1 /* 2 * ov534-ov7xxx gspca driver 3 * 4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it> 5 * Copyright (C) 2008 Jim Paris <jim@jtan.com> 6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr 7 * 8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com> 9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com> 10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ 11 * 12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr 13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls 14 * added by Max Thrun <bear24rw@gmail.com> 15 * PS3 Eye camera - FPS range extended by Joseph Howse 16 * <josephhowse@nummist.com> http://nummist.com 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 */ 28 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 30 31 #define MODULE_NAME "ov534" 32 33 #include "gspca.h" 34 35 #include <linux/fixp-arith.h> 36 #include <media/v4l2-ctrls.h> 37 38 #define OV534_REG_ADDRESS 0xf1 /* sensor address */ 39 #define OV534_REG_SUBADDR 0xf2 40 #define OV534_REG_WRITE 0xf3 41 #define OV534_REG_READ 0xf4 42 #define OV534_REG_OPERATION 0xf5 43 #define OV534_REG_STATUS 0xf6 44 45 #define OV534_OP_WRITE_3 0x37 46 #define OV534_OP_WRITE_2 0x33 47 #define OV534_OP_READ_2 0xf9 48 49 #define CTRL_TIMEOUT 500 50 #define DEFAULT_FRAME_RATE 30 51 52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>"); 53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); 54 MODULE_LICENSE("GPL"); 55 56 /* specific webcam descriptor */ 57 struct sd { 58 struct gspca_dev gspca_dev; /* !! must be the first item */ 59 60 struct v4l2_ctrl_handler ctrl_handler; 61 struct v4l2_ctrl *hue; 62 struct v4l2_ctrl *saturation; 63 struct v4l2_ctrl *brightness; 64 struct v4l2_ctrl *contrast; 65 struct { /* gain control cluster */ 66 struct v4l2_ctrl *autogain; 67 struct v4l2_ctrl *gain; 68 }; 69 struct v4l2_ctrl *autowhitebalance; 70 struct { /* exposure control cluster */ 71 struct v4l2_ctrl *autoexposure; 72 struct v4l2_ctrl *exposure; 73 }; 74 struct v4l2_ctrl *sharpness; 75 struct v4l2_ctrl *hflip; 76 struct v4l2_ctrl *vflip; 77 struct v4l2_ctrl *plfreq; 78 79 __u32 last_pts; 80 u16 last_fid; 81 u8 frame_rate; 82 83 u8 sensor; 84 }; 85 enum sensors { 86 SENSOR_OV767x, 87 SENSOR_OV772x, 88 NSENSORS 89 }; 90 91 static int sd_start(struct gspca_dev *gspca_dev); 92 static void sd_stopN(struct gspca_dev *gspca_dev); 93 94 95 static const struct v4l2_pix_format ov772x_mode[] = { 96 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 97 .bytesperline = 320 * 2, 98 .sizeimage = 320 * 240 * 2, 99 .colorspace = V4L2_COLORSPACE_SRGB, 100 .priv = 1}, 101 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 102 .bytesperline = 640 * 2, 103 .sizeimage = 640 * 480 * 2, 104 .colorspace = V4L2_COLORSPACE_SRGB, 105 .priv = 0}, 106 {320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, 107 .bytesperline = 320, 108 .sizeimage = 320 * 240, 109 .colorspace = V4L2_COLORSPACE_SRGB, 110 .priv = 1}, 111 {640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE, 112 .bytesperline = 640, 113 .sizeimage = 640 * 480, 114 .colorspace = V4L2_COLORSPACE_SRGB, 115 .priv = 0}, 116 }; 117 static const struct v4l2_pix_format ov767x_mode[] = { 118 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 119 .bytesperline = 320, 120 .sizeimage = 320 * 240 * 3 / 8 + 590, 121 .colorspace = V4L2_COLORSPACE_JPEG}, 122 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 123 .bytesperline = 640, 124 .sizeimage = 640 * 480 * 3 / 8 + 590, 125 .colorspace = V4L2_COLORSPACE_JPEG}, 126 }; 127 128 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30}; 129 static const u8 vga_rates[] = {60, 50, 40, 30, 15}; 130 131 static const struct framerates ov772x_framerates[] = { 132 { /* 320x240 */ 133 .rates = qvga_rates, 134 .nrates = ARRAY_SIZE(qvga_rates), 135 }, 136 { /* 640x480 */ 137 .rates = vga_rates, 138 .nrates = ARRAY_SIZE(vga_rates), 139 }, 140 { /* 320x240 SGBRG8 */ 141 .rates = qvga_rates, 142 .nrates = ARRAY_SIZE(qvga_rates), 143 }, 144 { /* 640x480 SGBRG8 */ 145 .rates = vga_rates, 146 .nrates = ARRAY_SIZE(vga_rates), 147 }, 148 }; 149 150 struct reg_array { 151 const u8 (*val)[2]; 152 int len; 153 }; 154 155 static const u8 bridge_init_767x[][2] = { 156 /* comments from the ms-win file apollo7670.set */ 157 /* str1 */ 158 {0xf1, 0x42}, 159 {0x88, 0xf8}, 160 {0x89, 0xff}, 161 {0x76, 0x03}, 162 {0x92, 0x03}, 163 {0x95, 0x10}, 164 {0xe2, 0x00}, 165 {0xe7, 0x3e}, 166 {0x8d, 0x1c}, 167 {0x8e, 0x00}, 168 {0x8f, 0x00}, 169 {0x1f, 0x00}, 170 {0xc3, 0xf9}, 171 {0x89, 0xff}, 172 {0x88, 0xf8}, 173 {0x76, 0x03}, 174 {0x92, 0x01}, 175 {0x93, 0x18}, 176 {0x1c, 0x00}, 177 {0x1d, 0x48}, 178 {0x1d, 0x00}, 179 {0x1d, 0xff}, 180 {0x1d, 0x02}, 181 {0x1d, 0x58}, 182 {0x1d, 0x00}, 183 {0x1c, 0x0a}, 184 {0x1d, 0x0a}, 185 {0x1d, 0x0e}, 186 {0xc0, 0x50}, /* HSize 640 */ 187 {0xc1, 0x3c}, /* VSize 480 */ 188 {0x34, 0x05}, /* enable Audio Suspend mode */ 189 {0xc2, 0x0c}, /* Input YUV */ 190 {0xc3, 0xf9}, /* enable PRE */ 191 {0x34, 0x05}, /* enable Audio Suspend mode */ 192 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ 193 {0x31, 0xf9}, /* enable 1.8V Suspend */ 194 {0x35, 0x02}, /* turn on JPEG */ 195 {0xd9, 0x10}, 196 {0x25, 0x42}, /* GPIO[8]:Input */ 197 {0x94, 0x11}, /* If the default setting is loaded when 198 * system boots up, this flag is closed here */ 199 }; 200 static const u8 sensor_init_767x[][2] = { 201 {0x12, 0x80}, 202 {0x11, 0x03}, 