xref: /openbmc/linux/drivers/media/usb/gspca/ov519.c (revision 8730046c)
1 /**
2  * OV519 driver
3  *
4  * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5  * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6  *
7  * This module is adapted from the ov51x-jpeg package, which itself
8  * was adapted from the ov511 driver.
9  *
10  * Original copyright for the ov511 driver is:
11  *
12  * Copyright (c) 1999-2006 Mark W. McClelland
13  * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14  * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15  * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16  * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17  * Changes by Claudio Matsuoka <claudio@conectiva.com>
18  *
19  * ov51x-jpeg original copyright is:
20  *
21  * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22  * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2 of the License, or
27  * any later version.
28  *
29  * This program is distributed in the hope that it will be useful,
30  * but WITHOUT ANY WARRANTY; without even the implied warranty of
31  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32  * GNU General Public License for more details.
33  *
34  * You should have received a copy of the GNU General Public License
35  * along with this program; if not, write to the Free Software
36  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37  *
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #define MODULE_NAME "ov519"
43 
44 #include <linux/input.h>
45 #include "gspca.h"
46 
47 /* The jpeg_hdr is used by w996Xcf only */
48 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 #define CONEX_CAM
50 #include "jpeg.h"
51 
52 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53 MODULE_DESCRIPTION("OV519 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55 
56 /* global parameters */
57 static int frame_rate;
58 
59 /* Number of times to retry a failed I2C transaction. Increase this if you
60  * are getting "Failed to read sensor ID..." */
61 static int i2c_detect_tries = 10;
62 
63 /* ov519 device descriptor */
64 struct sd {
65 	struct gspca_dev gspca_dev;		/* !! must be the first item */
66 
67 	struct v4l2_ctrl *jpegqual;
68 	struct v4l2_ctrl *freq;
69 	struct { /* h/vflip control cluster */
70 		struct v4l2_ctrl *hflip;
71 		struct v4l2_ctrl *vflip;
72 	};
73 	struct { /* autobrightness/brightness control cluster */
74 		struct v4l2_ctrl *autobright;
75 		struct v4l2_ctrl *brightness;
76 	};
77 
78 	u8 revision;
79 
80 	u8 packet_nr;
81 
82 	char bridge;
83 #define BRIDGE_OV511		0
84 #define BRIDGE_OV511PLUS	1
85 #define BRIDGE_OV518		2
86 #define BRIDGE_OV518PLUS	3
87 #define BRIDGE_OV519		4		/* = ov530 */
88 #define BRIDGE_OVFX2		5
89 #define BRIDGE_W9968CF		6
90 #define BRIDGE_MASK		7
91 
92 	char invert_led;
93 #define BRIDGE_INVERT_LED	8
94 
95 	char snapshot_pressed;
96 	char snapshot_needs_reset;
97 
98 	/* Determined by sensor type */
99 	u8 sif;
100 
101 #define QUALITY_MIN 50
102 #define QUALITY_MAX 70
103 #define QUALITY_DEF 50
104 
105 	u8 stopped;		/* Streaming is temporarily paused */
106 	u8 first_frame;
107 
108 	u8 frame_rate;		/* current Framerate */
109 	u8 clockdiv;		/* clockdiv override */
110 
111 	s8 sensor;		/* Type of image sensor chip (SEN_*) */
112 
113 	u8 sensor_addr;
114 	u16 sensor_width;
115 	u16 sensor_height;
116 	s16 sensor_reg_cache[256];
117 
118 	u8 jpeg_hdr[JPEG_HDR_SZ];
119 };
120 enum sensors {
121 	SEN_OV2610,
122 	SEN_OV2610AE,
123 	SEN_OV3610,
124 	SEN_OV6620,
125 	SEN_OV6630,
126 	SEN_OV66308AF,
127 	SEN_OV7610,
128 	SEN_OV7620,
129 	SEN_OV7620AE,
130 	SEN_OV7640,
131 	SEN_OV7648,
132 	SEN_OV7660,
133 	SEN_OV7670,
134 	SEN_OV76BE,
135 	SEN_OV8610,
136 	SEN_OV9600,
137 };
138 
139 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
140    the ov sensors which is already present here. When we have the time we
141    really should move the sensor drivers to v4l2 sub drivers. */
142 #include "w996Xcf.c"
143 
144 /* table of the disabled controls */
145 struct ctrl_valid {
146 	unsigned int has_brightness:1;
147 	unsigned int has_contrast:1;
148 	unsigned int has_exposure:1;
149 	unsigned int has_autogain:1;
150 	unsigned int has_sat:1;
151 	unsigned int has_hvflip:1;
152 	unsigned int has_autobright:1;
153 	unsigned int has_freq:1;
154 };
155 
156 static const struct ctrl_valid valid_controls[] = {
157 	[SEN_OV2610] = {
158 		.has_exposure = 1,
159 		.has_autogain = 1,
160 	},
161 	[SEN_OV2610AE] = {
162 		.has_exposure = 1,
163 		.has_autogain = 1,
164 	},
165 	[SEN_OV3610] = {
166 		/* No controls */
167 	},
168 	[SEN_OV6620] = {
169 		.has_brightness = 1,
170 		.has_contrast = 1,
171 		.has_sat = 1,
172 		.has_autobright = 1,
173 		.has_freq = 1,
174 	},
175 	[SEN_OV6630] = {
176 		.has_brightness = 1,
177 		.has_contrast = 1,
178 		.has_sat = 1,
179 		.has_autobright = 1,
180 		.has_freq = 1,
181 	},
182 	[SEN_OV66308AF] = {
183 		.has_brightness = 1,
184 		.has_contrast = 1,
185 		.has_sat = 1,
186 		.has_autobright = 1,
187 		.has_freq = 1,
188 	},
189 	[SEN_OV7610] = {
190 		.has_brightness = 1,
191 		.has_contrast = 1,
192 		.has_sat = 1,
193 		.has_autobright = 1,
194 		.has_freq = 1,
195 	},
196 	[SEN_OV7620] = {
197 		.has_brightness = 1,
198 		.has_contrast = 1,
199 		.has_sat = 1,
200 		.has_autobright = 1,
201 		.has_freq = 1,
202 	},
203 	[SEN_OV7620AE] = {
204 		.has_brightness = 1,
205 		.has_contrast = 1,
206 		.has_sat = 1,
207 		.has_autobright = 1,
208 		.has_freq = 1,
209 	},
210 	[SEN_OV7640] = {
211 		.has_brightness = 1,
212 		.has_sat = 1,
213 		.has_freq = 1,
214 	},
215 	[SEN_OV7648] = {
216 		.has_brightness = 1,
217 		.has_sat = 1,
218 		.has_freq = 1,
219 	},
220 	[SEN_OV7660] = {
221 		.has_brightness = 1,
222 		.has_contrast = 1,
223 		.has_sat = 1,
224 		.has_hvflip = 1,
225 		.has_freq = 1,
226 	},
227 	[SEN_OV7670] = {
228 		.has_brightness = 1,
229 		.has_contrast = 1,
230 		.has_hvflip = 1,
231 		.has_freq = 1,
232 	},
233 	[SEN_OV76BE] = {
234 		.has_brightness = 1,
235 		.has_contrast = 1,
236 		.has_sat = 1,
237 		.has_autobright = 1,
238 		.has_freq = 1,
239 	},
240 	[SEN_OV8610] = {
241 		.has_brightness = 1,
242 		.has_contrast = 1,
243 		.has_sat = 1,
244 		.has_autobright = 1,
245 	},
246 	[SEN_OV9600] = {
247 		.has_exposure = 1,
248 		.has_autogain = 1,
249 	},
250 };
251 
252 static const struct v4l2_pix_format ov519_vga_mode[] = {
253 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
254 		.bytesperline = 320,
255 		.sizeimage = 320 * 240 * 3 / 8 + 590,
256 		.colorspace = V4L2_COLORSPACE_JPEG,
257 		.priv = 1},
258 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
259 		.bytesperline = 640,
260 		.sizeimage = 640 * 480 * 3 / 8 + 590,
261 		.colorspace = V4L2_COLORSPACE_JPEG,
262 		.priv = 0},
263 };
264 static const struct v4l2_pix_format ov519_sif_mode[] = {
265 	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
266 		.bytesperline = 160,
267 		.sizeimage = 160 * 120 * 3 / 8 + 590,
268 		.colorspace = V4L2_COLORSPACE_JPEG,
269 		.priv = 3},
270 	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
271 		.bytesperline = 176,
272 		.sizeimage = 176 * 144 * 3 / 8 + 590,
273 		.colorspace = V4L2_COLORSPACE_JPEG,
274 		.priv = 1},
275 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
276 		.bytesperline = 320,
277 		.sizeimage = 320 * 240 * 3 / 8 + 590,
278 		.colorspace = V4L2_COLORSPACE_JPEG,
279 		.priv = 2},
280 	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
281 		.bytesperline = 352,
282 		.sizeimage = 352 * 288 * 3 / 8 + 590,
283 		.colorspace = V4L2_COLORSPACE_JPEG,
284 		.priv = 0},
285 };
286 
287 /* Note some of the sizeimage values for the ov511 / ov518 may seem
288    larger then necessary, however they need to be this big as the ov511 /
289    ov518 always fills the entire isoc frame, using 0 padding bytes when
290    it doesn't have any data. So with low framerates the amount of data
291    transferred can become quite large (libv4l will remove all the 0 padding
292    in userspace). */
293 static const struct v4l2_pix_format ov518_vga_mode[] = {
294 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
295 		.bytesperline = 320,
296 		.sizeimage = 320 * 240 * 3,
297 		.colorspace = V4L2_COLORSPACE_JPEG,
298 		.priv = 1},
299 	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
300 		.bytesperline = 640,
301 		.sizeimage = 640 * 480 * 2,
302 		.colorspace = V4L2_COLORSPACE_JPEG,
303 		.priv = 0},
304 };
305 static const struct v4l2_pix_format ov518_sif_mode[] = {
306 	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
307 		.bytesperline = 160,
308 		.sizeimage = 70000,
309 		.colorspace = V4L2_COLORSPACE_JPEG,
310 		.priv = 3},
311 	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
312 		.bytesperline = 176,
313 		.sizeimage = 70000,
314 		.colorspace = V4L2_COLORSPACE_JPEG,
315 		.priv = 1},
316 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
317 		.bytesperline = 320,
318 		.sizeimage = 320 * 240 * 3,
319 		.colorspace = V4L2_COLORSPACE_JPEG,
320 		.priv = 2},
321 	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
322 		.bytesperline = 352,
323 		.sizeimage = 352 * 288 * 3,
324 		.colorspace = V4L2_COLORSPACE_JPEG,
325 		.priv = 0},
326 };
327 
328 static const struct v4l2_pix_format ov511_vga_mode[] = {
329 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
330 		.bytesperline = 320,
331 		.sizeimage = 320 * 240 * 3,
332 		.colorspace = V4L2_COLORSPACE_JPEG,
333 		.priv = 1},
334 	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
335 		.bytesperline = 640,
336 		.sizeimage = 640 * 480 * 2,
337 		.colorspace = V4L2_COLORSPACE_JPEG,
338 		.priv = 0},
339 };
340 static const struct v4l2_pix_format ov511_sif_mode[] = {
341 	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
342 		.bytesperline = 160,
343 		.sizeimage = 70000,
344 		.colorspace = V4L2_COLORSPACE_JPEG,
345 		.priv = 3},
346 	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
347 		.bytesperline = 176,
348 		.sizeimage = 70000,
349 		.colorspace = V4L2_COLORSPACE_JPEG,
350 		.priv = 1},
351 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
352 		.bytesperline = 320,
353 		.sizeimage = 320 * 240 * 3,
354 		.colorspace = V4L2_COLORSPACE_JPEG,
355 		.priv = 2},
356 	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
357 		.bytesperline = 352,
358 		.sizeimage = 352 * 288 * 3,
359 		.colorspace = V4L2_COLORSPACE_JPEG,
360 		.priv = 0},
361 };
362 
363 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
364 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
365 		.bytesperline = 800,
366 		.sizeimage = 800 * 600,
367 		.colorspace = V4L2_COLORSPACE_SRGB,
368 		.priv = 1},
369 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
370 		.bytesperline = 1600,
371 		.sizeimage = 1600 * 1200,
372 		.colorspace = V4L2_COLORSPACE_SRGB},
373 };
374 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
375 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
376 		.bytesperline = 640,
377 		.sizeimage = 640 * 480,
378 		.colorspace = V4L2_COLORSPACE_SRGB,
379 		.priv = 1},
380 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
381 		.bytesperline = 800,
382 		.sizeimage = 800 * 600,
383 		.colorspace = V4L2_COLORSPACE_SRGB,
384 		.priv = 1},
385 	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
386 		.bytesperline = 1024,
387 		.sizeimage = 1024 * 768,
388 		.colorspace = V4L2_COLORSPACE_SRGB,
389 		.priv = 1},
390 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
391 		.bytesperline = 1600,
392 		.sizeimage = 1600 * 1200,
393 		.colorspace = V4L2_COLORSPACE_SRGB,
394 		.priv = 0},
395 	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
396 		.bytesperline = 2048,
397 		.sizeimage = 2048 * 1536,
398 		.colorspace = V4L2_COLORSPACE_SRGB,
399 		.priv = 0},
400 };
401 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
402 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
403 		.bytesperline = 640,
404 		.sizeimage = 640 * 480,
405 		.colorspace = V4L2_COLORSPACE_SRGB,
406 		.priv = 1},
407 	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
408 		.bytesperline = 1280,
409 		.sizeimage = 1280 * 1024,
410 		.colorspace = V4L2_COLORSPACE_SRGB},
411 };
412 
413 /* Registers common to OV511 / OV518 */
414 #define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
415 #define R51x_SYS_RESET			0x50
416 	/* Reset type flags */
417 	#define	OV511_RESET_OMNICE	0x08
418 #define R51x_SYS_INIT			0x53
419 #define R51x_SYS_SNAP			0x52
420 #define R51x_SYS_CUST_ID		0x5f
421 #define R51x_COMP_LUT_BEGIN		0x80
422 
423 /* OV511 Camera interface register numbers */
424 #define R511_CAM_DELAY			0x10
425 #define R511_CAM_EDGE			0x11
426 #define R511_CAM_PXCNT			0x12
427 #define R511_CAM_LNCNT			0x13
428 #define R511_CAM_PXDIV			0x14
429 #define R511_CAM_LNDIV			0x15
430 #define R511_CAM_UV_EN			0x16
431 #define R511_CAM_LINE_MODE		0x17
432 #define R511_CAM_OPTS			0x18
433 
434 #define R511_SNAP_FRAME			0x19
435 #define R511_SNAP_PXCNT			0x1a
436 #define R511_SNAP_LNCNT			0x1b
437 #define R511_SNAP_PXDIV			0x1c
438 #define R511_SNAP_LNDIV			0x1d
439 #define R511_SNAP_UV_EN			0x1e
440 #define R511_SNAP_OPTS			0x1f
441 
442 #define R511_DRAM_FLOW_CTL		0x20
443 #define R511_FIFO_OPTS			0x31
444 #define R511_I2C_CTL			0x40
445 #define R511_SYS_LED_CTL		0x55	/* OV511+ only */
446 #define R511_COMP_EN			0x78
447 #define R511_COMP_LUT_EN		0x79
448 
449 /* OV518 Camera interface register numbers */
450 #define R518_GPIO_OUT			0x56	/* OV518(+) only */
451 #define R518_GPIO_CTL			0x57	/* OV518(+) only */
452 
453 /* OV519 Camera interface register numbers */
454 #define OV519_R10_H_SIZE		0x10
455 #define OV519_R11_V_SIZE		0x11
456 #define OV519_R12_X_OFFSETL		0x12
457 #define OV519_R13_X_OFFSETH		0x13
458 #define OV519_R14_Y_OFFSETL		0x14
459 #define OV519_R15_Y_OFFSETH		0x15
460 #define OV519_R16_DIVIDER		0x16
461 #define OV519_R20_DFR			0x20
462 #define OV519_R25_FORMAT		0x25
463 
464 /* OV519 System Controller register numbers */
465 #define OV519_R51_RESET1		0x51
466 #define OV519_R54_EN_CLK1		0x54
467 #define OV519_R57_SNAPSHOT		0x57
468 
469 #define OV519_GPIO_DATA_OUT0		0x71
470 #define OV519_GPIO_IO_CTRL0		0x72
471 
472 /*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
473 
474 /*
475  * The FX2 chip does not give us a zero length read at end of frame.
476  * It does, however, give a short read at the end of a frame, if
477  * necessary, rather than run two frames together.
478  *
479  * By choosing the right bulk transfer size, we are guaranteed to always
480  * get a short read for the last read of each frame.  Frame sizes are
481  * always a composite number (width * height, or a multiple) so if we
482  * choose a prime number, we are guaranteed that the last read of a
483  * frame will be short.
484  *
485  * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
486  * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
487  * to figure out why.  [PMiller]
488  *
489  * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
490  *
491  * It isn't enough to know the number of bytes per frame, in case we
492  * have data dropouts or buffer overruns (even though the FX2 double
493  * buffers, there are some pretty strict real time constraints for
494  * isochronous transfer for larger frame sizes).
495  */
496 /*jfm: this value does not work for 800x600 - see isoc_init */
497 #define OVFX2_BULK_SIZE (13 * 4096)
498 
499 /* I2C registers */
500 #define R51x_I2C_W_SID		0x41
501 #define R51x_I2C_SADDR_3	0x42
502 #define R51x_I2C_SADDR_2	0x43
503 #define R51x_I2C_R_SID		0x44
504 #define R51x_I2C_DATA		0x45
505 #define R518_I2C_CTL		0x47	/* OV518(+) only */
506 #define OVFX2_I2C_ADDR		0x00
507 
508 /* I2C ADDRESSES */
509 #define OV7xx0_SID   0x42
510 #define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
511 #define OV8xx0_SID   0xa0
512 #define OV6xx0_SID   0xc0
513 
514 /* OV7610 registers */
515 #define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
516 #define OV7610_REG_BLUE		0x01	/* blue channel balance */
517 #define OV7610_REG_RED		0x02	/* red channel balance */
518 #define OV7610_REG_SAT		0x03	/* saturation */
519 #define OV8610_REG_HUE		0x04	/* 04 reserved */
520 #define OV7610_REG_CNT		0x05	/* Y contrast */
521 #define OV7610_REG_BRT		0x06	/* Y brightness */
522 #define OV7610_REG_COM_C	0x14	/* misc common regs */
523 #define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
524 #define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
525 #define OV7610_REG_COM_I	0x29	/* misc settings */
526 
527 /* OV7660 and OV7670 registers */
528 #define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
529 #define OV7670_R01_BLUE		0x01	/* blue gain */
530 #define OV7670_R02_RED		0x02	/* red gain */
531 #define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
532 #define OV7670_R04_COM1		0x04	/* Control 1 */
533 /*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
534 #define OV7670_R0C_COM3		0x0c	/* Control 3 */
535 #define OV7670_R0D_COM4		0x0d	/* Control 4 */
536 #define OV7670_R0E_COM5		0x0e	/* All "reserved" */
537 #define OV7670_R0F_COM6		0x0f	/* Control 6 */
538 #define OV7670_R10_AECH		0x10	/* More bits of AEC value */
539 #define OV7670_R11_CLKRC	0x11	/* Clock control */
540 #define OV7670_R12_COM7		0x12	/* Control 7 */
541 #define   OV7670_COM7_FMT_VGA	 0x00
542 /*#define   OV7670_COM7_YUV	 0x00	 * YUV */
543 #define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
544 #define   OV7670_COM7_FMT_MASK	 0x38
545 #define   OV7670_COM7_RESET	 0x80	/* Register reset */
546 #define OV7670_R13_COM8		0x13	/* Control 8 */
547 #define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
548 #define   OV7670_COM8_AWB	 0x02	/* White balance enable */
549 #define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
550 #define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
551 #define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
552 #define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
553 #define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
554 #define OV7670_R15_COM10	0x15	/* Control 10 */
555 #define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
556 #define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
557 #define OV7670_R19_VSTART	0x19	/* Vert start high bits */
558 #define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
559 #define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
560 #define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
561 #define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
562 #define OV7670_R24_AEW		0x24	/* AGC upper limit */
563 #define OV7670_R25_AEB		0x25	/* AGC lower limit */
564 #define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
565 #define OV7670_R32_HREF		0x32	/* HREF pieces */
566 #define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
567 #define OV7670_R3B_COM11	0x3b	/* Control 11 */
568 #define   OV7670_COM11_EXP	 0x02
569 #define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
570 #define OV7670_R3C_COM12	0x3c	/* Control 12 */
571 #define OV7670_R3D_COM13	0x3d	/* Control 13 */
572 #define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
573 #define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
574 #define OV7670_R3E_COM14	0x3e	/* Control 14 */
575 #define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
576 #define OV7670_R40_COM15	0x40	/* Control 15 */
577 /*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
578 #define OV7670_R41_COM16	0x41	/* Control 16 */
579 #define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
580 /* end of ov7660 common registers */
581 #define OV7670_R55_BRIGHT	0x55	/* Brightness */
582 #define OV7670_R56_CONTRAS	0x56	/* Contrast control */
583 #define OV7670_R69_GFIX		0x69	/* Fix gain control */
584 /*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
585 #define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
586 #define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
587 #define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
588 #define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
589 #define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
590 #define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
591 #define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
592 #define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
593 #define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
594 
595 struct ov_regvals {
596 	u8 reg;
597 	u8 val;
598 };
599 struct ov_i2c_regvals {
600 	u8 reg;
601 	u8 val;
602 };
603 
604 /* Settings for OV2610 camera chip */
605 static const struct ov_i2c_regvals norm_2610[] = {
606 	{ 0x12, 0x80 },	/* reset */
607 };
608 
609 static const struct ov_i2c_regvals norm_2610ae[] = {
610 	{0x12, 0x80},	/* reset */
611 	{0x13, 0xcd},
612 	{0x09, 0x01},
613 	{0x0d, 0x00},
614 	{0x11, 0x80},
615 	{0x12, 0x20},	/* 1600x1200 */
616 	{0x33, 0x0c},
617 	{0x35, 0x90},
618 	{0x36, 0x37},
619 /* ms-win traces */
620 	{0x11, 0x83},	/* clock / 3 ? */
621 	{0x2d, 0x00},	/* 60 Hz filter */
622 	{0x24, 0xb0},	/* normal colors */
623 	{0x25, 0x90},
624 	{0x10, 0x43},
625 };
626 
627 static const struct ov_i2c_regvals norm_3620b[] = {
628 	/*
629 	 * From the datasheet: "Note that after writing to register COMH
630 	 * (0x12) to change the sensor mode, registers related to the
631 	 * sensor’s cropping window will be reset back to their default
632 	 * values."
