xref: /openbmc/linux/drivers/media/usb/gspca/ov534.c (revision 12eb4683)
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #define MODULE_NAME "ov534"
34 
35 #include "gspca.h"
36 
37 #include <linux/fixp-arith.h>
38 #include <media/v4l2-ctrls.h>
39 
40 #define OV534_REG_ADDRESS	0xf1	/* sensor address */
41 #define OV534_REG_SUBADDR	0xf2
42 #define OV534_REG_WRITE		0xf3
43 #define OV534_REG_READ		0xf4
44 #define OV534_REG_OPERATION	0xf5
45 #define OV534_REG_STATUS	0xf6
46 
47 #define OV534_OP_WRITE_3	0x37
48 #define OV534_OP_WRITE_2	0x33
49 #define OV534_OP_READ_2		0xf9
50 
51 #define CTRL_TIMEOUT 500
52 
53 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
54 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
55 MODULE_LICENSE("GPL");
56 
57 /* specific webcam descriptor */
58 struct sd {
59 	struct gspca_dev gspca_dev;	/* !! must be the first item */
60 
61 	struct v4l2_ctrl_handler ctrl_handler;
62 	struct v4l2_ctrl *hue;
63 	struct v4l2_ctrl *saturation;
64 	struct v4l2_ctrl *brightness;
65 	struct v4l2_ctrl *contrast;
66 	struct { /* gain control cluster */
67 		struct v4l2_ctrl *autogain;
68 		struct v4l2_ctrl *gain;
69 	};
70 	struct v4l2_ctrl *autowhitebalance;
71 	struct { /* exposure control cluster */
72 		struct v4l2_ctrl *autoexposure;
73 		struct v4l2_ctrl *exposure;
74 	};
75 	struct v4l2_ctrl *sharpness;
76 	struct v4l2_ctrl *hflip;
77 	struct v4l2_ctrl *vflip;
78 	struct v4l2_ctrl *plfreq;
79 
80 	__u32 last_pts;
81 	u16 last_fid;
82 	u8 frame_rate;
83 
84 	u8 sensor;
85 };
86 enum sensors {
87 	SENSOR_OV767x,
88 	SENSOR_OV772x,
89 	NSENSORS
90 };
91 
92 static int sd_start(struct gspca_dev *gspca_dev);
93 static void sd_stopN(struct gspca_dev *gspca_dev);
94 
95 
96 static const struct v4l2_pix_format ov772x_mode[] = {
97 	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
98 	 .bytesperline = 320 * 2,
99 	 .sizeimage = 320 * 240 * 2,
100 	 .colorspace = V4L2_COLORSPACE_SRGB,
101 	 .priv = 1},
102 	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
103 	 .bytesperline = 640 * 2,
104 	 .sizeimage = 640 * 480 * 2,
105 	 .colorspace = V4L2_COLORSPACE_SRGB,
106 	 .priv = 0},
107 };
108 static const struct v4l2_pix_format ov767x_mode[] = {
109 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110 		.bytesperline = 320,
111 		.sizeimage = 320 * 240 * 3 / 8 + 590,
112 		.colorspace = V4L2_COLORSPACE_JPEG},
113 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114 		.bytesperline = 640,
115 		.sizeimage = 640 * 480 * 3 / 8 + 590,
116 		.colorspace = V4L2_COLORSPACE_JPEG},
117 };
118 
119 static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30};
120 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121 
122 static const struct framerates ov772x_framerates[] = {
123 	{ /* 320x240 */
124 		.rates = qvga_rates,
125 		.nrates = ARRAY_SIZE(qvga_rates),
126 	},
127 	{ /* 640x480 */
128 		.rates = vga_rates,
129 		.nrates = ARRAY_SIZE(vga_rates),
130 	},
131 };
132 
133 struct reg_array {
134 	const u8 (*val)[2];
135 	int len;
136 };
137 
138 static const u8 bridge_init_767x[][2] = {
139 /* comments from the ms-win file apollo7670.set */
140 /* str1 */
141 	{0xf1, 0x42},
142 	{0x88, 0xf8},
143 	{0x89, 0xff},
144 	{0x76, 0x03},
145 	{0x92, 0x03},
146 	{0x95, 0x10},
147 	{0xe2, 0x00},
148 	{0xe7, 0x3e},
149 	{0x8d, 0x1c},
150 	{0x8e, 0x00},
151 	{0x8f, 0x00},
152 	{0x1f, 0x00},
153 	{0xc3, 0xf9},
154 	{0x89, 0xff},
155 	{0x88, 0xf8},
156 	{0x76, 0x03},
157 	{0x92, 0x01},
158 	{0x93, 0x18},
159 	{0x1c, 0x00},
160 	{0x1d, 0x48},
161 	{0x1d, 0x00},
162 	{0x1d, 0xff},
163 	{0x1d, 0x02},
164 	{0x1d, 0x58},
165 	{0x1d, 0x00},
166 	{0x1c, 0x0a},
167 	{0x1d, 0x0a},
168 	{0x1d, 0x0e},
169 	{0xc0, 0x50},	/* HSize 640 */
170 	{0xc1, 0x3c},	/* VSize 480 */
171 	{0x34, 0x05},	/* enable Audio Suspend mode */
172 	{0xc2, 0x0c},	/* Input YUV */
173 	{0xc3, 0xf9},	/* enable PRE */
174 	{0x34, 0x05},	/* enable Audio Suspend mode */
175 	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
176 	{0x31, 0xf9},	/* enable 1.8V Suspend */
177 	{0x35, 0x02},	/* turn on JPEG */
178 	{0xd9, 0x10},
179 	{0x25, 0x42},	/* GPIO[8]:Input */
180 	{0x94, 0x11},	/* If the default setting is loaded when
181 			 * system boots up, this flag is closed here */
182 };
183 static const u8 sensor_init_767x[][2] = {
184 	{0x12, 0x80},
185 	{0x11, 0x03},
186 	{0x3a, 0x04},
187 	{0x12, 0x00},
188 	{0x17, 0x13},
189 	{0x18, 0x01},
190 	{0x32, 0xb6},
191 	{0x19, 0x02},
192 	{0x1a, 0x7a},
193 	{0x03, 0x0a},
194 	{0x0c, 0x00},
195 	{0x3e, 0x00},
196 	{0x70, 0x3a},
197 	{0x71, 0x35},
198 	{0x72, 0x11},
199 	{0x73, 0xf0},
200 	{0xa2, 0x02},
201 	{0x7a, 0x2a},	/* set Gamma=1.6 below */
202 	{0x7b, 0x12},
203 	{0x7c, 0x1d},
204 	{0x7d, 0x2d},
205 	{0x7e, 0x45},
206 	{0x7f, 0x50},
207 	{0x80, 0x59},
208 	{0x81, 0x62},
209 	{0x82, 0x6b},
210 	{0x83, 0x73},
211 	{0x84, 0x7b},
212 	{0x85, 0x8a},
213 	{0x86, 0x98},