203 {0x3a, 0x04}, 204 {0x12, 0x00}, 205 {0x17, 0x13}, 206 {0x18, 0x01}, 207 {0x32, 0xb6}, 208 {0x19, 0x02}, 209 {0x1a, 0x7a}, 210 {0x03, 0x0a}, 211 {0x0c, 0x00}, 212 {0x3e, 0x00}, 213 {0x70, 0x3a}, 214 {0x71, 0x35}, 215 {0x72, 0x11}, 216 {0x73, 0xf0}, 217 {0xa2, 0x02}, 218 {0x7a, 0x2a}, /* set Gamma=1.6 below */ 219 {0x7b, 0x12}, 220 {0x7c, 0x1d}, 221 {0x7d, 0x2d}, 222 {0x7e, 0x45}, 223 {0x7f, 0x50}, 224 {0x80, 0x59}, 225 {0x81, 0x62}, 226 {0x82, 0x6b}, 227 {0x83, 0x73}, 228 {0x84, 0x7b}, 229 {0x85, 0x8a}, 230 {0x86, 0x98}, 231 {0x87, 0xb2}, 232 {0x88, 0xca}, 233 {0x89, 0xe0}, 234 {0x13, 0xe0}, 235 {0x00, 0x00}, 236 {0x10, 0x00}, 237 {0x0d, 0x40}, 238 {0x14, 0x38}, /* gain max 16x */ 239 {0xa5, 0x05}, 240 {0xab, 0x07}, 241 {0x24, 0x95}, 242 {0x25, 0x33}, 243 {0x26, 0xe3}, 244 {0x9f, 0x78}, 245 {0xa0, 0x68}, 246 {0xa1, 0x03}, 247 {0xa6, 0xd8}, 248 {0xa7, 0xd8}, 249 {0xa8, 0xf0}, 250 {0xa9, 0x90}, 251 {0xaa, 0x94}, 252 {0x13, 0xe5}, 253 {0x0e, 0x61}, 254 {0x0f, 0x4b}, 255 {0x16, 0x02}, 256 {0x21, 0x02}, 257 {0x22, 0x91}, 258 {0x29, 0x07}, 259 {0x33, 0x0b}, 260 {0x35, 0x0b}, 261 {0x37, 0x1d}, 262 {0x38, 0x71}, 263 {0x39, 0x2a}, 264 {0x3c, 0x78}, 265 {0x4d, 0x40}, 266 {0x4e, 0x20}, 267 {0x69, 0x00}, 268 {0x6b, 0x4a}, 269 {0x74, 0x10}, 270 {0x8d, 0x4f}, 271 {0x8e, 0x00}, 272 {0x8f, 0x00}, 273 {0x90, 0x00}, 274 {0x91, 0x00}, 275 {0x96, 0x00}, 276 {0x9a, 0x80}, 277 {0xb0, 0x84}, 278 {0xb1, 0x0c}, 279 {0xb2, 0x0e}, 280 {0xb3, 0x82}, 281 {0xb8, 0x0a}, 282 {0x43, 0x0a}, 283 {0x44, 0xf0}, 284 {0x45, 0x34}, 285 {0x46, 0x58}, 286 {0x47, 0x28}, 287 {0x48, 0x3a}, 288 {0x59, 0x88}, 289 {0x5a, 0x88}, 290 {0x5b, 0x44}, 291 {0x5c, 0x67}, 292 {0x5d, 0x49}, 293 {0x5e, 0x0e}, 294 {0x6c, 0x0a}, 295 {0x6d, 0x55}, 296 {0x6e, 0x11}, 297 {0x6f, 0x9f}, 298 {0x6a, 0x40}, 299 {0x01, 0x40}, 300 {0x02, 0x40}, 301 {0x13, 0xe7}, 302 {0x4f, 0x80}, 303 {0x50, 0x80}, 304 {0x51, 0x00}, 305 {0x52, 0x22}, 306 {0x53, 0x5e}, 307 {0x54, 0x80}, 308 {0x58, 0x9e}, 309 {0x41, 0x08}, 310 {0x3f, 0x00}, 311 {0x75, 0x04}, 312 {0x76, 0xe1}, 313 {0x4c, 0x00}, 314 {0x77, 0x01}, 315 {0x3d, 0xc2}, 316 {0x4b, 0x09}, 317 {0xc9, 0x60}, 318 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ 319 {0x56, 0x40}, 320 {0x34, 0x11}, 321 {0x3b, 0xc2}, 322 {0xa4, 0x8a}, /* Night mode trigger point */ 323 {0x96, 0x00}, 324 {0x97, 0x30}, 325 {0x98, 0x20}, 326 {0x99, 0x20}, 327 {0x9a, 0x84}, 328 {0x9b, 0x29}, 329 {0x9c, 0x03}, 330 {0x9d, 0x4c}, 331 {0x9e, 0x3f}, 332 {0x78, 0x04}, 333 {0x79, 0x01}, 334 {0xc8, 0xf0}, 335 {0x79, 0x0f}, 336 {0xc8, 0x00}, 337 {0x79, 0x10}, 338 {0xc8, 0x7e}, 339 {0x79, 0x0a}, 340 {0xc8, 0x80}, 341 {0x79, 0x0b}, 342 {0xc8, 0x01}, 343 {0x79, 0x0c}, 344 {0xc8, 0x0f}, 345 {0x79, 0x0d}, 346 {0xc8, 0x20}, 347 {0x79, 0x09}, 348 {0xc8, 0x80}, 349 {0x79, 0x02}, 350 {0xc8, 0xc0}, 351 {0x79, 0x03}, 352 {0xc8, 0x20}, 353 {0x79, 0x26}, 354 }; 355 static const u8 bridge_start_vga_767x[][2] = { 356 /* str59 JPG */ 357 {0x94, 0xaa}, 358 {0xf1, 0x42}, 359 {0xe5, 0x04}, 360 {0xc0, 0x50}, 361 {0xc1, 0x3c}, 362 {0xc2, 0x0c}, 363 {0x35, 0x02}, /* turn on JPEG */ 364 {0xd9, 0x10}, 365 {0xda, 0x00}, /* for higher clock rate(30fps) */ 366 {0x34, 0x05}, /* enable Audio Suspend mode */ 367 {0xc3, 0xf9}, /* enable PRE */ 368 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 369 {0x8d, 0x1c}, /* output YUV */ 370 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ 371 {0x50, 0x00}, /* H/V divider=0 */ 372 {0x51, 0xa0}, /* input H=640/4 */ 373 {0x52, 0x3c}, /* input V=480/4 */ 374 {0x53, 0x00}, /* offset X=0 */ 375 {0x54, 0x00}, /* offset Y=0 */ 376 {0x55, 0x00}, /* H/V size[8]=0 */ 377 {0x57, 0x00}, /* H-size[9]=0 */ 378 {0x5c, 0x00}, /* output size[9:8]=0 */ 379 {0x5a, 0xa0}, /* output H=640/4 */ 380 {0x5b, 0x78}, /* output V=480/4 */ 381 {0x1c, 0x0a}, 382 {0x1d, 0x0a}, 383 {0x94, 0x11}, 384 }; 385 static const u8 sensor_start_vga_767x[][2] = { 386 {0x11, 0x01}, 387 {0x1e, 0x04}, 388 {0x19, 0x02}, 389 {0x1a, 0x7a}, 390 }; 391 static const u8 bridge_start_qvga_767x[][2] = { 392 /* str86 JPG */ 393 {0x94, 0xaa}, 394 {0xf1, 0x42}, 395 {0xe5, 0x04}, 396 {0xc0, 0x80}, 397 {0xc1, 0x60}, 398 {0xc2, 0x0c}, 399 {0x35, 0x02}, /* turn on JPEG */ 400 {0xd9, 0x10}, 401 {0xc0, 0x50}, /* CIF HSize 640 */ 402 {0xc1, 0x3c}, /* CIF VSize 480 */ 403 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 404 {0x8d, 0x1c}, /* output YUV */ 405 {0x34, 0x05}, /* enable Audio Suspend mode */ 406 {0xc2, 0x4c}, /* output YUV and Enable DCW */ 407 {0xc3, 0xf9}, /* enable PRE */ 408 {0x1c, 0x00}, /* indirect addressing */ 409 {0x1d, 0x48}, /* output YUV422 */ 410 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ 411 {0x51, 0xa0}, /* DCW input H=640/4 */ 412 {0x52, 0x78}, /* DCW input V=480/4 */ 413 {0x53, 0x00}, /* offset X=0 */ 414 {0x54, 0x00}, /* offset Y=0 */ 415 {0x55, 0x00}, /* H/V size[8]=0 */ 416 {0x57, 0x00}, /* H-size[9]=0 */ 417 {0x5c, 0x00}, /* DCW output size[9:8]=0 */ 418 {0x5a, 0x50}, /* DCW output H=320/4 */ 419 {0x5b, 0x3c}, /* DCW output V=240/4 */ 420 {0x1c, 0x0a}, 421 {0x1d, 0x0a}, 422 {0x94, 0x11}, 423 }; 424 static const u8 sensor_start_qvga_767x[][2] = { 425 {0x11, 0x01}, 426 {0x1e, 0x04}, 427 {0x19, 0x02}, 428 {0x1a, 0x7a}, 429 }; 430 431 static const u8 bridge_init_772x[][2] = { 432 { 0x88, 0xf8 }, 433 { 0x89, 0xff }, 434 { 0x76, 0x03 }, 435 { 0x92, 0x01 }, 436 { 0x93, 0x18 }, 437 { 0x94, 0x10 }, 438 { 0x95, 0x10 }, 439 { 0xe2, 0x00 }, 440 { 0xe7, 0x3e }, 441 442 { 0x96, 0x00 }, 443 444 { 0x97, 0x20 }, 445 { 0x97, 0x20 }, 446 { 0x97, 0x20 }, 447 { 0x97, 0x0a }, 448 { 0x97, 0x3f }, 449 { 0x97, 0x4a }, 450 { 0x97, 0x20 }, 451 { 0x97, 0x15 }, 452 { 0x97, 0x0b }, 453 454 { 0x8e, 0x40 }, 455 { 0x1f, 0x81 }, 456 { 0x34, 0x05 }, 457 { 0xe3, 0x04 }, 458 { 0x89, 0x00 }, 459 { 0x76, 0x00 }, 460 { 0xe7, 0x2e }, 461 { 0x31, 0xf9 }, 462 { 0x25, 0x42 }, 463 { 0x21, 0xf0 }, 464 465 { 0x1c, 0x0a }, 466 { 0x1d, 0x08 }, /* turn on UVC header */ 467 { 0x1d, 0x0e }, /* .. */ 468 }; 469 static const u8 sensor_init_772x[][2] = { 470 { 0x12, 0x80 }, 471 { 0x11, 0x01 }, 472 /*fixme: better have a delay?