633 	 *
634 	 * "wait 4096 external clock ... to make sure the sensor is
635 	 * stable and ready to access registers" i.e. 160us at 24MHz
636 	 */
637 	{ 0x12, 0x80 }, /* COMH reset */
638 	{ 0x12, 0x00 }, /* QXGA, master */
639 
640 	/*
641 	 * 11 CLKRC "Clock Rate Control"
642 	 * [7] internal frequency doublers: on
643 	 * [6] video port mode: master
644 	 * [5:0] clock divider: 1
645 	 */
646 	{ 0x11, 0x80 },
647 
648 	/*
649 	 * 13 COMI "Common Control I"
650 	 *                  = 192 (0xC0) 11000000
651 	 *    COMI[7] "AEC speed selection"
652 	 *                  =   1 (0x01) 1....... "Faster AEC correction"
653 	 *    COMI[6] "AEC speed step selection"
654 	 *                  =   1 (0x01) .1...... "Big steps, fast"
655 	 *    COMI[5] "Banding filter on off"
656 	 *                  =   0 (0x00) ..0..... "Off"
657 	 *    COMI[4] "Banding filter option"
658 	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
659 	 *                                         the PLL is ON"
660 	 *    COMI[3] "Reserved"
661 	 *                  =   0 (0x00) ....0...
662 	 *    COMI[2] "AGC auto manual control selection"
663 	 *                  =   0 (0x00) .....0.. "Manual"
664 	 *    COMI[1] "AWB auto manual control selection"
665 	 *                  =   0 (0x00) ......0. "Manual"
666 	 *    COMI[0] "Exposure control"
667 	 *                  =   0 (0x00) .......0 "Manual"
668 	 */
669 	{ 0x13, 0xc0 },
670 
671 	/*
672 	 * 09 COMC "Common Control C"
673 	 *                  =   8 (0x08) 00001000
674 	 *    COMC[7:5] "Reserved"
675 	 *                  =   0 (0x00) 000.....
676 	 *    COMC[4] "Sleep Mode Enable"
677 	 *                  =   0 (0x00) ...0.... "Normal mode"
678 	 *    COMC[3:2] "Sensor sampling reset timing selection"
679 	 *                  =   2 (0x02) ....10.. "Longer reset time"
680 	 *    COMC[1:0] "Output drive current select"
681 	 *                  =   0 (0x00) ......00 "Weakest"
682 	 */
683 	{ 0x09, 0x08 },
684 
685 	/*
686 	 * 0C COMD "Common Control D"
687 	 *                  =   8 (0x08) 00001000
688 	 *    COMD[7] "Reserved"
689 	 *                  =   0 (0x00) 0.......
690 	 *    COMD[6] "Swap MSB and LSB at the output port"
691 	 *                  =   0 (0x00) .0...... "False"
692 	 *    COMD[5:3] "Reserved"
693 	 *                  =   1 (0x01) ..001...
694 	 *    COMD[2] "Output Average On Off"
695 	 *                  =   0 (0x00) .....0.. "Output Normal"
696 	 *    COMD[1] "Sensor precharge voltage selection"
697 	 *                  =   0 (0x00) ......0. "Selects internal
698 	 *                                         reference precharge
699 	 *                                         voltage"
700 	 *    COMD[0] "Snapshot option"
701 	 *                  =   0 (0x00) .......0 "Enable live video output
702 	 *                                         after snapshot sequence"
703 	 */
704 	{ 0x0c, 0x08 },
705 
706 	/*
707 	 * 0D COME "Common Control E"
708 	 *                  = 161 (0xA1) 10100001
709 	 *    COME[7] "Output average option"
710 	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
711 	 *    COME[6] "Anti-blooming control"
712 	 *                  =   0 (0x00) .0...... "Off"
713 	 *    COME[5:3] "Reserved"
714 	 *                  =   4 (0x04) ..100...
715 	 *    COME[2] "Clock output power down pin status"
716 	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
717 	 *                                         on power down"
718 	 *    COME[1] "Data output pin status selection at power down"
719 	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
720 	 *                                         HREF, and CHSYNC pins on
721 	 *                                         power down"
722 	 *    COME[0] "Auto zero circuit select"
723 	 *                  =   1 (0x01) .......1 "On"
724 	 */
725 	{ 0x0d, 0xa1 },
726 
727 	/*
728 	 * 0E COMF "Common Control F"
729 	 *                  = 112 (0x70) 01110000
730 	 *    COMF[7] "System clock selection"
731 	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
732 	 *    COMF[6:4] "Reserved"
733 	 *                  =   7 (0x07) .111....
734 	 *    COMF[3] "Manual auto negative offset canceling selection"
735 	 *                  =   0 (0x00) ....0... "Auto detect negative
736 	 *                                         offset and cancel it"
737 	 *    COMF[2:0] "Reserved"
738 	 *                  =   0 (0x00) .....000
739 	 */
740 	{ 0x0e, 0x70 },
741 
742 	/*
743 	 * 0F COMG "Common Control G"
744 	 *                  =  66 (0x42) 01000010
745 	 *    COMG[7] "Optical black output selection"
746 	 *                  =   0 (0x00) 0....... "Disable"
747 	 *    COMG[6] "Black level calibrate selection"
748 	 *                  =   1 (0x01) .1...... "Use optical black pixels
749 	 *                                         to calibrate"
750 	 *    COMG[5:4] "Reserved"
751 	 *                  =   0 (0x00) ..00....
752 	 *    COMG[3] "Channel offset adjustment"
753 	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
754 	 *    COMG[2] "ADC black level calibration option"
755 	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
756 	 *                                         line to calibrate each
757 	 *                                         channel's black level"
758 	 *    COMG[1] "Reserved"
759 	 *                  =   1 (0x01) ......1.
760 	 *    COMG[0] "ADC black level calibration enable"
761 	 *                  =   0 (0x00) .......0 "Disable"
762 	 */
763 	{ 0x0f, 0x42 },
764 
765 	/*
766 	 * 14 COMJ "Common Control J"
767 	 *                  = 198 (0xC6) 11000110
768 	 *    COMJ[7:6] "AGC gain ceiling"
769 	 *                  =   3 (0x03) 11...... "8x"
770 	 *    COMJ[5:4] "Reserved"
771 	 *                  =   0 (0x00) ..00....
772 	 *    COMJ[3] "Auto banding filter"
773 	 *                  =   0 (0x00) ....0... "Banding filter is always
774 	 *                                         on off depending on
775 	 *                                         COMI[5] setting"
776 	 *    COMJ[2] "VSYNC drop option"
777 	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
778 	 *                                         data is dropped"
779 	 *    COMJ[1] "Frame data drop"
780 	 *                  =   1 (0x01) ......1. "Drop frame data if
781 	 *                                         exposure is not within
782 	 *                                         tolerance.  In AEC mode,
783 	 *                                         data is normally dropped
784 	 *                                         when data is out of
785 	 *                                         range."
786 	 *    COMJ[0] "Reserved"
787 	 *                  =   0 (0x00) .......0
788 	 */
789 	{ 0x14, 0xc6 },
790 
791 	/*
792 	 * 15 COMK "Common Control K"
793 	 *                  =   2 (0x02) 00000010
794 	 *    COMK[7] "CHSYNC pin output swap"
795 	 *                  =   0 (0x00) 0....... "CHSYNC"
796 	 *    COMK[6] "HREF pin output swap"
797 	 *                  =   0 (0x00) .0...... "HREF"
798 	 *    COMK[5] "PCLK output selection"
799 	 *                  =   0 (0x00) ..0..... "PCLK always output"
800 	 *    COMK[4] "PCLK edge selection"
801 	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
802 	 *    COMK[3] "HREF output polarity"
803 	 *                  =   0 (0x00) ....0... "positive"
804 	 *    COMK[2] "Reserved"
805 	 *                  =   0 (0x00) .....0..
806 	 *    COMK[1] "VSYNC polarity"
807 	 *                  =   1 (0x01) ......1. "negative"
808 	 *    COMK[0] "HSYNC polarity"
809 	 *                  =   0 (0x00) .......0 "positive"
810 	 */
811 	{ 0x15, 0x02 },
812 
813 	/*
814 	 * 33 CHLF "Current Control"
815 	 *                  =   9 (0x09) 00001001
816 	 *    CHLF[7:6] "Sensor current control"
817 	 *                  =   0 (0x00) 00......
818 	 *    CHLF[5] "Sensor current range control"
819 	 *                  =   0 (0x00) ..0..... "normal range"
820 	 *    CHLF[4] "Sensor current"
821 	 *                  =   0 (0x00) ...0.... "normal current"
822 	 *    CHLF[3] "Sensor buffer current control"
823 	 *                  =   1 (0x01) ....1... "half current"
824 	 *    CHLF[2] "Column buffer current control"
825 	 *                  =   0 (0x00) .....0.. "normal current"
826 	 *    CHLF[1] "Analog DSP current control"
827 	 *                  =   0 (0x00) ......0. "normal current"
828 	 *    CHLF[1] "ADC current control"
829 	 *                  =   0 (0x00) ......0. "normal current"
830 	 */
831 	{ 0x33, 0x09 },
832 
833 	/*
834 	 * 34 VBLM "Blooming Control"
835 	 *                  =  80 (0x50) 01010000
836 	 *    VBLM[7] "Hard soft reset switch"
837 	 *                  =   0 (0x00) 0....... "Hard reset"
838 	 *    VBLM[6:4] "Blooming voltage selection"
839 	 *                  =   5 (0x05) .101....
840 	 *    VBLM[3:0] "Sensor current control"
841 	 *                  =   0 (0x00) ....0000
842 	 */
843 	{ 0x34, 0x50 },
844 
845 	/*
846 	 * 36 VCHG "Sensor Precharge Voltage Control"
847 	 *                  =   0 (0x00) 00000000
848 	 *    VCHG[7] "Reserved"
849 	 *                  =   0 (0x00) 0.......
850 	 *    VCHG[6:4] "Sensor precharge voltage control"
851 	 *                  =   0 (0x00) .000....
852 	 *    VCHG[3:0] "Sensor array common reference"
853 	 *                  =   0 (0x00) ....0000
854 	 */
855 	{ 0x36, 0x00 },
856 
857 	/*
858 	 * 37 ADC "ADC Reference Control"
859 	 *                  =   4 (0x04) 00000100
860 	 *    ADC[7:4] "Reserved"
861 	 *                  =   0 (0x00) 0000....
862 	 *    ADC[3] "ADC input signal range"
863 	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
864 	 *    ADC[2:0] "ADC range control"
865 	 *                  =   4 (0x04) .....100
866 	 */
867 	{ 0x37, 0x04 },
868 
869 	/*
870 	 * 38 ACOM "Analog Common Ground"
871 	 *                  =  82 (0x52) 01010010
872 	 *    ACOM[7] "Analog gain control"
873 	 *                  =   0 (0x00) 0....... "Gain 1x"
874 	 *    ACOM[6] "Analog black level calibration"
875 	 *                  =   1 (0x01) .1...... "On"
876 	 *    ACOM[5:0] "Reserved"
877 	 *                  =  18 (0x12) ..010010
878 	 */
879 	{ 0x38, 0x52 },
880 
881 	/*
882 	 * 3A FREFA "Internal Reference Adjustment"
883 	 *                  =   0 (0x00) 00000000
884 	 *    FREFA[7:0] "Range"
885 	 *                  =   0 (0x00) 00000000
886 	 */
887 	{ 0x3a, 0x00 },
888 
889 	/*
890 	 * 3C FVOPT "Internal Reference Adjustment"
891 	 *                  =  31 (0x1F) 00011111
892 	 *    FVOPT[7:0] "Range"
893 	 *                  =  31 (0x1F) 00011111
894 	 */
895 	{ 0x3c, 0x1f },
896 
897 	/*
898 	 * 44 Undocumented  =   0 (0x00) 00000000
899 	 *    44[7:0] "It's a secret"
900 	 *                  =   0 (0x00) 00000000
901 	 */
902 	{ 0x44, 0x00 },
903 
904 	/*
905 	 * 40 Undocumented  =   0 (0x00) 00000000
906 	 *    40[7:0] "It's a secret"
907 	 *                  =   0 (0x00) 00000000
908 	 */
909 	{ 0x40, 0x00 },
910 
911 	/*
912 	 * 41 Undocumented  =   0 (0x00) 00000000
913 	 *    41[7:0] "It's a secret"
914 	 *                  =   0 (0x00) 00000000
915 	 */
916 	{ 0x41, 0x00 },
917 
918 	/*
919 	 * 42 Undocumented  =   0 (0x00) 00000000
920 	 *    42[7:0] "It's a secret"
921 	 *                  =   0 (0x00) 00000000
922 	 */
923 	{ 0x42, 0x00 },
924 
925 	/*
926 	 * 43 Undocumented  =   0 (0x00) 00000000
927 	 *    43[7:0] "It's a secret"
928 	 *                  =   0 (0x00) 00000000
929 	 */
930 	{ 0x43, 0x00 },
931 
932 	/*
933 	 * 45 Undocumented  = 128 (0x80) 10000000
934 	 *    45[7:0] "It's a secret"
935 	 *                  = 128 (0x80) 10000000
936 	 */
937 	{ 0x45, 0x80 },
938 
939 	/*
940 	 * 48 Undocumented  = 192 (0xC0) 11000000
941 	 *    48[7:0] "It's a secret"
942 	 *                  = 192 (0xC0) 11000000
943 	 */
944 	{ 0x48, 0xc0 },
945 
946 	/*
947 	 * 49 Undocumented  =  25 (0x19) 00011001
948 	 *    49[7:0] "It's a secret"
949 	 *                  =  25 (0x19) 00011001
950 	 */
951 	{ 0x49, 0x19 },
952 
953 	/*
954 	 * 4B Undocumented  = 128 (0x80) 10000000
955 	 *    4B[7:0] "It's a secret"
956 	 *                  = 128 (0x80) 10000000
957 	 */
958 	{ 0x4b, 0x80 },
959 
960 	/*
961 	 * 4D Undocumented  = 196 (0xC4) 11000100
962 	 *    4D[7:0] "It's a secret"
963 	 *                  = 196 (0xC4) 11000100
964 	 */
965 	{ 0x4d, 0xc4 },
966 
967 	/*
968 	 * 35 VREF "Reference Voltage Control"
969 	 *                  =  76 (0x4c) 01001100
970 	 *    VREF[7:5] "Column high reference control"
971 	 *                  =   2 (0x02) 010..... "higher voltage"
972 	 *    VREF[4:2] "Column low reference control"
973 	 *                  =   3 (0x03) ...011.. "Highest voltage"
974 	 *    VREF[1:0] "Reserved"
975 	 *                  =   0 (0x00) ......00
976 	 */
977 	{ 0x35, 0x4c },
978 
979 	/*
980 	 * 3D Undocumented  =   0 (0x00) 00000000
981 	 *    3D[7:0] "It's a secret"
982 	 *                  =   0 (0x00) 00000000
983 	 */
984 	{ 0x3d, 0x00 },
985 
986 	/*
987 	 * 3E Undocumented  =   0 (0x00) 00000000
988 	 *    3E[7:0] "It's a secret"
989 	 *                  =   0 (0x00) 00000000
990 	 */
991 	{ 0x3e, 0x00 },
992 
993 	/*
994 	 * 3B FREFB "Internal Reference Adjustment"
995 	 *                  =  24 (0x18) 00011000
996 	 *    FREFB[7:0] "Range"
997 	 *                  =  24 (0x18) 00011000
998 	 */
999 	{ 0x3b, 0x18 },
1000 
1001 	/*
1002 	 * 33 CHLF "Current Control"
1003 	 *                  =  25 (0x19) 00011001
1004 	 *    CHLF[7:6] "Sensor current control"
1005 	 *                  =   0 (0x00) 00......
1006 	 *    CHLF[5] "Sensor current range control"
1007 	 *                  =   0 (0x00) ..0..... "normal range"
1008 	 *    CHLF[4] "Sensor current"
1009 	 *                  =   1 (0x01) ...1.... "double current"
1010 	 *    CHLF[3] "Sensor buffer current control"
1011 	 *                  =   1 (0x01) ....1... "half current"
1012 	 *    CHLF[2] "Column buffer current control"
1013 	 *                  =   0 (0x00) .....0.. "normal current"
1014 	 *    CHLF[1] "Analog DSP current control"
1015 	 *                  =   0 (0x00) ......0. "normal current"
1016 	 *    CHLF[1] "ADC current control"
1017 	 *                  =   0 (0x00) ......0. "normal current"
1018 	 */
1019 	{ 0x33, 0x19 },
1020 
1021 	/*
1022 	 * 34 VBLM "Blooming Control"
1023 	 *                  =  90 (0x5A) 01011010
1024 	 *    VBLM[7] "Hard soft reset switch"
1025 	 *                  =   0 (0x00) 0....... "Hard reset"
1026 	 *    VBLM[6:4] "Blooming voltage selection"
1027 	 *                  =   5 (0x05) .101....
1028 	 *    VBLM[3:0] "Sensor current control"
1029 	 *                  =  10 (0x0A) ....1010
1030 	 */
1031 	{ 0x34, 0x5a },
1032 
1033 	/*
1034 	 * 3B FREFB "Internal Reference Adjustment"
1035 	 *                  =   0 (0x00) 00000000
1036 	 *    FREFB[7:0] "Range"
1037 	 *                  =   0 (0x00) 00000000
1038 	 */
1039 	{ 0x3b, 0x00 },
1040 
1041 	/*
1042 	 * 33 CHLF "Current Control"
1043 	 *                  =   9 (0x09) 00001001
1044 	 *    CHLF[7:6] "Sensor current control"
1045 	 *                  =   0 (0x00) 00......
1046 	 *    CHLF[5] "Sensor current range control"
1047 	 *                  =   0 (0x00) ..0..... "normal range"
1048 	 *    CHLF[4] "Sensor current"
1049 	 *                  =   0 (0x00) ...0.... "normal current"
1050 	 *    CHLF[3] "Sensor buffer current control"
1051 	 *                  =   1 (0x01) ....1... "half current"
1052 	 *    CHLF[2] "Column buffer current control"
1053 	 *                  =   0 (0x00) .....0.. "normal current"
1054 	 *    CHLF[1] "Analog DSP current control"
1055 	 *                  =   0 (0x00) ......0. "normal current"
1056 	 *    CHLF[1] "ADC current control"
1057 	 *                  =   0 (0x00) ......0. "normal current"
1058 	 */
1059 	{ 0x33, 0x09 },
1060 
1061 	/*
1062 	 * 34 VBLM "Blooming Control"
1063 	 *                  =  80 (0x50) 01010000
1064 	 *    VBLM[7] "Hard soft reset switch"
1065 	 *                  =   0 (0x00) 0....... "Hard reset"
1066 	 *    VBLM[6:4] "Blooming voltage selection"
1067 	 *                  =   5 (0x05) .101....
1068 	 *    VBLM[3:0] "Sensor current control"
1069 	 *                  =   0 (0x00) ....0000
1070 	 */
1071 	{ 0x34, 0x50 },
1072 
1073 	/*
1074 	 * 12 COMH "Common Control H"
1075 	 *                  =  64 (0x40) 01000000
1076 	 *    COMH[7] "SRST"
1077 	 *                  =   0 (0x00) 0....... "No-op"
1078 	 *    COMH[6:4] "Resolution selection"
1079 	 *                  =   4 (0x04) .100.... "XGA"
1080 	 *    COMH[3] "Master slave selection"
1081 	 *                  =   0 (0x00) ....0... "Master mode"
1082 	 *    COMH[2] "Internal B/R channel option"
1083 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1084 	 *    COMH[1] "Color bar test pattern"
1085 	 *                  =   0 (0x00) ......0. "Off"
1086 	 *    COMH[0] "Reserved"
1087 	 *                  =   0 (0x00) .......0
1088 	 */
1089 	{ 0x12, 0x40 },
1090 
1091 	/*
1092 	 * 17 HREFST "Horizontal window start"
1093 	 *                  =  31 (0x1F) 00011111
1094 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1095 	 *                  =  31 (0x1F) 00011111
1096 	 */
1097 	{ 0x17, 0x1f },
1098 
1099 	/*
1100 	 * 18 HREFEND "Horizontal window end"
1101 	 *                  =  95 (0x5F) 01011111
1102 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1103 	 *                  =  95 (0x5F) 01011111
1104 	 */
1105 	{ 0x18, 0x5f },
1106 
1107 	/*
1108 	 * 19 VSTRT "Vertical window start"
1109 	 *                  =   0 (0x00) 00000000
1110 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1111 	 *                  =   0 (0x00) 00000000
1112 	 */
1113 	{ 0x19, 0x00 },
1114 
1115 	/*
1116 	 * 1A VEND "Vertical window end"
1117 	 *                  =  96 (0x60) 01100000
1118 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1119 	 *                  =  96 (0x60) 01100000
1120 	 */
1121 	{ 0x1a, 0x60 },
1122 
1123 	/*
1124 	 * 32 COMM "Common Control M"
1125 	 *                  =  18 (0x12) 00010010
1126 	 *    COMM[7:6] "Pixel clock divide option"
1127 	 *                  =   0 (0x00) 00...... "/1"
1128 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1129 	 *                  =   2 (0x02) ..010...
1130 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1131 	 *                  =   2 (0x02) .....010
1132 	 */
1133 	{ 0x32, 0x12 },
1134 
1135 	/*
1136 	 * 03 COMA "Common Control A"
1137 	 *                  =  74 (0x4A) 01001010
1138 	 *    COMA[7:4] "AWB Update Threshold"
1139 	 *                  =   4 (0x04) 0100....
1140 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1141 	 *                  =   2 (0x02) ....10..