214 	{0x87, 0xb2},
215 	{0x88, 0xca},
216 	{0x89, 0xe0},
217 	{0x13, 0xe0},
218 	{0x00, 0x00},
219 	{0x10, 0x00},
220 	{0x0d, 0x40},
221 	{0x14, 0x38},	/* gain max 16x */
222 	{0xa5, 0x05},
223 	{0xab, 0x07},
224 	{0x24, 0x95},
225 	{0x25, 0x33},
226 	{0x26, 0xe3},
227 	{0x9f, 0x78},
228 	{0xa0, 0x68},
229 	{0xa1, 0x03},
230 	{0xa6, 0xd8},
231 	{0xa7, 0xd8},
232 	{0xa8, 0xf0},
233 	{0xa9, 0x90},
234 	{0xaa, 0x94},
235 	{0x13, 0xe5},
236 	{0x0e, 0x61},
237 	{0x0f, 0x4b},
238 	{0x16, 0x02},
239 	{0x21, 0x02},
240 	{0x22, 0x91},
241 	{0x29, 0x07},
242 	{0x33, 0x0b},
243 	{0x35, 0x0b},
244 	{0x37, 0x1d},
245 	{0x38, 0x71},
246 	{0x39, 0x2a},
247 	{0x3c, 0x78},
248 	{0x4d, 0x40},
249 	{0x4e, 0x20},
250 	{0x69, 0x00},
251 	{0x6b, 0x4a},
252 	{0x74, 0x10},
253 	{0x8d, 0x4f},
254 	{0x8e, 0x00},
255 	{0x8f, 0x00},
256 	{0x90, 0x00},
257 	{0x91, 0x00},
258 	{0x96, 0x00},
259 	{0x9a, 0x80},
260 	{0xb0, 0x84},
261 	{0xb1, 0x0c},
262 	{0xb2, 0x0e},
263 	{0xb3, 0x82},
264 	{0xb8, 0x0a},
265 	{0x43, 0x0a},
266 	{0x44, 0xf0},
267 	{0x45, 0x34},
268 	{0x46, 0x58},
269 	{0x47, 0x28},
270 	{0x48, 0x3a},
271 	{0x59, 0x88},
272 	{0x5a, 0x88},
273 	{0x5b, 0x44},
274 	{0x5c, 0x67},
275 	{0x5d, 0x49},
276 	{0x5e, 0x0e},
277 	{0x6c, 0x0a},
278 	{0x6d, 0x55},
279 	{0x6e, 0x11},
280 	{0x6f, 0x9f},
281 	{0x6a, 0x40},
282 	{0x01, 0x40},
283 	{0x02, 0x40},
284 	{0x13, 0xe7},
285 	{0x4f, 0x80},
286 	{0x50, 0x80},
287 	{0x51, 0x00},
288 	{0x52, 0x22},
289 	{0x53, 0x5e},
290 	{0x54, 0x80},
291 	{0x58, 0x9e},
292 	{0x41, 0x08},
293 	{0x3f, 0x00},
294 	{0x75, 0x04},
295 	{0x76, 0xe1},
296 	{0x4c, 0x00},
297 	{0x77, 0x01},
298 	{0x3d, 0xc2},
299 	{0x4b, 0x09},
300 	{0xc9, 0x60},
301 	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
302 	{0x56, 0x40},
303 	{0x34, 0x11},
304 	{0x3b, 0xc2},
305 	{0xa4, 0x8a},	/* Night mode trigger point */
306 	{0x96, 0x00},
307 	{0x97, 0x30},
308 	{0x98, 0x20},
309 	{0x99, 0x20},
310 	{0x9a, 0x84},
311 	{0x9b, 0x29},
312 	{0x9c, 0x03},
313 	{0x9d, 0x4c},
314 	{0x9e, 0x3f},
315 	{0x78, 0x04},
316 	{0x79, 0x01},
317 	{0xc8, 0xf0},
318 	{0x79, 0x0f},
319 	{0xc8, 0x00},
320 	{0x79, 0x10},
321 	{0xc8, 0x7e},
322 	{0x79, 0x0a},
323 	{0xc8, 0x80},
324 	{0x79, 0x0b},
325 	{0xc8, 0x01},
326 	{0x79, 0x0c},
327 	{0xc8, 0x0f},
328 	{0x79, 0x0d},
329 	{0xc8, 0x20},
330 	{0x79, 0x09},
331 	{0xc8, 0x80},
332 	{0x79, 0x02},
333 	{0xc8, 0xc0},
334 	{0x79, 0x03},
335 	{0xc8, 0x20},
336 	{0x79, 0x26},
337 };
338 static const u8 bridge_start_vga_767x[][2] = {
339 /* str59 JPG */
340 	{0x94, 0xaa},
341 	{0xf1, 0x42},
342 	{0xe5, 0x04},
343 	{0xc0, 0x50},
344 	{0xc1, 0x3c},
345 	{0xc2, 0x0c},
346 	{0x35, 0x02},	/* turn on JPEG */
347 	{0xd9, 0x10},
348 	{0xda, 0x00},	/* for higher clock rate(30fps) */
349 	{0x34, 0x05},	/* enable Audio Suspend mode */
350 	{0xc3, 0xf9},	/* enable PRE */
351 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
352 	{0x8d, 0x1c},	/* output YUV */
353 /*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
354 	{0x50, 0x00},	/* H/V divider=0 */
355 	{0x51, 0xa0},	/* input H=640/4 */
356 	{0x52, 0x3c},	/* input V=480/4 */
357 	{0x53, 0x00},	/* offset X=0 */
358 	{0x54, 0x00},	/* offset Y=0 */
359 	{0x55, 0x00},	/* H/V size[8]=0 */
360 	{0x57, 0x00},	/* H-size[9]=0 */
361 	{0x5c, 0x00},	/* output size[9:8]=0 */
362 	{0x5a, 0xa0},	/* output H=640/4 */
363 	{0x5b, 0x78},	/* output V=480/4 */
364 	{0x1c, 0x0a},
365 	{0x1d, 0x0a},
366 	{0x94, 0x11},
367 };
368 static const u8 sensor_start_vga_767x[][2] = {
369 	{0x11, 0x01},
370 	{0x1e, 0x04},
371 	{0x19, 0x02},
372 	{0x1a, 0x7a},
373 };
374 static const u8 bridge_start_qvga_767x[][2] = {
375 /* str86 JPG */
376 	{0x94, 0xaa},
377 	{0xf1, 0x42},
378 	{0xe5, 0x04},
379 	{0xc0, 0x80},
380 	{0xc1, 0x60},
381 	{0xc2, 0x0c},
382 	{0x35, 0x02},	/* turn on JPEG */
383 	{0xd9, 0x10},
384 	{0xc0, 0x50},	/* CIF HSize 640 */
385 	{0xc1, 0x3c},	/* CIF VSize 480 */
386 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
387 	{0x8d, 0x1c},	/* output YUV */
388 	{0x34, 0x05},	/* enable Audio Suspend mode */
389 	{0xc2, 0x4c},	/* output YUV and Enable DCW */
390 	{0xc3, 0xf9},	/* enable PRE */
391 	{0x1c, 0x00},	/* indirect addressing */
392 	{0x1d, 0x48},	/* output YUV422 */
393 	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
394 	{0x51, 0xa0},	/* DCW input H=640/4 */
395 	{0x52, 0x78},	/* DCW input V=480/4 */
396 	{0x53, 0x00},	/* offset X=0 */
397 	{0x54, 0x00},	/* offset Y=0 */
398 	{0x55, 0x00},	/* H/V size[8]=0 */
399 	{0x57, 0x00},	/* H-size[9]=0 */
400 	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
401 	{0x5a, 0x50},	/* DCW output H=320/4 */
402 	{0x5b, 0x3c},	/* DCW output V=240/4 */
403 	{0x1c, 0x0a},
404 	{0x1d, 0x0a},
405 	{0x94, 0x11},
406 };
407 static const u8 sensor_start_qvga_767x[][2] = {
408 	{0x11, 0x01},
409 	{0x1e, 0x04},
410 	{0x19, 0x02},
411 	{0x1a, 0x7a},
412 };
413 
414 static const u8 bridge_init_772x[][2] = {