*/ 473 { 0x11, 0x01 }, 474 { 0x11, 0x01 }, 475 { 0x11, 0x01 }, 476 { 0x11, 0x01 }, 477 { 0x11, 0x01 }, 478 { 0x11, 0x01 }, 479 { 0x11, 0x01 }, 480 { 0x11, 0x01 }, 481 { 0x11, 0x01 }, 482 { 0x11, 0x01 }, 483 484 { 0x3d, 0x03 }, 485 { 0x17, 0x26 }, 486 { 0x18, 0xa0 }, 487 { 0x19, 0x07 }, 488 { 0x1a, 0xf0 }, 489 { 0x32, 0x00 }, 490 { 0x29, 0xa0 }, 491 { 0x2c, 0xf0 }, 492 { 0x65, 0x20 }, 493 { 0x11, 0x01 }, 494 { 0x42, 0x7f }, 495 { 0x63, 0xaa }, /* AWB - was e0 */ 496 { 0x64, 0xff }, 497 { 0x66, 0x00 }, 498 { 0x13, 0xf0 }, /* com8 */ 499 { 0x0d, 0x41 }, 500 { 0x0f, 0xc5 }, 501 { 0x14, 0x11 }, 502 503 { 0x22, 0x7f }, 504 { 0x23, 0x03 }, 505 { 0x24, 0x40 }, 506 { 0x25, 0x30 }, 507 { 0x26, 0xa1 }, 508 { 0x2a, 0x00 }, 509 { 0x2b, 0x00 }, 510 { 0x6b, 0xaa }, 511 { 0x13, 0xff }, /* AWB */ 512 513 { 0x90, 0x05 }, 514 { 0x91, 0x01 }, 515 { 0x92, 0x03 }, 516 { 0x93, 0x00 }, 517 { 0x94, 0x60 }, 518 { 0x95, 0x3c }, 519 { 0x96, 0x24 }, 520 { 0x97, 0x1e }, 521 { 0x98, 0x62 }, 522 { 0x99, 0x80 }, 523 { 0x9a, 0x1e }, 524 { 0x9b, 0x08 }, 525 { 0x9c, 0x20 }, 526 { 0x9e, 0x81 }, 527 528 { 0xa6, 0x07 }, 529 { 0x7e, 0x0c }, 530 { 0x7f, 0x16 }, 531 { 0x80, 0x2a }, 532 { 0x81, 0x4e }, 533 { 0x82, 0x61 }, 534 { 0x83, 0x6f }, 535 { 0x84, 0x7b }, 536 { 0x85, 0x86 }, 537 { 0x86, 0x8e }, 538 { 0x87, 0x97 }, 539 { 0x88, 0xa4 }, 540 { 0x89, 0xaf }, 541 { 0x8a, 0xc5 }, 542 { 0x8b, 0xd7 }, 543 { 0x8c, 0xe8 }, 544 { 0x8d, 0x20 }, 545 546 { 0x2b, 0x00 }, 547 { 0x22, 0x7f }, 548 { 0x23, 0x03 }, 549 { 0x11, 0x01 }, 550 { 0x64, 0xff }, 551 { 0x0d, 0x41 }, 552 553 { 0x14, 0x41 }, 554 { 0x0e, 0xcd }, 555 { 0xac, 0xbf }, 556 { 0x8e, 0x00 }, /* De-noise threshold */ 557 }; 558 static const u8 bridge_start_vga_yuyv_772x[][2] = { 559 {0x88, 0x00}, 560 {0x1c, 0x00}, 561 {0x1d, 0x40}, 562 {0x1d, 0x02}, 563 {0x1d, 0x00}, 564 {0x1d, 0x02}, 565 {0x1d, 0x58}, 566 {0x1d, 0x00}, 567 {0x8d, 0x1c}, 568 {0x8e, 0x80}, 569 {0xc0, 0x50}, 570 {0xc1, 0x3c}, 571 {0xc2, 0x0c}, 572 {0xc3, 0x69}, 573 }; 574 static const u8 sensor_start_vga_yuyv_772x[][2] = { 575 {0x12, 0x00}, 576 {0x17, 0x26}, 577 {0x18, 0xa0}, 578 {0x19, 0x07}, 579 {0x1a, 0xf0}, 580 {0x29, 0xa0}, 581 {0x2c, 0xf0}, 582 {0x65, 0x20}, 583 {0x67, 0x00}, 584 }; 585 static const u8 bridge_start_qvga_yuyv_772x[][2] = { 586 {0x88, 0x00}, 587 {0x1c, 0x00}, 588 {0x1d, 0x40}, 589 {0x1d, 0x02}, 590 {0x1d, 0x00}, 591 {0x1d, 0x01}, 592 {0x1d, 0x4b}, 593 {0x1d, 0x00}, 594 {0x8d, 0x1c}, 595 {0x8e, 0x80}, 596 {0xc0, 0x28}, 597 {0xc1, 0x1e}, 598 {0xc2, 0x0c}, 599 {0xc3, 0x69}, 600 }; 601 static const u8 sensor_start_qvga_yuyv_772x[][2] = { 602 {0x12, 0x40}, 603 {0x17, 0x3f}, 604 {0x18, 0x50}, 605 {0x19, 0x03}, 606 {0x1a, 0x78}, 607 {0x29, 0x50}, 608 {0x2c, 0x78}, 609 {0x65, 0x2f}, 610 {0x67, 0x00}, 611 }; 612 static const u8 bridge_start_vga_gbrg_772x[][2] = { 613 {0x88, 0x08}, 614 {0x1c, 0x00}, 615 {0x1d, 0x00}, 616 {0x1d, 0x02}, 617 {0x1d, 0x00}, 618 {0x1d, 0x01}, 619 {0x1d, 0x2c}, 620 {0x1d, 0x00}, 621 {0x8d, 0x00}, 622 {0x8e, 0x00}, 623 {0xc0, 0x50}, 624 {0xc1, 0x3c}, 625 {0xc2, 0x01}, 626 {0xc3, 0x01}, 627 }; 628 static const u8 sensor_start_vga_gbrg_772x[][2] = { 629 {0x12, 0x01}, 630 {0x17, 0x26}, 631 {0x18, 0xa0}, 632 {0x19, 0x07}, 633 {0x1a, 0xf0}, 634 {0x29, 0xa0}, 635 {0x2c, 0xf0}, 636 {0x65, 0x20}, 637 {0x67, 0x02}, 638 }; 639 static const u8 bridge_start_qvga_gbrg_772x[][2] = { 640 {0x88, 0x08}, 641 {0x1c, 0x00}, 642 {0x1d, 0x00}, 643 {0x1d, 0x02}, 644 {0x1d, 0x00}, 645 {0x1d, 0x00}, 646 {0x1d, 0x4b}, 647 {0x1d, 0x00}, 648 {0x8d, 0x00}, 649 {0x8e, 0x00}, 650 {0xc0, 0x28}, 651 {0xc1, 0x1e}, 652 {0xc2, 0x01}, 653 {0xc3, 0x01}, 654 }; 655 static const u8 sensor_start_qvga_gbrg_772x[][2] = { 656 {0x12, 0x41}, 657 {0x17, 0x3f}, 658 {0x18, 0x50}, 659 {0x19, 0x03}, 660 {0x1a, 0x78}, 661 {0x29, 0x50}, 662 {0x2c, 0x78}, 663 {0x65, 0x2f}, 664 {0x67, 0x02}, 665 }; 666 667 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) 668 { 669 struct usb_device *udev = gspca_dev->dev; 670 int ret; 671 672 if (gspca_dev->usb_err < 0) 673 return; 674 675 gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val); 676 gspca_dev->usb_buf[0] = val; 677 ret = usb_control_msg(udev, 678 usb_sndctrlpipe(udev, 0), 679 0x01, 680 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 681 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 682 if (ret < 0) { 683 pr_err("write failed %d\n", ret); 684 gspca_dev->usb_err = ret; 685 } 686 } 687 688 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) 689 { 690 struct usb_device *udev = gspca_dev->dev; 691 int ret; 692 693 if (gspca_dev->usb_err < 0) 694 return 0; 695 ret = usb_control_msg(udev, 696 usb_rcvctrlpipe(udev, 0), 697 0x01, 698 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 699 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 700 gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n", 701 reg, gspca_dev->usb_buf[0]); 702 if (ret < 0) { 703 pr_err("read failed %d\n", ret); 704 gspca_dev->usb_err = ret; 705 } 706 return gspca_dev->usb_buf[0]; 707 } 708 709 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. 