1142 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1143 	 *                  =   2 (0x02) ......10
1144 	 */
1145 	{ 0x03, 0x4a },
1146 
1147 	/*
1148 	 * 11 CLKRC "Clock Rate Control"
1149 	 *                  = 128 (0x80) 10000000
1150 	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1151 	 *                  =   1 (0x01) 1....... "On"
1152 	 *    CLKRC[6] "Digital video master slave selection"
1153 	 *                  =   0 (0x00) .0...... "Master mode, sensor
1154 	 *                                         provides PCLK"
1155 	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1156 	 *                  =   0 (0x00) ..000000
1157 	 */
1158 	{ 0x11, 0x80 },
1159 
1160 	/*
1161 	 * 12 COMH "Common Control H"
1162 	 *                  =   0 (0x00) 00000000
1163 	 *    COMH[7] "SRST"
1164 	 *                  =   0 (0x00) 0....... "No-op"
1165 	 *    COMH[6:4] "Resolution selection"
1166 	 *                  =   0 (0x00) .000.... "QXGA"
1167 	 *    COMH[3] "Master slave selection"
1168 	 *                  =   0 (0x00) ....0... "Master mode"
1169 	 *    COMH[2] "Internal B/R channel option"
1170 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1171 	 *    COMH[1] "Color bar test pattern"
1172 	 *                  =   0 (0x00) ......0. "Off"
1173 	 *    COMH[0] "Reserved"
1174 	 *                  =   0 (0x00) .......0
1175 	 */
1176 	{ 0x12, 0x00 },
1177 
1178 	/*
1179 	 * 12 COMH "Common Control H"
1180 	 *                  =  64 (0x40) 01000000
1181 	 *    COMH[7] "SRST"
1182 	 *                  =   0 (0x00) 0....... "No-op"
1183 	 *    COMH[6:4] "Resolution selection"
1184 	 *                  =   4 (0x04) .100.... "XGA"
1185 	 *    COMH[3] "Master slave selection"
1186 	 *                  =   0 (0x00) ....0... "Master mode"
1187 	 *    COMH[2] "Internal B/R channel option"
1188 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1189 	 *    COMH[1] "Color bar test pattern"
1190 	 *                  =   0 (0x00) ......0. "Off"
1191 	 *    COMH[0] "Reserved"
1192 	 *                  =   0 (0x00) .......0
1193 	 */
1194 	{ 0x12, 0x40 },
1195 
1196 	/*
1197 	 * 17 HREFST "Horizontal window start"
1198 	 *                  =  31 (0x1F) 00011111
1199 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1200 	 *                  =  31 (0x1F) 00011111
1201 	 */
1202 	{ 0x17, 0x1f },
1203 
1204 	/*
1205 	 * 18 HREFEND "Horizontal window end"
1206 	 *                  =  95 (0x5F) 01011111
1207 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1208 	 *                  =  95 (0x5F) 01011111
1209 	 */
1210 	{ 0x18, 0x5f },
1211 
1212 	/*
1213 	 * 19 VSTRT "Vertical window start"
1214 	 *                  =   0 (0x00) 00000000
1215 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1216 	 *                  =   0 (0x00) 00000000
1217 	 */
1218 	{ 0x19, 0x00 },
1219 
1220 	/*
1221 	 * 1A VEND "Vertical window end"
1222 	 *                  =  96 (0x60) 01100000
1223 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1224 	 *                  =  96 (0x60) 01100000
1225 	 */
1226 	{ 0x1a, 0x60 },
1227 
1228 	/*
1229 	 * 32 COMM "Common Control M"
1230 	 *                  =  18 (0x12) 00010010
1231 	 *    COMM[7:6] "Pixel clock divide option"
1232 	 *                  =   0 (0x00) 00...... "/1"
1233 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1234 	 *                  =   2 (0x02) ..010...
1235 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1236 	 *                  =   2 (0x02) .....010
1237 	 */
1238 	{ 0x32, 0x12 },
1239 
1240 	/*
1241 	 * 03 COMA "Common Control A"
1242 	 *                  =  74 (0x4A) 01001010
1243 	 *    COMA[7:4] "AWB Update Threshold"
1244 	 *                  =   4 (0x04) 0100....
1245 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1246 	 *                  =   2 (0x02) ....10..
1247 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1248 	 *                  =   2 (0x02) ......10
1249 	 */
1250 	{ 0x03, 0x4a },
1251 
1252 	/*
1253 	 * 02 RED "Red Gain Control"
1254 	 *                  = 175 (0xAF) 10101111
1255 	 *    RED[7] "Action"
1256 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1257 	 *    RED[6:0] "Value"
1258 	 *                  =  47 (0x2F) .0101111
1259 	 */
1260 	{ 0x02, 0xaf },
1261 
1262 	/*
1263 	 * 2D ADDVSL "VSYNC Pulse Width"
1264 	 *                  = 210 (0xD2) 11010010
1265 	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1266 	 *                  = 210 (0xD2) 11010010
1267 	 */
1268 	{ 0x2d, 0xd2 },
1269 
1270 	/*
1271 	 * 00 GAIN          =  24 (0x18) 00011000
1272 	 *    GAIN[7:6] "Reserved"
1273 	 *                  =   0 (0x00) 00......
1274 	 *    GAIN[5] "Double"
1275 	 *                  =   0 (0x00) ..0..... "False"
1276 	 *    GAIN[4] "Double"
1277 	 *                  =   1 (0x01) ...1.... "True"
1278 	 *    GAIN[3:0] "Range"
1279 	 *                  =   8 (0x08) ....1000
1280 	 */
1281 	{ 0x00, 0x18 },
1282 
1283 	/*
1284 	 * 01 BLUE "Blue Gain Control"
1285 	 *                  = 240 (0xF0) 11110000
1286 	 *    BLUE[7] "Action"
1287 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1288 	 *    BLUE[6:0] "Value"
1289 	 *                  = 112 (0x70) .1110000
1290 	 */
1291 	{ 0x01, 0xf0 },
1292 
1293 	/*
1294 	 * 10 AEC "Automatic Exposure Control"
1295 	 *                  =  10 (0x0A) 00001010
1296 	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1297 	 *                  =  10 (0x0A) 00001010
1298 	 */
1299 	{ 0x10, 0x0a },
1300 
1301 	{ 0xe1, 0x67 },
1302 	{ 0xe3, 0x03 },
1303 	{ 0xe4, 0x26 },
1304 	{ 0xe5, 0x3e },
1305 	{ 0xf8, 0x01 },
1306 	{ 0xff, 0x01 },
1307 };
1308 
1309 static const struct ov_i2c_regvals norm_6x20[] = {
1310 	{ 0x12, 0x80 }, /* reset */
1311 	{ 0x11, 0x01 },
1312 	{ 0x03, 0x60 },
1313 	{ 0x05, 0x7f }, /* For when autoadjust is off */
1314 	{ 0x07, 0xa8 },
1315 	/* The ratio of 0x0c and 0x0d controls the white point */
1316 	{ 0x0c, 0x24 },
1317 	{ 0x0d, 0x24 },
1318 	{ 0x0f, 0x15 }, /* COMS */
1319 	{ 0x10, 0x75 }, /* AEC Exposure time */
1320 	{ 0x12, 0x24 }, /* Enable AGC */
1321 	{ 0x14, 0x04 },
1322 	/* 0x16: 0x06 helps frame stability with moving objects */
1323 	{ 0x16, 0x06 },
1324 /*	{ 0x20, 0x30 },  * Aperture correction enable */
1325 	{ 0x26, 0xb2 }, /* BLC enable */
1326 	/* 0x28: 0x05 Selects RGB format if RGB on */
1327 	{ 0x28, 0x05 },
1328 	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1329 /*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1330 	{ 0x2d, 0x85 },
1331 	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1332 	{ 0x34, 0xd2 }, /* Max A/D range */
1333 	{ 0x38, 0x8b },
1334 	{ 0x39, 0x40 },
1335 
1336 	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1337 	{ 0x3c, 0x3c }, /* Change AEC mode */
1338 	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1339 
1340 	{ 0x3d, 0x80 },
1341 	/* These next two registers (0x4a, 0x4b) are undocumented.
1342 	 * They control the color balance */
1343 	{ 0x4a, 0x80 },
1344 	{ 0x4b, 0x80 },
1345 	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1346 	{ 0x4e, 0xc1 },
1347 	{ 0x4f, 0x04 },
1348 /* Do 50-53 have any effect? */
1349 /* Toggle 0x12[2] off and on here? */
1350 };
1351 
1352 static const struct ov_i2c_regvals norm_6x30[] = {
1353 	{ 0x12, 0x80 }, /* Reset */
1354 	{ 0x00, 0x1f }, /* Gain */
1355 	{ 0x01, 0x99 }, /* Blue gain */
1356 	{ 0x02, 0x7c }, /* Red gain */
1357 	{ 0x03, 0xc0 }, /* Saturation */
1358 	{ 0x05, 0x0a }, /* Contrast */
1359 	{ 0x06, 0x95 }, /* Brightness */
1360 	{ 0x07, 0x2d }, /* Sharpness */
1361 	{ 0x0c, 0x20 },
1362 	{ 0x0d, 0x20 },
1363 	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1364 	{ 0x0f, 0x05 },
1365 	{ 0x10, 0x9a },
1366 	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1367 	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1368 	{ 0x13, 0x21 },
1369 	{ 0x14, 0x80 },
1370 	{ 0x15, 0x01 },
1371 	{ 0x16, 0x03 },
1372 	{ 0x17, 0x38 },
1373 	{ 0x18, 0xea },
1374 	{ 0x19, 0x04 },
1375 	{ 0x1a, 0x93 },
1376 	{ 0x1b, 0x00 },
1377 	{ 0x1e, 0xc4 },
1378 	{ 0x1f, 0x04 },
1379 	{ 0x20, 0x20 },
1380 	{ 0x21, 0x10 },
1381 	{ 0x22, 0x88 },
1382 	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1383 	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1384 	{ 0x26, 0xb2 }, /* BLC enable */
1385 	{ 0x27, 0xa2 },
1386 	{ 0x28, 0x00 },
1387 	{ 0x29, 0x00 },
1388 	{ 0x2a, 0x84 }, /* 60 Hz power */
1389 	{ 0x2b, 0xa8 }, /* 60 Hz power */
1390 	{ 0x2c, 0xa0 },
1391 	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1392 	{ 0x2e, 0x88 },
1393 	{ 0x33, 0x26 },
1394 	{ 0x34, 0x03 },
1395 	{ 0x36, 0x8f },
1396 	{ 0x37, 0x80 },
1397 	{ 0x38, 0x83 },
1398 	{ 0x39, 0x80 },
1399 	{ 0x3a, 0x0f },
1400 	{ 0x3b, 0x3c },
1401 	{ 0x3c, 0x1a },
1402 	{ 0x3d, 0x80 },
1403 	{ 0x3e, 0x80 },
1404 	{ 0x3f, 0x0e },
1405 	{ 0x40, 0x00 }, /* White bal */
1406 	{ 0x41, 0x00 }, /* White bal */
1407 	{ 0x42, 0x80 },
1408 	{ 0x43, 0x3f }, /* White bal */
1409 	{ 0x44, 0x80 },
1410 	{ 0x45, 0x20 },
1411 	{ 0x46, 0x20 },
1412 	{ 0x47, 0x80 },
1413 	{ 0x48, 0x7f },
1414 	{ 0x49, 0x00 },
1415 	{ 0x4a, 0x00 },
1416 	{ 0x4b, 0x80 },
1417 	{ 0x4c, 0xd0 },
1418 	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1419 	{ 0x4e, 0x40 },
1420 	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1421 	{ 0x50, 0xff },
1422 	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1423 	{ 0x55, 0xff },
1424 	{ 0x56, 0x12 },
1425 	{ 0x57, 0x81 },
1426 	{ 0x58, 0x75 },
1427 	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1428 	{ 0x5a, 0x2c },
1429 	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1430 	{ 0x5c, 0x10 },
1431 	{ 0x3d, 0x80 },
1432 	{ 0x27, 0xa6 },
1433 	{ 0x12, 0x20 }, /* Toggle AWB */
1434 	{ 0x12, 0x24 },
1435 };
1436 
1437 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1438  *
1439  * Register 0x0f in the 7610 has the following effects:
1440  *
1441  * 0x85 (AEC method 1): Best overall, good contrast range
1442  * 0x45 (AEC method 2): Very overexposed
1443  * 0xa5 (spec sheet default): Ok, but the black level is
1444  *	shifted resulting in loss of contrast
1445  * 0x05 (old driver setting): very overexposed, too much
1446  *	contrast
1447  */
1448 static const struct ov_i2c_regvals norm_7610[] = {
1449 	{ 0x10, 0xff },
1450 	{ 0x16, 0x06 },
1451 	{ 0x28, 0x24 },
1452 	{ 0x2b, 0xac },
1453 	{ 0x12, 0x00 },
1454 	{ 0x38, 0x81 },
1455 	{ 0x28, 0x24 },	/* 0c */
1456 	{ 0x0f, 0x85 },	/* lg's setting */
1457 	{ 0x15, 0x01 },
1458 	{ 0x20, 0x1c },
1459 	{ 0x23, 0x2a },
1460 	{ 0x24, 0x10 },
1461 	{ 0x25, 0x8a },
1462 	{ 0x26, 0xa2 },
1463 	{ 0x27, 0xc2 },
1464 	{ 0x2a, 0x04 },
1465 	{ 0x2c, 0xfe },
1466 	{ 0x2d, 0x93 },
1467 	{ 0x30, 0x71 },
1468 	{ 0x31, 0x60 },
1469 	{ 0x32, 0x26 },
1470 	{ 0x33, 0x20 },
1471 	{ 0x34, 0x48 },
1472 	{ 0x12, 0x24 },
1473 	{ 0x11, 0x01 },
1474 	{ 0x0c, 0x24 },
1475 	{ 0x0d, 0x24 },
1476 };
1477 
1478 static const struct ov_i2c_regvals norm_7620[] = {
1479 	{ 0x12, 0x80 },		/* reset */
1480 	{ 0x00, 0x00 },		/* gain */
1481 	{ 0x01, 0x80 },		/* blue gain */
1482 	{ 0x02, 0x80 },		/* red gain */
1483 	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1484 	{ 0x06, 0x60 },
1485 	{ 0x07, 0x00 },
1486 	{ 0x0c, 0x24 },
1487 	{ 0x0c, 0x24 },
1488 	{ 0x0d, 0x24 },
1489 	{ 0x11, 0x01 },
1490 	{ 0x12, 0x24 },
1491 	{ 0x13, 0x01 },
1492 	{ 0x14, 0x84 },
1493 	{ 0x15, 0x01 },
1494 	{ 0x16, 0x03 },
1495 	{ 0x17, 0x2f },
1496 	{ 0x18, 0xcf },
1497 	{ 0x19, 0x06 },
1498 	{ 0x1a, 0xf5 },
1499 	{ 0x1b, 0x00 },
1500 	{ 0x20, 0x18 },
1501 	{ 0x21, 0x80 },
1502 	{ 0x22, 0x80 },
1503 	{ 0x23, 0x00 },
1504 	{ 0x26, 0xa2 },
1505 	{ 0x27, 0xea },
1506 	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1507 	{ 0x29, 0x00 },
1508 	{ 0x2a, 0x10 },
1509 	{ 0x2b, 0x00 },
1510 	{ 0x2c, 0x88 },
1511 	{ 0x2d, 0x91 },
1512 	{ 0x2e, 0x80 },
1513 	{ 0x2f, 0x44 },
1514 	{ 0x60, 0x27 },
1515 	{ 0x61, 0x02 },
1516 	{ 0x62, 0x5f },
1517 	{ 0x63, 0xd5 },
1518 	{ 0x64, 0x57 },
1519 	{ 0x65, 0x83 },
1520 	{ 0x66, 0x55 },
1521 	{ 0x67, 0x92 },
1522 	{ 0x68, 0xcf },
1523 	{ 0x69, 0x76 },
1524 	{ 0x6a, 0x22 },
1525 	{ 0x6b, 0x00 },
1526 	{ 0x6c, 0x02 },
1527 	{ 0x6d, 0x44 },
1528 	{ 0x6e, 0x80 },
1529 	{ 0x6f, 0x1d },
1530 	{ 0x70, 0x8b },
1531 	{ 0x71, 0x00 },
1532 	{ 0x72, 0x14 },
1533 	{ 0x73, 0x54 },
1534 	{ 0x74, 0x00 },
1535 	{ 0x75, 0x8e },
1536 	{ 0x76, 0x00 },
1537 	{ 0x77, 0xff },
1538 	{ 0x78, 0x80 },
1539 	{ 0x79, 0x80 },
1540 	{ 0x7a, 0x80 },
1541 	{ 0x7b, 0xe2 },
1542 	{ 0x7c, 0x00 },
1543 };
1544 
1545 /* 7640 and 7648. The defaults should be OK for most registers. */
1546 static const struct ov_i2c_regvals norm_7640[] = {
1547 	{ 0x12, 0x80 },
1548 	{ 0x12, 0x14 },
1549 };
1550 
1551 static const struct ov_regvals init_519_ov7660[] = {
1552 	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1553 	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1554 	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1555 	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1556 	{ 0xa3,	0x18 },
1557 	{ 0xa4,	0x04 },
1558 	{ 0xa5,	0x28 },
1559 	{ 0x37,	0x00 },	/* SetUsbInit */
1560 	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1561 	/* Enable both fields, YUV Input, disable defect comp (why?) */
1562 	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1563 	{ 0x21,	0x38 },
1564 	{ 0x22,	0x1d },
1565 	{ 0x17,	0x50 }, /* undocumented */
1566 	{ 0x37,	0x00 }, /* undocumented */
1567 	{ 0x40,	0xff }, /* I2C timeout counter */
1568 	{ 0x46,	0x00 }, /* I2C clock prescaler */
1569 };
1570 static const struct ov_i2c_regvals norm_7660[] = {
1571 	{OV7670_R12_COM7, OV7670_COM7_RESET},
1572 	{OV7670_R11_CLKRC, 0x81},
1573 	{0x92, 0x00},			/* DM_LNL */
1574 	{0x93, 0x00},			/* DM_LNH */
1575 	{0x9d, 0x4c},			/* BD50ST */
1576 	{0x9e, 0x3f},			/* BD60ST */
1577 	{OV7670_R3B_COM11, 0x02},
1578 	{OV7670_R13_COM8, 0xf5},
1579 	{OV7670_R10_AECH, 0x00},
1580 	{OV7670_R00_GAIN, 0x00},
1581 	{OV7670_R01_BLUE, 0x7c},
1582 	{OV7670_R02_RED, 0x9d},
1583 	{OV7670_R12_COM7, 0x00},
1584 	{OV7670_R04_COM1, 00},
1585 	{OV7670_R18_HSTOP, 0x01},
1586 	{OV7670_R17_HSTART, 0x13},
1587 	{OV7670_R32_HREF, 0x92},
1588 	{OV7670_R19_VSTART, 0x02},
1589 	{OV7670_R1A_VSTOP, 0x7a},
1590 	{OV7670_R03_VREF, 0x00},
1591 	{OV7670_R0E_COM5, 0x04},
1592 	{OV7670_R0F_COM6, 0x62},
1593 	{OV7670_R15_COM10, 0x00},
1594 	{0x16, 0x02},			/* RSVD */
1595 	{0x1b, 0x00},			/* PSHFT */
1596 	{OV7670_R1E_MVFP, 0x01},
1597 	{0x29, 0x3c},			/* RSVD */
1598 	{0x33, 0x00},			/* CHLF */
1599 	{0x34, 0x07},			/* ARBLM */
1600 	{0x35, 0x84},			/* RSVD */
1601 	{0x36, 0x00},			/* RSVD */
1602 	{0x37, 0x04},			/* ADC */
1603 	{0x39, 0x43},			/* OFON */
1604 	{OV7670_R3A_TSLB, 0x00},
1605 	{OV7670_R3C_COM12, 0x6c},
1606 	{OV7670_R3D_COM13, 0x98},
1607 	{OV7670_R3F_EDGE, 0x23},
1608 	{OV7670_R40_COM15, 0xc1},
1609 	{OV7670_R41_COM16, 0x22},
1610 	{0x6b, 0x0a},			/* DBLV */
1611 	{0xa1, 0x08},			/* RSVD */
1612 	{0x69, 0x80},			/* HV */
1613 	{0x43, 0xf0},			/* RSVD.. */
1614 	{0x44, 0x10},
1615 	{0x45, 0x78},
1616 	{0x46, 0xa8},
1617 	{0x47, 0x60},
1618 	{0x48, 0x80},
1619 	{0x59, 0xba},
1620 	{0x5a, 0x9a},
1621 	{0x5b, 0x22},
1622 	{0x5c, 0xb9},
1623 	{0x5d, 0x9b},
1624 	{0x5e, 0x10},
1625 	{0x5f, 0xe0},
1626 	{0x60, 0x85},
1627 	{0x61, 0x60},
1628 	{0x9f, 0x9d},			/* RSVD */
1629 	{0xa0, 0xa0},			/* DSPC2 */
1630 	{0x4f, 0x60},			/* matrix */
1631 	{0x50, 0x64},
1632 	{0x51, 0x04},
1633 	{0x52, 0x18},
1634 	{0x53, 0x3c},
1635 	{0x54, 0x54},
1636 	{0x55, 0x40},
1637 	{0x56, 0x40},
1638 	{0x57, 0x40},
1639 	{0x58, 0x0d},			/* matrix sign */
1640 	{0x8b, 0xcc},			/* RSVD */
1641 	{0x8c, 0xcc},
1642 	{0x8d, 0xcf},
1643 	{0x6c, 0x40},			/* gamma curve */
1644 	{0x6d, 0xe0},
1645 	{0x6e, 0xa0},
1646 	{0x6f, 0x80},
1647 	{0x70, 0x70},
1648 	{0x71, 0x80},
1649 	{0x72, 0x60},
1650 	{0x73, 0x60},
1651 	{0x74, 0x50},
1652 	{0x75, 0x40},
1653 	{0x76, 0x38},
1654 	{0x77, 0x3c},
1655 	{0x78, 0x32},
1656 	{0x79, 0x1a},
1657 	{0x7a, 0x28},
1658 	{0x7b, 0x24},
1659 	{0x7c, 0x04},			/* gamma curve */
1660 	{0x7d, 0x12},
1661 	{0x7e, 0x26},
1662 	{0x7f, 0x46},
1663 	{0x80, 0x54},
1664 	{0x81, 0x64},
1665 	{0x82, 0x70},
1666 	{0x83, 0x7c},
1667 	{0x84, 0x86},
1668 	{0x85, 0x8e},
1669 	{0x86, 0x9c},
1670 	{0x87, 0xab},
1671 	{0x88, 0xc4},
1672 	{0x89, 0xd1},
1673 	{0x8a, 0xe5},
1674 	{OV7670_R14_COM9, 0x1e},
1675 	{OV7670_R24_AEW, 0x80},
1676 	{OV7670_R25_AEB, 0x72},
1677 	{OV7670_R26_VPT, 0xb3},
1678 	{0x62, 0x80},			/* LCC1 */
1679 	{0x63, 0x80},			/* LCC2 */
1680 	{0x64, 0x06},			/* LCC3 */
1681 	{0x65, 0x00},			/* LCC4 */
1682 	{0x66, 0x01},			/* LCC5 */
1683 	{0x94, 0x0e},			/* RSVD.. */
1684 	{0x95, 0x14},
1685 	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1686 			| OV7670_COM8_AECSTEP
1687 			| OV7670_COM8_BFILT
1688 			| 0x10
1689 			| OV7670_COM8_AGC
1690 			| OV7670_COM8_AWB
1691 			| OV7670_COM8_AEC},
1692 	{0xa1, 0xc8}
1693 };
1694 static const struct ov_i2c_regvals norm_9600[] = {
1695 	{0x12, 0x80},
1696 	{0x0c, 0x28},
1697 	{0x11, 0x80},
1698 	{0x13, 0xb5},
1699 	{0x14, 0x3e},
1700 	{0x1b, 0x04},
1701 	{0x24, 0xb0},
1702 	{0x25, 0x90},
1703 	{0x26, 0x94},
1704 	{0x35, 0x90},
1705 	{0x37, 0x07},
1706 	{0x38, 0x08},
1707 	{0x01, 0x8e},
1708 	{0x02, 0x85}
1709 };
1710 
1711 /* 7670. Defaults taken from OmniVision provided data,
1712 *  as provided by Jonathan Corbet of OLPC		*/
1713 static const struct ov_i2c_regvals norm_7670[] = {
1714 	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1715 	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1716 	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1717 	{ OV7670_R11_CLKRC, 0x01 },
1718 /*
1719  * Set the hardware window.  These values from OV don't entirely
1720  * make sense - hstop is less than hstart.  But they work...
