xref: /openbmc/linux/drivers/media/usb/gspca/ov519.c (revision 4e1a33b1)
1 /**
2  * OV519 driver
3  *
4  * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5  * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6  *
7  * This module is adapted from the ov51x-jpeg package, which itself
8  * was adapted from the ov511 driver.
9  *
10  * Original copyright for the ov511 driver is:
11  *
12  * Copyright (c) 1999-2006 Mark W. McClelland
13  * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14  * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15  * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16  * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17  * Changes by Claudio Matsuoka <claudio@conectiva.com>
18  *
19  * ov51x-jpeg original copyright is:
20  *
21  * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22  * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2 of the License, or
27  * any later version.
28  *
29  * This program is distributed in the hope that it will be useful,
30  * but WITHOUT ANY WARRANTY; without even the implied warranty of
31  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32  * GNU General Public License for more details.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #define MODULE_NAME "ov519"
39 
40 #include <linux/input.h>
41 #include "gspca.h"
42 
43 /* The jpeg_hdr is used by w996Xcf only */
44 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
45 #define CONEX_CAM
46 #include "jpeg.h"
47 
48 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
49 MODULE_DESCRIPTION("OV519 USB Camera Driver");
50 MODULE_LICENSE("GPL");
51 
52 /* global parameters */
53 static int frame_rate;
54 
55 /* Number of times to retry a failed I2C transaction. Increase this if you
56  * are getting "Failed to read sensor ID..." */
57 static int i2c_detect_tries = 10;
58 
59 /* ov519 device descriptor */
60 struct sd {
61 	struct gspca_dev gspca_dev;		/* !! must be the first item */
62 
63 	struct v4l2_ctrl *jpegqual;
64 	struct v4l2_ctrl *freq;
65 	struct { /* h/vflip control cluster */
66 		struct v4l2_ctrl *hflip;
67 		struct v4l2_ctrl *vflip;
68 	};
69 	struct { /* autobrightness/brightness control cluster */
70 		struct v4l2_ctrl *autobright;
71 		struct v4l2_ctrl *brightness;
72 	};
73 
74 	u8 revision;
75 
76 	u8 packet_nr;
77 
78 	char bridge;
79 #define BRIDGE_OV511		0
80 #define BRIDGE_OV511PLUS	1
81 #define BRIDGE_OV518		2
82 #define BRIDGE_OV518PLUS	3
83 #define BRIDGE_OV519		4		/* = ov530 */
84 #define BRIDGE_OVFX2		5
85 #define BRIDGE_W9968CF		6
86 #define BRIDGE_MASK		7
87 
88 	char invert_led;
89 #define BRIDGE_INVERT_LED	8
90 
91 	char snapshot_pressed;
92 	char snapshot_needs_reset;
93 
94 	/* Determined by sensor type */
95 	u8 sif;
96 
97 #define QUALITY_MIN 50
98 #define QUALITY_MAX 70
99 #define QUALITY_DEF 50
100 
101 	u8 stopped;		/* Streaming is temporarily paused */
102 	u8 first_frame;
103 
104 	u8 frame_rate;		/* current Framerate */
105 	u8 clockdiv;		/* clockdiv override */
106 
107 	s8 sensor;		/* Type of image sensor chip (SEN_*) */
108 
109 	u8 sensor_addr;
110 	u16 sensor_width;
111 	u16 sensor_height;
112 	s16 sensor_reg_cache[256];
113 
114 	u8 jpeg_hdr[JPEG_HDR_SZ];
115 };
116 enum sensors {
117 	SEN_OV2610,
118 	SEN_OV2610AE,
119 	SEN_OV3610,
120 	SEN_OV6620,
121 	SEN_OV6630,
122 	SEN_OV66308AF,
123 	SEN_OV7610,
124 	SEN_OV7620,
125 	SEN_OV7620AE,
126 	SEN_OV7640,
127 	SEN_OV7648,
128 	SEN_OV7660,
129 	SEN_OV7670,
130 	SEN_OV76BE,
131 	SEN_OV8610,
132 	SEN_OV9600,
133 };
134 
135 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
136    the ov sensors which is already present here. When we have the time we
137    really should move the sensor drivers to v4l2 sub drivers. */
138 #include "w996Xcf.c"
139 
140 /* table of the disabled controls */
141 struct ctrl_valid {
142 	unsigned int has_brightness:1;
143 	unsigned int has_contrast:1;
144 	unsigned int has_exposure:1;
145 	unsigned int has_autogain:1;
146 	unsigned int has_sat:1;
147 	unsigned int has_hvflip:1;
148 	unsigned int has_autobright:1;
149 	unsigned int has_freq:1;
150 };
151 
152 static const struct ctrl_valid valid_controls[] = {
153 	[SEN_OV2610] = {
154 		.has_exposure = 1,
155 		.has_autogain = 1,
156 	},
157 	[SEN_OV2610AE] = {
158 		.has_exposure = 1,
159 		.has_autogain = 1,
160 	},
161 	[SEN_OV3610] = {
162 		/* No controls */
163 	},
164 	[SEN_OV6620] = {
165 		.has_brightness = 1,
166 		.has_contrast = 1,
167 		.has_sat = 1,
168 		.has_autobright = 1,
169 		.has_freq = 1,
170 	},
171 	[SEN_OV6630] = {
172 		.has_brightness = 1,
173 		.has_contrast = 1,
174 		.has_sat = 1,
175 		.has_autobright = 1,
176 		.has_freq = 1,
177 	},
178 	[SEN_OV66308AF] = {
179 		.has_brightness = 1,
180 		.has_contrast = 1,
181 		.has_sat = 1,
182 		.has_autobright = 1,
183 		.has_freq = 1,
184 	},
185 	[SEN_OV7610] = {
186 		.has_brightness = 1,
187 		.has_contrast = 1,
188 		.has_sat = 1,
189 		.has_autobright = 1,
190 		.has_freq = 1,
191 	},
192 	[SEN_OV7620] = {
193 		.has_brightness = 1,
194 		.has_contrast = 1,
195 		.has_sat = 1,
196 		.has_autobright = 1,
197 		.has_freq = 1,
198 	},
199 	[SEN_OV7620AE] = {
200 		.has_brightness = 1,
201 		.has_contrast = 1,
202 		.has_sat = 1,
203 		.has_autobright = 1,
204 		.has_freq = 1,
205 	},
206 	[SEN_OV7640] = {
207 		.has_brightness = 1,
208 		.has_sat = 1,
209 		.has_freq = 1,
210 	},
211 	[SEN_OV7648] = {
212 		.has_brightness = 1,
213 		.has_sat = 1,
214 		.has_freq = 1,
215 	},
216 	[SEN_OV7660] = {
217 		.has_brightness = 1,
218 		.has_contrast = 1,
219 		.has_sat = 1,
220 		.has_hvflip = 1,
221 		.has_freq = 1,
222 	},
223 	[SEN_OV7670] = {
224 		.has_brightness = 1,
225 		.has_contrast = 1,
226 		.has_hvflip = 1,
227 		.has_freq = 1,
228 	},
229 	[SEN_OV76BE] = {
230 		.has_brightness = 1,
231 		.has_contrast = 1,
232 		.has_sat = 1,
233 		.has_autobright = 1,
234 		.has_freq = 1,
235 	},
236 	[SEN_OV8610] = {
237 		.has_brightness = 1,
238 		.has_contrast = 1,
239 		.has_sat = 1,
240 		.has_autobright = 1,
241 	},
242 	[SEN_OV9600] = {
243 		.has_exposure = 1,
244 		.has_autogain = 1,
245 	},
246 };
247 
248 static const struct v4l2_pix_format ov519_vga_mode[] = {
249 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
250 		.bytesperline = 320,
251 		.sizeimage = 320 * 240 * 3 / 8 + 590,
252 		.colorspace = V4L2_COLORSPACE_JPEG,
253 		.priv = 1},
254 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
255 		.bytesperline = 640,
256 		.sizeimage = 640 * 480 * 3 / 8 + 590,
257 		.colorspace = V4L2_COLORSPACE_JPEG,
258 		.priv = 0},
259 };
260 static const struct v4l2_pix_format ov519_sif_mode[] = {
261 	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
262 		.bytesperline = 160,
263 		.sizeimage = 160 * 120 * 3 / 8 + 590,
264 		.colorspace = V4L2_COLORSPACE_JPEG,
265 		.priv = 3},
266 	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
267 		.bytesperline = 176,
268 		.sizeimage = 176 * 144 * 3 / 8 + 590,
269 		.colorspace = V4L2_COLORSPACE_JPEG,
270 		.priv = 1},
271 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
272 		.bytesperline = 320,
273 		.sizeimage = 320 * 240 * 3 / 8 + 590,
274 		.colorspace = V4L2_COLORSPACE_JPEG,
275 		.priv = 2},
276 	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
277 		.bytesperline = 352,
278 		.sizeimage = 352 * 288 * 3 / 8 + 590,
279 		.colorspace = V4L2_COLORSPACE_JPEG,
280 		.priv = 0},
281 };
282 
283 /* Note some of the sizeimage values for the ov511 / ov518 may seem
284    larger then necessary, however they need to be this big as the ov511 /
285    ov518 always fills the entire isoc frame, using 0 padding bytes when
286    it doesn't have any data. So with low framerates the amount of data
287    transferred can become quite large (libv4l will remove all the 0 padding
288    in userspace). */
289 static const struct v4l2_pix_format ov518_vga_mode[] = {
290 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
291 		.bytesperline = 320,
292 		.sizeimage = 320 * 240 * 3,
293 		.colorspace = V4L2_COLORSPACE_JPEG,
294 		.priv = 1},
295 	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
296 		.bytesperline = 640,
297 		.sizeimage = 640 * 480 * 2,
298 		.colorspace = V4L2_COLORSPACE_JPEG,
299 		.priv = 0},
300 };
301 static const struct v4l2_pix_format ov518_sif_mode[] = {
302 	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
303 		.bytesperline = 160,
304 		.sizeimage = 70000,
305 		.colorspace = V4L2_COLORSPACE_JPEG,
306 		.priv = 3},
307 	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
308 		.bytesperline = 176,
309 		.sizeimage = 70000,
310 		.colorspace = V4L2_COLORSPACE_JPEG,
311 		.priv = 1},
312 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
313 		.bytesperline = 320,
314 		.sizeimage = 320 * 240 * 3,
315 		.colorspace = V4L2_COLORSPACE_JPEG,
316 		.priv = 2},
317 	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
318 		.bytesperline = 352,
319 		.sizeimage = 352 * 288 * 3,
320 		.colorspace = V4L2_COLORSPACE_JPEG,
321 		.priv = 0},
322 };
323 
324 static const struct v4l2_pix_format ov511_vga_mode[] = {
325 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
326 		.bytesperline = 320,
327 		.sizeimage = 320 * 240 * 3,
328 		.colorspace = V4L2_COLORSPACE_JPEG,
329 		.priv = 1},
330 	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
331 		.bytesperline = 640,
332 		.sizeimage = 640 * 480 * 2,
333 		.colorspace = V4L2_COLORSPACE_JPEG,
334 		.priv = 0},
335 };
336 static const struct v4l2_pix_format ov511_sif_mode[] = {
337 	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
338 		.bytesperline = 160,
339 		.sizeimage = 70000,
340 		.colorspace = V4L2_COLORSPACE_JPEG,
341 		.priv = 3},
342 	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
343 		.bytesperline = 176,
344 		.sizeimage = 70000,
345 		.colorspace = V4L2_COLORSPACE_JPEG,
346 		.priv = 1},
347 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
348 		.bytesperline = 320,
349 		.sizeimage = 320 * 240 * 3,
350 		.colorspace = V4L2_COLORSPACE_JPEG,
351 		.priv = 2},
352 	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
353 		.bytesperline = 352,
354 		.sizeimage = 352 * 288 * 3,
355 		.colorspace = V4L2_COLORSPACE_JPEG,
356 		.priv = 0},
357 };
358 
359 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
360 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
361 		.bytesperline = 800,
362 		.sizeimage = 800 * 600,
363 		.colorspace = V4L2_COLORSPACE_SRGB,
364 		.priv = 1},
365 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
366 		.bytesperline = 1600,
367 		.sizeimage = 1600 * 1200,
368 		.colorspace = V4L2_COLORSPACE_SRGB},
369 };
370 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
371 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
372 		.bytesperline = 640,
373 		.sizeimage = 640 * 480,
374 		.colorspace = V4L2_COLORSPACE_SRGB,
375 		.priv = 1},
376 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 		.bytesperline = 800,
378 		.sizeimage = 800 * 600,
379 		.colorspace = V4L2_COLORSPACE_SRGB,
380 		.priv = 1},
381 	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 		.bytesperline = 1024,
383 		.sizeimage = 1024 * 768,
384 		.colorspace = V4L2_COLORSPACE_SRGB,
385 		.priv = 1},
386 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387 		.bytesperline = 1600,
388 		.sizeimage = 1600 * 1200,
389 		.colorspace = V4L2_COLORSPACE_SRGB,
390 		.priv = 0},
391 	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392 		.bytesperline = 2048,
393 		.sizeimage = 2048 * 1536,
394 		.colorspace = V4L2_COLORSPACE_SRGB,
395 		.priv = 0},
396 };
397 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
398 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399 		.bytesperline = 640,
400 		.sizeimage = 640 * 480,
401 		.colorspace = V4L2_COLORSPACE_SRGB,
402 		.priv = 1},
403 	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404 		.bytesperline = 1280,
405 		.sizeimage = 1280 * 1024,
406 		.colorspace = V4L2_COLORSPACE_SRGB},
407 };
408 
409 /* Registers common to OV511 / OV518 */
410 #define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
411 #define R51x_SYS_RESET			0x50
412 	/* Reset type flags */
413 	#define	OV511_RESET_OMNICE	0x08
414 #define R51x_SYS_INIT			0x53
415 #define R51x_SYS_SNAP			0x52
416 #define R51x_SYS_CUST_ID		0x5f
417 #define R51x_COMP_LUT_BEGIN		0x80
418 
419 /* OV511 Camera interface register numbers */
420 #define R511_CAM_DELAY			0x10
421 #define R511_CAM_EDGE			0x11
422 #define R511_CAM_PXCNT			0x12
423 #define R511_CAM_LNCNT			0x13
424 #define R511_CAM_PXDIV			0x14
425 #define R511_CAM_LNDIV			0x15
426 #define R511_CAM_UV_EN			0x16
427 #define R511_CAM_LINE_MODE		0x17
428 #define R511_CAM_OPTS			0x18
429 
430 #define R511_SNAP_FRAME			0x19
431 #define R511_SNAP_PXCNT			0x1a
432 #define R511_SNAP_LNCNT			0x1b
433 #define R511_SNAP_PXDIV			0x1c
434 #define R511_SNAP_LNDIV			0x1d
435 #define R511_SNAP_UV_EN			0x1e
436 #define R511_SNAP_OPTS			0x1f
437 
438 #define R511_DRAM_FLOW_CTL		0x20
439 #define R511_FIFO_OPTS			0x31
440 #define R511_I2C_CTL			0x40
441 #define R511_SYS_LED_CTL		0x55	/* OV511+ only */
442 #define R511_COMP_EN			0x78
443 #define R511_COMP_LUT_EN		0x79
444 
445 /* OV518 Camera interface register numbers */
446 #define R518_GPIO_OUT			0x56	/* OV518(+) only */
447 #define R518_GPIO_CTL			0x57	/* OV518(+) only */
448 
449 /* OV519 Camera interface register numbers */
450 #define OV519_R10_H_SIZE		0x10
451 #define OV519_R11_V_SIZE		0x11
452 #define OV519_R12_X_OFFSETL		0x12
453 #define OV519_R13_X_OFFSETH		0x13
454 #define OV519_R14_Y_OFFSETL		0x14
455 #define OV519_R15_Y_OFFSETH		0x15
456 #define OV519_R16_DIVIDER		0x16
457 #define OV519_R20_DFR			0x20
458 #define OV519_R25_FORMAT		0x25
459 
460 /* OV519 System Controller register numbers */
461 #define OV519_R51_RESET1		0x51
462 #define OV519_R54_EN_CLK1		0x54
463 #define OV519_R57_SNAPSHOT		0x57
464 
465 #define OV519_GPIO_DATA_OUT0		0x71
466 #define OV519_GPIO_IO_CTRL0		0x72
467 
468 /*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
469 
470 /*
471  * The FX2 chip does not give us a zero length read at end of frame.