710 * (direction and output)? */ 711 static void ov534_set_led(struct gspca_dev *gspca_dev, int status) 712 { 713 u8 data; 714 715 gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status); 716 717 data = ov534_reg_read(gspca_dev, 0x21); 718 data |= 0x80; 719 ov534_reg_write(gspca_dev, 0x21, data); 720 721 data = ov534_reg_read(gspca_dev, 0x23); 722 if (status) 723 data |= 0x80; 724 else 725 data &= ~0x80; 726 727 ov534_reg_write(gspca_dev, 0x23, data); 728 729 if (!status) { 730 data = ov534_reg_read(gspca_dev, 0x21); 731 data &= ~0x80; 732 ov534_reg_write(gspca_dev, 0x21, data); 733 } 734 } 735 736 static int sccb_check_status(struct gspca_dev *gspca_dev) 737 { 738 u8 data; 739 int i; 740 741 for (i = 0; i < 5; i++) { 742 usleep_range(10000, 20000); 743 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); 744 745 switch (data) { 746 case 0x00: 747 return 1; 748 case 0x04: 749 return 0; 750 case 0x03: 751 break; 752 default: 753 gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n", 754 data, i + 1); 755 } 756 } 757 return 0; 758 } 759 760 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) 761 { 762 gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val); 763 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 764 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); 765 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); 766 767 if (!sccb_check_status(gspca_dev)) { 768 pr_err("sccb_reg_write failed\n"); 769 gspca_dev->usb_err = -EIO; 770 } 771 } 772 773 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) 774 { 775 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 776 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); 777 if (!sccb_check_status(gspca_dev)) 778 pr_err("sccb_reg_read failed 1\n"); 779 780 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); 781 if (!sccb_check_status(gspca_dev)) 782 pr_err("sccb_reg_read failed 2\n"); 783 784 return ov534_reg_read(gspca_dev, OV534_REG_READ); 785 } 786 787 /* output a bridge sequence (reg - val) */ 788 static void reg_w_array(struct gspca_dev *gspca_dev, 789 const u8 (*data)[2], int len) 790 { 791 while (--len >= 0) { 792 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); 793 data++; 794 } 795 } 796 797 /* output a sensor sequence (reg - val) */ 798 static void sccb_w_array(struct gspca_dev *gspca_dev, 799 const u8 (*data)[2], int len) 800 { 801 while (--len >= 0) { 802 if ((*data)[0] != 0xff) { 803 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); 804 } else { 805 sccb_reg_read(gspca_dev, (*data)[1]); 806 sccb_reg_write(gspca_dev, 0xff, 0x00); 807 } 808 data++; 809 } 810 } 811 812 /* ov772x specific controls */ 813 static void set_frame_rate(struct gspca_dev *gspca_dev) 814 { 815 struct sd *sd = (struct sd *) gspca_dev; 816 int i; 817 struct rate_s { 818 u8 fps; 819 u8 r11; 820 u8 r0d; 821 u8 re5; 822 }; 823 const struct rate_s *r; 824 static const struct rate_s rate_0[] = { /* 640x480 */ 825 {60, 0x01, 0xc1, 0x04}, 826 {50, 0x01, 0x41, 0x02}, 827 {40, 0x02, 0xc1, 0x04}, 828 {30, 0x04, 0x81, 0x02}, 829 {15, 0x03, 0x41, 0x04}, 830 }; 831 static const struct rate_s rate_1[] = { /* 320x240 */ 832 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */ 833 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */ 834 {150, 0x01, 0xc1, 0x04}, 835 {137, 0x02, 0xc1, 0x02}, 836 {125, 0x02, 0x81, 0x02}, 837 {100, 0x02, 0xc1, 0x04}, 838 {75, 0x03, 0xc1, 0x04}, 839 {60, 0x04, 0xc1, 0x04}, 840 {50, 0x02, 0x41, 0x04}, 841 {37, 0x03, 0x41, 0x04}, 842 {30, 0x04, 0x41, 0x04}, 843 }; 844 845 if (sd->sensor != SENSOR_OV772x) 846 return; 847 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { 848 r = rate_0; 849 i = ARRAY_SIZE(rate_0); 850 } else { 851 r = rate_1; 852 i = ARRAY_SIZE(rate_1); 853 } 854 while (--i > 0) { 855 if (sd->frame_rate >= r->fps) 856 break; 857 r++; 858 } 859 860 sccb_reg_write(gspca_dev, 0x11, r->r11); 861 sccb_reg_write(gspca_dev, 0x0d, r->r0d); 862 ov534_reg_write(gspca_dev, 0xe5, r->re5); 863 864 gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps); 865 } 866 867 static void sethue(struct gspca_dev *gspca_dev, s32 val) 868 { 869 struct sd *sd = (struct sd *) gspca_dev; 870 871 if (sd->sensor == SENSOR_OV767x) { 872 /* TBD */ 873 } else { 874 s16 huesin; 875 s16 huecos; 876 877 /* According to the datasheet the registers expect HUESIN and 878 * HUECOS to be the result of the trigonometric functions, 879 * scaled by 0x80. 880 * 881 * The 0x7fff here represents the maximum absolute value 882 * returned byt fixp_sin and fixp_cos, so the scaling will 883 * consider the result like in the interval [-1.0, 1.0]. 