 0x3e}, 148 {0x8d, 0x1c}, 149 {0x8e, 0x00}, 150 {0x8f, 0x00}, 151 {0x1f, 0x00}, 152 {0xc3, 0xf9}, 153 {0x89, 0xff}, 154 {0x88, 0xf8}, 155 {0x76, 0x03}, 156 {0x92, 0x01}, 157 {0x93, 0x18}, 158 {0x1c, 0x00}, 159 {0x1d, 0x48}, 160 {0x1d, 0x00}, 161 {0x1d, 0xff}, 162 {0x1d, 0x02}, 163 {0x1d, 0x58}, 164 {0x1d, 0x00}, 165 {0x1c, 0x0a}, 166 {0x1d, 0x0a}, 167 {0x1d, 0x0e}, 168 {0xc0, 0x50}, /* HSize 640 */ 169 {0xc1, 0x3c}, /* VSize 480 */ 170 {0x34, 0x05}, /* enable Audio Suspend mode */ 171 {0xc2, 0x0c}, /* Input YUV */ 172 {0xc3, 0xf9}, /* enable PRE */ 173 {0x34, 0x05}, /* enable Audio Suspend mode */ 174 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ 175 {0x31, 0xf9}, /* enable 1.8V Suspend */ 176 {0x35, 0x02}, /* turn on JPEG */ 177 {0xd9, 0x10}, 178 {0x25, 0x42}, /* GPIO[8]:Input */ 179 {0x94, 0x11}, /* If the default setting is loaded when 180 * system boots up, this flag is closed here */ 181 }; 182 static const u8 sensor_init_767x[][2] = { 183 {0x12, 0x80}, 184 {0x11, 0x03}, 185 {0x3a, 0x04}, 186 {0x12, 0x00}, 187 {0x17, 0x13}, 188 {0x18, 0x01}, 189 {0x32, 0xb6}, 190 {0x19, 0x02}, 191 {0x1a, 0x7a}, 192 {0x03, 0x0a}, 193 {0x0c, 0x00}, 194 {0x3e, 0x00}, 195 {0x70, 0x3a}, 196 {0x71, 0x35}, 197 {0x72, 0x11}, 198 {0x73, 0xf0}, 199 {0xa2, 0x02}, 200 {0x7a, 0x2a}, /* set Gamma=1.6 below */ 201 {0x7b, 0x12}, 202 {0x7c, 0x1d}, 203 {0x7d, 0x2d}, 204 {0x7e, 0x45}, 205 {0x7f, 0x50}, 206 {0x80, 0x59}, 207 {0x81, 0x62}, 208 {0x82, 0x6b}, 209 {0x83, 0x73}, 210 {0x84, 0x7b}, 211 {0x85, 0x8a}, 212 {0x86, 0x98}, 213 {0x87, 0xb2}, 214 {0x88, 0xca}, 215 {0x89, 0xe0}, 216 {0x13, 0xe0}, 217 {0x00, 0x00}, 218 {0x10, 0x00}, 219 {0x0d, 0x40}, 220 {0x14, 0x38}, /* gain max 16x */ 221 {0xa5, 0x05}, 222 {0xab, 0x07}, 223 {0x24, 0x95}, 224 {0x25, 0x33}, 225 {0x26, 0xe3}, 226 {0x9f, 0x78}, 227 {0xa0, 0x68}, 228 {0xa1, 0x03}, 229 {0xa6, 0xd8}, 230 {0xa7, 0xd8}, 231 {0xa8, 0xf0}, 232 {0xa9, 0x90}, 233 {0xaa, 0x94}, 234 {0x13, 0xe5}, 235 {0x0e, 0x61}, 236 {0x0f, 0x4b}, 237 {0x16, 0x02}, 238 {0x21, 0x02}, 239 {0x22, 0x91}, 240 {0x29, 0x07}, 241 {0x33, 0x0b}, 242 {0x35, 0x0b}, 243 {0x37, 0x1d}, 244 {0x38, 0x71}, 245 {0x39, 0x2a}, 246 {0x3c, 0x78}, 247 {0x4d, 0x40}, 248 {0x4e, 0x20}, 249 {0x69, 0x00}, 250 {0x6b, 0x4a}, 251 {0x74, 0x10}, 252 {0x8d, 0x4f}, 253 {0x8e, 0x00}, 254 {0x8f, 0x00}, 255 {0x90, 0x00}, 256 {0x91, 0x00}, 257 {0x96, 0x00}, 258 {0x9a, 0x80}, 259 {0xb0, 0x84}, 260 {0xb1, 0x0c}, 261 {0xb2, 0x0e}, 262 {0xb3, 0x82}, 263 {0xb8, 0x0a}, 264 {0x43, 0x0a}, 265 {0x44, 0xf0}, 266 {0x45, 0x34}, 267 {0x46, 0x58}, 268 {0x47, 0x28}, 269 {0x48, 0x3a}, 270 {0x59, 0x88}, 271 {0x5a, 0x88}, 272 {0x5b, 0x44}, 273 {0x5c, 0x67}, 274 {0x5d, 0x49}, 275 {0x5e, 0x0e}, 276 {0x6c, 0x0a}, 277 {0x6d, 0x55}, 278 {0x6e, 0x11}, 279 {0x6f, 0x9f}, 280 {0x6a, 0x40}, 281 {0x01, 0x40}, 282 {0x02, 0x40}, 283 {0x13, 0xe7}, 284 {0x4f, 0x80}, 285 {0x50, 0x80}, 286 {0x51, 0x00}, 287 {0x52, 0x22}, 288 {0x53, 0x5e}, 289 {0x54, 0x80}, 290 {0x58, 0x9e}, 291 {0x41, 0x08}, 292 {0x3f, 0x00}, 293 {0x75, 0x04}, 294 {0x76, 0xe1}, 295 {0x4c, 0x00}, 296 {0x77, 0x01}, 297 {0x3d, 0xc2}, 298 {0x4b, 0x09}, 299 {0xc9, 0x60}, 300 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ 301 {0x56, 0x40}, 302 {0x34, 0x11}, 303 {0x3b, 0xc2}, 304 {0xa4, 0x8a}, /* Night mode trigger point */ 305 {0x96, 0x00}, 306 {0x97, 0x30}, 307 {0x98, 0x20}, 308 {0x99, 0x20}, 309 {0x9a, 0x84}, 310 {0x9b, 0x29}, 311 {0x9c, 0x03}, 312 {0x9d, 0x4c}, 313 {0x9e, 0x3f}, 314 {0x78, 0x04}, 315 {0x79, 0x01}, 316 {0xc8, 0xf0}, 317 {0x79, 0x0f}, 318 {0xc8, 0x00}, 319 {0x79, 0x10}, 320 {0xc8, 0x7e}, 321 {0x79, 0x0a}, 322 {0xc8, 0x80}, 323 {0x79, 0x0b}, 324 {0xc8, 0x01}, 325 {0x79, 0x0c}, 326 {0xc8, 0x0f}, 327 {0x79, 0x0d}, 328 {0xc8, 0x20}, 329 {0x79, 0x09}, 330 {0xc8, 0x80}, 331 {0x79, 0x02}, 332 {0xc8, 0xc0}, 333 {0x79, 0x03}, 334 {0xc8, 0x20}, 335 {0x79, 0x26}, 336 }; 337 static const u8 bridge_start_vga_767x[][2] = { 338 /* str59 JPG */ 339 {0x94, 0xaa}, 340 {0xf1, 0x42}, 341 {0xe5, 0x04}, 342 {0xc0, 0x50}, 343 {0xc1, 0x3c}, 344 {0xc2, 0x0c}, 345 {0x35, 0x02}, /* turn on JPEG */ 346 {0xd9, 0x10}, 347 {0xda, 0x00}, /* for higher clock rate(30fps) */ 348 {0x34, 0x05}, /* enable Audio Suspend mode */ 349 {0xc3, 0xf9}, /* enable PRE */ 350 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 351 {0x8d, 0x1c}, /* output YUV */ 352 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ 353 {0x50, 0x00}, /* H/V divider=0 */ 354 {0x51, 0xa0}, /* input H=640/4 */ 355 {0x52, 0x3c}, /* input V=480/4 */ 356 {0x53, 0x00}, /* offset X=0 */ 357 {0x54, 0x00}, /* offset Y=0 */ 358 {0x55, 0x00}, /* H/V size[8]=0 */ 359 {0x57, 0x00}, /* H-size[9]=0 */ 360 {0x5c, 0x00}, /* output size[9:8]=0 */ 361 {0x5a, 0xa0}, /* output H=640/4 */ 362 {0x5b, 0x78}, /* output V=480/4 */ 363 {0x1c, 0x0a}, 364 {0x1d, 0x0a}, 365 {0x94, 0x11}, 366 }; 367 static const u8 sensor_start_vga_767x[][2] = { 368 {0x11, 0x01}, 369 {0x1e, 0x04}, 370 {0x19, 0x02}, 371 {0x1a, 0x7a}, 372 }; 373 static const u8 bridge_start_qvga_767x[][2] = { 374 /* str86 JPG */ 375 {0x94, 0xaa}, 376 {0xf1, 0x42}, 377 {0xe5, 0x04}, 378 {0xc0, 0x80}, 379 {0xc1, 0x60}, 380 {0xc2, 0x0c}, 381 {0x35, 0x02}, /* turn on JPEG */ 382 {0xd9, 0x10}, 383 {0xc0, 0x50}, /* CIF HSize 640 */ 384 {0xc1, 0x3c}, /* CIF VSize 480 */ 385 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 386 {0x8d, 0x1c}, /* output YUV */ 387 {0x34, 0x05}, /* enable Audio Suspend mode */ 388 {0xc2, 0x4c}, /* output YUV and Enable DCW */ 389 {0xc3, 0xf9}, /* enable PRE */ 390 {0x1c, 0x00}, /* indirect addressing */ 391 {0x1d, 0x48}, /* output YUV422 */ 392 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ 393 {0x51, 0xa0}, /* DCW input H=640/4 */ 394 {0x52, 0x78}, /* DCW input V=480/4 */ 395 {0x53, 0x00}, /* offset X=0 */ 396 {0x54, 0x00}, /* offset Y=0 */ 397 {0x55, 0x00}, /* H/V size[8]=0 */ 398 {0x57, 0x00}, /* H-size[9]=0 */ 399 {0x5c, 0x00}, /* DCW output size[9:8]=0 */ 400 {0x5a, 0x50}, /* DCW output H=320/4 */ 401 {0x5b, 0x3c}, /* DCW output V=240/4 */ 402 {0x1c, 0x0a}, 403 {0x1d, 0x0a}, 404 {0x94, 0x11}, 405 }; 406 static const u8 sensor_start_qvga_767x[][2] = { 407 {0x11, 0x01}, 408 {0x1e, 0x04}, 409 {0x19, 0x02}, 410 {0x1a, 0x7a}, 411 }; 412 413 static const u8 bridge_init_772x[][2] = { 414 { 0xc2, 0x0c }, 415 { 0x88, 0xf8 }, 416 { 0xc3, 0x69 }, 417 { 0x89, 0xff }, 418 { 0x76, 0x03 }, 419 { 0x92, 0x01 }, 420 { 0x93, 0x18 }, 421 { 0x94, 0x10 }, 422 { 0x95, 0x10 }, 423 { 0xe2, 0x00 }, 424 { 0xe7, 0x3e }, 425 426 { 0x96, 0x00 }, 427 428 { 0x97, 0x20 }, 429 { 0x97, 0x20 }, 430 { 0x97, 0x20 }, 431 { 0x97, 0x0a }, 432 { 0x97, 0x3f }, 433 { 0x97, 0x4a }, 434 { 0x97, 0x20 }, 435 { 0x97, 0x15 }, 436 { 0x97, 0x0b }, 437 438 { 0x8e, 0x40 }, 439 { 0x1f, 0x81 }, 440 { 0x34, 0x05 }, 441 { 0xe3, 0x04 }, 442 { 0x88, 0x00 }, 443 { 0x89, 0x00 }, 444 { 0x76, 0x00 }, 445 { 0xe7, 0x2e }, 446 { 0x31, 0xf9 }, 447 { 0x25, 0x42 }, 448 { 0x21, 0xf0 }, 449 450 { 0x1c, 0x00 }, 451 { 0x1d, 0x40 }, 452 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */ 453 { 0x1d, 0x00 }, /* payload size */ 454 455 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */ 456 { 0x1d, 0x58 }, /* frame size */ 457 { 0x1d, 0x00 }, /* frame size */ 458 459 { 0x1c, 0x0a }, 460 { 0x1d, 0x08 }, /* turn on UVC header */ 461 { 0x1d, 0x0e }, /* .. */ 462 463 { 0x8d, 0x1c }, 464 { 0x8e, 0x80 }, 465 { 0xe5, 0x04 }, 466 467 { 0xc0, 0x50 }, 468 { 0xc1, 0x3c }, 469 { 0xc2, 0x0c }, 470 }; 471 static const u8 sensor_init_772x[][2] = { 472 { 0x12, 0x80 }, 473 { 0x11, 0x01 }, 474 /*fixme: better have a delay?*/ 475 { 0x11, 0x01 }, 476 { 0x11, 0x01 }, 477 { 0x11, 0x01 }, 478 { 0x11, 0x01 }, 479 { 0x11, 0x01 }, 480 { 0x11, 0x01 }, 481 { 0x11, 0x01 }, 482 { 0x11, 0x01 }, 483 { 0x11, 0x01 }, 484 { 0x11, 0x01 }, 485 486 { 0x3d, 0x03 }, 487 { 0x17, 0x26 }, 488 { 0x18, 0xa0 }, 489 { 0x19, 0x07 }, 490 { 0x1a, 0xf0 }, 491 { 0x32, 0x00 }, 492 { 0x29, 0xa0 }, 493 { 0x2c, 0xf0 }, 494 { 0x65, 0x20 }, 495 { 0x11, 0x01 }, 496 { 0x42, 0x7f }, 497 { 0x63, 0xaa }, /* AWB - was e0 */ 498 { 0x64, 0xff }, 499 { 0x66, 0x00 }, 500 { 0x13, 0xf0 }, /* com8 */ 501 { 0x0d, 0x41 }, 502 { 0x0f, 0xc5 }, 503 { 0x14, 0x11 }, 504 505 { 0x22, 0x7f }, 506 { 0x23, 0x03 }, 507 { 0x24, 0x40 }, 508 { 0x25, 0x30 }, 509 { 0x26, 0xa1 }, 510 { 0x2a, 0x00 }, 511 { 0x2b, 0x00 }, 512 { 0x6b, 0xaa }, 513 { 0x13, 0xff }, /* AWB */ 514 515 { 0x90, 0x05 }, 516 { 0x91, 0x01 }, 517 { 0x92, 0x03 }, 518 { 0x93, 0x00 }, 519 { 0x94, 0x60 }, 520 { 0x95, 0x3c }, 521 { 0x96, 0x24 }, 522 { 0x97, 0x1e }, 523 { 0x98, 0x62 }, 524 { 0x99, 0x80 }, 525 { 0x9a, 0x1e }, 526 { 0x9b, 0x08 }, 527 { 0x9c, 0x20 }, 528 { 0x9e, 0x81 }, 529 530 { 0xa6, 0x07 }, 531 { 0x7e, 0x0c }, 532 { 0x7f, 0x16 }, 533 { 0x80, 0x2a }, 534 { 0x81, 0x4e }, 535 { 0x82, 0x61 }, 536 { 0x83, 0x6f }, 537 { 0x84, 0x7b }, 538 { 0x85, 0x86 }, 539 { 0x86, 0x8e }, 540 { 0x87, 0x97 }, 541 { 0x88, 0xa4 }, 542 { 0x89, 0xaf }, 543 { 0x8a, 0xc5 }, 544 { 0x8b, 0xd7 }, 545 { 0x8c, 0xe8 }, 546 { 0x8d, 0x20 }, 547 548 { 0x0c, 0x90 }, 549 550 { 0x2b, 0x00 }, 551 { 0x22, 0x7f }, 552 { 0x23, 0x03 }, 553 { 0x11, 0x01 }, 554 { 0x0c, 0xd0 }, 555 { 0x64, 0xff }, 556 { 0x0d, 0x41 }, 557 558 { 0x14, 0x41 }, 559 { 0x0e, 0xcd }, 560 { 0xac, 0xbf }, 561 { 0x8e, 0x00 }, /* De-noise threshold */ 562 { 0x0c, 0xd0 } 563 }; 564 static const u8 bridge_start_vga_772x[][2] = { 565 {0x1c, 0x00}, 566 {0x1d, 0x40}, 567 {0x1d, 0x02}, 568 {0x1d, 0x00}, 569 {0x1d, 0x02}, 570 {0x1d, 0x58}, 571 {0x1d, 0x00}, 