472  * It does, however, give a short read at the end of a frame, if
473  * necessary, rather than run two frames together.
474  *
475  * By choosing the right bulk transfer size, we are guaranteed to always
476  * get a short read for the last read of each frame.  Frame sizes are
477  * always a composite number (width * height, or a multiple) so if we
478  * choose a prime number, we are guaranteed that the last read of a
479  * frame will be short.
480  *
481  * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
482  * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
483  * to figure out why.  [PMiller]
484  *
485  * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
486  *
487  * It isn't enough to know the number of bytes per frame, in case we
488  * have data dropouts or buffer overruns (even though the FX2 double
489  * buffers, there are some pretty strict real time constraints for
490  * isochronous transfer for larger frame sizes).
491  */
492 /*jfm: this value does not work for 800x600 - see isoc_init */
493 #define OVFX2_BULK_SIZE (13 * 4096)
494 
495 /* I2C registers */
496 #define R51x_I2C_W_SID		0x41
497 #define R51x_I2C_SADDR_3	0x42
498 #define R51x_I2C_SADDR_2	0x43
499 #define R51x_I2C_R_SID		0x44
500 #define R51x_I2C_DATA		0x45
501 #define R518_I2C_CTL		0x47	/* OV518(+) only */
502 #define OVFX2_I2C_ADDR		0x00
503 
504 /* I2C ADDRESSES */
505 #define OV7xx0_SID   0x42
506 #define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
507 #define OV8xx0_SID   0xa0
508 #define OV6xx0_SID   0xc0
509 
510 /* OV7610 registers */
511 #define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
512 #define OV7610_REG_BLUE		0x01	/* blue channel balance */
513 #define OV7610_REG_RED		0x02	/* red channel balance */
514 #define OV7610_REG_SAT		0x03	/* saturation */
515 #define OV8610_REG_HUE		0x04	/* 04 reserved */
516 #define OV7610_REG_CNT		0x05	/* Y contrast */
517 #define OV7610_REG_BRT		0x06	/* Y brightness */
518 #define OV7610_REG_COM_C	0x14	/* misc common regs */
519 #define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
520 #define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
521 #define OV7610_REG_COM_I	0x29	/* misc settings */
522 
523 /* OV7660 and OV7670 registers */
524 #define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
525 #define OV7670_R01_BLUE		0x01	/* blue gain */
526 #define OV7670_R02_RED		0x02	/* red gain */
527 #define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
528 #define OV7670_R04_COM1		0x04	/* Control 1 */
529 /*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
530 #define OV7670_R0C_COM3		0x0c	/* Control 3 */
531 #define OV7670_R0D_COM4		0x0d	/* Control 4 */
532 #define OV7670_R0E_COM5		0x0e	/* All "reserved" */
533 #define OV7670_R0F_COM6		0x0f	/* Control 6 */
534 #define OV7670_R10_AECH		0x10	/* More bits of AEC value */
535 #define OV7670_R11_CLKRC	0x11	/* Clock control */
536 #define OV7670_R12_COM7		0x12	/* Control 7 */
537 #define   OV7670_COM7_FMT_VGA	 0x00
538 /*#define   OV7670_COM7_YUV	 0x00	 * YUV */
539 #define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
540 #define   OV7670_COM7_FMT_MASK	 0x38
541 #define   OV7670_COM7_RESET	 0x80	/* Register reset */
542 #define OV7670_R13_COM8		0x13	/* Control 8 */
543 #define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
544 #define   OV7670_COM8_AWB	 0x02	/* White balance enable */
545 #define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
546 #define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
547 #define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
548 #define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
549 #define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
550 #define OV7670_R15_COM10	0x15	/* Control 10 */
551 #define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
552 #define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
553 #define OV7670_R19_VSTART	0x19	/* Vert start high bits */
554 #define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
555 #define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
556 #define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
557 #define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
558 #define OV7670_R24_AEW		0x24	/* AGC upper limit */
559 #define OV7670_R25_AEB		0x25	/* AGC lower limit */
560 #define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
561 #define OV7670_R32_HREF		0x32	/* HREF pieces */
562 #define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
563 #define OV7670_R3B_COM11	0x3b	/* Control 11 */
564 #define   OV7670_COM11_EXP	 0x02
565 #define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
566 #define OV7670_R3C_COM12	0x3c	/* Control 12 */
567 #define OV7670_R3D_COM13	0x3d	/* Control 13 */
568 #define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
569 #define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
570 #define OV7670_R3E_COM14	0x3e	/* Control 14 */
571 #define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
572 #define OV7670_R40_COM15	0x40	/* Control 15 */
573 /*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
574 #define OV7670_R41_COM16	0x41	/* Control 16 */
575 #define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
576 /* end of ov7660 common registers */
577 #define OV7670_R55_BRIGHT	0x55	/* Brightness */
578 #define OV7670_R56_CONTRAS	0x56	/* Contrast control */
579 #define OV7670_R69_GFIX		0x69	/* Fix gain control */
580 /*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
581 #define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
582 #define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
583 #define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
584 #define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
585 #define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
586 #define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
587 #define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
588 #define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
589 #define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
590 
591 struct ov_regvals {
592 	u8 reg;
593 	u8 val;
594 };
595 struct ov_i2c_regvals {
596 	u8 reg;
597 	u8 val;
598 };
599 
600 /* Settings for OV2610 camera chip */
601 static const struct ov_i2c_regvals norm_2610[] = {
602 	{ 0x12, 0x80 },	/* reset */
603 };
604 
605 static const struct ov_i2c_regvals norm_2610ae[] = {
606 	{0x12, 0x80},	/* reset */
607 	{0x13, 0xcd},
608 	{0x09, 0x01},
609 	{0x0d, 0x00},
610 	{0x11, 0x80},
611 	{0x12, 0x20},	/* 1600x1200 */
612 	{0x33, 0x0c},
613 	{0x35, 0x90},
614 	{0x36, 0x37},
615 /* ms-win traces */
616 	{0x11, 0x83},	/* clock / 3 ? */
617 	{0x2d, 0x00},	/* 60 Hz filter */
618 	{0x24, 0xb0},	/* normal colors */
619 	{0x25, 0x90},
620 	{0x10, 0x43},
621 };
622 
623 static const struct ov_i2c_regvals norm_3620b[] = {
624 	/*
625 	 * From the datasheet: "Note that after writing to register COMH
626 	 * (0x12) to change the sensor mode, registers related to the
627 	 * sensor’s cropping window will be reset back to their default
628 	 * values."
629 	 *
630 	 * "wait 4096 external clock ... to make sure the sensor is
631 	 * stable and ready to access registers" i.e. 160us at 24MHz
632 	 */
633 	{ 0x12, 0x80 }, /* COMH reset */
634 	{ 0x12, 0x00 }, /* QXGA, master */
635 
636 	/*
637 	 * 11 CLKRC "Clock Rate Control"
638 	 * [7] internal frequency doublers: on
639 	 * [6] video port mode: master
640 	 * [5:0] clock divider: 1
641 	 */
642 	{ 0x11, 0x80 },
643 
644 	/*
645 	 * 13 COMI "Common Control I"
646 	 *                  = 192 (0xC0) 11000000
647 	 *    COMI[7] "AEC speed selection"
648 	 *                  =   1 (0x01) 1....... "Faster AEC correction"
649 	 *    COMI[6] "AEC speed step selection"
650 	 *                  =   1 (0x01) .1...... "Big steps, fast"
651 	 *    COMI[5] "Banding filter on off"
652 	 *                  =   0 (0x00) ..0..... "Off"
653 	 *    COMI[4] "Banding filter option"
654 	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
655 	 *                                         the PLL is ON"
656 	 *    COMI[3] "Reserved"
657 	 *                  =   0 (0x00) ....0...
658 	 *    COMI[2] "AGC auto manual control selection"
659 	 *                  =   0 (0x00) .....0.. "Manual"
660 	 *    COMI[1] "AWB auto manual control selection"
661 	 *                  =   0 (0x00) ......0. "Manual"
662 	 *    COMI[0] "Exposure control"
663 	 *                  =   0 (0x00) .......0 "Manual"
664 	 */
665 	{ 0x13, 0xc0 },
666 
667 	/*
668 	 * 09 COMC "Common Control C"
669 	 *                  =   8 (0x08) 00001000
670 	 *    COMC[7:5] "Reserved"
671 	 *                  =   0 (0x00) 000.....
672 	 *    COMC[4] "Sleep Mode Enable"
673 	 *                  =   0 (0x00) ...0.... "Normal mode"
674 	 *    COMC[3:2] "Sensor sampling reset timing selection"
675 	 *                  =   2 (0x02) ....10.. "Longer reset time"
676 	 *    COMC[1:0] "Output drive current select"
677 	 *                  =   0 (0x00) ......00 "Weakest"
678 	 */
679 	{ 0x09, 0x08 },
680 
681 	/*
682 	 * 0C COMD "Common Control D"
683 	 *                  =   8 (0x08) 00001000
684 	 *    COMD[7] "Reserved"
685 	 *                  =   0 (0x00) 0.......
686 	 *    COMD[6] "Swap MSB and LSB at the output port"
687 	 *                  =   0 (0x00) .0...... "False"
688 	 *    COMD[5:3] "Reserved"
689 	 *                  =   1 (0x01) ..001...
690 	 *    COMD[2] "Output Average On Off"
691 	 *                  =   0 (0x00) .....0.. "Output Normal"
692 	 *    COMD[1] "Sensor precharge voltage selection"
693 	 *                  =   0 (0x00) ......0. "Selects internal
694 	 *                                         reference precharge
695 	 *                                         voltage"
696 	 *    COMD[0] "Snapshot option"
697 	 *                  =   0 (0x00) .......0 "Enable live video output
698 	 *                                         after snapshot sequence"
699 	 */
700 	{ 0x0c, 0x08 },
701 
702 	/*
703 	 * 0D COME "Common Control E"
704 	 *                  = 161 (0xA1) 10100001
705 	 *    COME[7] "Output average option"
706 	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
707 	 *    COME[6] "Anti-blooming control"
708 	 *                  =   0 (0x00) .0...... "Off"
709 	 *    COME[5:3] "Reserved"
710 	 *                  =   4 (0x04) ..100...