884 */ 885 huesin = fixp_sin16(val) * 0x80 / 0x7fff; 886 huecos = fixp_cos16(val) * 0x80 / 0x7fff; 887 888 if (huesin < 0) { 889 sccb_reg_write(gspca_dev, 0xab, 890 sccb_reg_read(gspca_dev, 0xab) | 0x2); 891 huesin = -huesin; 892 } else { 893 sccb_reg_write(gspca_dev, 0xab, 894 sccb_reg_read(gspca_dev, 0xab) & ~0x2); 895 896 } 897 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); 898 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); 899 } 900 } 901 902 static void setsaturation(struct gspca_dev *gspca_dev, s32 val) 903 { 904 struct sd *sd = (struct sd *) gspca_dev; 905 906 if (sd->sensor == SENSOR_OV767x) { 907 int i; 908 static u8 color_tb[][6] = { 909 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, 910 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, 911 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, 912 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, 913 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, 914 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, 915 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, 916 }; 917 918 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) 919 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); 920 } else { 921 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ 922 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ 923 } 924 } 925 926 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 927 { 928 struct sd *sd = (struct sd *) gspca_dev; 929 930 if (sd->sensor == SENSOR_OV767x) { 931 if (val < 0) 932 val = 0x80 - val; 933 sccb_reg_write(gspca_dev, 0x55, val); /* bright */ 934 } else { 935 sccb_reg_write(gspca_dev, 0x9b, val); 936 } 937 } 938 939 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 940 { 941 struct sd *sd = (struct sd *) gspca_dev; 942 943 if (sd->sensor == SENSOR_OV767x) 944 sccb_reg_write(gspca_dev, 0x56, val); /* contras */ 945 else 946 sccb_reg_write(gspca_dev, 0x9c, val); 947 } 948 949 static void setgain(struct gspca_dev *gspca_dev, s32 val) 950 { 951 switch (val & 0x30) { 952 case 0x00: 953 val &= 0x0f; 954 break; 955 case 0x10: 956 val &= 0x0f; 957 val |= 0x30; 958 break; 959 case 0x20: 960 val &= 0x0f; 961 val |= 0x70; 962 break; 963 default: 964 /* case 0x30: */ 965 val &= 0x0f; 966 val |= 0xf0; 967 break; 968 } 969 sccb_reg_write(gspca_dev, 0x00, val); 970 } 971 972 static s32 getgain(struct gspca_dev *gspca_dev) 973 { 974 return sccb_reg_read(gspca_dev, 0x00); 975 } 976 977 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 978 { 979 struct sd *sd = (struct sd *) gspca_dev; 980 981 if (sd->sensor == SENSOR_OV767x) { 982 983 /* set only aec[9:2] */ 984 sccb_reg_write(gspca_dev, 0x10, val); /* aech */ 985 } else { 986 987 /* 'val' is one byte and represents half of the exposure value 988 * we are going to set into registers, a two bytes value: 989 * 990 * MSB: ((u16) val << 1) >> 8 == val >> 7 991 * LSB: ((u16) val << 1) & 0xff == val << 1 992 */ 993 sccb_reg_write(gspca_dev, 0x08, val >> 7); 994 sccb_reg_write(gspca_dev, 0x10, val << 1); 995 } 996 } 997 998 static s32 getexposure(struct gspca_dev *gspca_dev) 999 { 1000 struct sd *sd = (struct sd *) gspca_dev; 1001 1002 if (sd->sensor == SENSOR_OV767x) { 1003 /* get only aec[9:2] */ 1004 return sccb_reg_read(gspca_dev, 0x10); /* aech */ 1005 } else { 1006 u8 hi = sccb_reg_read(gspca_dev, 0x08); 1007 u8 lo = sccb_reg_read(gspca_dev, 0x10); 1008 return (hi << 8 | lo) >> 1; 1009 } 1010 } 1011 1012 static void setagc(struct gspca_dev *gspca_dev, s32 val) 1013 { 1014 if (val) { 1015 sccb_reg_write(gspca_dev, 0x13, 1016 sccb_reg_read(gspca_dev, 0x13) | 0x04); 1017 sccb_reg_write(gspca_dev, 0x64, 1018 sccb_reg_read(gspca_dev, 0x64) | 0x03); 1019 } else { 1020 sccb_reg_write(gspca_dev, 0x13, 1021 sccb_reg_read(gspca_dev, 0x13) & ~0x04); 1022 sccb_reg_write(gspca_dev, 0x64, 1023 sccb_reg_read(gspca_dev, 0x64) & ~0x03); 1024 } 1025 } 1026 1027 static void setawb(struct gspca_dev *gspca_dev, s32 val) 1028 { 1029 struct sd *sd = (struct sd *) gspca_dev; 1030 1031 if (val) { 1032 sccb_reg_write(gspca_dev, 0x13, 1033 sccb_reg_read(gspca_dev, 0x13) | 0x02); 1034 if (sd->sensor == SENSOR_OV772x) 1035 sccb_reg_write(gspca_dev, 0x63, 1036 sccb_reg_read(gspca_dev, 0x63) | 0xc0); 1037 } else { 1038 sccb_reg_write(gspca_dev, 0x13, 1039 sccb_reg_read(gspca_dev, 0x13) & ~0x02); 1040 if (sd->sensor == SENSOR_OV772x) 1041 sccb_reg_write(gspca_dev, 0x63, 1042 sccb_reg_read(gspca_dev, 0x63) & ~0xc0); 1043 } 1044 } 1045 1046 static void setaec(struct gspca_dev *gspca_dev, s32 val) 1047 { 1048 struct sd *sd = (struct sd *) gspca_dev; 1049 u8 data; 1050 1051 data = sd->sensor == SENSOR_OV767x ? 1052 0x05 : /* agc + aec */ 1053 0x01; /* agc */ 1054 switch (val) { 1055 case V4L2_EXPOSURE_AUTO: 1056 sccb_reg_write(gspca_dev, 0x13, 1057 sccb_reg_read(gspca_dev, 0x13) | data); 1058 break; 1059 case V4L2_EXPOSURE_MANUAL: 1060 sccb_reg_write(gspca_dev, 0x13, 1061 sccb_reg_read(gspca_dev, 0x13) & ~data); 1062 break; 1063 } 1064 } 1065 1066 static void setsharpness(struct gspca_dev *gspca_dev, s32 val) 1067 { 1068 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ 1069 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ 1070 } 1071 1072 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 1073 { 1074 struct sd *sd = (struct sd *) gspca_dev; 1075 u8 val; 1076 1077 if (sd->sensor == SENSOR_OV767x) { 1078 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ 1079 val &= ~0x30; 1080 if (hflip) 1081 val |= 0x20; 1082 if (vflip) 1083 val |= 0x10; 1084 sccb_reg_write(gspca_dev, 0x1e, val); 1085 } else { 1086 val = sccb_reg_read(gspca_dev, 0x0c); 1087 val &= ~0xc0; 1088 if (hflip == 0) 1089 val |= 0x40; 1090 if (vflip == 0) 1091 val |= 0x80; 1092 sccb_reg_write(gspca_dev, 0x0c, val); 1093 } 1094 } 1095 1096 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) 1097 { 1098 struct sd *sd = (struct sd *) gspca_dev; 1099 1100 val = val ? 