572 {0xc0, 0x50}, 573 {0xc1, 0x3c}, 574 }; 575 static const u8 sensor_start_vga_772x[][2] = { 576 {0x12, 0x00}, 577 {0x17, 0x26}, 578 {0x18, 0xa0}, 579 {0x19, 0x07}, 580 {0x1a, 0xf0}, 581 {0x29, 0xa0}, 582 {0x2c, 0xf0}, 583 {0x65, 0x20}, 584 }; 585 static const u8 bridge_start_qvga_772x[][2] = { 586 {0x1c, 0x00}, 587 {0x1d, 0x40}, 588 {0x1d, 0x02}, 589 {0x1d, 0x00}, 590 {0x1d, 0x01}, 591 {0x1d, 0x4b}, 592 {0x1d, 0x00}, 593 {0xc0, 0x28}, 594 {0xc1, 0x1e}, 595 }; 596 static const u8 sensor_start_qvga_772x[][2] = { 597 {0x12, 0x40}, 598 {0x17, 0x3f}, 599 {0x18, 0x50}, 600 {0x19, 0x03}, 601 {0x1a, 0x78}, 602 {0x29, 0x50}, 603 {0x2c, 0x78}, 604 {0x65, 0x2f}, 605 }; 606 607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) 608 { 609 struct usb_device *udev = gspca_dev->dev; 610 int ret; 611 612 if (gspca_dev->usb_err < 0) 613 return; 614 615 gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val); 616 gspca_dev->usb_buf[0] = val; 617 ret = usb_control_msg(udev, 618 usb_sndctrlpipe(udev, 0), 619 0x01, 620 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 621 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 622 if (ret < 0) { 623 pr_err("write failed %d\n", ret); 624 gspca_dev->usb_err = ret; 625 } 626 } 627 628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) 629 { 630 struct usb_device *udev = gspca_dev->dev; 631 int ret; 632 633 if (gspca_dev->usb_err < 0) 634 return 0; 635 ret = usb_control_msg(udev, 636 usb_rcvctrlpipe(udev, 0), 637 0x01, 638 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 639 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 640 gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n", 641 reg, gspca_dev->usb_buf[0]); 642 if (ret < 0) { 643 pr_err("read failed %d\n", ret); 644 gspca_dev->usb_err = ret; 645 } 646 return gspca_dev->usb_buf[0]; 647 } 648 649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. 650 * (direction and output)? */ 651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status) 652 { 653 u8 data; 654 655 gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status); 656 657 data = ov534_reg_read(gspca_dev, 0x21); 658 data |= 0x80; 659 ov534_reg_write(gspca_dev, 0x21, data); 660 661 data = ov534_reg_read(gspca_dev, 0x23); 662 if (status) 663 data |= 0x80; 664 else 665 data &= ~0x80; 666 667 ov534_reg_write(gspca_dev, 0x23, data); 668 669 if (!status) { 670 data = ov534_reg_read(gspca_dev, 0x21); 671 data &= ~0x80; 672 ov534_reg_write(gspca_dev, 0x21, data); 673 } 674 } 675 676 static int sccb_check_status(struct gspca_dev *gspca_dev) 677 { 678 u8 data; 679 int i; 680 681 for (i = 0; i < 5; i++) { 682 msleep(10); 683 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); 684 685 switch (data) { 686 case 0x00: 687 return 1; 688 case 0x04: 689 return 0; 690 case 0x03: 691 break; 692 default: 693 gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n", 694 data, i + 1); 695 } 696 } 697 return 0; 698 } 699 700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) 701 { 702 gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val); 703 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 704 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); 705 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); 706 707 if (!sccb_check_status(gspca_dev)) { 708 pr_err("sccb_reg_write failed\n"); 709 gspca_dev->usb_err = -EIO; 710 } 711 } 712 713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) 714 { 715 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 716 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); 717 if (!sccb_check_status(gspca_dev)) 718 pr_err("sccb_reg_read failed 1\n"); 719 720 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); 721 if (!sccb_check_status(gspca_dev)) 722 pr_err("sccb_reg_read failed 2\n"); 723 724 return ov534_reg_read(gspca_dev, OV534_REG_READ); 725 } 726 727 /* output a bridge sequence (reg - val) */ 728 static void reg_w_array(struct gspca_dev *gspca_dev, 729 const u8 (*data)[2], int len) 730 { 731 while (--len >= 0) { 732 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); 733 data++; 734 } 735 } 736 737 /* output a sensor sequence (reg - val) */ 738 static void sccb_w_array(struct gspca_dev *gspca_dev, 739 const u8 (*data)[2], int len) 740 { 741 while (--len >= 0) { 742 if ((*data)[0] != 0xff) { 743 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); 744 } else { 745 sccb_reg_read(gspca_dev, (*data)[1]); 746 sccb_reg_write(gspca_dev, 0xff, 0x00); 747 } 748 data++; 749 } 750 } 751 752 /* ov772x specific controls */ 753 static void set_frame_rate(struct gspca_dev *gspca_dev) 754 { 755 struct sd *sd = (struct sd *) gspca_dev; 756 int i; 757 struct rate_s { 758 u8 fps; 759 u8 r11; 760 u8 r0d; 