1721  */
1722 	{ OV7670_R17_HSTART, 0x13 },
1723 	{ OV7670_R18_HSTOP, 0x01 },
1724 	{ OV7670_R32_HREF, 0xb6 },
1725 	{ OV7670_R19_VSTART, 0x02 },
1726 	{ OV7670_R1A_VSTOP, 0x7a },
1727 	{ OV7670_R03_VREF, 0x0a },
1728 
1729 	{ OV7670_R0C_COM3, 0x00 },
1730 	{ OV7670_R3E_COM14, 0x00 },
1731 /* Mystery scaling numbers */
1732 	{ 0x70, 0x3a },
1733 	{ 0x71, 0x35 },
1734 	{ 0x72, 0x11 },
1735 	{ 0x73, 0xf0 },
1736 	{ 0xa2, 0x02 },
1737 /*	{ OV7670_R15_COM10, 0x0 }, */
1738 
1739 /* Gamma curve values */
1740 	{ 0x7a, 0x20 },
1741 	{ 0x7b, 0x10 },
1742 	{ 0x7c, 0x1e },
1743 	{ 0x7d, 0x35 },
1744 	{ 0x7e, 0x5a },
1745 	{ 0x7f, 0x69 },
1746 	{ 0x80, 0x76 },
1747 	{ 0x81, 0x80 },
1748 	{ 0x82, 0x88 },
1749 	{ 0x83, 0x8f },
1750 	{ 0x84, 0x96 },
1751 	{ 0x85, 0xa3 },
1752 	{ 0x86, 0xaf },
1753 	{ 0x87, 0xc4 },
1754 	{ 0x88, 0xd7 },
1755 	{ 0x89, 0xe8 },
1756 
1757 /* AGC and AEC parameters.  Note we start by disabling those features,
1758    then turn them only after tweaking the values. */
1759 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1760 			 | OV7670_COM8_AECSTEP
1761 			 | OV7670_COM8_BFILT },
1762 	{ OV7670_R00_GAIN, 0x00 },
1763 	{ OV7670_R10_AECH, 0x00 },
1764 	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1765 	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1766 	{ OV7670_RA5_BD50MAX, 0x05 },
1767 	{ OV7670_RAB_BD60MAX, 0x07 },
1768 	{ OV7670_R24_AEW, 0x95 },
1769 	{ OV7670_R25_AEB, 0x33 },
1770 	{ OV7670_R26_VPT, 0xe3 },
1771 	{ OV7670_R9F_HAECC1, 0x78 },
1772 	{ OV7670_RA0_HAECC2, 0x68 },
1773 	{ 0xa1, 0x03 }, /* magic */
1774 	{ OV7670_RA6_HAECC3, 0xd8 },
1775 	{ OV7670_RA7_HAECC4, 0xd8 },
1776 	{ OV7670_RA8_HAECC5, 0xf0 },
1777 	{ OV7670_RA9_HAECC6, 0x90 },
1778 	{ OV7670_RAA_HAECC7, 0x94 },
1779 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1780 			| OV7670_COM8_AECSTEP
1781 			| OV7670_COM8_BFILT
1782 			| OV7670_COM8_AGC
1783 			| OV7670_COM8_AEC },
1784 
1785 /* Almost all of these are magic "reserved" values.  */
1786 	{ OV7670_R0E_COM5, 0x61 },
1787 	{ OV7670_R0F_COM6, 0x4b },
1788 	{ 0x16, 0x02 },
1789 	{ OV7670_R1E_MVFP, 0x07 },
1790 	{ 0x21, 0x02 },
1791 	{ 0x22, 0x91 },
1792 	{ 0x29, 0x07 },
1793 	{ 0x33, 0x0b },
1794 	{ 0x35, 0x0b },
1795 	{ 0x37, 0x1d },
1796 	{ 0x38, 0x71 },
1797 	{ 0x39, 0x2a },
1798 	{ OV7670_R3C_COM12, 0x78 },
1799 	{ 0x4d, 0x40 },
1800 	{ 0x4e, 0x20 },
1801 	{ OV7670_R69_GFIX, 0x00 },
1802 	{ 0x6b, 0x4a },
1803 	{ 0x74, 0x10 },
1804 	{ 0x8d, 0x4f },
1805 	{ 0x8e, 0x00 },
1806 	{ 0x8f, 0x00 },
1807 	{ 0x90, 0x00 },
1808 	{ 0x91, 0x00 },
1809 	{ 0x96, 0x00 },
1810 	{ 0x9a, 0x00 },
1811 	{ 0xb0, 0x84 },
1812 	{ 0xb1, 0x0c },
1813 	{ 0xb2, 0x0e },
1814 	{ 0xb3, 0x82 },
1815 	{ 0xb8, 0x0a },
1816 
1817 /* More reserved magic, some of which tweaks white balance */
1818 	{ 0x43, 0x0a },
1819 	{ 0x44, 0xf0 },
1820 	{ 0x45, 0x34 },
1821 	{ 0x46, 0x58 },
1822 	{ 0x47, 0x28 },
1823 	{ 0x48, 0x3a },
1824 	{ 0x59, 0x88 },
1825 	{ 0x5a, 0x88 },
1826 	{ 0x5b, 0x44 },
1827 	{ 0x5c, 0x67 },
1828 	{ 0x5d, 0x49 },
1829 	{ 0x5e, 0x0e },
1830 	{ 0x6c, 0x0a },
1831 	{ 0x6d, 0x55 },
1832 	{ 0x6e, 0x11 },
1833 	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1834 	{ 0x6a, 0x40 },
1835 	{ OV7670_R01_BLUE, 0x40 },
1836 	{ OV7670_R02_RED, 0x60 },
1837 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1838 			| OV7670_COM8_AECSTEP
1839 			| OV7670_COM8_BFILT
1840 			| OV7670_COM8_AGC
1841 			| OV7670_COM8_AEC
1842 			| OV7670_COM8_AWB },
1843 
1844 /* Matrix coefficients */
1845 	{ 0x4f, 0x80 },
1846 	{ 0x50, 0x80 },
1847 	{ 0x51, 0x00 },
1848 	{ 0x52, 0x22 },
1849 	{ 0x53, 0x5e },
1850 	{ 0x54, 0x80 },
1851 	{ 0x58, 0x9e },
1852 
1853 	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1854 	{ OV7670_R3F_EDGE, 0x00 },
1855 	{ 0x75, 0x05 },
1856 	{ 0x76, 0xe1 },
1857 	{ 0x4c, 0x00 },
1858 	{ 0x77, 0x01 },
1859 	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1860 			  | OV7670_COM13_UVSAT
1861 			  | 2},		/* was 3 */
1862 	{ 0x4b, 0x09 },
1863 	{ 0xc9, 0x60 },
1864 	{ OV7670_R41_COM16, 0x38 },
1865 	{ 0x56, 0x40 },
1866 
1867 	{ 0x34, 0x11 },
1868 	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1869 	{ 0xa4, 0x88 },
1870 	{ 0x96, 0x00 },
1871 	{ 0x97, 0x30 },
1872 	{ 0x98, 0x20 },
1873 	{ 0x99, 0x30 },
1874 	{ 0x9a, 0x84 },
1875 	{ 0x9b, 0x29 },
1876 	{ 0x9c, 0x03 },
1877 	{ 0x9d, 0x4c },
1878 	{ 0x9e, 0x3f },
1879 	{ 0x78, 0x04 },
1880 
1881 /* Extra-weird stuff.  Some sort of multiplexor register */
1882 	{ 0x79, 0x01 },
1883 	{ 0xc8, 0xf0 },
1884 	{ 0x79, 0x0f },
1885 	{ 0xc8, 0x00 },
1886 	{ 0x79, 0x10 },
1887 	{ 0xc8, 0x7e },
1888 	{ 0x79, 0x0a },
1889 	{ 0xc8, 0x80 },
1890 	{ 0x79, 0x0b },
1891 	{ 0xc8, 0x01 },
1892 	{ 0x79, 0x0c },
1893 	{ 0xc8, 0x0f },
1894 	{ 0x79, 0x0d },
1895 	{ 0xc8, 0x20 },
1896 	{ 0x79, 0x09 },
1897 	{ 0xc8, 0x80 },
1898 	{ 0x79, 0x02 },
1899 	{ 0xc8, 0xc0 },
1900 	{ 0x79, 0x03 },
1901 	{ 0xc8, 0x40 },
1902 	{ 0x79, 0x05 },
1903 	{ 0xc8, 0x30 },
1904 	{ 0x79, 0x26 },
1905 };
1906 
1907 static const struct ov_i2c_regvals norm_8610[] = {
1908 	{ 0x12, 0x80 },
1909 	{ 0x00, 0x00 },
1910 	{ 0x01, 0x80 },
1911 	{ 0x02, 0x80 },
1912 	{ 0x03, 0xc0 },
1913 	{ 0x04, 0x30 },
1914 	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1915 	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1916 	{ 0x0a, 0x86 },
1917 	{ 0x0b, 0xb0 },
1918 	{ 0x0c, 0x20 },
1919 	{ 0x0d, 0x20 },
1920 	{ 0x11, 0x01 },
1921 	{ 0x12, 0x25 },
1922 	{ 0x13, 0x01 },
1923 	{ 0x14, 0x04 },
1924 	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1925 	{ 0x16, 0x03 },
1926 	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1927 	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1928 	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1929 	{ 0x1a, 0xf5 },
1930 	{ 0x1b, 0x00 },
1931 	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1932 	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1933 	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1934 	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1935 	{ 0x26, 0xa2 },
1936 	{ 0x27, 0xea },
1937 	{ 0x28, 0x00 },
1938 	{ 0x29, 0x00 },
1939 	{ 0x2a, 0x80 },
1940 	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1941 	{ 0x2c, 0xac },
1942 	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1943 	{ 0x2e, 0x80 },
1944 	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1945 	{ 0x4c, 0x00 },
1946 	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1947 	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1948 	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1949 	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1950 	{ 0x63, 0xff },
1951 	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1952 			 * maybe thats wrong */
1953 	{ 0x65, 0x00 },
1954 	{ 0x66, 0x55 },
1955 	{ 0x67, 0xb0 },
1956 	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1957 	{ 0x69, 0x02 },
1958 	{ 0x6a, 0x22 },
1959 	{ 0x6b, 0x00 },
1960 	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1961 			 * deleting bit7 colors the first images red */
1962 	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1963 	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1964 	{ 0x6f, 0x01 },
1965 	{ 0x70, 0x8b },
1966 	{ 0x71, 0x00 },
1967 	{ 0x72, 0x14 },
1968 	{ 0x73, 0x54 },
1969 	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1970 	{ 0x75, 0x0e },
1971 	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1972 	{ 0x77, 0xff },
1973 	{ 0x78, 0x80 },
1974 	{ 0x79, 0x80 },
1975 	{ 0x7a, 0x80 },
1976 	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1977 	{ 0x7c, 0x00 },
1978 	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1979 	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1980 	{ 0x7f, 0xfb },
1981 	{ 0x80, 0x28 },
1982 	{ 0x81, 0x00 },
1983 	{ 0x82, 0x23 },
1984 	{ 0x83, 0x0b },
1985 	{ 0x84, 0x00 },
1986 	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1987 	{ 0x86, 0xc9 },
1988 	{ 0x87, 0x00 },
1989 	{ 0x88, 0x00 },
1990 	{ 0x89, 0x01 },
1991 	{ 0x12, 0x20 },
1992 	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1993 };
1994 
1995 static unsigned char ov7670_abs_to_sm(unsigned char v)
1996 {
1997 	if (v > 127)
1998 		return v & 0x7f;
1999 	return (128 - v) | 0x80;
2000 }
2001 
2002 /* Write a OV519 register */
2003 static void reg_w(struct sd *sd, u16 index, u16 value)
2004 {
2005 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2006 	int ret, req = 0;
2007 
2008 	if (sd->gspca_dev.usb_err < 0)
2009 		return;
2010 
2011 	/* Avoid things going to fast for the bridge with a xhci host */
2012 	udelay(150);
2013 
2014 	switch (sd->bridge) {
2015 	case BRIDGE_OV511:
2016 	case BRIDGE_OV511PLUS:
2017 		req = 2;
2018 		break;
2019 	case BRIDGE_OVFX2:
2020 		req = 0x0a;
2021 		/* fall through */
2022 	case BRIDGE_W9968CF:
2023 		PDEBUG(D_USBO, "SET %02x %04x %04x",
2024 				req, value, index);
2025 		ret = usb_control_msg(sd->gspca_dev.dev,
2026 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2027 			req,
2028 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2029 			value, index, NULL, 0, 500);
2030 		goto leave;
2031 	default:
2032 		req = 1;
2033 	}
2034 
2035 	PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2036 			req, index, value);
2037 	sd->gspca_dev.usb_buf[0] = value;
2038 	ret = usb_control_msg(sd->gspca_dev.dev,
2039 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2040 			req,
2041 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2042 			0, index,
2043 			sd->gspca_dev.usb_buf, 1, 500);
2044 leave:
2045 	if (ret < 0) {
2046 		PERR("reg_w %02x failed %d\n", index, ret);
2047 		sd->gspca_dev.usb_err = ret;
2048 		return;
2049 	}
2050 }
2051 
2052 /* Read from a OV519 register, note not valid for the w9968cf!! */
2053 /* returns: negative is error, pos or zero is data */
2054 static int reg_r(struct sd *sd, u16 index)
2055 {
2056 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2057 	int ret;
2058 	int req;
2059 
2060 	if (sd->gspca_dev.usb_err < 0)
2061 		return -1;
2062 
2063 	switch (sd->bridge) {
2064 	case BRIDGE_OV511:
2065 	case BRIDGE_OV511PLUS:
2066 		req = 3;
2067 		break;
2068 	case BRIDGE_OVFX2:
2069 		req = 0x0b;
2070 		break;
2071 	default:
2072 		req = 1;
2073 	}
2074 
2075 	/* Avoid things going to fast for the bridge with a xhci host */
2076 	udelay(150);
2077 	ret = usb_control_msg(sd->gspca_dev.dev,
2078 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2079 			req,
2080 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2081 			0, index, sd->gspca_dev.usb_buf, 1, 500);
2082 
2083 	if (ret >= 0) {
2084 		ret = sd->gspca_dev.usb_buf[0];
2085 		PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2086 			req, index, ret);
2087 	} else {
2088 		PERR("reg_r %02x failed %d\n", index, ret);
2089 		sd->gspca_dev.usb_err = ret;
2090 	}
2091 
2092 	return ret;
2093 }
2094 
2095 /* Read 8 values from a OV519 register */
2096 static int reg_r8(struct sd *sd,
2097 		  u16 index)
2098 {
2099 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2100 	int ret;
2101 
2102 	if (sd->gspca_dev.usb_err < 0)
2103 		return -1;
2104 
2105 	/* Avoid things going to fast for the bridge with a xhci host */
2106 	udelay(150);
2107 	ret = usb_control_msg(sd->gspca_dev.dev,
2108 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2109 			1,			/* REQ_IO */
2110 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2111 			0, index, sd->gspca_dev.usb_buf, 8, 500);
2112 
2113 	if (ret >= 0) {
2114 		ret = sd->gspca_dev.usb_buf[0];
2115 	} else {
2116 		PERR("reg_r8 %02x failed %d\n", index, ret);
2117 		sd->gspca_dev.usb_err = ret;
2118 	}
2119 
2120 	return ret;
2121 }
2122 
2123 /*
2124  * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2125  * the same position as 1's in "mask" are cleared and set to "value". Bits
2126  * that are in the same position as 0's in "mask" are preserved, regardless
2127  * of their respective state in "value".
2128  */
2129 static void reg_w_mask(struct sd *sd,
2130 			u16 index,
2131 			u8 value,
2132 			u8 mask)
2133 {
2134 	int ret;
2135 	u8 oldval;
2136 
2137 	if (mask != 0xff) {
2138 		value &= mask;			/* Enforce mask on value */
2139 		ret = reg_r(sd, index);
2140 		if (ret < 0)
2141 			return;
2142 
2143 		oldval = ret & ~mask;		/* Clear the masked bits */
2144 		value |= oldval;		/* Set the desired bits */
2145 	}
2146 	reg_w(sd, index, value);
2147 }
2148 
2149 /*
2150  * Writes multiple (n) byte value to a single register. Only valid with certain
2151  * registers (0x30 and 0xc4 - 0xce).
2152  */
2153 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2154 {
2155 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2156 	int ret;
2157 
2158 	if (sd->gspca_dev.usb_err < 0)
2159 		return;
2160 
2161 	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2162 
2163 	/* Avoid things going to fast for the bridge with a xhci host */
2164 	udelay(150);
2165 	ret = usb_control_msg(sd->gspca_dev.dev,
2166 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2167 			1 /* REG_IO */,
2168 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2169 			0, index,
2170 			sd->gspca_dev.usb_buf, n, 500);
2171 	if (ret < 0) {
2172 		PERR("reg_w32 %02x failed %d\n", index, ret);
2173 		sd->gspca_dev.usb_err = ret;
2174 	}
2175 }
2176 
2177 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2178 {
2179 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2180 	int rc, retries;
2181 
2182 	PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2183 
2184 	/* Three byte write cycle */
2185 	for (retries = 6; ; ) {
2186 		/* Select camera register */
2187 		reg_w(sd, R51x_I2C_SADDR_3, reg);
2188 
2189 		/* Write "value" to I2C data port of OV511 */
2190 		reg_w(sd, R51x_I2C_DATA, value);
2191 
2192 		/* Initiate 3-byte write cycle */
2193 		reg_w(sd, R511_I2C_CTL, 0x01);
2194 
2195 		do {
2196 			rc = reg_r(sd, R511_I2C_CTL);
2197 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2198 
2199 		if (rc < 0)
2200 			return;
2201 
2202 		if ((rc & 2) == 0) /* Ack? */
2203 			break;
2204 		if (--retries < 0) {
2205 			PDEBUG(D_USBO, "i2c write retries exhausted");
2206 			return;
2207 		}
2208 	}
2209 }
2210 
2211 static int ov511_i2c_r(struct sd *sd, u8 reg)
2212 {
2213 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2214 	int rc, value, retries;
2215 
2216 	/* Two byte write cycle */
2217 	for (retries = 6; ; ) {
2218 		/* Select camera register */
2219 		reg_w(sd, R51x_I2C_SADDR_2, reg);
2220 
2221 		/* Initiate 2-byte write cycle */
2222 		reg_w(sd, R511_I2C_CTL, 0x03);
2223 
2224 		do {
2225 			rc = reg_r(sd, R511_I2C_CTL);
2226 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2227 
2228 		if (rc < 0)
2229 			return rc;
2230 
2231 		if ((rc & 2) == 0) /* Ack? */
2232 			break;
2233 
2234 		/* I2C abort */
2235 		reg_w(sd, R511_I2C_CTL, 0x10);
2236 
2237 		if (--retries < 0) {
2238 			PDEBUG(D_USBI, "i2c write retries exhausted");
2239 			return -1;
2240 		}
2241 	}
2242 
2243 	/* Two byte read cycle */
2244 	for (retries = 6; ; ) {
2245 		/* Initiate 2-byte read cycle */
2246 		reg_w(sd, R511_I2C_CTL, 0x05);
2247 
2248 		do {
2249 			rc = reg_r(sd, R511_I2C_CTL);
2250 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2251 
2252 		if (rc < 0)
2253 			return rc;
2254 
2255 		if ((rc & 2) == 0) /* Ack? */
2256 			break;
2257 
2258 		/* I2C abort */
2259 		reg_w(sd, R511_I2C_CTL, 0x10);
2260 
2261 		if (--retries < 0) {
2262 			PDEBUG(D_USBI, "i2c read retries exhausted");
2263 			return -1;
2264 		}
2265 	}
2266 
2267 	value = reg_r(sd, R51x_I2C_DATA);
2268 
2269 	PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2270 
2271 	/* This is needed to make i2c_w() work */
2272 	reg_w(sd, R511_I2C_CTL, 0x05);
2273 
2274 	return value;
2275 }
2276 
2277 /*
2278  * The OV518 I2C I/O procedure is different, hence, this function.