0x9e : 0x00; 1101 if (sd->sensor == SENSOR_OV767x) { 1102 sccb_reg_write(gspca_dev, 0x2a, 0x00); 1103 if (val) 1104 val = 0x9d; /* insert dummy to 25fps for 50Hz */ 1105 } 1106 sccb_reg_write(gspca_dev, 0x2b, val); 1107 } 1108 1109 1110 /* this function is called at probe time */ 1111 static int sd_config(struct gspca_dev *gspca_dev, 1112 const struct usb_device_id *id) 1113 { 1114 struct sd *sd = (struct sd *) gspca_dev; 1115 struct cam *cam; 1116 1117 cam = &gspca_dev->cam; 1118 1119 cam->cam_mode = ov772x_mode; 1120 cam->nmodes = ARRAY_SIZE(ov772x_mode); 1121 1122 sd->frame_rate = DEFAULT_FRAME_RATE; 1123 1124 return 0; 1125 } 1126 1127 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1128 { 1129 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1130 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1131 1132 switch (ctrl->id) { 1133 case V4L2_CID_AUTOGAIN: 1134 gspca_dev->usb_err = 0; 1135 if (ctrl->val && sd->gain && gspca_dev->streaming) 1136 sd->gain->val = getgain(gspca_dev); 1137 return gspca_dev->usb_err; 1138 1139 case V4L2_CID_EXPOSURE_AUTO: 1140 gspca_dev->usb_err = 0; 1141 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && 1142 gspca_dev->streaming) 1143 sd->exposure->val = getexposure(gspca_dev); 1144 return gspca_dev->usb_err; 1145 } 1146 return -EINVAL; 1147 } 1148 1149 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) 1150 { 1151 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1152 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1153 1154 gspca_dev->usb_err = 0; 1155 if (!gspca_dev->streaming) 1156 return 0; 1157 1158 switch (ctrl->id) { 1159 case V4L2_CID_HUE: 1160 sethue(gspca_dev, ctrl->val); 1161 break; 1162 case V4L2_CID_SATURATION: 1163 setsaturation(gspca_dev, ctrl->val); 1164 break; 1165 case V4L2_CID_BRIGHTNESS: 1166 setbrightness(gspca_dev, ctrl->val); 1167 break; 1168 case V4L2_CID_CONTRAST: 1169 setcontrast(gspca_dev, ctrl->val); 1170 break; 1171 case V4L2_CID_AUTOGAIN: 1172 /* case V4L2_CID_GAIN: */ 1173 setagc(gspca_dev, ctrl->val); 1174 if (!gspca_dev->usb_err && !ctrl->val && sd->gain) 1175 setgain(gspca_dev, sd->gain->val); 1176 break; 1177 case V4L2_CID_AUTO_WHITE_BALANCE: 1178 setawb(gspca_dev, ctrl->val); 1179 break; 1180 case V4L2_CID_EXPOSURE_AUTO: 1181 /* case V4L2_CID_EXPOSURE: */ 1182 setaec(gspca_dev, ctrl->val); 1183 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && 1184 sd->exposure) 1185 setexposure(gspca_dev, sd->exposure->val); 1186 break; 1187 case V4L2_CID_SHARPNESS: 1188 setsharpness(gspca_dev, ctrl->val); 1189 break; 1190 case V4L2_CID_HFLIP: 1191 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 1192 break; 1193 case V4L2_CID_VFLIP: 1194 sethvflip(gspca_dev, sd->hflip->val, ctrl->val); 1195 break; 1196 case V4L2_CID_POWER_LINE_FREQUENCY: 1197 setlightfreq(gspca_dev, ctrl->val); 1198 break; 1199 } 1200 return gspca_dev->usb_err; 1201 } 1202 1203 static const struct v4l2_ctrl_ops ov534_ctrl_ops = { 1204 .g_volatile_ctrl = ov534_g_volatile_ctrl, 1205 .s_ctrl = ov534_s_ctrl, 1206 }; 1207 1208 static int sd_init_controls(struct gspca_dev *gspca_dev) 1209 { 1210 struct sd *sd = (struct sd *) gspca_dev; 1211 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; 1212 /* parameters with different values between the supported sensors */ 1213 int saturation_min; 1214 int saturation_max; 1215 int saturation_def; 1216 int brightness_min; 1217 int brightness_max; 1218 int brightness_def; 1219 int contrast_max; 1220 int contrast_def; 1221 int exposure_min; 1222 int exposure_max; 1223 int exposure_def; 1224 int hflip_def; 1225 1226 if (sd->sensor == SENSOR_OV767x) { 1227 saturation_min = 0, 1228 saturation_max = 6, 1229 saturation_def = 3, 1230 brightness_min = -127; 1231 brightness_max = 127; 1232 brightness_def = 0; 1233 contrast_max = 0x80; 1234 contrast_def = 0x40; 1235 exposure_min = 0x08; 1236 exposure_max = 0x60; 1237 exposure_def = 0x13; 1238 hflip_def = 1; 1239 } else { 1240 saturation_min = 0, 1241 saturation_max = 255, 1242 saturation_def = 64, 1243 brightness_min = 0; 1244 brightness_max = 255; 1245 brightness_def = 0; 1246 contrast_max = 255; 1247 contrast_def = 32; 1248 exposure_min = 0; 1249 exposure_max = 255; 1250 exposure_def = 120; 1251 hflip_def = 0; 1252 } 1253 1254 gspca_dev->vdev.ctrl_handler = hdl; 1255 1256 v4l2_ctrl_handler_init(hdl, 13); 1257 1258 if (sd->sensor == SENSOR_OV772x) 1259 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1260 V4L2_CID_HUE, -90, 90, 1, 0); 1261 1262 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1263 V4L2_CID_SATURATION, saturation_min, saturation_max, 1, 1264 saturation_def); 1265 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1266 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, 1267 brightness_def); 1268 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1269 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); 1270 1271 if (sd->sensor == SENSOR_OV772x) { 1272 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1273 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1274 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1275 V4L2_CID_GAIN, 0, 63, 1, 20); 1276 } 1277 1278 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1279 V4L2_CID_EXPOSURE_AUTO, 1280 V4L2_EXPOSURE_MANUAL, 0, 1281 V4L2_EXPOSURE_AUTO); 1282 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1283 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, 1284 exposure_def); 1285 1286 