761 u8 re5; 762 }; 763 const struct rate_s *r; 764 static const struct rate_s rate_0[] = { /* 640x480 */ 765 {60, 0x01, 0xc1, 0x04}, 766 {50, 0x01, 0x41, 0x02}, 767 {40, 0x02, 0xc1, 0x04}, 768 {30, 0x04, 0x81, 0x02}, 769 {15, 0x03, 0x41, 0x04}, 770 }; 771 static const struct rate_s rate_1[] = { /* 320x240 */ 772 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */ 773 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */ 774 {150, 0x01, 0xc1, 0x04}, 775 {137, 0x02, 0xc1, 0x02}, 776 {125, 0x02, 0x81, 0x02}, 777 {100, 0x02, 0xc1, 0x04}, 778 {75, 0x03, 0xc1, 0x04}, 779 {60, 0x04, 0xc1, 0x04}, 780 {50, 0x02, 0x41, 0x04}, 781 {37, 0x03, 0x41, 0x04}, 782 {30, 0x04, 0x41, 0x04}, 783 }; 784 785 if (sd->sensor != SENSOR_OV772x) 786 return; 787 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { 788 r = rate_0; 789 i = ARRAY_SIZE(rate_0); 790 } else { 791 r = rate_1; 792 i = ARRAY_SIZE(rate_1); 793 } 794 while (--i > 0) { 795 if (sd->frame_rate >= r->fps) 796 break; 797 r++; 798 } 799 800 sccb_reg_write(gspca_dev, 0x11, r->r11); 801 sccb_reg_write(gspca_dev, 0x0d, r->r0d); 802 ov534_reg_write(gspca_dev, 0xe5, r->re5); 803 804 gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps); 805 } 806 807 static void sethue(struct gspca_dev *gspca_dev, s32 val) 808 { 809 struct sd *sd = (struct sd *) gspca_dev; 810 811 if (sd->sensor == SENSOR_OV767x) { 812 /* TBD */ 813 } else { 814 s16 huesin; 815 s16 huecos; 816 817 /* According to the datasheet the registers expect HUESIN and 818 * HUECOS to be the result of the trigonometric functions, 819 * scaled by 0x80. 820 * 821 * The 0x7fff here represents the maximum absolute value 822 * returned byt fixp_sin and fixp_cos, so the scaling will 823 * consider the result like in the interval [-1.0, 1.0]. 824 */ 825 huesin = fixp_sin16(val) * 0x80 / 0x7fff; 826 huecos = fixp_cos16(val) * 0x80 / 0x7fff; 827 828 if (huesin < 0) { 829 sccb_reg_write(gspca_dev, 0xab, 830 sccb_reg_read(gspca_dev, 0xab) | 0x2); 831 huesin = -huesin; 832 } else { 833 sccb_reg_write(gspca_dev, 0xab, 834 sccb_reg_read(gspca_dev, 0xab) & ~0x2); 835 836 } 837 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); 838 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); 839 } 840 } 841 842 static void setsaturation(struct gspca_dev *gspca_dev, s32 val) 843 { 844 struct sd *sd = (struct sd *) gspca_dev; 845 846 if (sd->sensor == SENSOR_OV767x) { 847 int i; 848 static u8 color_tb[][6] = { 849 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, 850 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, 851 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, 852 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, 853 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, 854 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, 855 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, 856 }; 857 858 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) 859 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); 860 } else { 861 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ 862 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ 863 } 864 } 865 866 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 867 { 868 struct sd *sd = (struct sd *) gspca_dev; 869 870 if (sd->sensor == SENSOR_OV767x) { 871 if (val < 0) 872 val = 0x80 - val; 873 sccb_reg_write(gspca_dev, 0x55, val); /* bright */ 874 } else { 875 sccb_reg_write(gspca_dev, 0x9b, val); 876 } 877 } 878 879 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 880 { 881 struct sd *sd = (struct sd *) gspca_dev; 882 883 if (sd->sensor == SENSOR_OV767x) 884 sccb_reg_write(gspca_dev, 0x56, val); /* contras */ 885 else 886 sccb_reg_write(gspca_dev, 0x9c, val); 887 } 888 889 static void setgain(struct gspca_dev *gspca_dev, s32 val) 890 { 891 switch (val & 0x30) { 892 case 0x00: 893 val &= 0x0f; 894 break; 895 case 0x10: 896 val &= 0x0f; 897 val |= 0x30; 898 break; 899 case 0x20: 900 val &= 0x0f; 901 val |= 0x70; 902 break; 903 default: 904 /* case 0x30: */ 905 val &= 0x0f; 906 val |= 0xf0; 907 break; 908 } 909 sccb_reg_write(gspca_dev, 0x00, val); 910 } 911 912 static s32 getgain(struct gspca_dev *gspca_dev) 913 { 914 return sccb_reg_read(gspca_dev, 0x00); 915 } 916 917 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 918 { 919 struct sd *sd = (struct sd *) gspca_dev; 920 921 if (sd->sensor == SENSOR_OV767x) { 922 923 /* set only aec[9:2] */ 924 sccb_reg_write(gspca_dev, 0x10, val); /* aech */ 925 } else { 926 927 /* 'val' is one byte and represents half of the exposure value 928 * we are going to set into registers, a two bytes value: 929 * 930 * MSB: ((u16) val << 1) >> 8 == val >> 7 931 * LSB: ((u16) val << 1) & 0xff == val << 1 932 */ 933 sccb_reg_write(gspca_dev, 0x08, val >> 7); 934 sccb_reg_write(gspca_dev, 0x10, val << 1); 935 } 936 } 937 938 static s32 getexposure(struct gspca_dev *gspca_dev) 939 { 940 struct sd *sd = (struct sd *) gspca_dev; 941 942 if (sd->sensor == SENSOR_OV767x) { 943 /* get only aec[9:2] */ 944 return sccb_reg_read(gspca_dev, 0x10); /* aech */ 945 } else { 946 u8 hi = sccb_reg_read(gspca_dev, 0x08); 947 u8 lo = sccb_reg_read(gspca_dev, 0x10); 948 return (hi << 8 | lo) >> 1; 949 } 950 } 951 952 static void setagc(struct gspca_dev *gspca_dev, s32 val) 953 { 954 if (val) { 955 sccb_reg_write(gspca_dev, 0x13, 956 sccb_reg_read(gspca_dev, 0x13) | 0x04); 957 sccb_reg_write(gspca_dev, 0x64, 958 sccb_reg_read(gspca_dev, 0x64) | 0x03); 959 } else { 960 sccb_reg_write(gspca_dev, 0x13, 961 sccb_reg_read(gspca_dev, 0x13) & ~0x04); 962 sccb_reg_write(gspca_dev, 0x64, 963 sccb_reg_read(gspca_dev, 0x64) & ~0x03); 964 } 965 } 966 967 static void setawb(struct gspca_dev *gspca_dev, s32 val) 968 { 969 struct sd *sd = (struct sd *) gspca_dev; 970 971 if (val) { 972 sccb_reg_write(gspca_dev, 0x13, 973 sccb_reg_read(gspca_dev, 0x13) | 0x02); 974 if (sd->sensor == SENSOR_OV772x) 975 sccb_reg_write(gspca_dev, 0x63, 976 sccb_reg_read(gspca_dev, 0x63) | 0xc0); 977 } else { 978 sccb_reg_write(gspca_dev, 0x13, 979 sccb_reg_read(gspca_dev, 0x13) & ~0x02); 980 if (sd->sensor == SENSOR_OV772x) 981 sccb_reg_write(gspca_dev, 0x63, 982 sccb_reg_read(gspca_dev, 0x63) & ~0xc0); 983 } 984 } 985 986 static void setaec(struct gspca_dev *gspca_dev, s32 val) 987 { 988 struct sd *sd = (struct sd *) gspca_dev; 989 u8 data; 990 991 data = sd->sensor == SENSOR_OV767x ? 992 0x05 : /* agc + aec */ 993 0x01; /* agc */ 994 switch (val) { 995 case V4L2_EXPOSURE_AUTO: 996 sccb_reg_write(gspca_dev, 0x13, 997 sccb_reg_read(gspca_dev, 0x13) | data); 998 break; 999 case V4L2_EXPOSURE_MANUAL: 1000 sccb_reg_write(gspca_dev, 0x13, 1001 sccb_reg_read(gspca_dev, 0x13) & ~data); 1002 break; 1003 } 1004 } 1005 1006 static void setsharpness(struct gspca_dev *gspca_dev, s32 val) 1007 { 1008 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ 1009 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ 1010 } 1011 1012 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 1013 { 1014 struct sd *sd = (struct sd *) gspca_dev; 1015 u8 val; 1016 1017 if (sd->sensor == SENSOR_OV767x) { 1018 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ 1019 val &= ~0x30; 1020 if (hflip) 1021 val |= 0x20; 1022 if (vflip) 1023 val |= 0x10; 1024 sccb_reg_write(gspca_dev, 0x1e, val); 1025 } else { 1026 val = sccb_reg_read(gspca_dev, 0x0c); 1027 val &= ~0xc0; 1028 if (hflip == 0) 1029 val |= 0x40; 1030 if (vflip == 0) 1031 val |= 0x80; 1032 sccb_reg_write(gspca_dev, 0x0c, val); 1033 } 1034 } 1035 1036 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) 1037 { 1038 struct sd *sd = (struct sd *) gspca_dev; 1039 1040 val = val ? 0x9e : 0x00; 1041 if (sd->sensor == SENSOR_OV767x) { 1042 sccb_reg_write(gspca_dev, 0x2a, 0x00); 1043 if (val) 1044 val = 0x9d; /* insert dummy to 25fps for 50Hz */ 1045 } 1046 sccb_reg_write(gspca_dev, 0x2b, val); 1047 } 1048 1049 1050 /* this function is called at probe time */ 1051 static int sd_config(struct gspca_dev *gspca_dev, 1052 const struct usb_device_id *id) 1053 { 1054 struct sd *sd = (struct sd *) gspca_dev; 1055 struct cam *cam; 1056 1057 cam = &gspca_dev->cam; 1058 1059 cam->cam_mode = ov772x_mode; 1060 cam->nmodes = ARRAY_SIZE(ov772x_mode); 1061 1062 sd->frame_rate = DEFAULT_FRAME_RATE; 1063 1064 return 0; 1065 } 1066 1067 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1068 { 1069 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1070 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1071 1072 switch (ctrl->id) { 1073 case V4L2_CID_AUTOGAIN: 1074 gspca_dev->usb_err = 0; 1075 if (ctrl->val && sd->gain && gspca_dev->streaming) 1076 sd->gain->val = getgain(gspca_dev); 1077 return gspca_dev->usb_err; 1078 1079 case V4L2_CID_EXPOSURE_AUTO: 1080 gspca_dev->usb_err = 0; 1081 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && 1082 gspca_dev->streaming) 1083 sd->exposure->val = getexposure(gspca_dev); 1084 return gspca_dev->usb_err; 1085 } 1086 return -EINVAL; 1087 } 1088 1089 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) 1090 { 1091 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1092 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1093 1094 gspca_dev->usb_err = 0; 1095 if (!gspca_dev->streaming) 1096 return 0; 1097 1098 switch (ctrl->id) { 1099 case V4L2_CID_HUE: 1100 sethue(gspca_dev, ctrl->val); 1101 break; 1102 case V4L2_CID_SATURATION: 1103 setsaturation(gspca_dev, ctrl->val); 1104 break; 1105 case V4L2_CID_BRIGHTNESS: 