415 	{ 0xc2, 0x0c },
416 	{ 0x88, 0xf8 },
417 	{ 0xc3, 0x69 },
418 	{ 0x89, 0xff },
419 	{ 0x76, 0x03 },
420 	{ 0x92, 0x01 },
421 	{ 0x93, 0x18 },
422 	{ 0x94, 0x10 },
423 	{ 0x95, 0x10 },
424 	{ 0xe2, 0x00 },
425 	{ 0xe7, 0x3e },
426 
427 	{ 0x96, 0x00 },
428 
429 	{ 0x97, 0x20 },
430 	{ 0x97, 0x20 },
431 	{ 0x97, 0x20 },
432 	{ 0x97, 0x0a },
433 	{ 0x97, 0x3f },
434 	{ 0x97, 0x4a },
435 	{ 0x97, 0x20 },
436 	{ 0x97, 0x15 },
437 	{ 0x97, 0x0b },
438 
439 	{ 0x8e, 0x40 },
440 	{ 0x1f, 0x81 },
441 	{ 0x34, 0x05 },
442 	{ 0xe3, 0x04 },
443 	{ 0x88, 0x00 },
444 	{ 0x89, 0x00 },
445 	{ 0x76, 0x00 },
446 	{ 0xe7, 0x2e },
447 	{ 0x31, 0xf9 },
448 	{ 0x25, 0x42 },
449 	{ 0x21, 0xf0 },
450 
451 	{ 0x1c, 0x00 },
452 	{ 0x1d, 0x40 },
453 	{ 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
454 	{ 0x1d, 0x00 }, /* payload size */
455 
456 	{ 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
457 	{ 0x1d, 0x58 }, /* frame size */
458 	{ 0x1d, 0x00 }, /* frame size */
459 
460 	{ 0x1c, 0x0a },
461 	{ 0x1d, 0x08 }, /* turn on UVC header */
462 	{ 0x1d, 0x0e }, /* .. */
463 
464 	{ 0x8d, 0x1c },
465 	{ 0x8e, 0x80 },
466 	{ 0xe5, 0x04 },
467 
468 	{ 0xc0, 0x50 },
469 	{ 0xc1, 0x3c },
470 	{ 0xc2, 0x0c },
471 };
472 static const u8 sensor_init_772x[][2] = {
473 	{ 0x12, 0x80 },
474 	{ 0x11, 0x01 },
475 /*fixme: better have a delay?*/
476 	{ 0x11, 0x01 },
477 	{ 0x11, 0x01 },
478 	{ 0x11, 0x01 },
479 	{ 0x11, 0x01 },
480 	{ 0x11, 0x01 },
481 	{ 0x11, 0x01 },
482 	{ 0x11, 0x01 },
483 	{ 0x11, 0x01 },
484 	{ 0x11, 0x01 },
485 	{ 0x11, 0x01 },
486 
487 	{ 0x3d, 0x03 },
488 	{ 0x17, 0x26 },
489 	{ 0x18, 0xa0 },
490 	{ 0x19, 0x07 },
491 	{ 0x1a, 0xf0 },
492 	{ 0x32, 0x00 },
493 	{ 0x29, 0xa0 },
494 	{ 0x2c, 0xf0 },
495 	{ 0x65, 0x20 },
496 	{ 0x11, 0x01 },
497 	{ 0x42, 0x7f },
498 	{ 0x63, 0xaa },		/* AWB - was e0 */
499 	{ 0x64, 0xff },
500 	{ 0x66, 0x00 },
501 	{ 0x13, 0xf0 },		/* com8 */
502 	{ 0x0d, 0x41 },
503 	{ 0x0f, 0xc5 },
504 	{ 0x14, 0x11 },
505 
506 	{ 0x22, 0x7f },
507 	{ 0x23, 0x03 },
508 	{ 0x24, 0x40 },
509 	{ 0x25, 0x30 },
510 	{ 0x26, 0xa1 },
511 	{ 0x2a, 0x00 },
512 	{ 0x2b, 0x00 },
513 	{ 0x6b, 0xaa },
514 	{ 0x13, 0xff },		/* AWB */
515 
516 	{ 0x90, 0x05 },
517 	{ 0x91, 0x01 },
518 	{ 0x92, 0x03 },
519 	{ 0x93, 0x00 },
520 	{ 0x94, 0x60 },
521 	{ 0x95, 0x3c },
522 	{ 0x96, 0x24 },
523 	{ 0x97, 0x1e },
524 	{ 0x98, 0x62 },
525 	{ 0x99, 0x80 },
526 	{ 0x9a, 0x1e },
527 	{ 0x9b, 0x08 },
528 	{ 0x9c, 0x20 },
529 	{ 0x9e, 0x81 },
530 
531 	{ 0xa6, 0x07 },
532 	{ 0x7e, 0x0c },
533 	{ 0x7f, 0x16 },
534 	{ 0x80, 0x2a },
535 	{ 0x81, 0x4e },
536 	{ 0x82, 0x61 },
537 	{ 0x83, 0x6f },
538 	{ 0x84, 0x7b },
539 	{ 0x85, 0x86 },
540 	{ 0x86, 0x8e },
541 	{ 0x87, 0x97 },
542 	{ 0x88, 0xa4 },
543 	{ 0x89, 0xaf },
544 	{ 0x8a, 0xc5 },
545 	{ 0x8b, 0xd7 },
546 	{ 0x8c, 0xe8 },
547 	{ 0x8d, 0x20 },
548 
549 	{ 0x0c, 0x90 },
550 
551 	{ 0x2b, 0x00 },
552 	{ 0x22, 0x7f },
553 	{ 0x23, 0x03 },
554 	{ 0x11, 0x01 },
555 	{ 0x0c, 0xd0 },
556 	{ 0x64, 0xff },
557 	{ 0x0d, 0x41 },
558 
559 	{ 0x14, 0x41 },
560 	{ 0x0e, 0xcd },
561 	{ 0xac, 0xbf },
562 	{ 0x8e, 0x00 },		/* De-noise threshold */
563 	{ 0x0c, 0xd0 }
564 };
565 static const u8 bridge_start_vga_772x[][2] = {
566 	{0x1c, 0x00},
567 	{0x1d, 0x40},
568 	{0x1d, 0x02},
569 	{0x1d, 0x00},
570 	{0x1d, 0x02},
571 	{0x1d, 0x58},
572 	{0x1d, 0x00},
573 	{0xc0, 0x50},
574 	{0xc1, 0x3c},
575 };
576 static const u8 sensor_start_vga_772x[][2] = {
577 	{0x12, 0x00},
578 	{0x17, 0x26},
579 	{0x18, 0xa0},
580 	{0x19, 0x07},
581 	{0x1a, 0xf0},
582 	{0x29, 0xa0},
583 	{0x2c, 0xf0},
584 	{0x65, 0x20},
585 };
586 static const u8 bridge_start_qvga_772x[][2] = {
587 	{0x1c, 0x00},
588 	{0x1d, 0x40},
589 	{0x1d, 0x02},
590 	{0x1d, 0x00},
591 	{0x1d, 0x01},
592 	{0x1d, 0x4b},
593 	{0x1d, 0x00},
594 	{0xc0, 0x28},
595 	{0xc1, 0x1e},
596 };
597 static const u8 sensor_start_qvga_772x[][2] = {
598 	{0x12, 0x40},
599 	{0x17, 0x3f},
600 	{0x18, 0x50},
601 	{0x19, 0x03},
602 	{0x1a, 0x78},
603 	{0x29, 0x50},
604 	{0x2c, 0x78},
605 	{0x65, 0x2f},
606 };
607 
608 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
609 {
610 	struct usb_device *udev = gspca_dev->dev;
611 	int ret;
612 
613 	if (gspca_dev->usb_err < 0)
614 		return;
615 
616 	PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
617 	gspca_dev->usb_buf[0] = val;
618 	ret = usb_control_msg(udev,
619 			      usb_sndctrlpipe(udev, 0),
620 			      0x01,
621 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
622 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
623 	if (ret < 0) {
624 		pr_err("write failed %d\n", ret);
625 		gspca_dev->usb_err = ret;
626 	}
627 }
628 
629 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
630 {
631 	struct usb_device *udev = gspca_dev->dev;
632 	int ret;
633 
634 	if (gspca_dev->usb_err < 0)
635 		return 0;
636 	ret = usb_control_msg(udev,