2279  * This is normally only called from i2c_w(). Note that this function
2280  * always succeeds regardless of whether the sensor is present and working.
2281  */
2282 static void ov518_i2c_w(struct sd *sd,
2283 		u8 reg,
2284 		u8 value)
2285 {
2286 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2287 
2288 	PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2289 
2290 	/* Select camera register */
2291 	reg_w(sd, R51x_I2C_SADDR_3, reg);
2292 
2293 	/* Write "value" to I2C data port of OV511 */
2294 	reg_w(sd, R51x_I2C_DATA, value);
2295 
2296 	/* Initiate 3-byte write cycle */
2297 	reg_w(sd, R518_I2C_CTL, 0x01);
2298 
2299 	/* wait for write complete */
2300 	msleep(4);
2301 	reg_r8(sd, R518_I2C_CTL);
2302 }
2303 
2304 /*
2305  * returns: negative is error, pos or zero is data
2306  *
2307  * The OV518 I2C I/O procedure is different, hence, this function.
2308  * This is normally only called from i2c_r(). Note that this function
2309  * always succeeds regardless of whether the sensor is present and working.
2310  */
2311 static int ov518_i2c_r(struct sd *sd, u8 reg)
2312 {
2313 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2314 	int value;
2315 
2316 	/* Select camera register */
2317 	reg_w(sd, R51x_I2C_SADDR_2, reg);
2318 
2319 	/* Initiate 2-byte write cycle */
2320 	reg_w(sd, R518_I2C_CTL, 0x03);
2321 	reg_r8(sd, R518_I2C_CTL);
2322 
2323 	/* Initiate 2-byte read cycle */
2324 	reg_w(sd, R518_I2C_CTL, 0x05);
2325 	reg_r8(sd, R518_I2C_CTL);
2326 
2327 	value = reg_r(sd, R51x_I2C_DATA);
2328 	PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2329 	return value;
2330 }
2331 
2332 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2333 {
2334 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2335 	int ret;
2336 
2337 	if (sd->gspca_dev.usb_err < 0)
2338 		return;
2339 
2340 	ret = usb_control_msg(sd->gspca_dev.dev,
2341 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2342 			0x02,
2343 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2344 			(u16) value, (u16) reg, NULL, 0, 500);
2345 
2346 	if (ret < 0) {
2347 		PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2348 		sd->gspca_dev.usb_err = ret;
2349 	}
2350 
2351 	PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2352 }
2353 
2354 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2355 {
2356 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2357 	int ret;
2358 
2359 	if (sd->gspca_dev.usb_err < 0)
2360 		return -1;
2361 
2362 	ret = usb_control_msg(sd->gspca_dev.dev,
2363 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2364 			0x03,
2365 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2366 			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2367 
2368 	if (ret >= 0) {
2369 		ret = sd->gspca_dev.usb_buf[0];
2370 		PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2371 	} else {
2372 		PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2373 		sd->gspca_dev.usb_err = ret;
2374 	}
2375 
2376 	return ret;
2377 }
2378 
2379 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2380 {
2381 	if (sd->sensor_reg_cache[reg] == value)
2382 		return;
2383 
2384 	switch (sd->bridge) {
2385 	case BRIDGE_OV511:
2386 	case BRIDGE_OV511PLUS:
2387 		ov511_i2c_w(sd, reg, value);
2388 		break;
2389 	case BRIDGE_OV518:
2390 	case BRIDGE_OV518PLUS:
2391 	case BRIDGE_OV519:
2392 		ov518_i2c_w(sd, reg, value);
2393 		break;
2394 	case BRIDGE_OVFX2:
2395 		ovfx2_i2c_w(sd, reg, value);
2396 		break;
2397 	case BRIDGE_W9968CF:
2398 		w9968cf_i2c_w(sd, reg, value);
2399 		break;
2400 	}
2401 
2402 	if (sd->gspca_dev.usb_err >= 0) {
2403 		/* Up on sensor reset empty the register cache */
2404 		if (reg == 0x12 && (value & 0x80))
2405 			memset(sd->sensor_reg_cache, -1,
2406 				sizeof(sd->sensor_reg_cache));
2407 		else
2408 			sd->sensor_reg_cache[reg] = value;
2409 	}
2410 }
2411 
2412 static int i2c_r(struct sd *sd, u8 reg)
2413 {
2414 	int ret = -1;
2415 
2416 	if (sd->sensor_reg_cache[reg] != -1)
2417 		return sd->sensor_reg_cache[reg];
2418 
2419 	switch (sd->bridge) {
2420 	case BRIDGE_OV511:
2421 	case BRIDGE_OV511PLUS:
2422 		ret = ov511_i2c_r(sd, reg);
2423 		break;
2424 	case BRIDGE_OV518:
2425 	case BRIDGE_OV518PLUS:
2426 	case BRIDGE_OV519:
2427 		ret = ov518_i2c_r(sd, reg);
2428 		break;
2429 	case BRIDGE_OVFX2:
2430 		ret = ovfx2_i2c_r(sd, reg);
2431 		break;
2432 	case BRIDGE_W9968CF:
2433 		ret = w9968cf_i2c_r(sd, reg);
2434 		break;
2435 	}
2436 
2437 	if (ret >= 0)
2438 		sd->sensor_reg_cache[reg] = ret;
2439 
2440 	return ret;
2441 }
2442 
2443 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2444  * the same position as 1's in "mask" are cleared and set to "value". Bits
2445  * that are in the same position as 0's in "mask" are preserved, regardless
2446  * of their respective state in "value".
2447  */
2448 static void i2c_w_mask(struct sd *sd,
2449 			u8 reg,
2450 			u8 value,
2451 			u8 mask)
2452 {
2453 	int rc;
2454 	u8 oldval;
2455 
2456 	value &= mask;			/* Enforce mask on value */
2457 	rc = i2c_r(sd, reg);
2458 	if (rc < 0)
2459 		return;
2460 	oldval = rc & ~mask;		/* Clear the masked bits */
2461 	value |= oldval;		/* Set the desired bits */
2462 	i2c_w(sd, reg, value);
2463 }
2464 
2465 /* Temporarily stops OV511 from functioning. Must do this before changing
2466  * registers while the camera is streaming */
2467 static inline void ov51x_stop(struct sd *sd)
2468 {
2469 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2470 
2471 	PDEBUG(D_STREAM, "stopping");
2472 	sd->stopped = 1;
2473 	switch (sd->bridge) {
2474 	case BRIDGE_OV511:
2475 	case BRIDGE_OV511PLUS:
2476 		reg_w(sd, R51x_SYS_RESET, 0x3d);
2477 		break;
2478 	case BRIDGE_OV518:
2479 	case BRIDGE_OV518PLUS:
2480 		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2481 		break;
2482 	case BRIDGE_OV519:
2483 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2484 		reg_w(sd, OV519_R51_RESET1, 0x00);
2485 		reg_w(sd, 0x22, 0x00);		/* FRAR */
2486 		break;
2487 	case BRIDGE_OVFX2:
2488 		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2489 		break;
2490 	case BRIDGE_W9968CF:
2491 		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2492 		break;
2493 	}
2494 }
2495 
2496 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2497  * actually stopped (for performance). */
2498 static inline void ov51x_restart(struct sd *sd)
2499 {
2500 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2501 
2502 	PDEBUG(D_STREAM, "restarting");
2503 	if (!sd->stopped)
2504 		return;
2505 	sd->stopped = 0;
2506 
2507 	/* Reinitialize the stream */
2508 	switch (sd->bridge) {
2509 	case BRIDGE_OV511:
2510 	case BRIDGE_OV511PLUS:
2511 		reg_w(sd, R51x_SYS_RESET, 0x00);
2512 		break;
2513 	case BRIDGE_OV518:
2514 	case BRIDGE_OV518PLUS:
2515 		reg_w(sd, 0x2f, 0x80);
2516 		reg_w(sd, R51x_SYS_RESET, 0x00);
2517 		break;
2518 	case BRIDGE_OV519:
2519 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2520 		reg_w(sd, OV519_R51_RESET1, 0x00);
2521 		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2522 		break;
2523 	case BRIDGE_OVFX2:
2524 		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2525 		break;
2526 	case BRIDGE_W9968CF:
2527 		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2528 		break;
2529 	}
2530 }
2531 
2532 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2533 
2534 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2535  * is synchronized. Returns <0 on failure.
2536  */
2537 static int init_ov_sensor(struct sd *sd, u8 slave)
2538 {
2539 	int i;
2540 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2541 
2542 	ov51x_set_slave_ids(sd, slave);
2543 
2544 	/* Reset the sensor */
2545 	i2c_w(sd, 0x12, 0x80);
2546 
2547 	/* Wait for it to initialize */
2548 	msleep(150);
2549 
2550 	for (i = 0; i < i2c_detect_tries; i++) {
2551 		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2552 		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2553 			PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2554 			return 0;
2555 		}
2556 
2557 		/* Reset the sensor */
2558 		i2c_w(sd, 0x12, 0x80);
2559 
2560 		/* Wait for it to initialize */
2561 		msleep(150);
2562 
2563 		/* Dummy read to sync I2C */
2564 		if (i2c_r(sd, 0x00) < 0)
2565 			return -1;
2566 	}
2567 	return -1;
2568 }
2569 
2570 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2571  * and the read slave will be set to (slave + 1).
2572  * This should not be called from outside the i2c I/O functions.
2573  * Sets I2C read and write slave IDs. Returns <0 for error
2574  */
2575 static void ov51x_set_slave_ids(struct sd *sd,
2576 				u8 slave)
2577 {
2578 	switch (sd->bridge) {
2579 	case BRIDGE_OVFX2:
2580 		reg_w(sd, OVFX2_I2C_ADDR, slave);
2581 		return;
2582 	case BRIDGE_W9968CF:
2583 		sd->sensor_addr = slave;
2584 		return;
2585 	}
2586 
2587 	reg_w(sd, R51x_I2C_W_SID, slave);
2588 	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2589 }
2590 
2591 static void write_regvals(struct sd *sd,
2592 			 const struct ov_regvals *regvals,
2593 			 int n)
2594 {
2595 	while (--n >= 0) {
2596 		reg_w(sd, regvals->reg, regvals->val);
2597 		regvals++;
2598 	}
2599 }
2600 
2601 static void write_i2c_regvals(struct sd *sd,
2602 			const struct ov_i2c_regvals *regvals,
2603 			int n)
2604 {
2605 	while (--n >= 0) {
2606 		i2c_w(sd, regvals->reg, regvals->val);
2607 		regvals++;
2608 	}
2609 }
2610 
2611 /****************************************************************************
2612  *
2613  * OV511 and sensor configuration
2614  *
2615  ***************************************************************************/
2616 
2617 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2618 static void ov_hires_configure(struct sd *sd)
2619 {
2620 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2621 	int high, low;
2622 
2623 	if (sd->bridge != BRIDGE_OVFX2) {
2624 		PERR("error hires sensors only supported with ovfx2\n");
2625 		return;
2626 	}
2627 
2628 	PDEBUG(D_PROBE, "starting ov hires configuration");
2629 
2630 	/* Detect sensor (sub)type */
2631 	high = i2c_r(sd, 0x0a);
2632 	low = i2c_r(sd, 0x0b);
2633 	/* info("%x, %x", high, low); */
2634 	switch (high) {
2635 	case 0x96:
2636 		switch (low) {
2637 		case 0x40:
2638 			PDEBUG(D_PROBE, "Sensor is a OV2610");
2639 			sd->sensor = SEN_OV2610;
2640 			return;
2641 		case 0x41:
2642 			PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2643 			sd->sensor = SEN_OV2610AE;
2644 			return;
2645 		case 0xb1:
2646 			PDEBUG(D_PROBE, "Sensor is a OV9600");
2647 			sd->sensor = SEN_OV9600;
2648 			return;
2649 		}
2650 		break;
2651 	case 0x36:
2652 		if ((low & 0x0f) == 0x00) {
2653 			PDEBUG(D_PROBE, "Sensor is a OV3610");
2654 			sd->sensor = SEN_OV3610;
2655 			return;
2656 		}
2657 		break;
2658 	}
2659 	PERR("Error unknown sensor type: %02x%02x\n", high, low);
2660 }
2661 
2662 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2663  * the same register settings as the OV8610, since they are very similar.
2664  */
2665 static void ov8xx0_configure(struct sd *sd)
2666 {
2667 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2668 	int rc;
2669 
2670 	PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2671 
2672 	/* Detect sensor (sub)type */
2673 	rc = i2c_r(sd, OV7610_REG_COM_I);
2674 	if (rc < 0) {
2675 		PERR("Error detecting sensor type");
2676 		return;
2677 	}
2678 	if ((rc & 3) == 1)
2679 		sd->sensor = SEN_OV8610;
2680 	else
2681 		PERR("Unknown image sensor version: %d\n", rc & 3);
2682 }
2683 
2684 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2685  * the same register settings as the OV7610, since they are very similar.
2686  */
2687 static void ov7xx0_configure(struct sd *sd)
2688 {
2689 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2690 	int rc, high, low;
2691 
2692 	PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2693 
2694 	/* Detect sensor (sub)type */
2695 	rc = i2c_r(sd, OV7610_REG_COM_I);
2696 
2697 	/* add OV7670 here
2698 	 * it appears to be wrongly detected as a 7610 by default */
2699 	if (rc < 0) {
2700 		PERR("Error detecting sensor type\n");
2701 		return;
2702 	}
2703 	if ((rc & 3) == 3) {
2704 		/* quick hack to make OV7670s work */
2705 		high = i2c_r(sd, 0x0a);
2706 		low = i2c_r(sd, 0x0b);
2707 		/* info("%x, %x", high, low); */
2708 		if (high == 0x76 && (low & 0xf0) == 0x70) {
2709 			PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2710 			sd->sensor = SEN_OV7670;
2711 		} else {
2712 			PDEBUG(D_PROBE, "Sensor is an OV7610");
2713 			sd->sensor = SEN_OV7610;
2714 		}
2715 	} else if ((rc & 3) == 1) {
2716 		/* I don't know what's different about the 76BE yet. */
2717 		if (i2c_r(sd, 0x15) & 1) {
2718 			PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2719 			sd->sensor = SEN_OV7620AE;
2720 		} else {
2721 			PDEBUG(D_PROBE, "Sensor is an OV76BE");
2722 			sd->sensor = SEN_OV76BE;
2723 		}
2724 	} else if ((rc & 3) == 0) {
2725 		/* try to read product id registers */
2726 		high = i2c_r(sd, 0x0a);
2727 		if (high < 0) {
2728 			PERR("Error detecting camera chip PID\n");
2729 			return;
2730 		}
2731 		low = i2c_r(sd, 0x0b);
2732 		if (low < 0) {
2733 			PERR("Error detecting camera chip VER\n");
2734 			return;
2735 		}
2736 		if (high == 0x76) {
2737 			switch (low) {
2738 			case 0x30:
2739 				PERR("Sensor is an OV7630/OV7635\n");
2740 				PERR("7630 is not supported by this driver\n");
2741 				return;
2742 			case 0x40:
2743 				PDEBUG(D_PROBE, "Sensor is an OV7645");
2744 				sd->sensor = SEN_OV7640; /* FIXME */
2745 				break;
2746 			case 0x45:
2747 				PDEBUG(D_PROBE, "Sensor is an OV7645B");
2748 				sd->sensor = SEN_OV7640; /* FIXME */
2749 				break;
2750 			case 0x48:
2751 				PDEBUG(D_PROBE, "Sensor is an OV7648");
2752 				sd->sensor = SEN_OV7648;
2753 				break;
2754 			case 0x60:
2755 				PDEBUG(D_PROBE, "Sensor is a OV7660");
2756 				sd->sensor = SEN_OV7660;
2757 				break;
2758 			default:
2759 				PERR("Unknown sensor: 0x76%02x\n", low);
2760 				return;
2761 			}
2762 		} else {
2763 			PDEBUG(D_PROBE, "Sensor is an OV7620");
2764 			sd->sensor = SEN_OV7620;
2765 		}
2766 	} else {
2767 		PERR("Unknown image sensor version: %d\n", rc & 3);
2768 	}
2769 }
2770 
2771 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2772 static void ov6xx0_configure(struct sd *sd)
2773 {
2774 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2775 	int rc;
2776 
2777 	PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2778 
2779 	/* Detect sensor (sub)type */
2780 	rc = i2c_r(sd, OV7610_REG_COM_I);
2781 	if (rc < 0) {
2782 		PERR("Error detecting sensor type\n");
2783 		return;
2784 	}
2785 
2786 	/* Ugh. The first two bits are the version bits, but
2787 	 * the entire register value must be used. I guess OVT
2788 	 * underestimated how many variants they would make. */
2789 	switch (rc) {
2790 	case 0x00:
2791 		sd->sensor = SEN_OV6630;
2792 		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2793 		break;
2794 	case 0x01:
2795 		sd->sensor = SEN_OV6620;
2796 		PDEBUG(D_PROBE, "Sensor is an OV6620");
2797 		break;
2798 	case 0x02:
2799 		sd->sensor = SEN_OV6630;
2800 		PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2801 		break;
2802 	case 0x03:
2803 		sd->sensor = SEN_OV66308AF;
2804 		PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2805 		break;
2806 	case 0x90:
2807 		sd->sensor = SEN_OV6630;
2808 		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2809 		break;
2810 	default:
2811 		PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2812 		return;
2813 	}
2814 
2815 	/* Set sensor-specific vars */
2816 	sd->sif = 1;
2817 }
2818 
2819 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2820 static void ov51x_led_control(struct sd *sd, int on)
2821 {
2822 	if (sd->invert_led)
2823 		on = !on;
2824 
2825 	switch (sd->bridge) {
2826 	/* OV511 has no LED control */
2827 	case BRIDGE_OV511PLUS:
2828 		reg_w(sd, R511_SYS_LED_CTL, on);
2829 		break;
2830 	case BRIDGE_OV518:
2831 	case BRIDGE_OV518PLUS:
2832 		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2833 		break;
2834 	case BRIDGE_OV519:
2835 		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2836 		break;
2837 	}
2838 }
2839 
2840 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2841 {
2842 	struct sd *sd = (struct sd *) gspca_dev;
2843 
2844 	if (!sd->snapshot_needs_reset)
2845 		return;
2846 
2847 	/* Note it is important that we clear sd->snapshot_needs_reset,
2848 	   before actually clearing the snapshot state in the bridge
2849 	   otherwise we might race with the pkt_scan interrupt handler */
2850 	sd->snapshot_needs_reset = 0;
2851 
2852 	switch (sd->bridge) {
2853 	case BRIDGE_OV511:
2854 	case BRIDGE_OV511PLUS:
2855 		reg_w(sd, R51x_SYS_SNAP, 0x02);
2856 		reg_w(sd, R51x_SYS_SNAP, 0x00);
2857 		break;
2858 	case BRIDGE_OV518:
2859 	case BRIDGE_OV518PLUS:
2860 		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2861 		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2862 		break;
2863 	case BRIDGE_OV519:
2864 		reg_w(sd, R51x_SYS_RESET, 0x40);
2865 		reg_w(sd, R51x_SYS_RESET, 0x00);
2866 		break;
2867 	}
2868 }
2869 
2870 static void ov51x_upload_quan_tables(struct sd *sd)
2871 {
2872 	const unsigned char yQuanTable511[] = {
2873 		0, 1, 1, 2, 2, 3, 3, 4,
2874 		1, 1, 1, 2, 2, 3, 4, 4,
2875 		1, 1, 2, 2, 3, 4, 4, 4,
2876 		2, 2, 2, 3, 4, 4, 4, 4,
2877 		2, 2, 3, 4, 4, 5, 5, 5,
2878 		3, 3, 4, 4, 5, 5, 5, 5,
2879 		3, 4, 4, 4, 5, 5, 5, 5,
2880 		4, 4, 4, 4, 5, 5, 5, 5
2881 	};
2882 
2883 	const unsigned char uvQuanTable511[] = {
2884 		0, 2, 2, 3, 4, 4, 4, 4,
2885 		2, 2, 2, 4, 4, 4, 4, 4,
2886 		2, 2, 3, 4, 4, 4, 4, 4,
2887 		3, 4, 4, 4, 4, 4, 4, 4,
2888 		4, 4, 4, 4, 4, 4, 4, 4,
2889 		4, 4, 4, 4, 4, 4, 4, 4,
2890 		4, 4, 4, 4, 4, 4, 4, 4,
2891 		4, 4, 4, 4, 4, 4, 4, 4
2892 	};
2893 
2894 	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2895 	const unsigned char yQuanTable518[] = {
2896 		5, 4, 5, 6, 6, 7, 7, 7,
2897 		5, 5, 5, 5, 6, 7, 7, 7,
2898 		6, 6, 6, 6, 7, 7, 7, 8,
2899 		7, 7, 6, 7, 7, 7, 8, 8
2900 	};
2901 	const unsigned char uvQuanTable518[] = {
2902 		6, 6, 6, 7, 7, 7, 7, 7,
2903 		6, 6, 6, 7, 7, 7, 7, 7,
2904 		6, 6, 6, 7, 7, 7, 7, 8,
2905 		7, 7, 7, 7, 7, 7, 8, 8
2906 	};
2907 
2908 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2909 	const unsigned char *pYTable, *pUVTable;
2910 	unsigned char val0, val1;
2911 	int i, size, reg = R51x_COMP_LUT_BEGIN;
2912 
2913 	PDEBUG(D_PROBE, "Uploading quantization tables");
2914 
2915 	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2916 		pYTable = yQuanTable511;
2917 		pUVTable = uvQuanTable511;
2918 		size = 32;
2919 	} else {
2920 		pYTable = yQuanTable518;
2921 		pUVTable = uvQuanTable518;
2922 		size = 16;
2923 	}
2924 
2925 	for (i = 0; i < size; i++) {
2926 		val0 = *pYTable++;
2927 		val1 = *pYTable++;
2928 		val0 &= 0x0f;
2929 		val1 &= 0x0f;
2930 		val0 |= val1 << 4;
2931 		reg_w(sd, reg, val0);
2932 
2933 		val0 = *pUVTable++;
2934 		val1 = *pUVTable++;
2935 		val0 &= 0x0f;
2936 		val1 &= 0x0f;
2937 		val0 |= val1 << 4;
2938 		reg_w(sd, reg + size, val0);
2939 
2940 		reg++;
2941 	}
2942 }
2943 
2944 /* This initializes the OV511/OV511+ and the sensor */
2945 static void ov511_configure(struct gspca_dev *gspca_dev)
2946 {
2947 	struct sd *sd = (struct sd *) gspca_dev;
2948 
2949 	/* For 511 and 511+ */