1106 setbrightness(gspca_dev, ctrl->val); 1107 break; 1108 case V4L2_CID_CONTRAST: 1109 setcontrast(gspca_dev, ctrl->val); 1110 break; 1111 case V4L2_CID_AUTOGAIN: 1112 /* case V4L2_CID_GAIN: */ 1113 setagc(gspca_dev, ctrl->val); 1114 if (!gspca_dev->usb_err && !ctrl->val && sd->gain) 1115 setgain(gspca_dev, sd->gain->val); 1116 break; 1117 case V4L2_CID_AUTO_WHITE_BALANCE: 1118 setawb(gspca_dev, ctrl->val); 1119 break; 1120 case V4L2_CID_EXPOSURE_AUTO: 1121 /* case V4L2_CID_EXPOSURE: */ 1122 setaec(gspca_dev, ctrl->val); 1123 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && 1124 sd->exposure) 1125 setexposure(gspca_dev, sd->exposure->val); 1126 break; 1127 case V4L2_CID_SHARPNESS: 1128 setsharpness(gspca_dev, ctrl->val); 1129 break; 1130 case V4L2_CID_HFLIP: 1131 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 1132 break; 1133 case V4L2_CID_VFLIP: 1134 sethvflip(gspca_dev, sd->hflip->val, ctrl->val); 1135 break; 1136 case V4L2_CID_POWER_LINE_FREQUENCY: 1137 setlightfreq(gspca_dev, ctrl->val); 1138 break; 1139 } 1140 return gspca_dev->usb_err; 1141 } 1142 1143 static const struct v4l2_ctrl_ops ov534_ctrl_ops = { 1144 .g_volatile_ctrl = ov534_g_volatile_ctrl, 1145 .s_ctrl = ov534_s_ctrl, 1146 }; 1147 1148 static int sd_init_controls(struct gspca_dev *gspca_dev) 1149 { 1150 struct sd *sd = (struct sd *) gspca_dev; 1151 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; 1152 /* parameters with different values between the supported sensors */ 1153 int saturation_min; 1154 int saturation_max; 1155 int saturation_def; 1156 int brightness_min; 1157 int brightness_max; 1158 int brightness_def; 1159 int contrast_max; 1160 int contrast_def; 1161 int exposure_min; 1162 int exposure_max; 1163 int exposure_def; 1164 int hflip_def; 1165 1166 if (sd->sensor == SENSOR_OV767x) { 1167 saturation_min = 0, 1168 saturation_max = 6, 1169 saturation_def = 3, 1170 brightness_min = -127; 1171 brightness_max = 127; 1172 brightness_def = 0; 1173 contrast_max = 0x80; 1174 contrast_def = 0x40; 1175 exposure_min = 0x08; 1176 exposure_max = 0x60; 1177 exposure_def = 0x13; 1178 hflip_def = 1; 1179 } else { 1180 saturation_min = 0, 1181 saturation_max = 255, 1182 saturation_def = 64, 1183 brightness_min = 0; 1184 brightness_max = 255; 1185 brightness_def = 0; 1186 contrast_max = 255; 1187 contrast_def = 32; 1188 exposure_min = 0; 1189 exposure_max = 255; 1190 exposure_def = 120; 1191 hflip_def = 0; 1192 } 1193 1194 gspca_dev->vdev.ctrl_handler = hdl; 1195 1196 v4l2_ctrl_handler_init(hdl, 13); 1197 1198 if (sd->sensor == SENSOR_OV772x) 1199 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1200 V4L2_CID_HUE, -90, 90, 1, 0); 1201 1202 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1203 V4L2_CID_SATURATION, saturation_min, saturation_max, 1, 1204 saturation_def); 1205 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1206 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, 1207 brightness_def); 1208 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1209 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); 1210 1211 if (sd->sensor == SENSOR_OV772x) { 1212 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1213 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1214 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1215 V4L2_CID_GAIN, 0, 63, 1, 20); 1216 } 1217 1218 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1219 V4L2_CID_EXPOSURE_AUTO, 1220 V4L2_EXPOSURE_MANUAL, 0, 1221 V4L2_EXPOSURE_AUTO); 1222 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1223 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, 1224 exposure_def); 1225 1226 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1227 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); 1228 1229 if (sd->sensor == SENSOR_OV772x) 1230 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1231 V4L2_CID_SHARPNESS, 0, 63, 1, 0); 1232 1233 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1234 V4L2_CID_HFLIP, 0, 1, 1, hflip_def); 1235 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1236 V4L2_CID_VFLIP, 0, 1, 1, 0); 1237 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1238 V4L2_CID_POWER_LINE_FREQUENCY, 1239 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, 1240 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1241 1242 if (hdl->error) { 1243 pr_err("Could not initialize controls\n"); 1244 return hdl->error; 1245 } 1246 1247 if (sd->sensor == SENSOR_OV772x) 1248 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); 1249 1250 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, 1251 true); 1252 1253 return 0; 1254 } 1255 1256 /* this function is called at probe and resume time */ 1257 static int sd_init(struct