637 			      usb_rcvctrlpipe(udev, 0),
638 			      0x01,
639 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
640 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
641 	PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
642 	if (ret < 0) {
643 		pr_err("read failed %d\n", ret);
644 		gspca_dev->usb_err = ret;
645 	}
646 	return gspca_dev->usb_buf[0];
647 }
648 
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650  * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
652 {
653 	u8 data;
654 
655 	PDEBUG(D_CONF, "led status: %d", status);
656 
657 	data = ov534_reg_read(gspca_dev, 0x21);
658 	data |= 0x80;
659 	ov534_reg_write(gspca_dev, 0x21, data);
660 
661 	data = ov534_reg_read(gspca_dev, 0x23);
662 	if (status)
663 		data |= 0x80;
664 	else
665 		data &= ~0x80;
666 
667 	ov534_reg_write(gspca_dev, 0x23, data);
668 
669 	if (!status) {
670 		data = ov534_reg_read(gspca_dev, 0x21);
671 		data &= ~0x80;
672 		ov534_reg_write(gspca_dev, 0x21, data);
673 	}
674 }
675 
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
677 {
678 	u8 data;
679 	int i;
680 
681 	for (i = 0; i < 5; i++) {
682 		msleep(10);
683 		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
684 
685 		switch (data) {
686 		case 0x00:
687 			return 1;
688 		case 0x04:
689 			return 0;
690 		case 0x03:
691 			break;
692 		default:
693 			PERR("sccb status 0x%02x, attempt %d/5",
694 			       data, i + 1);
695 		}
696 	}
697 	return 0;
698 }
699 
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
701 {
702 	PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
703 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704 	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
706 
707 	if (!sccb_check_status(gspca_dev)) {
708 		pr_err("sccb_reg_write failed\n");
709 		gspca_dev->usb_err = -EIO;
710 	}
711 }
712 
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
714 {
715 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717 	if (!sccb_check_status(gspca_dev))
718 		pr_err("sccb_reg_read failed 1\n");
719 
720 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721 	if (!sccb_check_status(gspca_dev))
722 		pr_err("sccb_reg_read failed 2\n");
723 
724 	return ov534_reg_read(gspca_dev, OV534_REG_READ);
725 }
726 
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729 			const u8 (*data)[2], int len)
730 {
731 	while (--len >= 0) {
732 		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733 		data++;
734 	}
735 }
736 
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739 			const u8 (*data)[2], int len)
740 {
741 	while (--len >= 0) {
742 		if ((*data)[0] != 0xff) {
743 			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744 		} else {
745 			sccb_reg_read(gspca_dev, (*data)[1]);
746 			sccb_reg_write(gspca_dev, 0xff, 0x00);
747 		}
748 		data++;
749 	}
750 }
751 
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
754 {
755 	struct sd *sd = (struct sd *) gspca_dev;
756 	int i;
757 	struct rate_s {
758 		u8 fps;
759 		u8 r11;
760 		u8 r0d;
761 		u8 re5;
762 	};
763 	const struct rate_s *r;
764 	static const struct rate_s rate_0[] = {	/* 640x480 */
765 		{60, 0x01, 0xc1, 0x04},
766 		{50, 0x01, 0x41, 0x02},
767 		{40, 0x02, 0xc1, 0x04},
768 		{30, 0x04, 0x81, 0x02},
769 		{15, 0x03, 0x41, 0x04},
770 	};
771 	static const struct rate_s rate_1[] = {	/* 320x240 */
772 		{125, 0x02, 0x81, 0x02},
773 		{100, 0x02, 0xc1, 0x04},
774 		{75, 0x03, 0xc1, 0x04},
775 		{60, 0x04, 0xc1, 0x04},
776 		{50, 0x02, 0x41, 0x04},
777 		{40, 0x03, 0x41, 0x04},
778 		{30, 0x04, 0x41, 0x04},
779 	};
780 
781 	if (sd->sensor != SENSOR_OV772x)
782 		return;
783 	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
784 		r = rate_0;
785 		i = ARRAY_SIZE(rate_0);
786 	} else {
787 		r = rate_1;
788 		i = ARRAY_SIZE(rate_1);
789 	}
790 	while (--i > 0) {
791 		if (sd->frame_rate >= r->fps)
792 			break;
793 		r++;
794 	}
795 
796 	sccb_reg_write(gspca_dev, 0x11, r->r11);
797 	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
798 	ov534_reg_write(gspca_dev, 0xe5, r->re5);
799 
800 	PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
801 }
802 
803 static void sethue(struct gspca_dev *gspca_dev, s32 val)
804 {
805 	struct sd *sd = (struct sd *) gspca_dev;
806 
807 	if (sd->sensor == SENSOR_OV767x) {
808 		/* TBD */
809 	} else {
810 		s16 huesin;
811 		s16 huecos;
812 
813 		/* fixp_sin and fixp_cos accept only positive values, while
814 		 * our val is between -90 and 90
815 		 */
816 		val += 360;
817 
818 		/* According to the datasheet the registers expect HUESIN and
819 		 * HUECOS to be the result of the trigonometric functions,
820 		 * scaled by 0x80.
821 		 *
822 		 * The 0x100 here represents the maximun absolute value
823 		 * returned byt fixp_sin and fixp_cos, so the scaling will
824 		 * consider the result like in the interval [-1.0, 1.0].
825 		 */
826 		huesin = fixp_sin(val) * 0x80 / 0x100;