2950 	const struct ov_regvals init_511[] = {
2951 		{ R51x_SYS_RESET,	0x7f },
2952 		{ R51x_SYS_INIT,	0x01 },
2953 		{ R51x_SYS_RESET,	0x7f },
2954 		{ R51x_SYS_INIT,	0x01 },
2955 		{ R51x_SYS_RESET,	0x3f },
2956 		{ R51x_SYS_INIT,	0x01 },
2957 		{ R51x_SYS_RESET,	0x3d },
2958 	};
2959 
2960 	const struct ov_regvals norm_511[] = {
2961 		{ R511_DRAM_FLOW_CTL,	0x01 },
2962 		{ R51x_SYS_SNAP,	0x00 },
2963 		{ R51x_SYS_SNAP,	0x02 },
2964 		{ R51x_SYS_SNAP,	0x00 },
2965 		{ R511_FIFO_OPTS,	0x1f },
2966 		{ R511_COMP_EN,		0x00 },
2967 		{ R511_COMP_LUT_EN,	0x03 },
2968 	};
2969 
2970 	const struct ov_regvals norm_511_p[] = {
2971 		{ R511_DRAM_FLOW_CTL,	0xff },
2972 		{ R51x_SYS_SNAP,	0x00 },
2973 		{ R51x_SYS_SNAP,	0x02 },
2974 		{ R51x_SYS_SNAP,	0x00 },
2975 		{ R511_FIFO_OPTS,	0xff },
2976 		{ R511_COMP_EN,		0x00 },
2977 		{ R511_COMP_LUT_EN,	0x03 },
2978 	};
2979 
2980 	const struct ov_regvals compress_511[] = {
2981 		{ 0x70, 0x1f },
2982 		{ 0x71, 0x05 },
2983 		{ 0x72, 0x06 },
2984 		{ 0x73, 0x06 },
2985 		{ 0x74, 0x14 },
2986 		{ 0x75, 0x03 },
2987 		{ 0x76, 0x04 },
2988 		{ 0x77, 0x04 },
2989 	};
2990 
2991 	PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2992 
2993 	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2994 
2995 	switch (sd->bridge) {
2996 	case BRIDGE_OV511:
2997 		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2998 		break;
2999 	case BRIDGE_OV511PLUS:
3000 		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3001 		break;
3002 	}
3003 
3004 	/* Init compression */
3005 	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3006 
3007 	ov51x_upload_quan_tables(sd);
3008 }
3009 
3010 /* This initializes the OV518/OV518+ and the sensor */
3011 static void ov518_configure(struct gspca_dev *gspca_dev)
3012 {
3013 	struct sd *sd = (struct sd *) gspca_dev;
3014 
3015 	/* For 518 and 518+ */
3016 	const struct ov_regvals init_518[] = {
3017 		{ R51x_SYS_RESET,	0x40 },
3018 		{ R51x_SYS_INIT,	0xe1 },
3019 		{ R51x_SYS_RESET,	0x3e },
3020 		{ R51x_SYS_INIT,	0xe1 },
3021 		{ R51x_SYS_RESET,	0x00 },
3022 		{ R51x_SYS_INIT,	0xe1 },
3023 		{ 0x46,			0x00 },
3024 		{ 0x5d,			0x03 },
3025 	};
3026 
3027 	const struct ov_regvals norm_518[] = {
3028 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3029 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3030 		{ 0x31,			0x0f },
3031 		{ 0x5d,			0x03 },
3032 		{ 0x24,			0x9f },
3033 		{ 0x25,			0x90 },
3034 		{ 0x20,			0x00 },
3035 		{ 0x51,			0x04 },
3036 		{ 0x71,			0x19 },
3037 		{ 0x2f,			0x80 },
3038 	};
3039 
3040 	const struct ov_regvals norm_518_p[] = {
3041 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3042 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3043 		{ 0x31,			0x0f },
3044 		{ 0x5d,			0x03 },
3045 		{ 0x24,			0x9f },
3046 		{ 0x25,			0x90 },
3047 		{ 0x20,			0x60 },
3048 		{ 0x51,			0x02 },
3049 		{ 0x71,			0x19 },
3050 		{ 0x40,			0xff },
3051 		{ 0x41,			0x42 },
3052 		{ 0x46,			0x00 },
3053 		{ 0x33,			0x04 },
3054 		{ 0x21,			0x19 },
3055 		{ 0x3f,			0x10 },
3056 		{ 0x2f,			0x80 },
3057 	};
3058 
3059 	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3060 	sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3061 	PDEBUG(D_PROBE, "Device revision %d", sd->revision);
3062 
3063 	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3064 
3065 	/* Set LED GPIO pin to output mode */
3066 	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3067 
3068 	switch (sd->bridge) {
3069 	case BRIDGE_OV518:
3070 		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3071 		break;
3072 	case BRIDGE_OV518PLUS:
3073 		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3074 		break;
3075 	}
3076 
3077 	ov51x_upload_quan_tables(sd);
3078 
3079 	reg_w(sd, 0x2f, 0x80);
3080 }
3081 
3082 static void ov519_configure(struct sd *sd)
3083 {
3084 	static const struct ov_regvals init_519[] = {
3085 		{ 0x5a, 0x6d }, /* EnableSystem */
3086 		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3087 		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3088 		{ 0x5d, 0x03 },
3089 		{ 0x49, 0x01 },
3090 		{ 0x48, 0x00 },
3091 		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3092 		 * detection will fail. This deserves further investigation. */
3093 		{ OV519_GPIO_IO_CTRL0,   0xee },
3094 		{ OV519_R51_RESET1, 0x0f },
3095 		{ OV519_R51_RESET1, 0x00 },
3096 		{ 0x22, 0x00 },
3097 		/* windows reads 0x55 at this point*/
3098 	};
3099 
3100 	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3101 }
3102 
3103 static void ovfx2_configure(struct sd *sd)
3104 {
3105 	static const struct ov_regvals init_fx2[] = {
3106 		{ 0x00, 0x60 },
3107 		{ 0x02, 0x01 },
3108 		{ 0x0f, 0x1d },
3109 		{ 0xe9, 0x82 },
3110 		{ 0xea, 0xc7 },
3111 		{ 0xeb, 0x10 },
3112 		{ 0xec, 0xf6 },
3113 	};
3114 
3115 	sd->stopped = 1;
3116 
3117 	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3118 }
3119 
3120 /* set the mode */
3121 /* This function works for ov7660 only */
3122 static void ov519_set_mode(struct sd *sd)
3123 {
3124 	static const struct ov_regvals bridge_ov7660[2][10] = {
3125 		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3126 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3127 		 {0x25, 0x01}, {0x26, 0x00}},
3128 		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3129 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3130 		 {0x25, 0x03}, {0x26, 0x00}}
3131 	};
3132 	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3133 		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3134 		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3135 	};
3136 	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3137 		{OV7670_R17_HSTART, 0x13},
3138 		{OV7670_R18_HSTOP, 0x01},
3139 		{OV7670_R32_HREF, 0x92},
3140 		{OV7670_R19_VSTART, 0x02},
3141 		{OV7670_R1A_VSTOP, 0x7a},
3142 		{OV7670_R03_VREF, 0x00},
3143 /*		{0x33, 0x00}, */
3144 /*		{0x34, 0x07}, */
3145 /*		{0x36, 0x00}, */
3146 /*		{0x6b, 0x0a}, */
3147 	};
3148 
3149 	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3150 			ARRAY_SIZE(bridge_ov7660[0]));
3151 	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3152 			ARRAY_SIZE(sensor_ov7660[0]));
3153 	write_i2c_regvals(sd, sensor_ov7660_2,
3154 			ARRAY_SIZE(sensor_ov7660_2));
3155 }
3156 
3157 /* set the frame rate */
3158 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3159 static void ov519_set_fr(struct sd *sd)
3160 {
3161 	int fr;
3162 	u8 clock;
3163 	/* frame rate table with indices:
3164 	 *	- mode = 0: 320x240, 1: 640x480
3165 	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3166 	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3167 	 */
3168 	static const u8 fr_tb[2][6][3] = {
3169 		{{0x04, 0xff, 0x00},
3170 		 {0x04, 0x1f, 0x00},
3171 		 {0x04, 0x1b, 0x00},
3172 		 {0x04, 0x15, 0x00},
3173 		 {0x04, 0x09, 0x00},
3174 		 {0x04, 0x01, 0x00}},
3175 		{{0x0c, 0xff, 0x00},
3176 		 {0x0c, 0x1f, 0x00},
3177 		 {0x0c, 0x1b, 0x00},
3178 		 {0x04, 0xff, 0x01},
3179 		 {0x04, 0x1f, 0x01},
3180 		 {0x04, 0x1b, 0x01}},
3181 	};
3182 
3183 	if (frame_rate > 0)
3184 		sd->frame_rate = frame_rate;
3185 	if (sd->frame_rate >= 30)
3186 		fr = 0;
3187 	else if (sd->frame_rate >= 25)
3188 		fr = 1;
3189 	else if (sd->frame_rate >= 20)
3190 		fr = 2;
3191 	else if (sd->frame_rate >= 15)
3192 		fr = 3;
3193 	else if (sd->frame_rate >= 10)
3194 		fr = 4;
3195 	else
3196 		fr = 5;
3197 	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3198 	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3199 	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3200 	if (sd->sensor == SEN_OV7660)
3201 		clock |= 0x80;		/* enable double clock */
3202 	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3203 }
3204 
3205 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3206 {
3207 	struct sd *sd = (struct sd *) gspca_dev;
3208 
3209 	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3210 }
3211 
3212 /* this function is called at probe time */
3213 static int sd_config(struct gspca_dev *gspca_dev,
3214 			const struct usb_device_id *id)
3215 {
3216 	struct sd *sd = (struct sd *) gspca_dev;
3217 	struct cam *cam = &gspca_dev->cam;
3218 
3219 	sd->bridge = id->driver_info & BRIDGE_MASK;
3220 	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3221 
3222 	switch (sd->bridge) {
3223 	case BRIDGE_OV511:
3224 	case BRIDGE_OV511PLUS:
3225 		cam->cam_mode = ov511_vga_mode;
3226 		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3227 		break;
3228 	case BRIDGE_OV518:
3229 	case BRIDGE_OV518PLUS:
3230 		cam->cam_mode = ov518_vga_mode;
3231 		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3232 		break;
3233 	case BRIDGE_OV519:
3234 		cam->cam_mode = ov519_vga_mode;
3235 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3236 		break;
3237 	case BRIDGE_OVFX2:
3238 		cam->cam_mode = ov519_vga_mode;
3239 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3240 		cam->bulk_size = OVFX2_BULK_SIZE;
3241 		cam->bulk_nurbs = MAX_NURBS;
3242 		cam->bulk = 1;
3243 		break;
3244 	case BRIDGE_W9968CF:
3245 		cam->cam_mode = w9968cf_vga_mode;
3246 		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3247 		break;
3248 	}
3249 
3250 	sd->frame_rate = 15;
3251 
3252 	return 0;
3253 }
3254 
3255 /* this function is called at probe and resume time */
3256 static int sd_init(struct gspca_dev *gspca_dev)
3257 {
3258 	struct sd *sd = (struct sd *) gspca_dev;
3259 	struct cam *cam = &gspca_dev->cam;
3260 
3261 	switch (sd->bridge) {
3262 	case BRIDGE_OV511:
3263 	case BRIDGE_OV511PLUS:
3264 		ov511_configure(gspca_dev);
3265 		break;
3266 	case BRIDGE_OV518:
3267 	case BRIDGE_OV518PLUS:
3268 		ov518_configure(gspca_dev);
3269 		break;
3270 	case BRIDGE_OV519:
3271 		ov519_configure(sd);
3272 		break;
3273 	case BRIDGE_OVFX2:
3274 		ovfx2_configure(sd);
3275 		break;
3276 	case BRIDGE_W9968CF:
3277 		w9968cf_configure(sd);
3278 		break;
3279 	}
3280 
3281 	/* The OV519 must be more aggressive about sensor detection since
3282 	 * I2C write will never fail if the sensor is not present. We have
3283 	 * to try to initialize the sensor to detect its presence */
3284 	sd->sensor = -1;
3285 
3286 	/* Test for 76xx */
3287 	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3288 		ov7xx0_configure(sd);
3289 
3290 	/* Test for 6xx0 */
3291 	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3292 		ov6xx0_configure(sd);
3293 
3294 	/* Test for 8xx0 */
3295 	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3296 		ov8xx0_configure(sd);
3297 
3298 	/* Test for 3xxx / 2xxx */
3299 	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3300 		ov_hires_configure(sd);
3301 	} else {
3302 		PERR("Can't determine sensor slave IDs\n");
3303 		goto error;
3304 	}
3305 
3306 	if (sd->sensor < 0)
3307 		goto error;
3308 
3309 	ov51x_led_control(sd, 0);	/* turn LED off */
3310 
3311 	switch (sd->bridge) {
3312 	case BRIDGE_OV511:
3313 	case BRIDGE_OV511PLUS:
3314 		if (sd->sif) {
3315 			cam->cam_mode = ov511_sif_mode;
3316 			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3317 		}
3318 		break;
3319 	case BRIDGE_OV518:
3320 	case BRIDGE_OV518PLUS:
3321 		if (sd->sif) {
3322 			cam->cam_mode = ov518_sif_mode;
3323 			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3324 		}
3325 		break;
3326 	case BRIDGE_OV519:
3327 		if (sd->sif) {
3328 			cam->cam_mode = ov519_sif_mode;
3329 			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3330 		}
3331 		break;
3332 	case BRIDGE_OVFX2:
3333 		switch (sd->sensor) {
3334 		case SEN_OV2610:
3335 		case SEN_OV2610AE:
3336 			cam->cam_mode = ovfx2_ov2610_mode;
3337 			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3338 			break;
3339 		case SEN_OV3610:
3340 			cam->cam_mode = ovfx2_ov3610_mode;
3341 			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3342 			break;
3343 		case SEN_OV9600:
3344 			cam->cam_mode = ovfx2_ov9600_mode;
3345 			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3346 			break;
3347 		default:
3348 			if (sd->sif) {
3349 				cam->cam_mode = ov519_sif_mode;
3350 				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3351 			}
3352 			break;
3353 		}
3354 		break;
3355 	case BRIDGE_W9968CF:
3356 		if (sd->sif)
3357 			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3358 
3359 		/* w9968cf needs initialisation once the sensor is known */
3360 		w9968cf_init(sd);
3361 		break;
3362 	}
3363 
3364 	/* initialize the sensor */
3365 	switch (sd->sensor) {
3366 	case SEN_OV2610:
3367 		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3368 
3369 		/* Enable autogain, autoexpo, awb, bandfilter */
3370 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3371 		break;
3372 	case SEN_OV2610AE:
3373 		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3374 
3375 		/* enable autoexpo */
3376 		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3377 		break;
3378 	case SEN_OV3610:
3379 		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3380 
3381 		/* Enable autogain, autoexpo, awb, bandfilter */
3382 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3383 		break;
3384 	case SEN_OV6620:
3385 		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3386 		break;
3387 	case SEN_OV6630:
3388 	case SEN_OV66308AF:
3389 		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3390 		break;
3391 	default:
3392 /*	case SEN_OV7610: */
3393 /*	case SEN_OV76BE: */
3394 		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3395 		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3396 		break;
3397 	case SEN_OV7620:
3398 	case SEN_OV7620AE:
3399 		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3400 		break;
3401 	case SEN_OV7640:
3402 	case SEN_OV7648:
3403 		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3404 		break;
3405 	case SEN_OV7660:
3406 		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3407 		msleep(14);
3408 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3409 		write_regvals(sd, init_519_ov7660,
3410 				ARRAY_SIZE(init_519_ov7660));
3411 		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3412 		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3413 		ov519_set_mode(sd);
3414 		ov519_set_fr(sd);
3415 		sd_reset_snapshot(gspca_dev);
3416 		ov51x_restart(sd);
3417 		ov51x_stop(sd);			/* not in win traces */
3418 		ov51x_led_control(sd, 0);
3419 		break;
3420 	case SEN_OV7670:
3421 		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3422 		break;
3423 	case SEN_OV8610:
3424 		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3425 		break;
3426 	case SEN_OV9600:
3427 		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3428 
3429 		/* enable autoexpo */
3430 /*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3431 		break;
3432 	}
3433 	return gspca_dev->usb_err;
3434 error:
3435 	PERR("OV519 Config failed");
3436 	return -EINVAL;
3437 }
3438 
3439 /* function called at start time before URB creation */
3440 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3441 {
3442 	struct sd *sd = (struct sd *) gspca_dev;
3443 
3444 	switch (sd->bridge) {
3445 	case BRIDGE_OVFX2:
3446 		if (gspca_dev->pixfmt.width != 800)
3447 			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3448 		else
3449 			gspca_dev->cam.bulk_size = 7 * 4096;
3450 		break;
3451 	}
3452 	return 0;
3453 }
3454 
3455 /* Set up the OV511/OV511+ with the given image parameters.
3456  *
3457  * Do not put any sensor-specific code in here (including I2C I/O functions)
3458  */
3459 static void ov511_mode_init_regs(struct sd *sd)
3460 {
3461 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3462 	int hsegs, vsegs, packet_size, fps, needed;
3463 	int interlaced = 0;
3464 	struct usb_host_interface *alt;
3465 	struct usb_interface *intf;
3466 
3467 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3468 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3469 	if (!alt) {
3470 		PERR("Couldn't get altsetting\n");
3471 		sd->gspca_dev.usb_err = -EIO;
3472 		return;
3473 	}
3474 
3475 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3476 	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3477 
3478 	reg_w(sd, R511_CAM_UV_EN, 0x01);
3479 	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3480 	reg_w(sd, R511_SNAP_OPTS, 0x03);
3481 
3482 	/* Here I'm assuming that snapshot size == image size.
3483 	 * I hope that's always true. --claudio
3484 	 */
3485 	hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3486 	vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3487 
3488 	reg_w(sd, R511_CAM_PXCNT, hsegs);
3489 	reg_w(sd, R511_CAM_LNCNT, vsegs);
3490 	reg_w(sd, R511_CAM_PXDIV, 0x00);
3491 	reg_w(sd, R511_CAM_LNDIV, 0x00);
3492 
3493 	/* YUV420, low pass filter on */
3494 	reg_w(sd, R511_CAM_OPTS, 0x03);
3495 
3496 	/* Snapshot additions */
3497 	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3498 	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3499 	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3500 	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3501 
3502 	/******** Set the framerate ********/
3503 	if (frame_rate > 0)
3504 		sd->frame_rate = frame_rate;
3505 
3506 	switch (sd->sensor) {
3507 	case SEN_OV6620:
3508 		/* No framerate control, doesn't like higher rates yet */
3509 		sd->clockdiv = 3;
3510 		break;
3511 
3512 	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3513 	   for more sensors we need to do this for them too */
3514 	case SEN_OV7620:
3515 	case SEN_OV7620AE:
3516 	case SEN_OV7640:
3517 	case SEN_OV7648:
3518 	case SEN_OV76BE:
3519 		if (sd->gspca_dev.pixfmt.width == 320)
3520 			interlaced = 1;
3521 		/* Fall through */
3522 	case SEN_OV6630:
3523 	case SEN_OV7610:
3524 	case SEN_OV7670:
3525 		switch (sd->frame_rate) {
3526 		case 30:
3527 		case 25:
3528 			/* Not enough bandwidth to do 640x480 @ 30 fps */
3529 			if (sd->gspca_dev.pixfmt.width != 640) {
3530 				sd->clockdiv = 0;
3531 				break;
3532 			}
3533 			/* Fall through for 640x480 case */
3534 		default:
3535 /*		case 20: */
3536 /*		case 15: */
3537 			sd->clockdiv = 1;
3538 			break;
3539 		case 10:
3540 			sd->clockdiv = 2;
3541 			break;
3542 		case 5:
3543 			sd->clockdiv = 5;
3544 			break;
3545 		}
3546 		if (interlaced) {
3547 			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3548 			/* Higher then 10 does not work */
3549 			if (sd->clockdiv > 10)
3550 				sd->clockdiv = 10;
3551 		}
3552 		break;
3553 
3554 	case SEN_OV8610:
3555 		/* No framerate control ?? */
3556 		sd->clockdiv = 0;
3557 		break;
3558 	}
3559 
3560 	/* Check if we have enough bandwidth to disable compression */
3561 	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3562 	needed = fps * sd->gspca_dev.pixfmt.width *
3563 			sd->gspca_dev.pixfmt.height * 3 / 2;
3564 	/* 1000 isoc packets/sec */
3565 	if (needed > 1000 * packet_size) {
3566 		/* Enable Y and UV quantization and compression */
3567 		reg_w(sd, R511_COMP_EN, 0x07);
3568 		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3569 	} else {
3570 		reg_w(sd, R511_COMP_EN, 0x06);
3571 		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3572 	}
3573 
3574 	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3575 	reg_w(sd, R51x_SYS_RESET, 0);
3576 }
3577 
3578 /* Sets up the OV518/OV518+ with the given image parameters
3579  *
3580  * OV518 needs a completely different approach, until we can figure out what
3581  * the individual registers do. Also, only 15 FPS is supported now.