711 	 *    COME[2] "Clock output power down pin status"
712 	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
713 	 *                                         on power down"
714 	 *    COME[1] "Data output pin status selection at power down"
715 	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
716 	 *                                         HREF, and CHSYNC pins on
717 	 *                                         power down"
718 	 *    COME[0] "Auto zero circuit select"
719 	 *                  =   1 (0x01) .......1 "On"
720 	 */
721 	{ 0x0d, 0xa1 },
722 
723 	/*
724 	 * 0E COMF "Common Control F"
725 	 *                  = 112 (0x70) 01110000
726 	 *    COMF[7] "System clock selection"
727 	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
728 	 *    COMF[6:4] "Reserved"
729 	 *                  =   7 (0x07) .111....
730 	 *    COMF[3] "Manual auto negative offset canceling selection"
731 	 *                  =   0 (0x00) ....0... "Auto detect negative
732 	 *                                         offset and cancel it"
733 	 *    COMF[2:0] "Reserved"
734 	 *                  =   0 (0x00) .....000
735 	 */
736 	{ 0x0e, 0x70 },
737 
738 	/*
739 	 * 0F COMG "Common Control G"
740 	 *                  =  66 (0x42) 01000010
741 	 *    COMG[7] "Optical black output selection"
742 	 *                  =   0 (0x00) 0....... "Disable"
743 	 *    COMG[6] "Black level calibrate selection"
744 	 *                  =   1 (0x01) .1...... "Use optical black pixels
745 	 *                                         to calibrate"
746 	 *    COMG[5:4] "Reserved"
747 	 *                  =   0 (0x00) ..00....
748 	 *    COMG[3] "Channel offset adjustment"
749 	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
750 	 *    COMG[2] "ADC black level calibration option"
751 	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
752 	 *                                         line to calibrate each
753 	 *                                         channel's black level"
754 	 *    COMG[1] "Reserved"
755 	 *                  =   1 (0x01) ......1.
756 	 *    COMG[0] "ADC black level calibration enable"
757 	 *                  =   0 (0x00) .......0 "Disable"
758 	 */
759 	{ 0x0f, 0x42 },
760 
761 	/*
762 	 * 14 COMJ "Common Control J"
763 	 *                  = 198 (0xC6) 11000110
764 	 *    COMJ[7:6] "AGC gain ceiling"
765 	 *                  =   3 (0x03) 11...... "8x"
766 	 *    COMJ[5:4] "Reserved"
767 	 *                  =   0 (0x00) ..00....
768 	 *    COMJ[3] "Auto banding filter"
769 	 *                  =   0 (0x00) ....0... "Banding filter is always
770 	 *                                         on off depending on
771 	 *                                         COMI[5] setting"
772 	 *    COMJ[2] "VSYNC drop option"
773 	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
774 	 *                                         data is dropped"
775 	 *    COMJ[1] "Frame data drop"
776 	 *                  =   1 (0x01) ......1. "Drop frame data if
777 	 *                                         exposure is not within
778 	 *                                         tolerance.  In AEC mode,
779 	 *                                         data is normally dropped
780 	 *                                         when data is out of
781 	 *                                         range."
782 	 *    COMJ[0] "Reserved"
783 	 *                  =   0 (0x00) .......0
784 	 */
785 	{ 0x14, 0xc6 },
786 
787 	/*
788 	 * 15 COMK "Common Control K"
789 	 *                  =   2 (0x02) 00000010
790 	 *    COMK[7] "CHSYNC pin output swap"
791 	 *                  =   0 (0x00) 0....... "CHSYNC"
792 	 *    COMK[6] "HREF pin output swap"
793 	 *                  =   0 (0x00) .0...... "HREF"
794 	 *    COMK[5] "PCLK output selection"
795 	 *                  =   0 (0x00) ..0..... "PCLK always output"
796 	 *    COMK[4] "PCLK edge selection"
797 	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
798 	 *    COMK[3] "HREF output polarity"
799 	 *                  =   0 (0x00) ....0... "positive"
800 	 *    COMK[2] "Reserved"
801 	 *                  =   0 (0x00) .....0..
802 	 *    COMK[1] "VSYNC polarity"
803 	 *                  =   1 (0x01) ......1. "negative"
804 	 *    COMK[0] "HSYNC polarity"
805 	 *                  =   0 (0x00) .......0 "positive"
806 	 */
807 	{ 0x15, 0x02 },
808 
809 	/*
810 	 * 33 CHLF "Current Control"
811 	 *                  =   9 (0x09) 00001001
812 	 *    CHLF[7:6] "Sensor current control"
813 	 *                  =   0 (0x00) 00......
814 	 *    CHLF[5] "Sensor current range control"
815 	 *                  =   0 (0x00) ..0..... "normal range"
816 	 *    CHLF[4] "Sensor current"
817 	 *                  =   0 (0x00) ...0.... "normal current"
818 	 *    CHLF[3] "Sensor buffer current control"
819 	 *                  =   1 (0x01) ....1... "half current"
820 	 *    CHLF[2] "Column buffer current control"
821 	 *                  =   0 (0x00) .....0.. "normal current"
822 	 *    CHLF[1] "Analog DSP current control"
823 	 *                  =   0 (0x00) ......0. "normal current"
824 	 *    CHLF[1] "ADC current control"
825 	 *                  =   0 (0x00) ......0. "normal current"
826 	 */
827 	{ 0x33, 0x09 },
828 
829 	/*
830 	 * 34 VBLM "Blooming Control"
831 	 *                  =  80 (0x50) 01010000
832 	 *    VBLM[7] "Hard soft reset switch"
833 	 *                  =   0 (0x00) 0....... "Hard reset"
834 	 *    VBLM[6:4] "Blooming voltage selection"
835 	 *                  =   5 (0x05) .101....
836 	 *    VBLM[3:0] "Sensor current control"
837 	 *                  =   0 (0x00) ....0000
838 	 */
839 	{ 0x34, 0x50 },
840 
841 	/*
842 	 * 36 VCHG "Sensor Precharge Voltage Control"
843 	 *                  =   0 (0x00) 00000000
844 	 *    VCHG[7] "Reserved"
845 	 *                  =   0 (0x00) 0.......
846 	 *    VCHG[6:4] "Sensor precharge voltage control"
847 	 *                  =   0 (0x00) .000....
848 	 *    VCHG[3:0] "Sensor array common reference"
849 	 *                  =   0 (0x00) ....0000
850 	 */
851 	{ 0x36, 0x00 },
852 
853 	/*
854 	 * 37 ADC "ADC Reference Control"
855 	 *                  =   4 (0x04) 00000100
856 	 *    ADC[7:4] "Reserved"
857 	 *                  =   0 (0x00) 0000....
858 	 *    ADC[3] "ADC input signal range"
859 	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
860 	 *    ADC[2:0] "ADC range control"
861 	 *                  =   4 (0x04) .....100
862 	 */
863 	{ 0x37, 0x04 },
864 
865 	/*
866 	 * 38 ACOM "Analog Common Ground"
867 	 *                  =  82 (0x52) 01010010
868 	 *    ACOM[7] "Analog gain control"
869 	 *                  =   0 (0x00) 0....... "Gain 1x"
870 	 *    ACOM[6] "Analog black level calibration"
871 	 *                  =   1 (0x01) .1...... "On"
872 	 *    ACOM[5:0] "Reserved"
873 	 *                  =  18 (0x12) ..010010
874 	 */
875 	{ 0x38, 0x52 },
876 
877 	/*
878 	 * 3A FREFA "Internal Reference Adjustment"
879 	 *                  =   0 (0x00) 00000000
880 	 *    FREFA[7:0] "Range"
881 	 *                  =   0 (0x00) 00000000
882 	 */
883 	{ 0x3a, 0x00 },
884 
885 	/*
886 	 * 3C FVOPT "Internal Reference Adjustment"
887 	 *                  =  31 (0x1F) 00011111
888 	 *    FVOPT[7:0] "Range"
889 	 *                  =  31 (0x1F) 00011111
890 	 */
891 	{ 0x3c, 0x1f },
892 
893 	/*
894 	 * 44 Undocumented  =   0 (0x00) 00000000
895 	 *    44[7:0] "It's a secret"
896 	 *                  =   0 (0x00) 00000000
897 	 */
898 	{ 0x44, 0x00 },
899 
900 	/*
901 	 * 40 Undocumented  =   0 (0x00) 00000000
902 	 *    40[7:0] "It's a secret"
903 	 *                  =   0 (0x00) 00000000
904 	 */
905 	{ 0x40, 0x00 },
906 
907 	/*
908 	 * 41 Undocumented  =   0 (0x00) 00000000
909 	 *    41[7:0] "It's a secret"
910 	 *                  =   0 (0x00) 00000000
911 	 */
912 	{ 0x41, 0x00 },
913 
914 	/*
915 	 * 42 Undocumented  =   0 (0x00) 00000000
916 	 *    42[7:0] "It's a secret"
917 	 *                  =   0 (0x00) 00000000
918 	 */
919 	{ 0x42, 0x00 },
920 
921 	/*
922 	 * 43 Undocumented  =   0 (0x00) 00000000
923 	 *    43[7:0] "It's a secret"
924 	 *                  =   0 (0x00) 00000000
925 	 */
926 	{ 0x43, 0x00 },
927 
928 	/*
929 	 * 45 Undocumented  = 128 (0x80) 10000000
930 	 *    45[7:0] "It's a secret"
931 	 *                  = 128 (0x80) 10000000
932 	 */
933 	{ 0x45, 0x80 },
934 
935 	/*
936 	 * 48 Undocumented  = 192 (0xC0) 11000000
937 	 *    48[7:0] "It's a secret"
938 	 *                  = 192 (0xC0) 11000000
939 	 */
940 	{ 0x48, 0xc0 },
941 
942 	/*
943 	 * 49 Undocumented  =  25 (0x19) 00011001
944 	 *    49[7:0] "It's a secret"
945 	 *                  =  25 (0x19) 00011001
946 	 */
947 	{ 0x49, 0x19 },
948 
949 	/*
950 	 * 4B Undocumented  = 128 (0x80) 10000000
951 	 *    4B[7:0] "It's a secret"
952 	 *                  = 128 (0x80) 10000000
953 	 */
954 	{ 0x4b, 0x80 },
955 
956 	/*
957 	 * 4D Undocumented  = 196 (0xC4) 11000100
958 	 *    4D[7:0] "It's a secret"
959 	 *                  = 196 (0xC4) 11000100
960 	 */
961 	{ 0x4d, 0xc4 },
962 
963 	/*
964 	 * 35 VREF "Reference Voltage Control"
965 	 *                  =  76 (0x4c) 01001100
966 	 *    VREF[7:5] "Column high reference control"
967 	 *                  =   2 (0x02) 010..... "higher voltage"
968 	 *    VREF[4:2] "Column low reference control"
969 	 *                  =   3 (0x03) ...011.. "Highest voltage"
970 	 *    VREF[1:0] "Reserved"
971 	 *                  =   0 (0x00) ......00
972 	 */
973 	{ 0x35, 0x4c },
974 
975 	/*
976 	 * 3D Undocumented  =   0 (0x00) 00000000
977 	 *    3D[7:0] "It's a secret"
978 	 *                  =   0 (0x00) 00000000
979 	 */
980 	{ 0x3d, 0x00 },
981 
982 	/*
983 	 * 3E Undocumented  =   0 (0x00) 00000000
984 	 *    3E[7:0] "It's a secret"
985 	 *                  =   0 (0x00) 00000000
986 	 */
987 	{ 0x3e, 0x00 },
988 
989 	/*
990 	 * 3B FREFB "Internal Reference Adjustment"
991 	 *                  =  24 (0x18) 00011000
992 	 *    FREFB[7:0] "Range"
993 	 *                  =  24 (0x18) 00011000
994 	 */
995 	{ 0x3b, 0x18 },
996 
997 	/*
998 	 * 33 CHLF "Current Control"
999 	 *                  =  25 (0x19) 00011001
1000 	 *    CHLF[7:6] "Sensor current control"
1001 	 *                  =   0 (0x00) 00......
1002 	 *    CHLF[5] "Sensor current range control"
1003 	 *                  =   0 (0x00) ..0..... "normal range"
1004 	 *    CHLF[4] "Sensor current"
1005 	 *                  =   1 (0x01) ...1.... "double current"
1006 	 *    CHLF[3] "Sensor buffer current control"
1007 	 *                  =   1 (0x01) ....1... "half current"
1008 	 *    CHLF[2] "Column buffer current control"
1009 	 *                  =   0 (0x00) .....0.. "normal current"
1010 	 *    CHLF[1] "Analog DSP current control"
1011 	 *                  =   0 (0x00) ......0. "normal current"
1012 	 *    CHLF[1] "ADC current control"
1013 	 *                  =   0 (0x00) ......0. "normal current"
1014 	 */
1015 	{ 0x33, 0x19 },
1016 
1017 	/*
1018 	 * 34 VBLM "Blooming Control"
1019 	 *                  =  90 (0x5A) 01011010
1020 	 *    VBLM[7] "Hard soft reset switch"
1021 	 *                  =   0 (0x00) 0....... "Hard reset"
1022 	 *    VBLM[6:4] "Blooming voltage selection"
1023 	 *                  =   5 (0x05) .101....