827 		huecos = fixp_cos(val) * 0x80 / 0x100;
828 
829 		if (huesin < 0) {
830 			sccb_reg_write(gspca_dev, 0xab,
831 				sccb_reg_read(gspca_dev, 0xab) | 0x2);
832 			huesin = -huesin;
833 		} else {
834 			sccb_reg_write(gspca_dev, 0xab,
835 				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
836 
837 		}
838 		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
839 		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
840 	}
841 }
842 
843 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
844 {
845 	struct sd *sd = (struct sd *) gspca_dev;
846 
847 	if (sd->sensor == SENSOR_OV767x) {
848 		int i;
849 		static u8 color_tb[][6] = {
850 			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
851 			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
852 			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
853 			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
854 			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
855 			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
856 			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
857 		};
858 
859 		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
860 			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
861 	} else {
862 		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
863 		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
864 	}
865 }
866 
867 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
868 {
869 	struct sd *sd = (struct sd *) gspca_dev;
870 
871 	if (sd->sensor == SENSOR_OV767x) {
872 		if (val < 0)
873 			val = 0x80 - val;
874 		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
875 	} else {
876 		sccb_reg_write(gspca_dev, 0x9b, val);
877 	}
878 }
879 
880 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
881 {
882 	struct sd *sd = (struct sd *) gspca_dev;
883 
884 	if (sd->sensor == SENSOR_OV767x)
885 		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
886 	else
887 		sccb_reg_write(gspca_dev, 0x9c, val);
888 }
889 
890 static void setgain(struct gspca_dev *gspca_dev, s32 val)
891 {
892 	switch (val & 0x30) {
893 	case 0x00:
894 		val &= 0x0f;
895 		break;
896 	case 0x10:
897 		val &= 0x0f;
898 		val |= 0x30;
899 		break;
900 	case 0x20:
901 		val &= 0x0f;
902 		val |= 0x70;
903 		break;
904 	default:
905 /*	case 0x30: */
906 		val &= 0x0f;
907 		val |= 0xf0;
908 		break;
909 	}
910 	sccb_reg_write(gspca_dev, 0x00, val);
911 }
912 
913 static s32 getgain(struct gspca_dev *gspca_dev)
914 {
915 	return sccb_reg_read(gspca_dev, 0x00);
916 }
917 
918 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
919 {
920 	struct sd *sd = (struct sd *) gspca_dev;
921 
922 	if (sd->sensor == SENSOR_OV767x) {
923 
924 		/* set only aec[9:2] */
925 		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
926 	} else {
927 
928 		/* 'val' is one byte and represents half of the exposure value
929 		 * we are going to set into registers, a two bytes value:
930 		 *
931 		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
932 		 *    LSB: ((u16) val << 1) & 0xff == val << 1
933 		 */
934 		sccb_reg_write(gspca_dev, 0x08, val >> 7);
935 		sccb_reg_write(gspca_dev, 0x10, val << 1);
936 	}
937 }
938 
939 static s32 getexposure(struct gspca_dev *gspca_dev)
940 {
941 	struct sd *sd = (struct sd *) gspca_dev;
942 
943 	if (sd->sensor == SENSOR_OV767x) {
944 		/* get only aec[9:2] */
945 		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
946 	} else {
947 		u8 hi = sccb_reg_read(gspca_dev, 0x08);
948 		u8 lo = sccb_reg_read(gspca_dev, 0x10);
949 		return (hi << 8 | lo) >> 1;
950 	}
951 }
952 
953 static void setagc(struct gspca_dev *gspca_dev, s32 val)
954 {
955 	if (val) {
956 		sccb_reg_write(gspca_dev, 0x13,
957 				sccb_reg_read(gspca_dev, 0x13) | 0x04);
958 		sccb_reg_write(gspca_dev, 0x64,
959 				sccb_reg_read(gspca_dev, 0x64) | 0x03);
960 	} else {
961 		sccb_reg_write(gspca_dev, 0x13,
962 				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
963 		sccb_reg_write(gspca_dev, 0x64,
964 				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
965 	}
966 }
967 
968 static void setawb(struct gspca_dev *gspca_dev, s32 val)
969 {
970 	struct sd *sd = (struct sd *) gspca_dev;
971 
972 	if (val) {
973 		sccb_reg_write(gspca_dev, 0x13,
974 				sccb_reg_read(gspca_dev, 0x13) | 0x02);
975 		if (sd->sensor == SENSOR_OV772x)
976 			sccb_reg_write(gspca_dev, 0x63,
977 				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
978 	} else {
979 		sccb_reg_write(gspca_dev, 0x13,
980 				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
981 		if (sd->sensor == SENSOR_OV772x)
982 			sccb_reg_write(gspca_dev, 0x63,
983 				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
984 	}
985 }
986 
987 static void setaec(struct gspca_dev *gspca_dev, s32 val)
988 {
989 	struct sd *sd = (struct sd *) gspca_dev;
990 	u8 data;
991 
992 	data = sd->sensor == SENSOR_OV767x ?