gspca_dev *gspca_dev) 1258 { 1259 struct sd *sd = (struct sd *) gspca_dev; 1260 u16 sensor_id; 1261 static const struct reg_array bridge_init[NSENSORS] = { 1262 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, 1263 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, 1264 }; 1265 static const struct reg_array sensor_init[NSENSORS] = { 1266 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, 1267 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, 1268 }; 1269 1270 /* reset bridge */ 1271 ov534_reg_write(gspca_dev, 0xe7, 0x3a); 1272 ov534_reg_write(gspca_dev, 0xe0, 0x08); 1273 msleep(100); 1274 1275 /* initialize the sensor address */ 1276 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); 1277 1278 /* reset sensor */ 1279 sccb_reg_write(gspca_dev, 0x12, 0x80); 1280 msleep(10); 1281 1282 /* probe the sensor */ 1283 sccb_reg_read(gspca_dev, 0x0a); 1284 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; 1285 sccb_reg_read(gspca_dev, 0x0b); 1286 sensor_id |= sccb_reg_read(gspca_dev, 0x0b); 1287 gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id); 1288 1289 if ((sensor_id & 0xfff0) == 0x7670) { 1290 sd->sensor = SENSOR_OV767x; 1291 gspca_dev->cam.cam_mode = ov767x_mode; 1292 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); 1293 } else { 1294 sd->sensor = SENSOR_OV772x; 1295 gspca_dev->cam.bulk = 1; 1296 gspca_dev->cam.bulk_size = 16384; 1297 gspca_dev->cam.bulk_nurbs = 2; 1298 gspca_dev->cam.mode_framerates = ov772x_framerates; 1299 } 1300 1301 /* initialize */ 1302 reg_w_array(gspca_dev, bridge_init[sd->sensor].val, 1303 bridge_init[sd->sensor].len); 1304 ov534_set_led(gspca_dev, 1); 1305 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, 1306 sensor_init[sd->sensor].len); 1307 1308 sd_stopN(gspca_dev); 1309 /* set_frame_rate(gspca_dev); */ 1310 1311 return gspca_dev->usb_err; 1312 } 1313 1314 static int sd_start(struct gspca_dev *gspca_dev) 1315 { 1316 struct sd *sd = (struct sd *) gspca_dev; 1317 int mode; 1318 static const struct reg_array bridge_start[NSENSORS][2] = { 1319 [SENSOR_OV767x] = {{bridge_start_qvga_767x, 1320 ARRAY_SIZE(bridge_start_qvga_767x)}, 1321 {bridge_start_vga_767x, 1322 ARRAY_SIZE(bridge_start_vga_767x)}}, 1323 [SENSOR_OV772x] = {{bridge_start_qvga_772x, 1324 ARRAY_SIZE(bridge_start_qvga_772x)}, 1325 {bridge_start_vga_772x, 1326 ARRAY_SIZE(bridge_start_vga_772x)}}, 1327 }; 1328 static const struct reg_array sensor_start[NSENSORS][2] = { 1329 [SENSOR_OV767x] = {{sensor_start_qvga_767x, 1330 ARRAY_SIZE(sensor_start_qvga_767x)}, 1331 {sensor_start_vga_767x, 1332 ARRAY_SIZE(sensor_start_vga_767x)}}, 1333 [SENSOR_OV772x] = {{sensor_start_qvga_772x, 1334 ARRAY_SIZE(sensor_start_qvga_772x)}, 1335 {sensor_start_vga_772x, 1336 ARRAY_SIZE(sensor_start_vga_772x)}}, 1337 }; 1338 1339 /* (from ms-win trace) */ 1340 if (sd->sensor == SENSOR_OV767x) 1341 sccb_reg_write(gspca_dev, 0x1e, 0x04); 1342 /* black sun enable ? */ 1343 1344 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ 1345 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, 1346 bridge_start[sd->sensor][mode].len); 1347 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, 1348 sensor_start[sd->sensor][mode].len); 1349 1350 set_frame_rate(gspca_dev); 1351 1352 if (sd->hue) 1353 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); 1354 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); 1355 if (sd->autogain) 1356 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); 1357 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); 1358 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); 1359 if (sd->gain) 1360 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); 1361 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); 1362 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); 1363 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); 1364 if (sd->sharpness) 1365 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); 1366 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), 1367 v4l2_ctrl_g_ctrl(sd->vflip)); 1368 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); 1369 1370 ov534_set_led(gspca_dev, 1); 1371 ov534_reg_write(gspca_dev, 0xe0, 0x00); 1372 return gspca_dev->usb_err; 1373 } 1374 1375 static void sd_stopN(struct gspca_dev *gspca_dev) 1376 { 1377 ov534_reg_write(gspca_dev, 0xe0, 0x09); 1378 ov534_set_led(gspca_dev, 0); 1379 } 1380 1381 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ 1382 #define UVC_STREAM_EOH (1 << 7) 1383 #define UVC_STREAM_ERR (1 << 6) 1384 #define UVC_STREAM_STI (1 << 5) 1385 #define UVC_STREAM_RES (1 << 4) 1386 #define UVC_STREAM_SCR (1 << 3) 1387 #define UVC_STREAM_PTS (1 << 2) 1388 #define UVC_STREAM_EOF (1 << 1) 1389 #define UVC_STREAM_FID (1 << 0) 1390 1391 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1392 u8 *data, int len) 1393 { 1394 struct sd *sd = (struct sd *) gspca_dev; 1395 __u32 this_pts; 1396 u16 this_fid; 1397 int remaining_len = len; 1398 int payload_len; 1399 1400 payload_len = gspca_dev->cam.bulk ? 