1024 	 *    VBLM[3:0] "Sensor current control"
1025 	 *                  =  10 (0x0A) ....1010
1026 	 */
1027 	{ 0x34, 0x5a },
1028 
1029 	/*
1030 	 * 3B FREFB "Internal Reference Adjustment"
1031 	 *                  =   0 (0x00) 00000000
1032 	 *    FREFB[7:0] "Range"
1033 	 *                  =   0 (0x00) 00000000
1034 	 */
1035 	{ 0x3b, 0x00 },
1036 
1037 	/*
1038 	 * 33 CHLF "Current Control"
1039 	 *                  =   9 (0x09) 00001001
1040 	 *    CHLF[7:6] "Sensor current control"
1041 	 *                  =   0 (0x00) 00......
1042 	 *    CHLF[5] "Sensor current range control"
1043 	 *                  =   0 (0x00) ..0..... "normal range"
1044 	 *    CHLF[4] "Sensor current"
1045 	 *                  =   0 (0x00) ...0.... "normal current"
1046 	 *    CHLF[3] "Sensor buffer current control"
1047 	 *                  =   1 (0x01) ....1... "half current"
1048 	 *    CHLF[2] "Column buffer current control"
1049 	 *                  =   0 (0x00) .....0.. "normal current"
1050 	 *    CHLF[1] "Analog DSP current control"
1051 	 *                  =   0 (0x00) ......0. "normal current"
1052 	 *    CHLF[1] "ADC current control"
1053 	 *                  =   0 (0x00) ......0. "normal current"
1054 	 */
1055 	{ 0x33, 0x09 },
1056 
1057 	/*
1058 	 * 34 VBLM "Blooming Control"
1059 	 *                  =  80 (0x50) 01010000
1060 	 *    VBLM[7] "Hard soft reset switch"
1061 	 *                  =   0 (0x00) 0....... "Hard reset"
1062 	 *    VBLM[6:4] "Blooming voltage selection"
1063 	 *                  =   5 (0x05) .101....
1064 	 *    VBLM[3:0] "Sensor current control"
1065 	 *                  =   0 (0x00) ....0000
1066 	 */
1067 	{ 0x34, 0x50 },
1068 
1069 	/*
1070 	 * 12 COMH "Common Control H"
1071 	 *                  =  64 (0x40) 01000000
1072 	 *    COMH[7] "SRST"
1073 	 *                  =   0 (0x00) 0....... "No-op"
1074 	 *    COMH[6:4] "Resolution selection"
1075 	 *                  =   4 (0x04) .100.... "XGA"
1076 	 *    COMH[3] "Master slave selection"
1077 	 *                  =   0 (0x00) ....0... "Master mode"
1078 	 *    COMH[2] "Internal B/R channel option"
1079 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1080 	 *    COMH[1] "Color bar test pattern"
1081 	 *                  =   0 (0x00) ......0. "Off"
1082 	 *    COMH[0] "Reserved"
1083 	 *                  =   0 (0x00) .......0
1084 	 */
1085 	{ 0x12, 0x40 },
1086 
1087 	/*
1088 	 * 17 HREFST "Horizontal window start"
1089 	 *                  =  31 (0x1F) 00011111
1090 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1091 	 *                  =  31 (0x1F) 00011111
1092 	 */
1093 	{ 0x17, 0x1f },
1094 
1095 	/*
1096 	 * 18 HREFEND "Horizontal window end"
1097 	 *                  =  95 (0x5F) 01011111
1098 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1099 	 *                  =  95 (0x5F) 01011111
1100 	 */
1101 	{ 0x18, 0x5f },
1102 
1103 	/*
1104 	 * 19 VSTRT "Vertical window start"
1105 	 *                  =   0 (0x00) 00000000
1106 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1107 	 *                  =   0 (0x00) 00000000
1108 	 */
1109 	{ 0x19, 0x00 },
1110 
1111 	/*
1112 	 * 1A VEND "Vertical window end"
1113 	 *                  =  96 (0x60) 01100000
1114 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1115 	 *                  =  96 (0x60) 01100000
1116 	 */
1117 	{ 0x1a, 0x60 },
1118 
1119 	/*
1120 	 * 32 COMM "Common Control M"
1121 	 *                  =  18 (0x12) 00010010
1122 	 *    COMM[7:6] "Pixel clock divide option"
1123 	 *                  =   0 (0x00) 00...... "/1"
1124 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1125 	 *                  =   2 (0x02) ..010...
1126 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1127 	 *                  =   2 (0x02) .....010
1128 	 */
1129 	{ 0x32, 0x12 },
1130 
1131 	/*
1132 	 * 03 COMA "Common Control A"
1133 	 *                  =  74 (0x4A) 01001010
1134 	 *    COMA[7:4] "AWB Update Threshold"
1135 	 *                  =   4 (0x04) 0100....
1136 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1137 	 *                  =   2 (0x02) ....10..
1138 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1139 	 *                  =   2 (0x02) ......10
1140 	 */
1141 	{ 0x03, 0x4a },
1142 
1143 	/*
1144 	 * 11 CLKRC "Clock Rate Control"
1145 	 *                  = 128 (0x80) 10000000
1146 	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1147 	 *                  =   1 (0x01) 1....... "On"
1148 	 *    CLKRC[6] "Digital video master slave selection"
1149 	 *                  =   0 (0x00) .0...... "Master mode, sensor
1150 	 *                                         provides PCLK"
1151 	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1152 	 *                  =   0 (0x00) ..000000
1153 	 */
1154 	{ 0x11, 0x80 },
1155 
1156 	/*
1157 	 * 12 COMH "Common Control H"
1158 	 *                  =   0 (0x00) 00000000
1159 	 *    COMH[7] "SRST"
1160 	 *                  =   0 (0x00) 0....... "No-op"
1161 	 *    COMH[6:4] "Resolution selection"
1162 	 *                  =   0 (0x00) .000.... "QXGA"
1163 	 *    COMH[3] "Master slave selection"
1164 	 *                  =   0 (0x00) ....0... "Master mode"
1165 	 *    COMH[2] "Internal B/R channel option"
1166 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1167 	 *    COMH[1] "Color bar test pattern"
1168 	 *                  =   0 (0x00) ......0. "Off"
1169 	 *    COMH[0] "Reserved"
1170 	 *                  =   0 (0x00) .......0
1171 	 */
1172 	{ 0x12, 0x00 },
1173 
1174 	/*
1175 	 * 12 COMH "Common Control H"
1176 	 *                  =  64 (0x40) 01000000
1177 	 *    COMH[7] "SRST"
1178 	 *                  =   0 (0x00) 0....... "No-op"
1179 	 *    COMH[6:4] "Resolution selection"
1180 	 *                  =   4 (0x04) .100.... "XGA"
1181 	 *    COMH[3] "Master slave selection"
1182 	 *                  =   0 (0x00) ....0... "Master mode"
1183 	 *    COMH[2] "Internal B/R channel option"
1184 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1185 	 *    COMH[1] "Color bar test pattern"
1186 	 *                  =   0 (0x00) ......0. "Off"
1187 	 *    COMH[0] "Reserved"
1188 	 *                  =   0 (0x00) .......0
1189 	 */
1190 	{ 0x12, 0x40 },
1191 
1192 	/*
1193 	 * 17 HREFST "Horizontal window start"
1194 	 *                  =  31 (0x1F) 00011111
1195 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1196 	 *                  =  31 (0x1F) 00011111
1197 	 */
1198 	{ 0x17, 0x1f },
1199 
1200 	/*
1201 	 * 18 HREFEND "Horizontal window end"
1202 	 *                  =  95 (0x5F) 01011111
1203 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1204 	 *                  =  95 (0x5F) 01011111
1205 	 */
1206 	{ 0x18, 0x5f },
1207 
1208 	/*
1209 	 * 19 VSTRT "Vertical window start"
1210 	 *                  =   0 (0x00) 00000000
1211 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1212 	 *                  =   0 (0x00) 00000000
1213 	 */
1214 	{ 0x19, 0x00 },
1215 
1216 	/*
1217 	 * 1A VEND "Vertical window end"
1218 	 *                  =  96 (0x60) 01100000
1219 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1220 	 *                  =  96 (0x60) 01100000
1221 	 */
1222 	{ 0x1a, 0x60 },
1223 
1224 	/*
1225 	 * 32 COMM "Common Control M"
1226 	 *                  =  18 (0x12) 00010010
1227 	 *    COMM[7:6] "Pixel clock divide option"
1228 	 *                  =   0 (0x00) 00...... "/1"
1229 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1230 	 *                  =   2 (0x02) ..010...
1231 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1232 	 *                  =   2 (0x02) .....010
1233 	 */
1234 	{ 0x32, 0x12 },
1235 
1236 	/*
1237 	 * 03 COMA "Common Control A"
1238 	 *                  =  74 (0x4A) 01001010
1239 	 *    COMA[7:4] "AWB Update Threshold"
1240 	 *                  =   4 (0x04) 0100....
1241 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1242 	 *                  =   2 (0x02) ....10..
1243 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1244 	 *                  =   2 (0x02) ......10
1245 	 */
1246 	{ 0x03, 0x4a },
1247 
1248 	/*
1249 	 * 02 RED "Red Gain Control"
1250 	 *                  = 175 (0xAF) 10101111
1251 	 *    RED[7] "Action"
1252 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1253 	 *    RED[6:0] "Value"
1254 	 *                  =  47 (0x2F) .0101111
1255 	 */
1256 	{ 0x02, 0xaf },
1257 
1258 	/*
1259 	 * 2D ADDVSL "VSYNC Pulse Width"
1260 	 *                  = 210 (0xD2) 11010010
1261 	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1262 	 *                  = 210 (0xD2) 11010010
1263 	 */
1264 	{ 0x2d, 0xd2 },
1265 
1266 	/*
1267 	 * 00 GAIN          =  24 (0x18) 00011000
1268 	 *    GAIN[7:6] "Reserved"
1269 	 *                  =   0 (0x00) 00......
1270 	 *    GAIN[5] "Double"
1271 	 *                  =   0 (0x00) ..0..... "False"
1272 	 *    GAIN[4] "Double"
1273 	 *                  =   1 (0x01) ...1.... "True"
1274 	 *    GAIN[3:0] "Range"
1275 	 *                  =   8 (0x08) ....1000
1276 	 */
1277 	{ 0x00, 0x18 },
1278 
1279 	/*
1280 	 * 01 BLUE "Blue Gain Control"
1281 	 *                  = 240 (0xF0) 11110000
1282 	 *    BLUE[7] "Action"
1283 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1284 	 *    BLUE[6:0] "Value"
1285 	 *                  = 112 (0x70) .1110000
1286 	 */
1287 	{ 0x01, 0xf0 },
1288 
1289 	/*
1290 	 * 10 AEC "Automatic Exposure Control"
1291 	 *                  =  10 (0x0A) 00001010
1292 	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1293 	 *                  =  10 (0x0A) 00001010
1294 	 */
1295 	{ 0x10, 0x0a },
1296 
1297 	{ 0xe1, 0x67 },
1298 	{ 0xe3, 0x03 },
1299 	{ 0xe4, 0x26 },
1300 	{ 0xe5, 0x3e },
1301 	{ 0xf8, 0x01 },
1302 	{ 0xff, 0x01 },
1303 };
1304 
1305 static const struct ov_i2c_regvals norm_6x20[] = {
1306 	{ 0x12, 0x80 }, /* reset */
1307 	{ 0x11, 0x01 },
1308 	{ 0x03, 0x60 },
1309 	{ 0x05, 0x7f }, /* For when autoadjust is off */
1310 	{ 0x07, 0xa8 },
1311 	/* The ratio of 0x0c and 0x0d controls the white point */
1312 	{ 0x0c, 0x24 },
1313 	{ 0x0d, 0x24 },
1314 	{ 0x0f, 0x15 }, /* COMS */
1315 	{ 0x10, 0x75 }, /* AEC Exposure time */
1316 	{ 0x12, 0x24 }, /* Enable AGC */
1317 	{ 0x14, 0x04 },
1318 	/* 0x16: 0x06 helps frame stability with moving objects */
1319 	{ 0x16, 0x06 },
1320 /*	{ 0x20, 0x30 },  * Aperture correction enable */
1321 	{ 0x26, 0xb2 }, /* BLC enable */
1322 	/* 0x28: 0x05 Selects RGB format if RGB on */
1323 	{ 0x28, 0x05 },
1324 	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1325 /*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1326 	{ 0x2d, 0x85 },
1327 	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1328 	{ 0x34, 0xd2 }, /* Max A/D range */
1329 	{ 0x38, 0x8b },
1330 	{ 0x39, 0x40 },
1331 
1332 	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1333 	{ 0x3c, 0x3c }, /* Change AEC mode */
1334 	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1335 
1336 	{ 0x3d, 0x80 },
1337 	/* These next two registers (0x4a, 0x4b) are undocumented.