993 			0x05 :		/* agc + aec */
994 			0x01;		/* agc */
995 	switch (val) {
996 	case V4L2_EXPOSURE_AUTO:
997 		sccb_reg_write(gspca_dev, 0x13,
998 				sccb_reg_read(gspca_dev, 0x13) | data);
999 		break;
1000 	case V4L2_EXPOSURE_MANUAL:
1001 		sccb_reg_write(gspca_dev, 0x13,
1002 				sccb_reg_read(gspca_dev, 0x13) & ~data);
1003 		break;
1004 	}
1005 }
1006 
1007 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1008 {
1009 	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1010 	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1011 }
1012 
1013 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1014 {
1015 	struct sd *sd = (struct sd *) gspca_dev;
1016 	u8 val;
1017 
1018 	if (sd->sensor == SENSOR_OV767x) {
1019 		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1020 		val &= ~0x30;
1021 		if (hflip)
1022 			val |= 0x20;
1023 		if (vflip)
1024 			val |= 0x10;
1025 		sccb_reg_write(gspca_dev, 0x1e, val);
1026 	} else {
1027 		val = sccb_reg_read(gspca_dev, 0x0c);
1028 		val &= ~0xc0;
1029 		if (hflip == 0)
1030 			val |= 0x40;
1031 		if (vflip == 0)
1032 			val |= 0x80;
1033 		sccb_reg_write(gspca_dev, 0x0c, val);
1034 	}
1035 }
1036 
1037 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1038 {
1039 	struct sd *sd = (struct sd *) gspca_dev;
1040 
1041 	val = val ? 0x9e : 0x00;
1042 	if (sd->sensor == SENSOR_OV767x) {
1043 		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1044 		if (val)
1045 			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1046 	}
1047 	sccb_reg_write(gspca_dev, 0x2b, val);
1048 }
1049 
1050 
1051 /* this function is called at probe time */
1052 static int sd_config(struct gspca_dev *gspca_dev,
1053 		     const struct usb_device_id *id)
1054 {
1055 	struct sd *sd = (struct sd *) gspca_dev;
1056 	struct cam *cam;
1057 
1058 	cam = &gspca_dev->cam;
1059 
1060 	cam->cam_mode = ov772x_mode;
1061 	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1062 
1063 	sd->frame_rate = 30;
1064 
1065 	return 0;
1066 }
1067 
1068 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1069 {
1070 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1071 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1072 
1073 	switch (ctrl->id) {
1074 	case V4L2_CID_AUTOGAIN:
1075 		gspca_dev->usb_err = 0;
1076 		if (ctrl->val && sd->gain && gspca_dev->streaming)
1077 			sd->gain->val = getgain(gspca_dev);
1078 		return gspca_dev->usb_err;
1079 
1080 	case V4L2_CID_EXPOSURE_AUTO:
1081 		gspca_dev->usb_err = 0;
1082 		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1083 		    gspca_dev->streaming)
1084 			sd->exposure->val = getexposure(gspca_dev);
1085 		return gspca_dev->usb_err;
1086 	}
1087 	return -EINVAL;
1088 }
1089 
1090 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1091 {
1092 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1093 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1094 
1095 	gspca_dev->usb_err = 0;
1096 	if (!gspca_dev->streaming)
1097 		return 0;
1098 
1099 	switch (ctrl->id) {
1100 	case V4L2_CID_HUE:
1101 		sethue(gspca_dev, ctrl->val);
1102 		break;
1103 	case V4L2_CID_SATURATION:
1104 		setsaturation(gspca_dev, ctrl->val);
1105 		break;
1106 	case V4L2_CID_BRIGHTNESS:
1107 		setbrightness(gspca_dev, ctrl->val);
1108 		break;
1109 	case V4L2_CID_CONTRAST:
1110 		setcontrast(gspca_dev, ctrl->val);
1111 		break;
1112 	case V4L2_CID_AUTOGAIN:
1113 	/* case V4L2_CID_GAIN: */
1114 		setagc(gspca_dev, ctrl->val);
1115 		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1116 			setgain(gspca_dev, sd->gain->val);
1117 		break;
1118 	case V4L2_CID_AUTO_WHITE_BALANCE:
1119 		setawb(gspca_dev, ctrl->val);
1120 		break;
1121 	case V4L2_CID_EXPOSURE_AUTO:
1122 	/* case V4L2_CID_EXPOSURE: */
1123 		setaec(gspca_dev, ctrl->val);
1124 		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1125 		    sd->exposure)
1126 			setexposure(gspca_dev, sd->exposure->val);
1127 		break;
1128 	case V4L2_CID_SHARPNESS:
1129 		setsharpness(gspca_dev, ctrl->val);
1130 		break;
1131 	case V4L2_CID_HFLIP:
1132 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1133 		break;
1134 	case V4L2_CID_VFLIP:
1135 		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1136 		break;
1137 	case V4L2_CID_POWER_LINE_FREQUENCY:
1138 		setlightfreq(gspca_dev, ctrl->val);
1139 		break;
1140 	}
1141 	return gspca_dev->usb_err;
1142 }
1143 
1144 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1145 	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1146 	.s_ctrl = ov534_s_ctrl,
1147 };
1148 
1149 static int sd_init_controls(struct gspca_dev *gspca_dev)
1150 {
1151 	struct sd *sd = (struct sd *) gspca_dev;
1152 	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1153 	/* parameters with different values between the supported sensors */
1154 	int saturation_min;
1155 	int saturation_max;
1156 	int saturation_def;
1157 	int brightness_min;
1158 	int brightness_max;
1159 	int brightness_def;
1160 	int contrast_max;
1161 	int contrast_def;
1162 	int exposure_min;
1163 	int exposure_max;
1164 	int exposure_def;
1165 	int hflip_def;
1166 
1167 	if (sd->sensor == SENSOR_OV767x) {
1168 		saturation_min = 0,
1169 		saturation_max = 6,
1170 		saturation_def = 3,
1171 		brightness_min = -127;
1172 		brightness_max = 127;
1173 		brightness_def = 0;
1174 		contrast_max = 0x80;
1175 		contrast_def = 0x40;
1176 		exposure_min = 0x08;
1177 		exposure_max = 0x60;
1178 		exposure_def = 0x13;
1179 		hflip_def = 1;
1180 	} else {
1181 		saturation_min = 0,
1182 		saturation_max = 255,
1183 		saturation_def = 64,
1184 		brightness_min = 0;
1185 		brightness_max = 255;
1186 		brightness_def = 0;
1187 		contrast_max = 255;
1188 		contrast_def = 32;
1189 		exposure_min = 0;
1190 		exposure_max = 255;
1191 		exposure_def = 120;
1192 		hflip_def = 0;
1193 	}
1194 
1195 	gspca_dev->vdev.ctrl_handler = hdl;
1196 
1197 	v4l2_ctrl_handler_init(hdl, 13);
1198 
1199 	if (sd->sensor == SENSOR_OV772x)