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1287 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); 1288 1289 if (sd->sensor == SENSOR_OV772x) 1290 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1291 V4L2_CID_SHARPNESS, 0, 63, 1, 0); 1292 1293 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1294 V4L2_CID_HFLIP, 0, 1, 1, hflip_def); 1295 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1296 V4L2_CID_VFLIP, 0, 1, 1, 0); 1297 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1298 V4L2_CID_POWER_LINE_FREQUENCY, 1299 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, 1300 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1301 1302 if (hdl->error) { 1303 pr_err("Could not initialize controls\n"); 1304 return hdl->error; 1305 } 1306 1307 if (sd->sensor == SENSOR_OV772x) 1308 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); 1309 1310 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, 1311 true); 1312 1313 return 0; 1314 } 1315 1316 /* this function is called at probe and resume time */ 1317 static int sd_init(struct gspca_dev *gspca_dev) 1318 { 1319 struct sd *sd = (struct sd *) gspca_dev; 1320 u16 sensor_id; 1321 static const struct reg_array bridge_init[NSENSORS] = { 1322 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, 1323 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, 1324 }; 1325 static const struct reg_array sensor_init[NSENSORS] = { 1326 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, 1327 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, 1328 }; 1329 1330 /* reset bridge */ 1331 ov534_reg_write(gspca_dev, 0xe7, 0x3a); 1332 ov534_reg_write(gspca_dev, 0xe0, 0x08); 1333 msleep(100); 1334 1335 /* initialize the sensor address */ 1336 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); 1337 1338 /* reset sensor */ 1339 sccb_reg_write(gspca_dev, 0x12, 0x80); 1340 usleep_range(10000, 20000); 1341 1342 /* probe the sensor */ 1343 sccb_reg_read(gspca_dev, 0x0a); 1344 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; 1345 sccb_reg_read(gspca_dev, 0x0b); 1346 sensor_id |= sccb_reg_read(gspca_dev, 0x0b); 1347 gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id); 1348 1349 if ((sensor_id & 0xfff0) == 0x7670) { 1350 sd->sensor = SENSOR_OV767x; 1351 gspca_dev->cam.cam_mode = ov767x_mode; 1352 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); 1353 } else { 1354 sd->sensor = SENSOR_OV772x; 1355 gspca_dev->cam.bulk = 1; 1356 gspca_dev->cam.bulk_size = 16384; 1357 gspca_dev->cam.bulk_nurbs = 2; 1358 gspca_dev->cam.mode_framerates = ov772x_framerates; 1359 } 1360 1361 /* initialize */ 1362 reg_w_array(gspca_dev, bridge_init[sd->sensor].val, 1363 bridge_init[sd->sensor].len); 1364 ov534_set_led(gspca_dev, 1); 1365 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, 1366 sensor_init[sd->sensor].len); 1367 1368 sd_stopN(gspca_dev); 1369 /* set_frame_rate(gspca_dev); */ 1370 1371 return gspca_dev->usb_err; 1372 } 1373 1374 static int sd_start(struct gspca_dev *gspca_dev) 1375 { 1376 struct sd *sd = (struct sd *) gspca_dev; 1377 int mode; 1378 static const struct reg_array bridge_start[NSENSORS][4] = { 1379 [SENSOR_OV767x] = {{bridge_start_qvga_767x, 1380 ARRAY_SIZE(bridge_start_qvga_767x)}, 1381 {bridge_start_vga_767x, 1382 ARRAY_SIZE(bridge_start_vga_767x)}}, 1383 [SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x, 1384 ARRAY_SIZE(bridge_start_qvga_yuyv_772x)}, 1385 {bridge_start_vga_yuyv_772x, 1386 ARRAY_SIZE(bridge_start_vga_yuyv_772x)}, 1387 {bridge_start_qvga_gbrg_772x, 1388 ARRAY_SIZE(bridge_start_qvga_gbrg_772x)}, 1389 {bridge_start_vga_gbrg_772x, 1390 ARRAY_SIZE(bridge_start_vga_gbrg_772x)} }, 1391 }; 1392 static const struct reg_array sensor_start[NSENSORS][4] = { 1393 [SENSOR_OV767x] = {{sensor_start_qvga_767x, 1394 ARRAY_SIZE(sensor_start_qvga_767x)}, 1395 {sensor_start_vga_767x, 1396 ARRAY_SIZE(sensor_start_vga_767x)}}, 1397 [SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x, 1398 ARRAY_SIZE(sensor_start_qvga_yuyv_772x)}, 1399 {sensor_start_vga_yuyv_772x, 1400 ARRAY_SIZE(sensor_start_vga_yuyv_772x)}, 1401 {sensor_start_qvga_gbrg_772x, 1402 ARRAY_SIZE(sensor_start_qvga_gbrg_772x)}, 1403 {sensor_start_vga_gbrg_772x, 1404 ARRAY_SIZE(sensor_start_vga_gbrg_772x)} }, 1405 }; 1406 1407 /* (from ms-win trace) */ 1408 if (sd->sensor == SENSOR_OV767x) 1409 sccb_reg_write(gspca_dev, 0x1e, 0x04); 1410 /* black sun enable ? */ 1411 1412 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ 1413 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, 1414 bridge_start[sd->sensor][mode].len); 1415 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, 1416 sensor_start[sd->sensor][mode].len); 1417 1418 set_frame_rate(gspca_dev); 1419 1420 if (sd->hue) 1421 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); 1422 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); 1423 if (sd->autogain) 1424 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); 1425 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); 1426 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); 1427 if (sd->gain) 1428 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); 1429 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); 1430 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); 1431 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); 1432 if (sd->sharpness) 1433 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); 