1338 	 * They control the color balance */
1339 	{ 0x4a, 0x80 },
1340 	{ 0x4b, 0x80 },
1341 	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1342 	{ 0x4e, 0xc1 },
1343 	{ 0x4f, 0x04 },
1344 /* Do 50-53 have any effect? */
1345 /* Toggle 0x12[2] off and on here? */
1346 };
1347 
1348 static const struct ov_i2c_regvals norm_6x30[] = {
1349 	{ 0x12, 0x80 }, /* Reset */
1350 	{ 0x00, 0x1f }, /* Gain */
1351 	{ 0x01, 0x99 }, /* Blue gain */
1352 	{ 0x02, 0x7c }, /* Red gain */
1353 	{ 0x03, 0xc0 }, /* Saturation */
1354 	{ 0x05, 0x0a }, /* Contrast */
1355 	{ 0x06, 0x95 }, /* Brightness */
1356 	{ 0x07, 0x2d }, /* Sharpness */
1357 	{ 0x0c, 0x20 },
1358 	{ 0x0d, 0x20 },
1359 	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1360 	{ 0x0f, 0x05 },
1361 	{ 0x10, 0x9a },
1362 	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1363 	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1364 	{ 0x13, 0x21 },
1365 	{ 0x14, 0x80 },
1366 	{ 0x15, 0x01 },
1367 	{ 0x16, 0x03 },
1368 	{ 0x17, 0x38 },
1369 	{ 0x18, 0xea },
1370 	{ 0x19, 0x04 },
1371 	{ 0x1a, 0x93 },
1372 	{ 0x1b, 0x00 },
1373 	{ 0x1e, 0xc4 },
1374 	{ 0x1f, 0x04 },
1375 	{ 0x20, 0x20 },
1376 	{ 0x21, 0x10 },
1377 	{ 0x22, 0x88 },
1378 	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1379 	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1380 	{ 0x26, 0xb2 }, /* BLC enable */
1381 	{ 0x27, 0xa2 },
1382 	{ 0x28, 0x00 },
1383 	{ 0x29, 0x00 },
1384 	{ 0x2a, 0x84 }, /* 60 Hz power */
1385 	{ 0x2b, 0xa8 }, /* 60 Hz power */
1386 	{ 0x2c, 0xa0 },
1387 	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1388 	{ 0x2e, 0x88 },
1389 	{ 0x33, 0x26 },
1390 	{ 0x34, 0x03 },
1391 	{ 0x36, 0x8f },
1392 	{ 0x37, 0x80 },
1393 	{ 0x38, 0x83 },
1394 	{ 0x39, 0x80 },
1395 	{ 0x3a, 0x0f },
1396 	{ 0x3b, 0x3c },
1397 	{ 0x3c, 0x1a },
1398 	{ 0x3d, 0x80 },
1399 	{ 0x3e, 0x80 },
1400 	{ 0x3f, 0x0e },
1401 	{ 0x40, 0x00 }, /* White bal */
1402 	{ 0x41, 0x00 }, /* White bal */
1403 	{ 0x42, 0x80 },
1404 	{ 0x43, 0x3f }, /* White bal */
1405 	{ 0x44, 0x80 },
1406 	{ 0x45, 0x20 },
1407 	{ 0x46, 0x20 },
1408 	{ 0x47, 0x80 },
1409 	{ 0x48, 0x7f },
1410 	{ 0x49, 0x00 },
1411 	{ 0x4a, 0x00 },
1412 	{ 0x4b, 0x80 },
1413 	{ 0x4c, 0xd0 },
1414 	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1415 	{ 0x4e, 0x40 },
1416 	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1417 	{ 0x50, 0xff },
1418 	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1419 	{ 0x55, 0xff },
1420 	{ 0x56, 0x12 },
1421 	{ 0x57, 0x81 },
1422 	{ 0x58, 0x75 },
1423 	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1424 	{ 0x5a, 0x2c },
1425 	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1426 	{ 0x5c, 0x10 },
1427 	{ 0x3d, 0x80 },
1428 	{ 0x27, 0xa6 },
1429 	{ 0x12, 0x20 }, /* Toggle AWB */
1430 	{ 0x12, 0x24 },
1431 };
1432 
1433 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1434  *
1435  * Register 0x0f in the 7610 has the following effects:
1436  *
1437  * 0x85 (AEC method 1): Best overall, good contrast range
1438  * 0x45 (AEC method 2): Very overexposed
1439  * 0xa5 (spec sheet default): Ok, but the black level is
1440  *	shifted resulting in loss of contrast
1441  * 0x05 (old driver setting): very overexposed, too much
1442  *	contrast
1443  */
1444 static const struct ov_i2c_regvals norm_7610[] = {
1445 	{ 0x10, 0xff },
1446 	{ 0x16, 0x06 },
1447 	{ 0x28, 0x24 },
1448 	{ 0x2b, 0xac },
1449 	{ 0x12, 0x00 },
1450 	{ 0x38, 0x81 },
1451 	{ 0x28, 0x24 },	/* 0c */
1452 	{ 0x0f, 0x85 },	/* lg's setting */
1453 	{ 0x15, 0x01 },
1454 	{ 0x20, 0x1c },
1455 	{ 0x23, 0x2a },
1456 	{ 0x24, 0x10 },
1457 	{ 0x25, 0x8a },
1458 	{ 0x26, 0xa2 },
1459 	{ 0x27, 0xc2 },
1460 	{ 0x2a, 0x04 },
1461 	{ 0x2c, 0xfe },
1462 	{ 0x2d, 0x93 },
1463 	{ 0x30, 0x71 },
1464 	{ 0x31, 0x60 },
1465 	{ 0x32, 0x26 },
1466 	{ 0x33, 0x20 },
1467 	{ 0x34, 0x48 },
1468 	{ 0x12, 0x24 },
1469 	{ 0x11, 0x01 },
1470 	{ 0x0c, 0x24 },
1471 	{ 0x0d, 0x24 },
1472 };
1473 
1474 static const struct ov_i2c_regvals norm_7620[] = {
1475 	{ 0x12, 0x80 },		/* reset */
1476 	{ 0x00, 0x00 },		/* gain */
1477 	{ 0x01, 0x80 },		/* blue gain */
1478 	{ 0x02, 0x80 },		/* red gain */
1479 	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1480 	{ 0x06, 0x60 },
1481 	{ 0x07, 0x00 },
1482 	{ 0x0c, 0x24 },
1483 	{ 0x0c, 0x24 },
1484 	{ 0x0d, 0x24 },
1485 	{ 0x11, 0x01 },
1486 	{ 0x12, 0x24 },
1487 	{ 0x13, 0x01 },
1488 	{ 0x14, 0x84 },
1489 	{ 0x15, 0x01 },
1490 	{ 0x16, 0x03 },
1491 	{ 0x17, 0x2f },
1492 	{ 0x18, 0xcf },
1493 	{ 0x19, 0x06 },
1494 	{ 0x1a, 0xf5 },
1495 	{ 0x1b, 0x00 },
1496 	{ 0x20, 0x18 },
1497 	{ 0x21, 0x80 },
1498 	{ 0x22, 0x80 },
1499 	{ 0x23, 0x00 },
1500 	{ 0x26, 0xa2 },
1501 	{ 0x27, 0xea },
1502 	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1503 	{ 0x29, 0x00 },
1504 	{ 0x2a, 0x10 },
1505 	{ 0x2b, 0x00 },
1506 	{ 0x2c, 0x88 },
1507 	{ 0x2d, 0x91 },
1508 	{ 0x2e, 0x80 },
1509 	{ 0x2f, 0x44 },
1510 	{ 0x60, 0x27 },
1511 	{ 0x61, 0x02 },
1512 	{ 0x62, 0x5f },
1513 	{ 0x63, 0xd5 },
1514 	{ 0x64, 0x57 },
1515 	{ 0x65, 0x83 },
1516 	{ 0x66, 0x55 },
1517 	{ 0x67, 0x92 },
1518 	{ 0x68, 0xcf },
1519 	{ 0x69, 0x76 },
1520 	{ 0x6a, 0x22 },
1521 	{ 0x6b, 0x00 },
1522 	{ 0x6c, 0x02 },
1523 	{ 0x6d, 0x44 },
1524 	{ 0x6e, 0x80 },
1525 	{ 0x6f, 0x1d },
1526 	{ 0x70, 0x8b },
1527 	{ 0x71, 0x00 },
1528 	{ 0x72, 0x14 },
1529 	{ 0x73, 0x54 },
1530 	{ 0x74, 0x00 },
1531 	{ 0x75, 0x8e },
1532 	{ 0x76, 0x00 },
1533 	{ 0x77, 0xff },
1534 	{ 0x78, 0x80 },
1535 	{ 0x79, 0x80 },
1536 	{ 0x7a, 0x80 },
1537 	{ 0x7b, 0xe2 },
1538 	{ 0x7c, 0x00 },
1539 };
1540 
1541 /* 7640 and 7648. The defaults should be OK for most registers. */
1542 static const struct ov_i2c_regvals norm_7640[] = {
1543 	{ 0x12, 0x80 },
1544 	{ 0x12, 0x14 },
1545 };
1546 
1547 static const struct ov_regvals init_519_ov7660[] = {
1548 	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1549 	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1550 	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1551 	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1552 	{ 0xa3,	0x18 },
1553 	{ 0xa4,	0x04 },
1554 	{ 0xa5,	0x28 },
1555 	{ 0x37,	0x00 },	/* SetUsbInit */
1556 	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1557 	/* Enable both fields, YUV Input, disable defect comp (why?) */
1558 	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1559 	{ 0x21,	0x38 },
1560 	{ 0x22,	0x1d },
1561 	{ 0x17,	0x50 }, /* undocumented */
1562 	{ 0x37,	0x00 }, /* undocumented */
1563 	{ 0x40,	0xff }, /* I2C timeout counter */
1564 	{ 0x46,	0x00 }, /* I2C clock prescaler */
1565 };
1566 static const struct ov_i2c_regvals norm_7660[] = {
1567 	{OV7670_R12_COM7, OV7670_COM7_RESET},
1568 	{OV7670_R11_CLKRC, 0x81},
1569 	{0x92, 0x00},			/* DM_LNL */
1570 	{0x93, 0x00},			/* DM_LNH */
1571 	{0x9d, 0x4c},			/* BD50ST */
1572 	{0x9e, 0x3f},			/* BD60ST */
1573 	{OV7670_R3B_COM11, 0x02},
1574 	{OV7670_R13_COM8, 0xf5},
1575 	{OV7670_R10_AECH, 0x00},
1576 	{OV7670_R00_GAIN, 0x00},
1577 	{OV7670_R01_BLUE, 0x7c},
1578 	{OV7670_R02_RED, 0x9d},
1579 	{OV7670_R12_COM7, 0x00},
1580 	{OV7670_R04_COM1, 00},
1581 	{OV7670_R18_HSTOP, 0x01},
1582 	{OV7670_R17_HSTART, 0x13},
1583 	{OV7670_R32_HREF, 0x92},
1584 	{OV7670_R19_VSTART, 0x02},
1585 	{OV7670_R1A_VSTOP, 0x7a},
1586 	{OV7670_R03_VREF, 0x00},
1587 	{OV7670_R0E_COM5, 0x04},
1588 	{OV7670_R0F_COM6, 0x62},
1589 	{OV7670_R15_COM10, 0x00},
1590 	{0x16, 0x02},			/* RSVD */
1591 	{0x1b, 0x00},			/* PSHFT */
1592 	{OV7670_R1E_MVFP, 0x01},
1593 	{0x29, 0x3c},			/* RSVD */
1594 	{0x33, 0x00},			/* CHLF */
1595 	{0x34, 0x07},			/* ARBLM */
1596 	{0x35, 0x84},			/* RSVD */
1597 	{0x36, 0x00},			/* RSVD */
1598 	{0x37, 0x04},			/* ADC */
1599 	{0x39, 0x43},			/* OFON */
1600 	{OV7670_R3A_TSLB, 0x00},
1601 	{OV7670_R3C_COM12, 0x6c},
1602 	{OV7670_R3D_COM13, 0x98},
1603 	{OV7670_R3F_EDGE, 0x23},
1604 	{OV7670_R40_COM15, 0xc1},
1605 	{OV7670_R41_COM16, 0x22},
1606 	{0x6b, 0x0a},			/* DBLV */
1607 	{0xa1, 0x08},			/* RSVD */
1608 	{0x69, 0x80},			/* HV */
1609 	{0x43, 0xf0},			/* RSVD.. */
1610 	{0x44, 0x10},
1611 	{0x45, 0x78},
1612 	{0x46, 0xa8},
1613 	{0x47, 0x60},
1614 	{0x48, 0x80},
1615 	{0x59, 0xba},
1616 	{0x5a, 0x9a},
1617 	{0x5b, 0x22},
1618 	{0x5c, 0xb9},
1619 	{0x5d, 0x9b},
1620 	{0x5e, 0x10},
1621 	{0x5f, 0xe0},
1622 	{0x60, 0x85},
1623 	{0x61, 0x60},
1624 	{0x9f, 0x9d},			/* RSVD */
1625 	{0xa0, 0xa0},			/* DSPC2 */
1626 	{0x4f, 0x60},			/* matrix */
1627 	{0x50, 0x64},
1628 	{0x51, 0x04},
1629 	{0x52, 0x18},
1630 	{0x53, 0x3c},
1631 	{0x54, 0x54},
1632 	{0x55, 0x40},
1633 	{0x56, 0x40},
1634 	{0x57, 0x40},
1635 	{0x58, 0x0d},			/* matrix sign */
1636 	{0x8b, 0xcc},			/* RSVD */
1637 	{0x8c, 0xcc},
1638 	{0x8d, 0xcf},
1639 	{0x6c, 0x40},			/* gamma curve */
1640 	{0x6d, 0xe0},
1641 	{0x6e, 0xa0},
1642 	{0x6f, 0x80},
1643 	{0x70, 0x70},
1644 	{0x71, 0x80},
1645 	{0x72, 0x60},
1646 	{0x73, 0x60},
1647 	{0x74, 0x50},
1648 	{0x75, 0x40},
1649 	{0x76, 0x38},
1650 	{0x77, 0x3c},
1651 	{0x78, 0x32},
1652 	{0x79, 0x1a},
1653 	{0x7a, 0x28},
1654 	{0x7b, 0x24},
1655 	{0x7c, 0x04},			/* gamma curve */
1656 	{0x7d, 0x12},
1657 	{0x7e, 0x26},
1658 	{0x7f, 0x46},
1659 	{0x80, 0x54},
1660 	{0x81, 0x64},
1661 	{0x82, 0x70},
1662 	{0x83, 0x7c},
1663 	{0x84, 0x86},
1664 	{0x85, 0x8e},
1665 	{0x86, 0x9c},
1666 	{0x87, 0xab},
1667 	{0x88, 0xc4},
1668 	{0x89, 0xd1},
1669 	{0x8a, 0xe5},
1670 	{OV7670_R14_COM9, 0x1e},
1671 	{OV7670_R24_AEW, 0x80},
1672 	{OV7670_R25_AEB, 0x72},
1673 	{OV7670_R26_VPT, 0xb3},
1674 	{0x62, 0x80},			/* LCC1 */
1675 	{0x63, 0x80},			/* LCC2 */
1676 	{0x64, 0x06},			/* LCC3 */
1677 	{0x65, 0x00},			/* LCC4 */
1678 	{0x66, 0x01},			/* LCC5 */
1679 	{0x94, 0x0e},			/* RSVD.. */
1680 	{0x95, 0x14},
1681 	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1682 			| OV7670_COM8_AECSTEP
1683 			| OV7670_COM8_BFILT
1684 			| 0x10
1685 			| OV7670_COM8_AGC
1686 			| OV7670_COM8_AWB
1687 			| OV7670_COM8_AEC},
1688 	{0xa1, 0xc8}
1689 };
1690 static const struct ov_i2c_regvals norm_9600[] = {
1691 	{0x12, 0x80},
1692 	{0x0c, 0x28},
1693 	{0x11, 0x80},
1694 	{0x13, 0xb5},
1695 	{0x14, 0x3e},
1696 	{0x1b, 0x04},
1697 	{0x24, 0xb0},
1698 	{0x25, 0x90},
1699 	{0x26, 0x94},
1700 	{0x35, 0x90},
1701 	{0x37, 0x07},
1702 	{0x38, 0x08},
1703 	{0x01, 0x8e},
1704 	{0x02, 0x85}
1705 };
1706 
1707 /* 7670. Defaults taken from OmniVision provided data,
1708 *  as provided by Jonathan Corbet of OLPC		*/
1709 static const struct ov_i2c_regvals norm_7670[] = {
1710 	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1711 	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1712 	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1713 	{ OV7670_R11_CLKRC, 0x01 },
1714 /*
1715  * Set the hardware window.  These values from OV don't entirely
1716  * make sense - hstop is less than hstart.  But they work...