1200 		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1201 				V4L2_CID_HUE, -90, 90, 1, 0);
1202 
1203 	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1204 			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1205 			saturation_def);
1206 	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1207 			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1208 			brightness_def);
1209 	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1210 			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1211 
1212 	if (sd->sensor == SENSOR_OV772x) {
1213 		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1214 				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1215 		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216 				V4L2_CID_GAIN, 0, 63, 1, 20);
1217 	}
1218 
1219 	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1220 			V4L2_CID_EXPOSURE_AUTO,
1221 			V4L2_EXPOSURE_MANUAL, 0,
1222 			V4L2_EXPOSURE_AUTO);
1223 	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1224 			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1225 			exposure_def);
1226 
1227 	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1228 			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1229 
1230 	if (sd->sensor == SENSOR_OV772x)
1231 		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1232 				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1233 
1234 	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235 			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1236 	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1238 	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1239 			V4L2_CID_POWER_LINE_FREQUENCY,
1240 			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1241 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1242 
1243 	if (hdl->error) {
1244 		pr_err("Could not initialize controls\n");
1245 		return hdl->error;
1246 	}
1247 
1248 	if (sd->sensor == SENSOR_OV772x)
1249 		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1250 
1251 	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1252 			       true);
1253 
1254 	return 0;
1255 }
1256 
1257 /* this function is called at probe and resume time */
1258 static int sd_init(struct gspca_dev *gspca_dev)
1259 {
1260 	struct sd *sd = (struct sd *) gspca_dev;
1261 	u16 sensor_id;
1262 	static const struct reg_array bridge_init[NSENSORS] = {
1263 	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1264 	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1265 	};
1266 	static const struct reg_array sensor_init[NSENSORS] = {
1267 	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1268 	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1269 	};
1270 
1271 	/* reset bridge */
1272 	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1273 	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1274 	msleep(100);
1275 
1276 	/* initialize the sensor address */
1277 	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1278 
1279 	/* reset sensor */
1280 	sccb_reg_write(gspca_dev, 0x12, 0x80);
1281 	msleep(10);
1282 
1283 	/* probe the sensor */
1284 	sccb_reg_read(gspca_dev, 0x0a);
1285 	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1286 	sccb_reg_read(gspca_dev, 0x0b);
1287 	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1288 	PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1289 
1290 	if ((sensor_id & 0xfff0) == 0x7670) {
1291 		sd->sensor = SENSOR_OV767x;
1292 		gspca_dev->cam.cam_mode = ov767x_mode;
1293 		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1294 	} else {
1295 		sd->sensor = SENSOR_OV772x;
1296 		gspca_dev->cam.bulk = 1;
1297 		gspca_dev->cam.bulk_size = 16384;
1298 		gspca_dev->cam.bulk_nurbs = 2;
1299 		gspca_dev->cam.mode_framerates = ov772x_framerates;
1300 	}
1301 
1302 	/* initialize */
1303 	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1304 			bridge_init[sd->sensor].len);
1305 	ov534_set_led(gspca_dev, 1);
1306 	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1307 			sensor_init[sd->sensor].len);
1308 
1309 	sd_stopN(gspca_dev);
1310 /*	set_frame_rate(gspca_dev);	*/
1311 
1312 	return gspca_dev->usb_err;
1313 }
1314 
1315 static int sd_start(struct gspca_dev *gspca_dev)
1316 {
1317 	struct sd *sd = (struct sd *) gspca_dev;
1318 	int mode;
1319 	static const struct reg_array bridge_start[NSENSORS][2] = {
1320 	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1321 					ARRAY_SIZE(bridge_start_qvga_767x)},
1322 			{bridge_start_vga_767x,
1323 					ARRAY_SIZE(bridge_start_vga_767x)}},
1324 	[SENSOR_OV772x] = {{bridge_start_qvga_772x,
1325 					ARRAY_SIZE(bridge_start_qvga_772x)},
1326 			{bridge_start_vga_772x,
1327 					ARRAY_SIZE(bridge_start_vga_772x)}},
1328 	};
1329 	static const struct reg_array sensor_start[NSENSORS][2] = {
1330 	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1331 					ARRAY_SIZE(sensor_start_qvga_767x)},
1332 			{sensor_start_vga_767x,
1333 					ARRAY_SIZE(sensor_start_vga_767x)}},
1334 	[SENSOR_OV772x] = {{sensor_start_qvga_772x,
1335 					ARRAY_SIZE(sensor_start_qvga_772x)},
1336 			{sensor_start_vga_772x,
1337 					ARRAY_SIZE(sensor_start_vga_772x)}},
1338 	};
1339 
1340 	/* (from ms-win trace) */
1341 	if (sd->sensor == SENSOR_OV767x)
1342 		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1343 					/* black sun enable ? */
1344 
1345 	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1346 	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1347 				bridge_start[sd->sensor][mode].len);
1348 	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1349 				sensor_start[sd->sensor][mode].len);
1350 
1351 	set_frame_rate(gspca_dev);
1352 
1353 	if (sd->hue)
1354 		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1355 	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1356 	if (sd->autogain)
1357 		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1358 	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1359 	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1360 	if (sd->gain)