3582  *
3583  * Do not put any sensor-specific code in here (including I2C I/O functions)
3584  */
3585 static void ov518_mode_init_regs(struct sd *sd)
3586 {
3587 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3588 	int hsegs, vsegs, packet_size;
3589 	struct usb_host_interface *alt;
3590 	struct usb_interface *intf;
3591 
3592 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3593 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3594 	if (!alt) {
3595 		PERR("Couldn't get altsetting\n");
3596 		sd->gspca_dev.usb_err = -EIO;
3597 		return;
3598 	}
3599 
3600 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3601 	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3602 
3603 	/******** Set the mode ********/
3604 	reg_w(sd, 0x2b, 0);
3605 	reg_w(sd, 0x2c, 0);
3606 	reg_w(sd, 0x2d, 0);
3607 	reg_w(sd, 0x2e, 0);
3608 	reg_w(sd, 0x3b, 0);
3609 	reg_w(sd, 0x3c, 0);
3610 	reg_w(sd, 0x3d, 0);
3611 	reg_w(sd, 0x3e, 0);
3612 
3613 	if (sd->bridge == BRIDGE_OV518) {
3614 		/* Set 8-bit (YVYU) input format */
3615 		reg_w_mask(sd, 0x20, 0x08, 0x08);
3616 
3617 		/* Set 12-bit (4:2:0) output format */
3618 		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3619 		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3620 	} else {
3621 		reg_w(sd, 0x28, 0x80);
3622 		reg_w(sd, 0x38, 0x80);
3623 	}
3624 
3625 	hsegs = sd->gspca_dev.pixfmt.width / 16;
3626 	vsegs = sd->gspca_dev.pixfmt.height / 4;
3627 
3628 	reg_w(sd, 0x29, hsegs);
3629 	reg_w(sd, 0x2a, vsegs);
3630 
3631 	reg_w(sd, 0x39, hsegs);
3632 	reg_w(sd, 0x3a, vsegs);
3633 
3634 	/* Windows driver does this here; who knows why */
3635 	reg_w(sd, 0x2f, 0x80);
3636 
3637 	/******** Set the framerate ********/
3638 	if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3639 					      sd->sensor == SEN_OV7620AE)
3640 		sd->clockdiv = 0;
3641 	else
3642 		sd->clockdiv = 1;
3643 
3644 	/* Mode independent, but framerate dependent, regs */
3645 	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3646 	reg_w(sd, 0x51, 0x04);
3647 	reg_w(sd, 0x22, 0x18);
3648 	reg_w(sd, 0x23, 0xff);
3649 
3650 	if (sd->bridge == BRIDGE_OV518PLUS) {
3651 		switch (sd->sensor) {
3652 		case SEN_OV7620AE:
3653 			/*
3654 			 * HdG: 640x480 needs special handling on device
3655 			 * revision 2, we check for device revison > 0 to
3656 			 * avoid regressions, as we don't know the correct
3657 			 * thing todo for revision 1.
3658 			 *
3659 			 * Also this likely means we don't need to
3660 			 * differentiate between the OV7620 and OV7620AE,
3661 			 * earlier testing hitting this same problem likely
3662 			 * happened to be with revision < 2 cams using an
3663 			 * OV7620 and revision 2 cams using an OV7620AE.
3664 			 */
3665 			if (sd->revision > 0 &&
3666 					sd->gspca_dev.pixfmt.width == 640) {
3667 				reg_w(sd, 0x20, 0x60);
3668 				reg_w(sd, 0x21, 0x1f);
3669 			} else {
3670 				reg_w(sd, 0x20, 0x00);
3671 				reg_w(sd, 0x21, 0x19);
3672 			}
3673 			break;
3674 		case SEN_OV7620:
3675 			reg_w(sd, 0x20, 0x00);
3676 			reg_w(sd, 0x21, 0x19);
3677 			break;
3678 		default:
3679 			reg_w(sd, 0x21, 0x19);
3680 		}
3681 	} else
3682 		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3683 
3684 	/* FIXME: Sensor-specific */
3685 	/* Bit 5 is what matters here. Of course, it is "reserved" */
3686 	i2c_w(sd, 0x54, 0x23);
3687 
3688 	reg_w(sd, 0x2f, 0x80);
3689 
3690 	if (sd->bridge == BRIDGE_OV518PLUS) {
3691 		reg_w(sd, 0x24, 0x94);
3692 		reg_w(sd, 0x25, 0x90);
3693 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3694 		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3695 		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3696 		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3697 		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3698 		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3699 		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3700 		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3701 		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3702 	} else {
3703 		reg_w(sd, 0x24, 0x9f);
3704 		reg_w(sd, 0x25, 0x90);
3705 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3706 		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3707 		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3708 		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3709 		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3710 		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3711 		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3712 		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3713 		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3714 	}
3715 
3716 	reg_w(sd, 0x2f, 0x80);
3717 }
3718 
3719 /* Sets up the OV519 with the given image parameters
3720  *
3721  * OV519 needs a completely different approach, until we can figure out what
3722  * the individual registers do.
3723  *
3724  * Do not put any sensor-specific code in here (including I2C I/O functions)
3725  */
3726 static void ov519_mode_init_regs(struct sd *sd)
3727 {
3728 	static const struct ov_regvals mode_init_519_ov7670[] = {
3729 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3730 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3731 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3732 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3733 		{ 0xa3,	0x18 },
3734 		{ 0xa4,	0x04 },
3735 		{ 0xa5,	0x28 },
3736 		{ 0x37,	0x00 },	/* SetUsbInit */
3737 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3738 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3739 		{ 0x20,	0x0c },
3740 		{ 0x21,	0x38 },
3741 		{ 0x22,	0x1d },
3742 		{ 0x17,	0x50 }, /* undocumented */
3743 		{ 0x37,	0x00 }, /* undocumented */
3744 		{ 0x40,	0xff }, /* I2C timeout counter */
3745 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3746 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3747 		{ 0xff,	0x00 }, /* undocumented */
3748 		/* windows reads 0x55 at this point, why? */
3749 	};
3750 
3751 	static const struct ov_regvals mode_init_519[] = {
3752 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3753 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3754 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3755 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3756 		{ 0xa3,	0x18 },
3757 		{ 0xa4,	0x04 },
3758 		{ 0xa5,	0x28 },
3759 		{ 0x37,	0x00 },	/* SetUsbInit */
3760 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3761 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3762 		{ 0x22,	0x1d },
3763 		{ 0x17,	0x50 }, /* undocumented */
3764 		{ 0x37,	0x00 }, /* undocumented */
3765 		{ 0x40,	0xff }, /* I2C timeout counter */
3766 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3767 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3768 		{ 0xff,	0x00 }, /* undocumented */
3769 		/* windows reads 0x55 at this point, why? */
3770 	};
3771 
3772 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3773 
3774 	/******** Set the mode ********/
3775 	switch (sd->sensor) {
3776 	default:
3777 		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3778 		if (sd->sensor == SEN_OV7640 ||
3779 		    sd->sensor == SEN_OV7648) {
3780 			/* Select 8-bit input mode */
3781 			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3782 		}
3783 		break;
3784 	case SEN_OV7660:
3785 		return;		/* done by ov519_set_mode/fr() */
3786 	case SEN_OV7670:
3787 		write_regvals(sd, mode_init_519_ov7670,
3788 				ARRAY_SIZE(mode_init_519_ov7670));
3789 		break;
3790 	}
3791 
3792 	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.pixfmt.width >> 4);
3793 	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.pixfmt.height >> 3);
3794 	if (sd->sensor == SEN_OV7670 &&
3795 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3796 		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3797 	else if (sd->sensor == SEN_OV7648 &&
3798 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3799 		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3800 	else
3801 		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3802 	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3803 	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3804 	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3805 	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3806 	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3807 	reg_w(sd, 0x26,			0x00); /* Undocumented */
3808 
3809 	/******** Set the framerate ********/
3810 	if (frame_rate > 0)
3811 		sd->frame_rate = frame_rate;
3812 
3813 /* FIXME: These are only valid at the max resolution. */
3814 	sd->clockdiv = 0;
3815 	switch (sd->sensor) {
3816 	case SEN_OV7640:
3817 	case SEN_OV7648:
3818 		switch (sd->frame_rate) {
3819 		default:
3820 /*		case 30: */
3821 			reg_w(sd, 0xa4, 0x0c);
3822 			reg_w(sd, 0x23, 0xff);
3823 			break;
3824 		case 25:
3825 			reg_w(sd, 0xa4, 0x0c);
3826 			reg_w(sd, 0x23, 0x1f);
3827 			break;
3828 		case 20:
3829 			reg_w(sd, 0xa4, 0x0c);
3830 			reg_w(sd, 0x23, 0x1b);
3831 			break;
3832 		case 15:
3833 			reg_w(sd, 0xa4, 0x04);
3834 			reg_w(sd, 0x23, 0xff);
3835 			sd->clockdiv = 1;
3836 			break;
3837 		case 10:
3838 			reg_w(sd, 0xa4, 0x04);
3839 			reg_w(sd, 0x23, 0x1f);
3840 			sd->clockdiv = 1;
3841 			break;
3842 		case 5:
3843 			reg_w(sd, 0xa4, 0x04);
3844 			reg_w(sd, 0x23, 0x1b);
3845 			sd->clockdiv = 1;
3846 			break;
3847 		}
3848 		break;
3849 	case SEN_OV8610:
3850 		switch (sd->frame_rate) {
3851 		default:	/* 15 fps */
3852 /*		case 15: */
3853 			reg_w(sd, 0xa4, 0x06);
3854 			reg_w(sd, 0x23, 0xff);
3855 			break;
3856 		case 10:
3857 			reg_w(sd, 0xa4, 0x06);
3858 			reg_w(sd, 0x23, 0x1f);
3859 			break;
3860 		case 5:
3861 			reg_w(sd, 0xa4, 0x06);
3862 			reg_w(sd, 0x23, 0x1b);
3863 			break;
3864 		}
3865 		break;
3866 	case SEN_OV7670:		/* guesses, based on 7640 */
3867 		PDEBUG(D_STREAM, "Setting framerate to %d fps",
3868 				 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3869 		reg_w(sd, 0xa4, 0x10);
3870 		switch (sd->frame_rate) {
3871 		case 30:
3872 			reg_w(sd, 0x23, 0xff);
3873 			break;
3874 		case 20:
3875 			reg_w(sd, 0x23, 0x1b);
3876 			break;
3877 		default:
3878 /*		case 15: */
3879 			reg_w(sd, 0x23, 0xff);
3880 			sd->clockdiv = 1;
3881 			break;
3882 		}
3883 		break;
3884 	}
3885 }
3886 
3887 static void mode_init_ov_sensor_regs(struct sd *sd)
3888 {
3889 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3890 	int qvga, xstart, xend, ystart, yend;
3891 	u8 v;
3892 
3893 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3894 
3895 	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3896 	switch (sd->sensor) {
3897 	case SEN_OV2610:
3898 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3899 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3900 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3901 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3902 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3903 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3904 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3905 		return;
3906 	case SEN_OV2610AE: {
3907 		u8 v;
3908 
3909 		/* frame rates:
3910 		 *	10fps / 5 fps for 1600x1200
3911 		 *	40fps / 20fps for 800x600
3912 		 */
3913 		v = 80;
3914 		if (qvga) {
3915 			if (sd->frame_rate < 25)
3916 				v = 0x81;
3917 		} else {
3918 			if (sd->frame_rate < 10)
3919 				v = 0x81;
3920 		}
3921 		i2c_w(sd, 0x11, v);
3922 		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3923 		return;
3924 	    }
3925 	case SEN_OV3610:
3926 		if (qvga) {
3927 			xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3928 				(0x1f << 4);
3929 			ystart = (776 - gspca_dev->pixfmt.height) / 2;
3930 		} else {
3931 			xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3932 				(0x10 << 4);
3933 			ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3934 		}
3935 		xend = xstart + gspca_dev->pixfmt.width;
3936 		yend = ystart + gspca_dev->pixfmt.height;
3937 		/* Writing to the COMH register resets the other windowing regs
3938 		   to their default values, so we must do this first. */
3939 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3940 		i2c_w_mask(sd, 0x32,
3941 			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3942 			   0x3f);
3943 		i2c_w_mask(sd, 0x03,
3944 			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3945 			   0x0f);
3946 		i2c_w(sd, 0x17, xstart >> 4);
3947 		i2c_w(sd, 0x18, xend >> 4);
3948 		i2c_w(sd, 0x19, ystart >> 3);
3949 		i2c_w(sd, 0x1a, yend >> 3);
3950 		return;
3951 	case SEN_OV8610:
3952 		/* For OV8610 qvga means qsvga */
3953 		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3954 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3955 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3956 		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3957 		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3958 		break;
3959 	case SEN_OV7610:
3960 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3961 		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3962 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3963 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3964 		break;
3965 	case SEN_OV7620:
3966 	case SEN_OV7620AE:
3967 	case SEN_OV76BE:
3968 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3969 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3970 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3971 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3972 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3973 		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3974 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3975 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3976 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3977 		if (sd->sensor == SEN_OV76BE)
3978 			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3979 		break;
3980 	case SEN_OV7640:
3981 	case SEN_OV7648:
3982 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3983 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3984 		/* Setting this undocumented bit in qvga mode removes a very
3985 		   annoying vertical shaking of the image */
3986 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3987 		/* Unknown */
3988 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3989 		/* Allow higher automatic gain (to allow higher framerates) */
3990 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3991 		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3992 		break;
3993 	case SEN_OV7670:
3994 		/* set COM7_FMT_VGA or COM7_FMT_QVGA
3995 		 * do we need to set anything else?
3996 		 *	HSTART etc are set in set_ov_sensor_window itself */
3997 		i2c_w_mask(sd, OV7670_R12_COM7,
3998 			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3999 			 OV7670_COM7_FMT_MASK);
4000 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4001 		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4002 				OV7670_COM8_AWB);
4003 		if (qvga) {		/* QVGA from ov7670.c by
4004 					 * Jonathan Corbet */
4005 			xstart = 164;
4006 			xend = 28;
4007 			ystart = 14;
4008 			yend = 494;
4009 		} else {		/* VGA */
4010 			xstart = 158;
4011 			xend = 14;
4012 			ystart = 10;
4013 			yend = 490;
4014 		}
4015 		/* OV7670 hardware window registers are split across
4016 		 * multiple locations */
4017 		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4018 		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4019 		v = i2c_r(sd, OV7670_R32_HREF);
4020 		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4021 		msleep(10);	/* need to sleep between read and write to
4022 				 * same reg! */
4023 		i2c_w(sd, OV7670_R32_HREF, v);
4024 
4025 		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4026 		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4027 		v = i2c_r(sd, OV7670_R03_VREF);
4028 		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4029 		msleep(10);	/* need to sleep between read and write to
4030 				 * same reg! */
4031 		i2c_w(sd, OV7670_R03_VREF, v);
4032 		break;
4033 	case SEN_OV6620:
4034 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4035 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4036 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4037 		break;
4038 	case SEN_OV6630:
4039 	case SEN_OV66308AF:
4040 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4041 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4042 		break;
4043 	case SEN_OV9600: {
4044 		const struct ov_i2c_regvals *vals;
4045 		static const struct ov_i2c_regvals sxga_15[] = {
4046 			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4047 		};
4048 		static const struct ov_i2c_regvals sxga_7_5[] = {
4049 			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4050 		};
4051 		static const struct ov_i2c_regvals vga_30[] = {
4052 			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4053 		};
4054 		static const struct ov_i2c_regvals vga_15[] = {
4055 			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4056 		};
4057 
4058 		/* frame rates:
4059 		 *	15fps / 7.5 fps for 1280x1024
4060 		 *	30fps / 15fps for 640x480
4061 		 */
4062 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4063 		if (qvga)
4064 			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4065 		else
4066 			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4067 		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4068 		return;
4069 	    }
4070 	default:
4071 		return;
4072 	}
4073 
4074 	/******** Clock programming ********/
4075 	i2c_w(sd, 0x11, sd->clockdiv);
4076 }
4077 
4078 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4079 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4080 {
4081 	struct sd *sd = (struct sd *) gspca_dev;
4082 
4083 	if (sd->gspca_dev.streaming)
4084 		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4085 	i2c_w_mask(sd, OV7670_R1E_MVFP,
4086 		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4087 		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4088 	if (sd->gspca_dev.streaming)
4089 		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4090 }
4091 
4092 static void set_ov_sensor_window(struct sd *sd)
4093 {
4094 	struct gspca_dev *gspca_dev;
4095 	int qvga, crop;
4096 	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4097 
4098 	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4099 	switch (sd->sensor) {
4100 	case SEN_OV2610:
4101 	case SEN_OV2610AE:
4102 	case SEN_OV3610:
4103 	case SEN_OV7670:
4104 	case SEN_OV9600:
4105 		mode_init_ov_sensor_regs(sd);
4106 		return;
4107 	case SEN_OV7660:
4108 		ov519_set_mode(sd);
4109 		ov519_set_fr(sd);
4110 		return;
4111 	}
4112 
4113 	gspca_dev = &sd->gspca_dev;
4114 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4115 	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4116 
4117 	/* The different sensor ICs handle setting up of window differently.