1717  */
1718 	{ OV7670_R17_HSTART, 0x13 },
1719 	{ OV7670_R18_HSTOP, 0x01 },
1720 	{ OV7670_R32_HREF, 0xb6 },
1721 	{ OV7670_R19_VSTART, 0x02 },
1722 	{ OV7670_R1A_VSTOP, 0x7a },
1723 	{ OV7670_R03_VREF, 0x0a },
1724 
1725 	{ OV7670_R0C_COM3, 0x00 },
1726 	{ OV7670_R3E_COM14, 0x00 },
1727 /* Mystery scaling numbers */
1728 	{ 0x70, 0x3a },
1729 	{ 0x71, 0x35 },
1730 	{ 0x72, 0x11 },
1731 	{ 0x73, 0xf0 },
1732 	{ 0xa2, 0x02 },
1733 /*	{ OV7670_R15_COM10, 0x0 }, */
1734 
1735 /* Gamma curve values */
1736 	{ 0x7a, 0x20 },
1737 	{ 0x7b, 0x10 },
1738 	{ 0x7c, 0x1e },
1739 	{ 0x7d, 0x35 },
1740 	{ 0x7e, 0x5a },
1741 	{ 0x7f, 0x69 },
1742 	{ 0x80, 0x76 },
1743 	{ 0x81, 0x80 },
1744 	{ 0x82, 0x88 },
1745 	{ 0x83, 0x8f },
1746 	{ 0x84, 0x96 },
1747 	{ 0x85, 0xa3 },
1748 	{ 0x86, 0xaf },
1749 	{ 0x87, 0xc4 },
1750 	{ 0x88, 0xd7 },
1751 	{ 0x89, 0xe8 },
1752 
1753 /* AGC and AEC parameters.  Note we start by disabling those features,
1754    then turn them only after tweaking the values. */
1755 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1756 			 | OV7670_COM8_AECSTEP
1757 			 | OV7670_COM8_BFILT },
1758 	{ OV7670_R00_GAIN, 0x00 },
1759 	{ OV7670_R10_AECH, 0x00 },
1760 	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1761 	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1762 	{ OV7670_RA5_BD50MAX, 0x05 },
1763 	{ OV7670_RAB_BD60MAX, 0x07 },
1764 	{ OV7670_R24_AEW, 0x95 },
1765 	{ OV7670_R25_AEB, 0x33 },
1766 	{ OV7670_R26_VPT, 0xe3 },
1767 	{ OV7670_R9F_HAECC1, 0x78 },
1768 	{ OV7670_RA0_HAECC2, 0x68 },
1769 	{ 0xa1, 0x03 }, /* magic */
1770 	{ OV7670_RA6_HAECC3, 0xd8 },
1771 	{ OV7670_RA7_HAECC4, 0xd8 },
1772 	{ OV7670_RA8_HAECC5, 0xf0 },
1773 	{ OV7670_RA9_HAECC6, 0x90 },
1774 	{ OV7670_RAA_HAECC7, 0x94 },
1775 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1776 			| OV7670_COM8_AECSTEP
1777 			| OV7670_COM8_BFILT
1778 			| OV7670_COM8_AGC
1779 			| OV7670_COM8_AEC },
1780 
1781 /* Almost all of these are magic "reserved" values.  */
1782 	{ OV7670_R0E_COM5, 0x61 },
1783 	{ OV7670_R0F_COM6, 0x4b },
1784 	{ 0x16, 0x02 },
1785 	{ OV7670_R1E_MVFP, 0x07 },
1786 	{ 0x21, 0x02 },
1787 	{ 0x22, 0x91 },
1788 	{ 0x29, 0x07 },
1789 	{ 0x33, 0x0b },
1790 	{ 0x35, 0x0b },
1791 	{ 0x37, 0x1d },
1792 	{ 0x38, 0x71 },
1793 	{ 0x39, 0x2a },
1794 	{ OV7670_R3C_COM12, 0x78 },
1795 	{ 0x4d, 0x40 },
1796 	{ 0x4e, 0x20 },
1797 	{ OV7670_R69_GFIX, 0x00 },
1798 	{ 0x6b, 0x4a },
1799 	{ 0x74, 0x10 },
1800 	{ 0x8d, 0x4f },
1801 	{ 0x8e, 0x00 },
1802 	{ 0x8f, 0x00 },
1803 	{ 0x90, 0x00 },
1804 	{ 0x91, 0x00 },
1805 	{ 0x96, 0x00 },
1806 	{ 0x9a, 0x00 },
1807 	{ 0xb0, 0x84 },
1808 	{ 0xb1, 0x0c },
1809 	{ 0xb2, 0x0e },
1810 	{ 0xb3, 0x82 },
1811 	{ 0xb8, 0x0a },
1812 
1813 /* More reserved magic, some of which tweaks white balance */
1814 	{ 0x43, 0x0a },
1815 	{ 0x44, 0xf0 },
1816 	{ 0x45, 0x34 },
1817 	{ 0x46, 0x58 },
1818 	{ 0x47, 0x28 },
1819 	{ 0x48, 0x3a },
1820 	{ 0x59, 0x88 },
1821 	{ 0x5a, 0x88 },
1822 	{ 0x5b, 0x44 },
1823 	{ 0x5c, 0x67 },
1824 	{ 0x5d, 0x49 },
1825 	{ 0x5e, 0x0e },
1826 	{ 0x6c, 0x0a },
1827 	{ 0x6d, 0x55 },
1828 	{ 0x6e, 0x11 },
1829 	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1830 	{ 0x6a, 0x40 },
1831 	{ OV7670_R01_BLUE, 0x40 },
1832 	{ OV7670_R02_RED, 0x60 },
1833 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1834 			| OV7670_COM8_AECSTEP
1835 			| OV7670_COM8_BFILT
1836 			| OV7670_COM8_AGC
1837 			| OV7670_COM8_AEC
1838 			| OV7670_COM8_AWB },
1839 
1840 /* Matrix coefficients */
1841 	{ 0x4f, 0x80 },
1842 	{ 0x50, 0x80 },
1843 	{ 0x51, 0x00 },
1844 	{ 0x52, 0x22 },
1845 	{ 0x53, 0x5e },
1846 	{ 0x54, 0x80 },
1847 	{ 0x58, 0x9e },
1848 
1849 	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1850 	{ OV7670_R3F_EDGE, 0x00 },
1851 	{ 0x75, 0x05 },
1852 	{ 0x76, 0xe1 },
1853 	{ 0x4c, 0x00 },
1854 	{ 0x77, 0x01 },
1855 	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1856 			  | OV7670_COM13_UVSAT
1857 			  | 2},		/* was 3 */
1858 	{ 0x4b, 0x09 },
1859 	{ 0xc9, 0x60 },
1860 	{ OV7670_R41_COM16, 0x38 },
1861 	{ 0x56, 0x40 },
1862 
1863 	{ 0x34, 0x11 },
1864 	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1865 	{ 0xa4, 0x88 },
1866 	{ 0x96, 0x00 },
1867 	{ 0x97, 0x30 },
1868 	{ 0x98, 0x20 },
1869 	{ 0x99, 0x30 },
1870 	{ 0x9a, 0x84 },
1871 	{ 0x9b, 0x29 },
1872 	{ 0x9c, 0x03 },
1873 	{ 0x9d, 0x4c },
1874 	{ 0x9e, 0x3f },
1875 	{ 0x78, 0x04 },
1876 
1877 /* Extra-weird stuff.  Some sort of multiplexor register */
1878 	{ 0x79, 0x01 },
1879 	{ 0xc8, 0xf0 },
1880 	{ 0x79, 0x0f },
1881 	{ 0xc8, 0x00 },
1882 	{ 0x79, 0x10 },
1883 	{ 0xc8, 0x7e },
1884 	{ 0x79, 0x0a },
1885 	{ 0xc8, 0x80 },
1886 	{ 0x79, 0x0b },
1887 	{ 0xc8, 0x01 },
1888 	{ 0x79, 0x0c },
1889 	{ 0xc8, 0x0f },
1890 	{ 0x79, 0x0d },
1891 	{ 0xc8, 0x20 },
1892 	{ 0x79, 0x09 },
1893 	{ 0xc8, 0x80 },
1894 	{ 0x79, 0x02 },
1895 	{ 0xc8, 0xc0 },
1896 	{ 0x79, 0x03 },
1897 	{ 0xc8, 0x40 },
1898 	{ 0x79, 0x05 },
1899 	{ 0xc8, 0x30 },
1900 	{ 0x79, 0x26 },
1901 };
1902 
1903 static const struct ov_i2c_regvals norm_8610[] = {
1904 	{ 0x12, 0x80 },
1905 	{ 0x00, 0x00 },
1906 	{ 0x01, 0x80 },
1907 	{ 0x02, 0x80 },
1908 	{ 0x03, 0xc0 },
1909 	{ 0x04, 0x30 },
1910 	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1911 	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1912 	{ 0x0a, 0x86 },
1913 	{ 0x0b, 0xb0 },
1914 	{ 0x0c, 0x20 },
1915 	{ 0x0d, 0x20 },
1916 	{ 0x11, 0x01 },
1917 	{ 0x12, 0x25 },
1918 	{ 0x13, 0x01 },
1919 	{ 0x14, 0x04 },
1920 	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1921 	{ 0x16, 0x03 },
1922 	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1923 	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1924 	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1925 	{ 0x1a, 0xf5 },
1926 	{ 0x1b, 0x00 },
1927 	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1928 	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1929 	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1930 	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1931 	{ 0x26, 0xa2 },
1932 	{ 0x27, 0xea },
1933 	{ 0x28, 0x00 },
1934 	{ 0x29, 0x00 },
1935 	{ 0x2a, 0x80 },
1936 	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1937 	{ 0x2c, 0xac },
1938 	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1939 	{ 0x2e, 0x80 },
1940 	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1941 	{ 0x4c, 0x00 },
1942 	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1943 	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1944 	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1945 	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1946 	{ 0x63, 0xff },
1947 	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1948 			 * maybe thats wrong */
1949 	{ 0x65, 0x00 },
1950 	{ 0x66, 0x55 },
1951 	{ 0x67, 0xb0 },
1952 	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1953 	{ 0x69, 0x02 },
1954 	{ 0x6a, 0x22 },
1955 	{ 0x6b, 0x00 },
1956 	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1957 			 * deleting bit7 colors the first images red */
1958 	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1959 	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1960 	{ 0x6f, 0x01 },
1961 	{ 0x70, 0x8b },
1962 	{ 0x71, 0x00 },
1963 	{ 0x72, 0x14 },
1964 	{ 0x73, 0x54 },
1965 	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1966 	{ 0x75, 0x0e },
1967 	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1968 	{ 0x77, 0xff },
1969 	{ 0x78, 0x80 },
1970 	{ 0x79, 0x80 },
1971 	{ 0x7a, 0x80 },
1972 	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1973 	{ 0x7c, 0x00 },
1974 	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1975 	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1976 	{ 0x7f, 0xfb },
1977 	{ 0x80, 0x28 },
1978 	{ 0x81, 0x00 },
1979 	{ 0x82, 0x23 },
1980 	{ 0x83, 0x0b },
1981 	{ 0x84, 0x00 },
1982 	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1983 	{ 0x86, 0xc9 },
1984 	{ 0x87, 0x00 },
1985 	{ 0x88, 0x00 },
1986 	{ 0x89, 0x01 },
1987 	{ 0x12, 0x20 },
1988 	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1989 };
1990 
1991 static unsigned char ov7670_abs_to_sm(unsigned char v)
1992 {
1993 	if (v > 127)
1994 		return v & 0x7f;
1995 	return (128 - v) | 0x80;
1996 }
1997 
1998 /* Write a OV519 register */
1999 static void reg_w(struct sd *sd, u16 index, u16 value)
2000 {
2001 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2002 	int ret, req = 0;
2003 
2004 	if (sd->gspca_dev.usb_err < 0)
2005 		return;
2006 
2007 	/* Avoid things going to fast for the bridge with a xhci host */
2008 	udelay(150);
2009 
2010 	switch (sd->bridge) {
2011 	case BRIDGE_OV511:
2012 	case BRIDGE_OV511PLUS:
2013 		req = 2;
2014 		break;
2015 	case BRIDGE_OVFX2:
2016 		req = 0x0a;
2017 		/* fall through */
2018 	case BRIDGE_W9968CF:
2019 		PDEBUG(D_USBO, "SET %02x %04x %04x",
2020 				req, value, index);
2021 		ret = usb_control_msg(sd->gspca_dev.dev,
2022 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2023 			req,
2024 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2025 			value, index, NULL, 0, 500);
2026 		goto leave;
2027 	default:
2028 		req = 1;
2029 	}
2030 
2031 	PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2032 			req, index, value);
2033 	sd->gspca_dev.usb_buf[0] = value;
2034 	ret = usb_control_msg(sd->gspca_dev.dev,
2035 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2036 			req,
2037 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2038 			0, index,
2039 			sd->gspca_dev.usb_buf, 1, 500);
2040 leave:
2041 	if (ret < 0) {
2042 		PERR("reg_w %02x failed %d\n", index, ret);
2043 		sd->gspca_dev.usb_err = ret;
2044 		return;
2045 	}
2046 }
2047 
2048 /* Read from a OV519 register, note not valid for the w9968cf!! */
2049 /* returns: negative is error, pos or zero is data */
2050 static int reg_r(struct sd *sd, u16 index)
2051 {
2052 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2053 	int ret;
2054 	int req;
2055 
2056 	if (sd->gspca_dev.usb_err < 0)
2057 		return -1;
2058 
2059 	switch (sd->bridge) {
2060 	case BRIDGE_OV511:
2061 	case BRIDGE_OV511PLUS:
2062 		req = 3;
2063 		break;
2064 	case BRIDGE_OVFX2:
2065 		req = 0x0b;
2066 		break;
2067 	default:
2068 		req = 1;
2069 	}
2070 
2071 	/* Avoid things going to fast for the bridge with a xhci host */
2072 	udelay(150);