2048 : 2040; 1401 do { 1402 len = min(remaining_len, payload_len); 1403 1404 /* Payloads are prefixed with a UVC-style header. We 1405 consider a frame to start when the FID toggles, or the PTS 1406 changes. A frame ends when EOF is set, and we've received 1407 the correct number of bytes. */ 1408 1409 /* Verify UVC header. Header length is always 12 */ 1410 if (data[0] != 12 || len < 12) { 1411 gspca_dbg(gspca_dev, D_PACK, "bad header\n"); 1412 goto discard; 1413 } 1414 1415 /* Check errors */ 1416 if (data[1] & UVC_STREAM_ERR) { 1417 gspca_dbg(gspca_dev, D_PACK, "payload error\n"); 1418 goto discard; 1419 } 1420 1421 /* Extract PTS and FID */ 1422 if (!(data[1] & UVC_STREAM_PTS)) { 1423 gspca_dbg(gspca_dev, D_PACK, "PTS not present\n"); 1424 goto discard; 1425 } 1426 this_pts = (data[5] << 24) | (data[4] << 16) 1427 | (data[3] << 8) | data[2]; 1428 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; 1429 1430 /* If PTS or FID has changed, start a new frame. */ 1431 if (this_pts != sd->last_pts || this_fid != sd->last_fid) { 1432 if (gspca_dev->last_packet_type == INTER_PACKET) 1433 gspca_frame_add(gspca_dev, LAST_PACKET, 1434 NULL, 0); 1435 sd->last_pts = this_pts; 1436 sd->last_fid = this_fid; 1437 gspca_frame_add(gspca_dev, FIRST_PACKET, 1438 data + 12, len - 12); 1439 /* If this packet is marked as EOF, end the frame */ 1440 } else if (data[1] & UVC_STREAM_EOF) { 1441 sd->last_pts = 0; 1442 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV 1443 && gspca_dev->image_len + len - 12 != 1444 gspca_dev->pixfmt.width * 1445 gspca_dev->pixfmt.height * 2) { 1446 gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n"); 1447 goto discard; 1448 } 1449 gspca_frame_add(gspca_dev, LAST_PACKET, 1450 data + 12, len - 12); 1451 } else { 1452 1453 /* Add the data from this payload */ 1454 gspca_frame_add(gspca_dev, INTER_PACKET, 1455 data + 12, len - 12); 1456 } 1457 1458 /* Done this payload */ 1459 goto scan_next; 1460 1461 discard: 1462 /* Discard data until a new frame starts. */ 1463 gspca_dev->last_packet_type = DISCARD_PACKET; 1464 1465 scan_next: 1466 remaining_len -= len; 1467 data += len; 1468 } while (remaining_len > 0); 1469 } 1470 1471 /* get stream parameters (framerate) */ 1472 static void sd_get_streamparm(struct gspca_dev *gspca_dev, 1473 struct v4l2_streamparm *parm) 1474 { 1475 struct v4l2_captureparm *cp = &parm->parm.capture; 1476 struct v4l2_fract *tpf = &cp->timeperframe; 1477 struct sd *sd = (struct sd *) gspca_dev; 1478 1479 cp->capability |= V4L2_CAP_TIMEPERFRAME; 1480 tpf->numerator = 1; 1481 tpf->denominator = sd->frame_rate; 1482 } 1483 1484 /* set stream parameters (framerate) */ 1485 static void sd_set_streamparm(struct gspca_dev *gspca_dev, 1486 struct v4l2_streamparm *parm) 1487 { 1488 struct v4l2_captureparm *cp = &parm->parm.capture; 1489 struct v4l2_fract *tpf = &cp->timeperframe; 1490 struct sd *sd = (struct sd *) gspca_dev; 1491 1492 if (tpf->numerator == 0 || tpf->denominator == 0) 1493 sd->frame_rate = DEFAULT_FRAME_RATE; 1494 else 1495 sd->frame_rate = tpf->denominator / tpf->numerator; 1496 1497 if (gspca_dev->streaming) 1498 set_frame_rate(gspca_dev); 1499 1500 /* Return the actual framerate */ 1501 tpf->numerator = 1; 1502 tpf->denominator = sd->frame_rate; 1503 } 1504 1505 /* sub-driver description */ 1506 static const struct sd_desc sd_desc = { 1507 .name = MODULE_NAME, 1508 .config = sd_config, 1509 .init = sd_init, 1510 .init_controls = sd_init_controls, 1511 .start = sd_start, 1512 .stopN = sd_stopN, 1513 .pkt_scan = sd_pkt_scan, 1514 .get_streamparm = sd_get_streamparm, 1515 .set_streamparm = sd_set_streamparm, 1516 }; 1517 1518 /* -- module initialisation -- */ 1519 static const struct usb_device_id device_table[] = { 1520 {USB_DEVICE(0x1415, 0x2000)}, 1521 {USB_DEVICE(0x06f8, 0x3002)}, 1522 {} 1523 }; 1524 1525 MODULE_DEVICE_TABLE(usb, device_table); 1526 1527 /* -- device connect -- */ 1528 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) 1529 { 1530 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1531 THIS_MODULE); 1532 } 1533 1534 static struct usb_driver sd_driver = { 1535 .name = MODULE_NAME, 1536 .id_table = device_table, 1537 .probe = sd_probe, 1538 .disconnect = gspca_disconnect, 1539 #ifdef CONFIG_PM 1540 .suspend = gspca_suspend, 1541 .resume = gspca_resume, 1542 .reset_resume = gspca_resume, 1543 #endif 1544 }; 1545 1546 module_usb_driver(sd_driver); 1547