4118 	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4119 	switch (sd->sensor) {
4120 	case SEN_OV8610:
4121 		hwsbase = 0x1e;
4122 		hwebase = 0x1e;
4123 		vwsbase = 0x02;
4124 		vwebase = 0x02;
4125 		break;
4126 	case SEN_OV7610:
4127 	case SEN_OV76BE:
4128 		hwsbase = 0x38;
4129 		hwebase = 0x3a;
4130 		vwsbase = vwebase = 0x05;
4131 		break;
4132 	case SEN_OV6620:
4133 	case SEN_OV6630:
4134 	case SEN_OV66308AF:
4135 		hwsbase = 0x38;
4136 		hwebase = 0x3a;
4137 		vwsbase = 0x05;
4138 		vwebase = 0x06;
4139 		if (sd->sensor == SEN_OV66308AF && qvga)
4140 			/* HDG: this fixes U and V getting swapped */
4141 			hwsbase++;
4142 		if (crop) {
4143 			hwsbase += 8;
4144 			hwebase += 8;
4145 			vwsbase += 11;
4146 			vwebase += 11;
4147 		}
4148 		break;
4149 	case SEN_OV7620:
4150 	case SEN_OV7620AE:
4151 		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4152 		hwebase = 0x2f;
4153 		vwsbase = vwebase = 0x05;
4154 		break;
4155 	case SEN_OV7640:
4156 	case SEN_OV7648:
4157 		hwsbase = 0x1a;
4158 		hwebase = 0x1a;
4159 		vwsbase = vwebase = 0x03;
4160 		break;
4161 	default:
4162 		return;
4163 	}
4164 
4165 	switch (sd->sensor) {
4166 	case SEN_OV6620:
4167 	case SEN_OV6630:
4168 	case SEN_OV66308AF:
4169 		if (qvga) {		/* QCIF */
4170 			hwscale = 0;
4171 			vwscale = 0;
4172 		} else {		/* CIF */
4173 			hwscale = 1;
4174 			vwscale = 1;	/* The datasheet says 0;
4175 					 * it's wrong */
4176 		}
4177 		break;
4178 	case SEN_OV8610:
4179 		if (qvga) {		/* QSVGA */
4180 			hwscale = 1;
4181 			vwscale = 1;
4182 		} else {		/* SVGA */
4183 			hwscale = 2;
4184 			vwscale = 2;
4185 		}
4186 		break;
4187 	default:			/* SEN_OV7xx0 */
4188 		if (qvga) {		/* QVGA */
4189 			hwscale = 1;
4190 			vwscale = 0;
4191 		} else {		/* VGA */
4192 			hwscale = 2;
4193 			vwscale = 1;
4194 		}
4195 	}
4196 
4197 	mode_init_ov_sensor_regs(sd);
4198 
4199 	i2c_w(sd, 0x17, hwsbase);
4200 	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4201 	i2c_w(sd, 0x19, vwsbase);
4202 	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4203 }
4204 
4205 /* -- start the camera -- */
4206 static int sd_start(struct gspca_dev *gspca_dev)
4207 {
4208 	struct sd *sd = (struct sd *) gspca_dev;
4209 
4210 	/* Default for most bridges, allow bridge_mode_init_regs to override */
4211 	sd->sensor_width = sd->gspca_dev.pixfmt.width;
4212 	sd->sensor_height = sd->gspca_dev.pixfmt.height;
4213 
4214 	switch (sd->bridge) {
4215 	case BRIDGE_OV511:
4216 	case BRIDGE_OV511PLUS:
4217 		ov511_mode_init_regs(sd);
4218 		break;
4219 	case BRIDGE_OV518:
4220 	case BRIDGE_OV518PLUS:
4221 		ov518_mode_init_regs(sd);
4222 		break;
4223 	case BRIDGE_OV519:
4224 		ov519_mode_init_regs(sd);
4225 		break;
4226 	/* case BRIDGE_OVFX2: nothing to do */
4227 	case BRIDGE_W9968CF:
4228 		w9968cf_mode_init_regs(sd);
4229 		break;
4230 	}
4231 
4232 	set_ov_sensor_window(sd);
4233 
4234 	/* Force clear snapshot state in case the snapshot button was
4235 	   pressed while we weren't streaming */
4236 	sd->snapshot_needs_reset = 1;
4237 	sd_reset_snapshot(gspca_dev);
4238 
4239 	sd->first_frame = 3;
4240 
4241 	ov51x_restart(sd);
4242 	ov51x_led_control(sd, 1);
4243 	return gspca_dev->usb_err;
4244 }
4245 
4246 static void sd_stopN(struct gspca_dev *gspca_dev)
4247 {
4248 	struct sd *sd = (struct sd *) gspca_dev;
4249 
4250 	ov51x_stop(sd);
4251 	ov51x_led_control(sd, 0);
4252 }
4253 
4254 static void sd_stop0(struct gspca_dev *gspca_dev)
4255 {
4256 	struct sd *sd = (struct sd *) gspca_dev;
4257 
4258 	if (!sd->gspca_dev.present)
4259 		return;
4260 	if (sd->bridge == BRIDGE_W9968CF)
4261 		w9968cf_stop0(sd);
4262 
4263 #if IS_ENABLED(CONFIG_INPUT)
4264 	/* If the last button state is pressed, release it now! */
4265 	if (sd->snapshot_pressed) {
4266 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4267 		input_sync(gspca_dev->input_dev);
4268 		sd->snapshot_pressed = 0;
4269 	}
4270 #endif
4271 	if (sd->bridge == BRIDGE_OV519)
4272 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4273 }
4274 
4275 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4276 {
4277 	struct sd *sd = (struct sd *) gspca_dev;
4278 
4279 	if (sd->snapshot_pressed != state) {
4280 #if IS_ENABLED(CONFIG_INPUT)
4281 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4282 		input_sync(gspca_dev->input_dev);
4283 #endif
4284 		if (state)
4285 			sd->snapshot_needs_reset = 1;
4286 
4287 		sd->snapshot_pressed = state;
4288 	} else {
4289 		/* On the ov511 / ov519 we need to reset the button state
4290 		   multiple times, as resetting does not work as long as the
4291 		   button stays pressed */
4292 		switch (sd->bridge) {
4293 		case BRIDGE_OV511:
4294 		case BRIDGE_OV511PLUS:
4295 		case BRIDGE_OV519:
4296 			if (state)
4297 				sd->snapshot_needs_reset = 1;
4298 			break;
4299 		}
4300 	}
4301 }
4302 
4303 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4304 			u8 *in,			/* isoc packet */
4305 			int len)		/* iso packet length */
4306 {
4307 	struct sd *sd = (struct sd *) gspca_dev;
4308 
4309 	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4310 	 * byte non-zero. The EOF packet has image width/height in the
4311 	 * 10th and 11th bytes. The 9th byte is given as follows:
4312 	 *
4313 	 * bit 7: EOF
4314 	 *     6: compression enabled
4315 	 *     5: 422/420/400 modes
4316 	 *     4: 422/420/400 modes
4317 	 *     3: 1
4318 	 *     2: snapshot button on
4319 	 *     1: snapshot frame
4320 	 *     0: even/odd field
4321 	 */
4322 	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4323 	    (in[8] & 0x08)) {
4324 		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4325 		if (in[8] & 0x80) {
4326 			/* Frame end */
4327 			if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4328 			    (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4329 				PERR("Invalid frame size, got: %dx%d, requested: %dx%d\n",
4330 					(in[9] + 1) * 8, (in[10] + 1) * 8,
4331 					gspca_dev->pixfmt.width,
4332 					gspca_dev->pixfmt.height);
4333 				gspca_dev->last_packet_type = DISCARD_PACKET;
4334 				return;
4335 			}
4336 			/* Add 11 byte footer to frame, might be useful */
4337 			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4338 			return;
4339 		} else {
4340 			/* Frame start */
4341 			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4342 			sd->packet_nr = 0;
4343 		}
4344 	}
4345 
4346 	/* Ignore the packet number */
4347 	len--;
4348 
4349 	/* intermediate packet */
4350 	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4351 }
4352 
4353 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4354 			u8 *data,			/* isoc packet */
4355 			int len)			/* iso packet length */
4356 {
4357 	struct sd *sd = (struct sd *) gspca_dev;
4358 
4359 	/* A false positive here is likely, until OVT gives me
4360 	 * the definitive SOF/EOF format */
4361 	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4362 		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4363 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4364 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4365 		sd->packet_nr = 0;
4366 	}
4367 
4368 	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4369 		return;
4370 
4371 	/* Does this device use packet numbers ? */
4372 	if (len & 7) {
4373 		len--;
4374 		if (sd->packet_nr == data[len])
4375 			sd->packet_nr++;
4376 		/* The last few packets of the frame (which are all 0's
4377 		   except that they may contain part of the footer), are
4378 		   numbered 0 */
4379 		else if (sd->packet_nr == 0 || data[len]) {
4380 			PERR("Invalid packet nr: %d (expect: %d)",
4381 				(int)data[len], (int)sd->packet_nr);
4382 			gspca_dev->last_packet_type = DISCARD_PACKET;
4383 			return;
4384 		}
4385 	}
4386 
4387 	/* intermediate packet */
4388 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4389 }
4390 
4391 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4392 			u8 *data,			/* isoc packet */
4393 			int len)			/* iso packet length */
4394 {
4395 	/* Header of ov519 is 16 bytes:
4396 	 *     Byte     Value      Description
4397 	 *	0	0xff	magic
4398 	 *	1	0xff	magic
4399 	 *	2	0xff	magic
4400 	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4401 	 *	9	0xXX	0x01 initial frame without data,
4402 	 *			0x00 standard frame with image
4403 	 *	14	Lo	in EOF: length of image data / 8
4404 	 *	15	Hi
4405 	 */
4406 
4407 	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4408 		switch (data[3]) {
4409 		case 0x50:		/* start of frame */
4410 			/* Don't check the button state here, as the state
4411 			   usually (always ?) changes at EOF and checking it
4412 			   here leads to unnecessary snapshot state resets. */
4413 #define HDRSZ 16
4414 			data += HDRSZ;
4415 			len -= HDRSZ;
4416 #undef HDRSZ
4417 			if (data[0] == 0xff || data[1] == 0xd8)
4418 				gspca_frame_add(gspca_dev, FIRST_PACKET,
4419 						data, len);
4420 			else
4421 				gspca_dev->last_packet_type = DISCARD_PACKET;
4422 			return;
4423 		case 0x51:		/* end of frame */
4424 			ov51x_handle_button(gspca_dev, data[11] & 1);
4425 			if (data[9] != 0)
4426 				gspca_dev->last_packet_type = DISCARD_PACKET;
4427 			gspca_frame_add(gspca_dev, LAST_PACKET,
4428 					NULL, 0);
4429 			return;
4430 		}
4431 	}
4432 
4433 	/* intermediate packet */
4434 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4435 }
4436 
4437 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4438 			u8 *data,			/* isoc packet */
4439 			int len)			/* iso packet length */
4440 {
4441 	struct sd *sd = (struct sd *) gspca_dev;
4442 
4443 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4444 
4445 	/* A short read signals EOF */
4446 	if (len < gspca_dev->cam.bulk_size) {
4447 		/* If the frame is short, and it is one of the first ones
4448 		   the sensor and bridge are still syncing, so drop it. */
4449 		if (sd->first_frame) {
4450 			sd->first_frame--;
4451 			if (gspca_dev->image_len <
4452 				  sd->gspca_dev.pixfmt.width *
4453 					sd->gspca_dev.pixfmt.height)
4454 				gspca_dev->last_packet_type = DISCARD_PACKET;
4455 		}
4456 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4457 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4458 	}
4459 }
4460 
4461 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4462 			u8 *data,			/* isoc packet */
4463 			int len)			/* iso packet length */
4464 {
4465 	struct sd *sd = (struct sd *) gspca_dev;
4466 
4467 	switch (sd->bridge) {
4468 	case BRIDGE_OV511:
4469 	case BRIDGE_OV511PLUS:
4470 		ov511_pkt_scan(gspca_dev, data, len);
4471 		break;
4472 	case BRIDGE_OV518:
4473 	case BRIDGE_OV518PLUS:
4474 		ov518_pkt_scan(gspca_dev, data, len);
4475 		break;
4476 	case BRIDGE_OV519:
4477 		ov519_pkt_scan(gspca_dev, data, len);
4478 		break;
4479 	case BRIDGE_OVFX2:
4480 		ovfx2_pkt_scan(gspca_dev, data, len);
4481 		break;
4482 	case BRIDGE_W9968CF:
4483 		w9968cf_pkt_scan(gspca_dev, data, len);
4484 		break;
4485 	}
4486 }
4487 
4488 /* -- management routines -- */
4489 
4490 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4491 {
4492 	struct sd *sd = (struct sd *) gspca_dev;
4493 	static const struct ov_i2c_regvals brit_7660[][7] = {
4494 		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4495 			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4496 		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4497 			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4498 		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4499 			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4500 		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4501 			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4502 		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4503 			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4504 		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4505 			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4506 		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4507 			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4508 	};
4509 
4510 	switch (sd->sensor) {
4511 	case SEN_OV8610:
4512 	case SEN_OV7610:
4513 	case SEN_OV76BE:
4514 	case SEN_OV6620:
4515 	case SEN_OV6630:
4516 	case SEN_OV66308AF:
4517 	case SEN_OV7640:
4518 	case SEN_OV7648:
4519 		i2c_w(sd, OV7610_REG_BRT, val);
4520 		break;
4521 	case SEN_OV7620:
4522 	case SEN_OV7620AE:
4523 		i2c_w(sd, OV7610_REG_BRT, val);
4524 		break;
4525 	case SEN_OV7660:
4526 		write_i2c_regvals(sd, brit_7660[val],
4527 				ARRAY_SIZE(brit_7660[0]));
4528 		break;
4529 	case SEN_OV7670:
4530 /*win trace
4531  *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4532 		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4533 		break;
4534 	}
4535 }
4536 
4537 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4538 {
4539 	struct sd *sd = (struct sd *) gspca_dev;
4540 	static const struct ov_i2c_regvals contrast_7660[][31] = {
4541 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4542 		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4543 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4544 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4545 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4546 		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4547 		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4548 		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4549 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4550 		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4551 		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4552 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4553 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4554 		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4555 		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4556 		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4557 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4558 		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4559 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4560 		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4561 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4562 		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4563 		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4564 		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4565 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4566 		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4567 		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4568 		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4569 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4570 		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4571 		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4572 		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4573 		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4574 		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4575 		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4576 		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4577 		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4578 		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4579 		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4580 		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4581 		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4582 		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4583 		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4584 		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4585 		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4586 		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4587 		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4588 		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4589 		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4590 		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4591 		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4592 		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4593 		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4594 		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4595 		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4596 		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4597 	};
4598 
4599 	switch (sd->sensor) {
4600 	case SEN_OV7610:
4601 	case SEN_OV6620:
4602 		i2c_w(sd, OV7610_REG_CNT, val);
4603 		break;
4604 	case SEN_OV6630:
4605 	case SEN_OV66308AF:
4606 		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4607 		break;
4608 	case SEN_OV8610: {
4609 		static const u8 ctab[] = {
4610 			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4611 		};
4612 
4613 		/* Use Y gamma control instead. Bit 0 enables it. */
4614 		i2c_w(sd, 0x64, ctab[val >> 5]);
4615 		break;
4616 	    }
4617 	case SEN_OV7620:
4618 	case SEN_OV7620AE: {
4619 		static const u8 ctab[] = {
4620 			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4621 			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4622 		};
4623 
4624 		/* Use Y gamma control instead. Bit 0 enables it. */
4625 		i2c_w(sd, 0x64, ctab[val >> 4]);
4626 		break;
4627 	    }
4628 	case SEN_OV7660:
4629 		write_i2c_regvals(sd, contrast_7660[val],
4630 					ARRAY_SIZE(contrast_7660[0]));
4631 		break;
4632 	case SEN_OV7670:
4633 		/* check that this isn't just the same as ov7610 */
4634 		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4635 		break;
4636 	}
4637 }
4638 
4639 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4640 {
4641 	struct sd *sd = (struct sd *) gspca_dev;
4642 
4643 	i2c_w(sd, 0x10, val);
4644 }
4645 
4646 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4647 {
4648 	struct sd *sd = (struct sd *) gspca_dev;
4649 	static const struct ov_i2c_regvals colors_7660[][6] = {
4650 		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4651 		 {0x53, 0x19}, {0x54, 0x23}},
4652 		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4653 		 {0x53, 0x2c}, {0x54, 0x3e}},
4654 		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4655 		 {0x53, 0x40}, {0x54, 0x59}},
4656 		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4657 		 {0x53, 0x53}, {0x54, 0x73}},
4658 		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4659 		 {0x53, 0x66}, {0x54, 0x8e}},
4660 	};
4661 
4662 	switch (sd->sensor) {
4663 	case SEN_OV8610:
4664 	case SEN_OV7610:
4665 	case SEN_OV76BE:
4666 	case SEN_OV6620:
4667 	case SEN_OV6630:
4668 	case SEN_OV66308AF:
4669 		i2c_w(sd, OV7610_REG_SAT, val);
4670 		break;
4671 	case SEN_OV7620:
4672 	case SEN_OV7620AE:
4673 		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4674 /*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4675 		if (rc < 0)
4676 			goto out; */
4677 		i2c_w(sd, OV7610_REG_SAT, val);
4678 		break;
4679 	case SEN_OV7640:
4680 	case SEN_OV7648:
4681 		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4682 		break;
4683 	case SEN_OV7660:
4684 		write_i2c_regvals(sd, colors_7660[val],
4685 					ARRAY_SIZE(colors_7660[0]));
4686 		break;
4687 	case SEN_OV7670:
4688 		/* supported later once I work out how to do it
4689 		 * transparently fail now! */
4690 		/* set REG_COM13 values for UV sat auto mode */
4691 		break;
4692 	}
4693 }
4694 
4695 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4696 {
4697 	struct sd *sd = (struct sd *) gspca_dev;
4698 
4699 	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4700 }
4701 
4702 static void setfreq_i(struct sd *sd, s32 val)
4703 {
4704 	if (sd->sensor == SEN_OV7660
4705 	 || sd->sensor == SEN_OV7670) {
4706 		switch (val) {
4707 		case 0: /* Banding filter disabled */
4708 			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4709 			break;
4710 		case 1: /* 50 hz */
4711 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4712 				   OV7670_COM8_BFILT);
4713 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4714 			break;
4715 		case 2: /* 60 hz */
4716 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4717 				   OV7670_COM8_BFILT);
4718 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4719 			break;
4720 		case 3: /* Auto hz - ov7670 only */
4721 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4722 				   OV7670_COM8_BFILT);
4723 			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4724 				   0x18);
4725 			break;
4726 		}
4727 	} else {
4728 		switch (val) {
4729 		case 0: /* Banding filter disabled */
4730 			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4731 			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4732 			break;
4733 		case 1: /* 50 hz (filter on and framerate adj) */
4734 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4735 			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4736 			/* 20 fps -> 16.667 fps */
4737 			if (sd->sensor == SEN_OV6620 ||
4738 			    sd->sensor == SEN_OV6630 ||
4739 			    sd->sensor == SEN_OV66308AF)
4740 				i2c_w(sd, 0x2b, 0x5e);
4741 			else
4742 				i2c_w(sd, 0x2b, 0xac);
4743 			break;
4744 		case 2: /* 60 hz (filter on, ...) */
4745 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4746 			if (sd->sensor == SEN_OV6620 ||
4747 			    sd->sensor == SEN_OV6630 ||
4748 			    sd->sensor == SEN_OV66308AF) {
4749 				/* 20 fps -> 15 fps */
4750 				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4751 				i2c_w(sd, 0x2b, 0xa8);
4752 			} else {
4753 				/* no framerate adj. */
4754 				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4755 			}
4756 			break;
4757 		}
4758 	}
4759 }
4760 
4761 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4762 {
4763 	struct sd *sd = (struct sd *) gspca_dev;
4764 
4765 	setfreq_i(sd, val);
4766 
4767 	/* Ugly but necessary */
4768 	if (sd->bridge == BRIDGE_W9968CF)
4769 		w9968cf_set_crop_window(sd);
4770 }
4771 
4772 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4773 			struct v4l2_jpegcompression *jcomp)
4774 {
4775 	struct sd *sd = (struct sd *) gspca_dev;
4776 
4777 	if (sd->bridge != BRIDGE_W9968CF)
4778 		return -ENOTTY;
4779 
4780 	memset(jcomp, 0, sizeof *jcomp);
4781 	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4782 	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4783 			      V4L2_JPEG_MARKER_DRI;
4784 	return 0;
4785 }
4786 
4787 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4788 			const struct v4l2_jpegcompression *jcomp)
4789 {
4790 	struct sd *sd = (struct sd *) gspca_dev;
4791 
4792 	if (sd->bridge != BRIDGE_W9968CF)
4793 		return -ENOTTY;
4794 
4795 	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4796 	return 0;
4797 }
4798 
4799 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4800 {
4801 	struct gspca_dev *gspca_dev =
4802 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4803 	struct sd *sd = (struct sd *)gspca_dev;
4804 
4805 	gspca_dev->usb_err = 0;
4806 
4807 	switch (ctrl->id) {
4808 	case V4L2_CID_AUTOGAIN:
4809 		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4810 		break;
4811 	}
4812 	return 0;
4813 }
4814 
4815 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4816 {
4817 	struct gspca_dev *gspca_dev =
4818 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4819 	struct sd *sd = (struct sd *)gspca_dev;
4820 
4821 	gspca_dev->usb_err = 0;
4822 
4823 	if (!gspca_dev->streaming)
4824 		return 0;
4825 
4826 	switch (ctrl->id) {
4827 	case V4L2_CID_BRIGHTNESS:
4828 		setbrightness(gspca_dev, ctrl->val);
4829 		break;
4830 	case V4L2_CID_CONTRAST:
4831 		setcontrast(gspca_dev, ctrl->val);
4832 		break;
4833 	case V4L2_CID_POWER_LINE_FREQUENCY:
4834 		setfreq(gspca_dev, ctrl->val);
4835 		break;
4836 	case V4L2_CID_AUTOBRIGHTNESS:
4837 		if (ctrl->is_new)
4838 			setautobright(gspca_dev, ctrl->val);
4839 		if (!ctrl->val && sd->brightness->is_new)
4840 			setbrightness(gspca_dev, sd->brightness->val);
4841 		break;
4842 	case V4L2_CID_SATURATION:
4843 		setcolors(gspca_dev, ctrl->val);
4844 		break;
4845 	case V4L2_CID_HFLIP:
4846 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4847 		break;
4848 	case V4L2_CID_AUTOGAIN:
4849 		if (ctrl->is_new)
4850 			setautogain(gspca_dev, ctrl->val);
4851 		if (!ctrl->val && gspca_dev->exposure->is_new)
4852 			setexposure(gspca_dev, gspca_dev->exposure->val);
4853 		break;
4854 	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4855 		return -EBUSY; /* Should never happen, as we grab the ctrl */
4856 	}
4857 	return gspca_dev->usb_err;
4858 }
4859 
4860 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4861 	.g_volatile_ctrl = sd_g_volatile_ctrl,
4862 	.s_ctrl = sd_s_ctrl,
4863 };
4864 
4865 static int sd_init_controls(struct gspca_dev *gspca_dev)
4866 {
4867 	struct sd *sd = (struct sd *)gspca_dev;
4868 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4869 
4870 	gspca_dev->vdev.ctrl_handler = hdl;
4871 	v4l2_ctrl_handler_init(hdl, 10);
4872 	if (valid_controls[sd->sensor].has_brightness)
4873 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4874 			V4L2_CID_BRIGHTNESS, 0,
4875 			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4876 			sd->sensor == SEN_OV7660 ? 3 : 127);
4877 	if (valid_controls[sd->sensor].has_contrast) {
4878 		if (sd->sensor == SEN_OV7660)
4879 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4880 				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4881 		else
4882 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4883 				V4L2_CID_CONTRAST, 0, 255, 1,
4884 				(sd->sensor == SEN_OV6630 ||
4885 				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4886 	}
4887 	if (valid_controls[sd->sensor].has_sat)
4888 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4889 			V4L2_CID_SATURATION, 0,
4890 			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4891 			sd->sensor == SEN_OV7660 ? 2 : 127);
4892 	if (valid_controls[sd->sensor].has_exposure)
4893 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4894 			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4895 	if (valid_controls[sd->sensor].has_hvflip) {
4896 		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4897 			V4L2_CID_HFLIP, 0, 1, 1, 0);
4898 		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4899 			V4L2_CID_VFLIP, 0, 1, 1, 0);
4900 	}
4901 	if (valid_controls[sd->sensor].has_autobright)
4902 		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4903 			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4904 	if (valid_controls[sd->sensor].has_autogain)
4905 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4906 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4907 	if (valid_controls[sd->sensor].has_freq) {
4908 		if (sd->sensor == SEN_OV7670)
4909 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4910 				V4L2_CID_POWER_LINE_FREQUENCY,
4911 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4912 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4913 		else
4914 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4915 				V4L2_CID_POWER_LINE_FREQUENCY,
4916 				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4917 	}
4918 	if (sd->bridge == BRIDGE_W9968CF)
4919 		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4920 			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4921 			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4922 
4923 	if (hdl->error) {
4924 		PERR("Could not initialize controls\n");
4925 		return hdl->error;
4926 	}
4927 	if (gspca_dev->autogain)
4928 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4929 	if (sd->autobright)
4930 		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4931 	if (sd->hflip)
4932 		v4l2_ctrl_cluster(2, &sd->hflip);
4933 	return 0;
4934 }
4935 
4936 /* sub-driver description */
4937 static const struct sd_desc sd_desc = {
4938 	.name = MODULE_NAME,
4939 	.config = sd_config,
4940 	.init = sd_init,
4941 	.init_controls = sd_init_controls,
4942 	.isoc_init = sd_isoc_init,
4943 	.start = sd_start,
4944 	.stopN = sd_stopN,
4945 	.stop0 = sd_stop0,
4946 	.pkt_scan = sd_pkt_scan,
4947 	.dq_callback = sd_reset_snapshot,
4948 	.get_jcomp = sd_get_jcomp,
4949 	.set_jcomp = sd_set_jcomp,
4950 #if IS_ENABLED(CONFIG_INPUT)
4951 	.other_input = 1,
4952 #endif
4953 };
4954 
4955 /* -- module initialisation -- */
4956 static const struct usb_device_id device_table[] = {
4957 	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4958 	{USB_DEVICE(0x041e, 0x4052),
4959 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4960 	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4961 	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4962 	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4963 	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4964 	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4965 	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4966 	{USB_DEVICE(0x045e, 0x028c),
4967 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4968 	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4969 	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4970 	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4971 	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4972 	{USB_DEVICE(0x05a9, 0x0519),
4973 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4974 	{USB_DEVICE(0x05a9, 0x0530),
4975 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4976 	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4977 	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4978 	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4979 	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4980 	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4981 	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4982 	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4983 	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4984 	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4985 	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4986 	{}
4987 };
4988 
4989 MODULE_DEVICE_TABLE(usb, device_table);
4990 
4991 /* -- device connect -- */
4992 static int sd_probe(struct usb_interface *intf,
4993 			const struct usb_device_id *id)
4994 {
4995 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4996 				THIS_MODULE);
4997 }
4998 
4999 static struct usb_driver sd_driver = {
5000 	.name = MODULE_NAME,
5001 	.id_table = device_table,
5002 	.probe = sd_probe,
5003 	.disconnect = gspca_disconnect,
5004 #ifdef CONFIG_PM
5005 	.suspend = gspca_suspend,
5006 	.resume = gspca_resume,
5007 	.reset_resume = gspca_resume,
5008 #endif
5009 };
5010 
5011 module_usb_driver(sd_driver);
5012 
5013 module_param(frame_rate, int, 0644);
5014 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5015