2073 	ret = usb_control_msg(sd->gspca_dev.dev,
2074 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2075 			req,
2076 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2077 			0, index, sd->gspca_dev.usb_buf, 1, 500);
2078 
2079 	if (ret >= 0) {
2080 		ret = sd->gspca_dev.usb_buf[0];
2081 		PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2082 			req, index, ret);
2083 	} else {
2084 		PERR("reg_r %02x failed %d\n", index, ret);
2085 		sd->gspca_dev.usb_err = ret;
2086 	}
2087 
2088 	return ret;
2089 }
2090 
2091 /* Read 8 values from a OV519 register */
2092 static int reg_r8(struct sd *sd,
2093 		  u16 index)
2094 {
2095 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2096 	int ret;
2097 
2098 	if (sd->gspca_dev.usb_err < 0)
2099 		return -1;
2100 
2101 	/* Avoid things going to fast for the bridge with a xhci host */
2102 	udelay(150);
2103 	ret = usb_control_msg(sd->gspca_dev.dev,
2104 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2105 			1,			/* REQ_IO */
2106 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2107 			0, index, sd->gspca_dev.usb_buf, 8, 500);
2108 
2109 	if (ret >= 0) {
2110 		ret = sd->gspca_dev.usb_buf[0];
2111 	} else {
2112 		PERR("reg_r8 %02x failed %d\n", index, ret);
2113 		sd->gspca_dev.usb_err = ret;
2114 	}
2115 
2116 	return ret;
2117 }
2118 
2119 /*
2120  * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2121  * the same position as 1's in "mask" are cleared and set to "value". Bits
2122  * that are in the same position as 0's in "mask" are preserved, regardless
2123  * of their respective state in "value".
2124  */
2125 static void reg_w_mask(struct sd *sd,
2126 			u16 index,
2127 			u8 value,
2128 			u8 mask)
2129 {
2130 	int ret;
2131 	u8 oldval;
2132 
2133 	if (mask != 0xff) {
2134 		value &= mask;			/* Enforce mask on value */
2135 		ret = reg_r(sd, index);
2136 		if (ret < 0)
2137 			return;
2138 
2139 		oldval = ret & ~mask;		/* Clear the masked bits */
2140 		value |= oldval;		/* Set the desired bits */
2141 	}
2142 	reg_w(sd, index, value);
2143 }
2144 
2145 /*
2146  * Writes multiple (n) byte value to a single register. Only valid with certain
2147  * registers (0x30 and 0xc4 - 0xce).
2148  */
2149 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2150 {
2151 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2152 	int ret;
2153 
2154 	if (sd->gspca_dev.usb_err < 0)
2155 		return;
2156 
2157 	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2158 
2159 	/* Avoid things going to fast for the bridge with a xhci host */
2160 	udelay(150);
2161 	ret = usb_control_msg(sd->gspca_dev.dev,
2162 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2163 			1 /* REG_IO */,
2164 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2165 			0, index,
2166 			sd->gspca_dev.usb_buf, n, 500);
2167 	if (ret < 0) {
2168 		PERR("reg_w32 %02x failed %d\n", index, ret);
2169 		sd->gspca_dev.usb_err = ret;
2170 	}
2171 }
2172 
2173 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2174 {
2175 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2176 	int rc, retries;
2177 
2178 	PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2179 
2180 	/* Three byte write cycle */
2181 	for (retries = 6; ; ) {
2182 		/* Select camera register */
2183 		reg_w(sd, R51x_I2C_SADDR_3, reg);
2184 
2185 		/* Write "value" to I2C data port of OV511 */
2186 		reg_w(sd, R51x_I2C_DATA, value);
2187 
2188 		/* Initiate 3-byte write cycle */
2189 		reg_w(sd, R511_I2C_CTL, 0x01);
2190 
2191 		do {
2192 			rc = reg_r(sd, R511_I2C_CTL);
2193 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2194 
2195 		if (rc < 0)
2196 			return;
2197 
2198 		if ((rc & 2) == 0) /* Ack? */
2199 			break;
2200 		if (--retries < 0) {
2201 			PDEBUG(D_USBO, "i2c write retries exhausted");
2202 			return;
2203 		}
2204 	}
2205 }
2206 
2207 static int ov511_i2c_r(struct sd *sd, u8 reg)
2208 {
2209 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2210 	int rc, value, retries;
2211 
2212 	/* Two byte write cycle */
2213 	for (retries = 6; ; ) {
2214 		/* Select camera register */
2215 		reg_w(sd, R51x_I2C_SADDR_2, reg);
2216 
2217 		/* Initiate 2-byte write cycle */
2218 		reg_w(sd, R511_I2C_CTL, 0x03);
2219 
2220 		do {
2221 			rc = reg_r(sd, R511_I2C_CTL);
2222 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2223 
2224 		if (rc < 0)
2225 			return rc;
2226 
2227 		if ((rc & 2) == 0) /* Ack? */
2228 			break;
2229 
2230 		/* I2C abort */
2231 		reg_w(sd, R511_I2C_CTL, 0x10);
2232 
2233 		if (--retries < 0) {
2234 			PDEBUG(D_USBI, "i2c write retries exhausted");
2235 			return -1;
2236 		}
2237 	}
2238 
2239 	/* Two byte read cycle */
2240 	for (retries = 6; ; ) {
2241 		/* Initiate 2-byte read cycle */
2242 		reg_w(sd, R511_I2C_CTL, 0x05);
2243 
2244 		do {
2245 			rc = reg_r(sd, R511_I2C_CTL);
2246 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2247 
2248 		if (rc < 0)
2249 			return rc;
2250 
2251 		if ((rc & 2) == 0) /* Ack? */
2252 			break;
2253 
2254 		/* I2C abort */
2255 		reg_w(sd, R511_I2C_CTL, 0x10);
2256 
2257 		if (--retries < 0) {
2258 			PDEBUG(D_USBI, "i2c read retries exhausted");
2259 			return -1;
2260 		}
2261 	}
2262 
2263 	value = reg_r(sd, R51x_I2C_DATA);
2264 
2265 	PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2266 
2267 	/* This is needed to make i2c_w() work */
2268 	reg_w(sd, R511_I2C_CTL, 0x05);
2269 
2270 	return value;
2271 }
2272 
2273 /*
2274  * The OV518 I2C I/O procedure is different, hence, this function.
2275  * This is normally only called from i2c_w(). Note that this function
2276  * always succeeds regardless of whether the sensor is present and working.
2277  */
2278 static void ov518_i2c_w(struct sd *sd,
2279 		u8 reg,
2280 		u8 value)
2281 {
2282 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2283 
2284 	PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2285 
2286 	/* Select camera register */
2287 	reg_w(sd, R51x_I2C_SADDR_3, reg);
2288 
2289 	/* Write "value" to I2C data port of OV511 */
2290 	reg_w(sd, R51x_I2C_DATA, value);
2291 
2292 	/* Initiate 3-byte write cycle */
2293 	reg_w(sd, R518_I2C_CTL, 0x01);
2294 
2295 	/* wait for write complete */
2296 	msleep(4);
2297 	reg_r8(sd, R518_I2C_CTL);
2298 }
2299 
2300 /*
2301  * returns: negative is error, pos or zero is data
2302  *
2303  * The OV518 I2C I/O procedure is different, hence, this function.
2304  * This is normally only called from i2c_r(). Note that this function
2305  * always succeeds regardless of whether the sensor is present and working.
2306  */
2307 static int ov518_i2c_r(struct sd *sd, u8 reg)
2308 {
2309 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2310 	int value;
2311 
2312 	/* Select camera register */
2313 	reg_w(sd, R51x_I2C_SADDR_2, reg);
2314 
2315 	/* Initiate 2-byte write cycle */
2316 	reg_w(sd, R518_I2C_CTL, 0x03);
2317 	reg_r8(sd, R518_I2C_CTL);
2318 
2319 	/* Initiate 2-byte read cycle */
2320 	reg_w(sd, R518_I2C_CTL, 0x05);
2321 	reg_r8(sd, R518_I2C_CTL);
2322 
2323 	value = reg_r(sd, R51x_I2C_DATA);
2324 	PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2325 	return value;
2326 }
2327 
2328 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2329 {
2330 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2331 	int ret;
2332 
2333 	if (sd->gspca_dev.usb_err < 0)
2334 		return;
2335 
2336 	ret = usb_control_msg(sd->gspca_dev.dev,
2337 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2338 			0x02,
2339 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2340 			(u16) value, (u16) reg, NULL, 0, 500);
2341 
2342 	if (ret < 0) {
2343 		PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2344 		sd->gspca_dev.usb_err = ret;
2345 	}
2346 
2347 	PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2348 }
2349 
2350 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2351 {
2352 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2353 	int ret;
2354 
2355 	if (sd->gspca_dev.usb_err < 0)
2356 		return -1;
2357 
2358 	ret = usb_control_msg(sd->gspca_dev.dev,
2359 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2360 			0x03,
2361 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2362 			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2363 
2364 	if (ret >= 0) {
2365 		ret = sd->gspca_dev.usb_buf[0];
2366 		PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2367 	} else {
2368 		PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2369 		sd->gspca_dev.usb_err = ret;
2370 	}
2371 
2372 	return ret;
2373 }
2374 
2375 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2376 {
2377 	if (sd->sensor_reg_cache[reg] == value)
2378 		return;
2379 
2380 	switch (sd->bridge) {
2381 	case BRIDGE_OV511:
2382 	case BRIDGE_OV511PLUS:
2383 		ov511_i2c_w(sd, reg, value);
2384 		break;
2385 	case BRIDGE_OV518:
2386 	case BRIDGE_OV518PLUS:
2387 	case BRIDGE_OV519:
2388 		ov518_i2c_w(sd, reg, value);
2389 		break;
2390 	case BRIDGE_OVFX2:
2391 		ovfx2_i2c_w(sd, reg, value);
2392 		break;
2393 	case BRIDGE_W9968CF:
2394 		w9968cf_i2c_w(sd, reg, value);
2395 		break;
2396 	}
2397 
2398 	if (sd->gspca_dev.usb_err >= 0) {
2399 		/* Up on sensor reset empty the register cache */
2400 		if (reg == 0x12 && (value & 0x80))
2401 			memset(sd->sensor_reg_cache, -1,
2402 				sizeof(sd->sensor_reg_cache));
2403 		else
2404 			sd->sensor_reg_cache[reg] = value;
2405 	}
2406 }
2407 
2408 static int i2c_r(struct sd *sd, u8 reg)
2409 {
2410 	int ret = -1;
2411 
2412 	if (sd->sensor_reg_cache[reg] != -1)
2413 		return sd->sensor_reg_cache[reg];
2414 
2415 	switch (sd->bridge) {
2416 	case BRIDGE_OV511:
2417 	case BRIDGE_OV511PLUS:
2418 		ret = ov511_i2c_r(sd, reg);
2419 		break;
2420 	case BRIDGE_OV518:
2421 	case BRIDGE_OV518PLUS:
2422 	case BRIDGE_OV519:
2423 		ret = ov518_i2c_r(sd, reg);
2424 		break;
2425 	case BRIDGE_OVFX2:
2426 		ret = ovfx2_i2c_r(sd, reg);
2427 		break;
2428 	case BRIDGE_W9968CF:
2429 		ret = w9968cf_i2c_r(sd, reg);
2430 		break;
2431 	}
2432 
2433 	if (ret >= 0)
2434 		sd->sensor_reg_cache[reg] = ret;
2435 
2436 	return ret;
2437 }
2438 
2439 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2440  * the same position as 1's in "mask" are cleared and set to "value". Bits
2441  * that are in the same position as 0's in "mask" are preserved, regardless
2442  * of their respective state in "value".