1434 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), 1435 v4l2_ctrl_g_ctrl(sd->vflip)); 1436 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); 1437 1438 ov534_set_led(gspca_dev, 1); 1439 ov534_reg_write(gspca_dev, 0xe0, 0x00); 1440 return gspca_dev->usb_err; 1441 } 1442 1443 static void sd_stopN(struct gspca_dev *gspca_dev) 1444 { 1445 ov534_reg_write(gspca_dev, 0xe0, 0x09); 1446 ov534_set_led(gspca_dev, 0); 1447 } 1448 1449 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ 1450 #define UVC_STREAM_EOH (1 << 7) 1451 #define UVC_STREAM_ERR (1 << 6) 1452 #define UVC_STREAM_STI (1 << 5) 1453 #define UVC_STREAM_RES (1 << 4) 1454 #define UVC_STREAM_SCR (1 << 3) 1455 #define UVC_STREAM_PTS (1 << 2) 1456 #define UVC_STREAM_EOF (1 << 1) 1457 #define UVC_STREAM_FID (1 << 0) 1458 1459 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1460 u8 *data, int len) 1461 { 1462 struct sd *sd = (struct sd *) gspca_dev; 1463 __u32 this_pts; 1464 u16 this_fid; 1465 int remaining_len = len; 1466 int payload_len; 1467 1468 payload_len = gspca_dev->cam.bulk ? 2048 : 2040; 1469 do { 1470 len = min(remaining_len, payload_len); 1471 1472 /* Payloads are prefixed with a UVC-style header. We 1473 consider a frame to start when the FID toggles, or the PTS 1474 changes. A frame ends when EOF is set, and we've received 1475 the correct number of bytes. */ 1476 1477 /* Verify UVC header. Header length is always 12 */ 1478 if (data[0] != 12 || len < 12) { 1479 gspca_dbg(gspca_dev, D_PACK, "bad header\n"); 1480 goto discard; 1481 } 1482 1483 /* Check errors */ 1484 if (data[1] & UVC_STREAM_ERR) { 1485 gspca_dbg(gspca_dev, D_PACK, "payload error\n"); 1486 goto discard; 1487 } 1488 1489 /* Extract PTS and FID */ 1490 if (!(data[1] & UVC_STREAM_PTS)) { 1491 gspca_dbg(gspca_dev, D_PACK, "PTS not present\n"); 1492 goto discard; 1493 } 1494 this_pts = (data[5] << 24) | (data[4] << 16) 1495 | (data[3] << 8) | data[2]; 1496 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; 1497 1498 /* If PTS or FID has changed, start a new frame. */ 1499 if (this_pts != sd->last_pts || this_fid != sd->last_fid) { 1500 if (gspca_dev->last_packet_type == INTER_PACKET) 1501 gspca_frame_add(gspca_dev, LAST_PACKET, 1502 NULL, 0); 1503 sd->last_pts = this_pts; 1504 sd->last_fid = this_fid; 1505 gspca_frame_add(gspca_dev, FIRST_PACKET, 1506 data + 12, len - 12); 1507 /* If this packet is marked as EOF, end the frame */ 1508 } else if (data[1] & UVC_STREAM_EOF) { 1509 sd->last_pts = 0; 1510 if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG 1511 && gspca_dev->image_len + len - 12 != 1512 gspca_dev->pixfmt.sizeimage) { 1513 gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n"); 1514 goto discard; 1515 } 1516 gspca_frame_add(gspca_dev, LAST_PACKET, 1517 data + 12, len - 12); 1518 } else { 1519 1520 /* Add the data from this payload */ 1521 gspca_frame_add(gspca_dev, INTER_PACKET, 1522 data + 12, len - 12); 1523 } 1524 1525 /* Done this payload */ 1526 goto scan_next; 1527 1528 discard: 1529 /* Discard data until a new frame starts. */ 1530 gspca_dev->last_packet_type = DISCARD_PACKET; 1531 1532 scan_next: 1533 remaining_len -= len; 1534 data += len; 1535 } while (remaining_len > 0); 1536 } 1537 1538 /* get stream parameters (framerate) */ 1539 static void sd_get_streamparm(struct gspca_dev *gspca_dev, 1540 struct v4l2_streamparm *parm) 1541 { 1542 struct v4l2_captureparm *cp = &parm->parm.capture; 1543 struct v4l2_fract *tpf = &cp->timeperframe; 1544 struct sd *sd = (struct sd *) gspca_dev; 1545 1546 tpf->numerator = 1; 1547 tpf->denominator = sd->frame_rate; 1548 } 1549 1550 /* set stream parameters (framerate) */ 1551 static void sd_set_streamparm(struct gspca_dev *gspca_dev, 1552 struct v4l2_streamparm *parm) 1553 { 1554 struct v4l2_captureparm *cp = &parm->parm.capture; 1555 struct v4l2_fract *tpf = &cp->timeperframe; 1556 struct sd *sd = (struct sd *) gspca_dev; 1557 1558 if (tpf->numerator == 0 || tpf->denominator == 0) 1559 sd->frame_rate = DEFAULT_FRAME_RATE; 1560 else 1561 sd->frame_rate = tpf->denominator / tpf->numerator; 1562 1563 if (gspca_dev->streaming) 1564 set_frame_rate(gspca_dev); 1565 1566 /* Return the actual framerate */ 1567 tpf->numerator = 1; 1568 tpf->denominator = sd->frame_rate; 1569 } 1570 1571 /* sub-driver description */ 1572 static const struct sd_desc sd_desc = { 1573 .name = MODULE_NAME, 1574 .config = sd_config, 1575 .init = sd_init, 1576 .init_controls = sd_init_controls, 1577 .start = sd_start, 1578 .stopN = sd_stopN, 1579 .pkt_scan = sd_pkt_scan, 1580 .get_streamparm = sd_get_streamparm, 1581 .set_streamparm = sd_set_streamparm, 1582 }; 1583 1584 /* -- module initialisation -- */ 1585 static const struct usb_device_id device_table[] = { 1586 {USB_DEVICE(0x1415, 0x2000)}, 1587 {USB_DEVICE(0x06f8, 0x3002)}, 1588 {} 1589 }; 1590 1591 MODULE_DEVICE_TABLE(usb, device_table); 1592 1593 /* -- device connect -- */ 1594 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) 1595 { 1596 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1597 THIS_MODULE); 1598 } 1599 1600 static struct usb_driver sd_driver = { 1601 .name = MODULE_NAME, 1602 .id_table = device_table, 1603 .probe = sd_probe, 1604 .disconnect = gspca_disconnect, 1605 #ifdef CONFIG_PM 1606 .suspend = gspca_suspend, 1607 .resume = gspca_resume, 1608 .reset_resume = gspca_resume, 1609 #endif 1610 }; 1611 1612 module_usb_driver(sd_driver); 1613