1361 		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1362 	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1363 	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1364 	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1365 	if (sd->sharpness)
1366 		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1367 	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1368 		  v4l2_ctrl_g_ctrl(sd->vflip));
1369 	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1370 
1371 	ov534_set_led(gspca_dev, 1);
1372 	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1373 	return gspca_dev->usb_err;
1374 }
1375 
1376 static void sd_stopN(struct gspca_dev *gspca_dev)
1377 {
1378 	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1379 	ov534_set_led(gspca_dev, 0);
1380 }
1381 
1382 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1383 #define UVC_STREAM_EOH	(1 << 7)
1384 #define UVC_STREAM_ERR	(1 << 6)
1385 #define UVC_STREAM_STI	(1 << 5)
1386 #define UVC_STREAM_RES	(1 << 4)
1387 #define UVC_STREAM_SCR	(1 << 3)
1388 #define UVC_STREAM_PTS	(1 << 2)
1389 #define UVC_STREAM_EOF	(1 << 1)
1390 #define UVC_STREAM_FID	(1 << 0)
1391 
1392 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1393 			u8 *data, int len)
1394 {
1395 	struct sd *sd = (struct sd *) gspca_dev;
1396 	__u32 this_pts;
1397 	u16 this_fid;
1398 	int remaining_len = len;
1399 	int payload_len;
1400 
1401 	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1402 	do {
1403 		len = min(remaining_len, payload_len);
1404 
1405 		/* Payloads are prefixed with a UVC-style header.  We
1406 		   consider a frame to start when the FID toggles, or the PTS
1407 		   changes.  A frame ends when EOF is set, and we've received
1408 		   the correct number of bytes. */
1409 
1410 		/* Verify UVC header.  Header length is always 12 */
1411 		if (data[0] != 12 || len < 12) {
1412 			PDEBUG(D_PACK, "bad header");
1413 			goto discard;
1414 		}
1415 
1416 		/* Check errors */
1417 		if (data[1] & UVC_STREAM_ERR) {
1418 			PDEBUG(D_PACK, "payload error");
1419 			goto discard;
1420 		}
1421 
1422 		/* Extract PTS and FID */
1423 		if (!(data[1] & UVC_STREAM_PTS)) {
1424 			PDEBUG(D_PACK, "PTS not present");
1425 			goto discard;
1426 		}
1427 		this_pts = (data[5] << 24) | (data[4] << 16)
1428 						| (data[3] << 8) | data[2];
1429 		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1430 
1431 		/* If PTS or FID has changed, start a new frame. */
1432 		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1433 			if (gspca_dev->last_packet_type == INTER_PACKET)
1434 				gspca_frame_add(gspca_dev, LAST_PACKET,
1435 						NULL, 0);
1436 			sd->last_pts = this_pts;
1437 			sd->last_fid = this_fid;
1438 			gspca_frame_add(gspca_dev, FIRST_PACKET,
1439 					data + 12, len - 12);
1440 		/* If this packet is marked as EOF, end the frame */
1441 		} else if (data[1] & UVC_STREAM_EOF) {
1442 			sd->last_pts = 0;
1443 			if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1444 			 && gspca_dev->image_len + len - 12 !=
1445 				   gspca_dev->pixfmt.width *
1446 					gspca_dev->pixfmt.height * 2) {
1447 				PDEBUG(D_PACK, "wrong sized frame");
1448 				goto discard;
1449 			}
1450 			gspca_frame_add(gspca_dev, LAST_PACKET,
1451 					data + 12, len - 12);
1452 		} else {
1453 
1454 			/* Add the data from this payload */
1455 			gspca_frame_add(gspca_dev, INTER_PACKET,
1456 					data + 12, len - 12);
1457 		}
1458 
1459 		/* Done this payload */
1460 		goto scan_next;
1461 
1462 discard:
1463 		/* Discard data until a new frame starts. */
1464 		gspca_dev->last_packet_type = DISCARD_PACKET;
1465 
1466 scan_next:
1467 		remaining_len -= len;
1468 		data += len;
1469 	} while (remaining_len > 0);
1470 }
1471 
1472 /* get stream parameters (framerate) */
1473 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1474 			     struct v4l2_streamparm *parm)
1475 {
1476 	struct v4l2_captureparm *cp = &parm->parm.capture;
1477 	struct v4l2_fract *tpf = &cp->timeperframe;
1478 	struct sd *sd = (struct sd *) gspca_dev;
1479 
1480 	cp->capability |= V4L2_CAP_TIMEPERFRAME;
1481 	tpf->numerator = 1;
1482 	tpf->denominator = sd->frame_rate;
1483 }
1484 
1485 /* set stream parameters (framerate) */
1486 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1487 			     struct v4l2_streamparm *parm)
1488 {
1489 	struct v4l2_captureparm *cp = &parm->parm.capture;
1490 	struct v4l2_fract *tpf = &cp->timeperframe;
1491 	struct sd *sd = (struct sd *) gspca_dev;
1492 
1493 	/* Set requested framerate */
1494 	sd->frame_rate = tpf->denominator / tpf->numerator;
1495 	if (gspca_dev->streaming)
1496 		set_frame_rate(gspca_dev);
1497 
1498 	/* Return the actual framerate */
1499 	tpf->numerator = 1;
1500 	tpf->denominator = sd->frame_rate;
1501 }
1502 
1503 /* sub-driver description */
1504 static const struct sd_desc sd_desc = {
1505 	.name     = MODULE_NAME,
1506 	.config   = sd_config,
1507 	.init     = sd_init,
1508 	.init_controls = sd_init_controls,
1509 	.start    = sd_start,
1510 	.stopN    = sd_stopN,
1511 	.pkt_scan = sd_pkt_scan,
1512 	.get_streamparm = sd_get_streamparm,
1513 	.set_streamparm = sd_set_streamparm,
1514 };
1515 
1516 /* -- module initialisation -- */
1517 static const struct usb_device_id device_table[] = {
1518 	{USB_DEVICE(0x1415, 0x2000)},
1519 	{USB_DEVICE(0x06f8, 0x3002)},
1520 	{}
1521 };
1522 
1523 MODULE_DEVICE_TABLE(usb, device_table);
1524 
1525 /* -- device connect -- */
1526 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1527 {
1528 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1529 				THIS_MODULE);
1530 }
1531 
1532 static struct usb_driver sd_driver = {
1533 	.name       = MODULE_NAME,
1534 	.id_table   = device_table,
1535 	.probe      = sd_probe,
1536 	.disconnect = gspca_disconnect,
1537 #ifdef CONFIG_PM
1538 	.suspend    = gspca_suspend,
1539 	.resume     = gspca_resume,
1540 	.reset_resume = gspca_resume,
1541 #endif
1542 };
1543 
1544 module_usb_driver(sd_driver);
1545