2443  */
2444 static void i2c_w_mask(struct sd *sd,
2445 			u8 reg,
2446 			u8 value,
2447 			u8 mask)
2448 {
2449 	int rc;
2450 	u8 oldval;
2451 
2452 	value &= mask;			/* Enforce mask on value */
2453 	rc = i2c_r(sd, reg);
2454 	if (rc < 0)
2455 		return;
2456 	oldval = rc & ~mask;		/* Clear the masked bits */
2457 	value |= oldval;		/* Set the desired bits */
2458 	i2c_w(sd, reg, value);
2459 }
2460 
2461 /* Temporarily stops OV511 from functioning. Must do this before changing
2462  * registers while the camera is streaming */
2463 static inline void ov51x_stop(struct sd *sd)
2464 {
2465 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2466 
2467 	PDEBUG(D_STREAM, "stopping");
2468 	sd->stopped = 1;
2469 	switch (sd->bridge) {
2470 	case BRIDGE_OV511:
2471 	case BRIDGE_OV511PLUS:
2472 		reg_w(sd, R51x_SYS_RESET, 0x3d);
2473 		break;
2474 	case BRIDGE_OV518:
2475 	case BRIDGE_OV518PLUS:
2476 		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2477 		break;
2478 	case BRIDGE_OV519:
2479 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2480 		reg_w(sd, OV519_R51_RESET1, 0x00);
2481 		reg_w(sd, 0x22, 0x00);		/* FRAR */
2482 		break;
2483 	case BRIDGE_OVFX2:
2484 		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2485 		break;
2486 	case BRIDGE_W9968CF:
2487 		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2488 		break;
2489 	}
2490 }
2491 
2492 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2493  * actually stopped (for performance). */
2494 static inline void ov51x_restart(struct sd *sd)
2495 {
2496 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2497 
2498 	PDEBUG(D_STREAM, "restarting");
2499 	if (!sd->stopped)
2500 		return;
2501 	sd->stopped = 0;
2502 
2503 	/* Reinitialize the stream */
2504 	switch (sd->bridge) {
2505 	case BRIDGE_OV511:
2506 	case BRIDGE_OV511PLUS:
2507 		reg_w(sd, R51x_SYS_RESET, 0x00);
2508 		break;
2509 	case BRIDGE_OV518:
2510 	case BRIDGE_OV518PLUS:
2511 		reg_w(sd, 0x2f, 0x80);
2512 		reg_w(sd, R51x_SYS_RESET, 0x00);
2513 		break;
2514 	case BRIDGE_OV519:
2515 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2516 		reg_w(sd, OV519_R51_RESET1, 0x00);
2517 		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2518 		break;
2519 	case BRIDGE_OVFX2:
2520 		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2521 		break;
2522 	case BRIDGE_W9968CF:
2523 		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2524 		break;
2525 	}
2526 }
2527 
2528 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2529 
2530 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2531  * is synchronized. Returns <0 on failure.
2532  */
2533 static int init_ov_sensor(struct sd *sd, u8 slave)
2534 {
2535 	int i;
2536 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2537 
2538 	ov51x_set_slave_ids(sd, slave);
2539 
2540 	/* Reset the sensor */
2541 	i2c_w(sd, 0x12, 0x80);
2542 
2543 	/* Wait for it to initialize */
2544 	msleep(150);
2545 
2546 	for (i = 0; i < i2c_detect_tries; i++) {
2547 		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2548 		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2549 			PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2550 			return 0;
2551 		}
2552 
2553 		/* Reset the sensor */
2554 		i2c_w(sd, 0x12, 0x80);
2555 
2556 		/* Wait for it to initialize */
2557 		msleep(150);
2558 
2559 		/* Dummy read to sync I2C */
2560 		if (i2c_r(sd, 0x00) < 0)
2561 			return -1;
2562 	}
2563 	return -1;
2564 }
2565 
2566 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2567  * and the read slave will be set to (slave + 1).
2568  * This should not be called from outside the i2c I/O functions.
2569  * Sets I2C read and write slave IDs. Returns <0 for error
2570  */
2571 static void ov51x_set_slave_ids(struct sd *sd,
2572 				u8 slave)
2573 {
2574 	switch (sd->bridge) {
2575 	case BRIDGE_OVFX2:
2576 		reg_w(sd, OVFX2_I2C_ADDR, slave);
2577 		return;
2578 	case BRIDGE_W9968CF:
2579 		sd->sensor_addr = slave;
2580 		return;
2581 	}
2582 
2583 	reg_w(sd, R51x_I2C_W_SID, slave);
2584 	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2585 }
2586 
2587 static void write_regvals(struct sd *sd,
2588 			 const struct ov_regvals *regvals,
2589 			 int n)
2590 {
2591 	while (--n >= 0) {
2592 		reg_w(sd, regvals->reg, regvals->val);
2593 		regvals++;
2594 	}
2595 }
2596 
2597 static void write_i2c_regvals(struct sd *sd,
2598 			const struct ov_i2c_regvals *regvals,
2599 			int n)
2600 {
2601 	while (--n >= 0) {
2602 		i2c_w(sd, regvals->reg, regvals->val);
2603 		regvals++;
2604 	}
2605 }
2606 
2607 /****************************************************************************
2608  *
2609  * OV511 and sensor configuration
2610  *
2611  ***************************************************************************/
2612 
2613 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2614 static void ov_hires_configure(struct sd *sd)
2615 {
2616 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2617 	int high, low;
2618 
2619 	if (sd->bridge != BRIDGE_OVFX2) {
2620 		PERR("error hires sensors only supported with ovfx2\n");
2621 		return;
2622 	}
2623 
2624 	PDEBUG(D_PROBE, "starting ov hires configuration");
2625 
2626 	/* Detect sensor (sub)type */
2627 	high = i2c_r(sd, 0x0a);
2628 	low = i2c_r(sd, 0x0b);
2629 	/* info("%x, %x", high, low); */
2630 	switch (high) {
2631 	case 0x96:
2632 		switch (low) {
2633 		case 0x40:
2634 			PDEBUG(D_PROBE, "Sensor is a OV2610");
2635 			sd->sensor = SEN_OV2610;
2636 			return;
2637 		case 0x41:
2638 			PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2639 			sd->sensor = SEN_OV2610AE;
2640 			return;
2641 		case 0xb1:
2642 			PDEBUG(D_PROBE, "Sensor is a OV9600");
2643 			sd->sensor = SEN_OV9600;
2644 			return;
2645 		}
2646 		break;
2647 	case 0x36:
2648 		if ((low & 0x0f) == 0x00) {
2649 			PDEBUG(D_PROBE, "Sensor is a OV3610");
2650 			sd->sensor = SEN_OV3610;
2651 			return;
2652 		}
2653 		break;
2654 	}
2655 	PERR("Error unknown sensor type: %02x%02x\n", high, low);
2656 }
2657 
2658 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2659  * the same register settings as the OV8610, since they are very similar.
2660  */
2661 static void ov8xx0_configure(struct sd *sd)
2662 {
2663 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2664 	int rc;
2665 
2666 	PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2667 
2668 	/* Detect sensor (sub)type */
2669 	rc = i2c_r(sd, OV7610_REG_COM_I);
2670 	if (rc < 0) {
2671 		PERR("Error detecting sensor type");
2672 		return;
2673 	}
2674 	if ((rc & 3) == 1)
2675 		sd->sensor = SEN_OV8610;
2676 	else
2677 		PERR("Unknown image sensor version: %d\n", rc & 3);
2678 }
2679 
2680 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2681  * the same register settings as the OV7610, since they are very similar.
2682  */
2683 static void ov7xx0_configure(struct sd *sd)
2684 {
2685 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2686 	int rc, high, low;
2687 
2688 	PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2689 
2690 	/* Detect sensor (sub)type */
2691 	rc = i2c_r(sd, OV7610_REG_COM_I);
2692 
2693 	/* add OV7670 here
2694 	 * it appears to be wrongly detected as a 7610 by default */
2695 	if (rc < 0) {
2696 		PERR("Error detecting sensor type\n");
2697 		return;
2698 	}
2699 	if ((rc & 3) == 3) {
2700 		/* quick hack to make OV7670s work */
2701 		high = i2c_r(sd, 0x0a);
2702 		low = i2c_r(sd, 0x0b);
2703 		/* info("%x, %x", high, low); */
2704 		if (high == 0x76 && (low & 0xf0) == 0x70) {
2705 			PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2706 			sd->sensor = SEN_OV7670;
2707 		} else {
2708 			PDEBUG(D_PROBE, "Sensor is an OV7610");
2709 			sd->sensor = SEN_OV7610;
2710 		}
2711 	} else if ((rc & 3) == 1) {
2712 		/* I don't know what's different about the 76BE yet. */
2713 		if (i2c_r(sd, 0x15) & 1) {
2714 			PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2715 			sd->sensor = SEN_OV7620AE;
2716 		} else {
2717 			PDEBUG(D_PROBE, "Sensor is an OV76BE");
2718 			sd->sensor = SEN_OV76BE;
2719 		}
2720 	} else if ((rc & 3) == 0) {
2721 		/* try to read product id registers */
2722 		high = i2c_r(sd, 0x0a);
2723 		if (high < 0) {
2724 			PERR("Error detecting camera chip PID\n");
2725 			return;
2726 		}
2727 		low = i2c_r(sd, 0x0b);
2728 		if (low < 0) {
2729 			PERR("Error detecting camera chip VER\n");
2730 			return;
2731 		}
2732 		if (high == 0x76) {
2733 			switch (low) {
2734 			case 0x30:
2735 				PERR("Sensor is an OV7630/OV7635\n");
2736 				PERR("7630 is not supported by this driver\n");
2737 				return;
2738 			case 0x40:
2739 				PDEBUG(D_PROBE, "Sensor is an OV7645");
2740 				sd->sensor = SEN_OV7640; /* FIXME */
2741 				break;
2742 			case 0x45:
2743 				PDEBUG(D_PROBE, "Sensor is an OV7645B");
2744 				sd->sensor = SEN_OV7640; /* FIXME */
2745 				break;
2746 			case 0x48:
2747 				PDEBUG(D_PROBE, "Sensor is an OV7648");
2748 				sd->sensor = SEN_OV7648;
2749 				break;
2750 			case 0x60:
2751 				PDEBUG(D_PROBE, "Sensor is a OV7660");
2752 				sd->sensor = SEN_OV7660;
2753 				break;
2754 			default:
2755 				PERR("Unknown sensor: 0x76%02x\n", low);
2756 				return;
2757 			}
2758 		} else {
2759 			PDEBUG(D_PROBE, "Sensor is an OV7620");
2760 			sd->sensor = SEN_OV7620;
2761 		}
2762 	} else {
2763 		PERR("Unknown image sensor version: %d\n", rc & 3);
2764 	}
2765 }
2766 
2767 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2768 static void ov6xx0_configure(struct sd *sd)
2769 {
2770 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2771 	int rc;
2772 
2773 	PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2774 
2775 	/* Detect sensor (sub)type */
2776 	rc = i2c_r(sd, OV7610_REG_COM_I);
2777 	if (rc < 0) {
2778 		PERR("Error detecting sensor type\n");
2779 		return;
2780 	}
2781 
2782 	/* Ugh. The first two bits are the version bits, but
2783 	 * the entire register value must be used. I guess OVT
2784 	 * underestimated how many variants they would make. */
2785 	switch (rc) {
2786 	case 0x00:
2787 		sd->sensor = SEN_OV6630;
2788 		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2789 		break;
2790 	case 0x01:
2791 		sd->sensor = SEN_OV6620;
2792 		PDEBUG(D_PROBE, "Sensor is an OV6620");
2793 		break;
2794 	case 0x02:
2795 		sd->sensor = SEN_OV6630;
2796 		PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2797 		break;
2798 	case 0x03:
2799 		sd->sensor = SEN_OV66308AF;
2800 		PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2801 		break;
2802 	case 0x90:
2803 		sd->sensor = SEN_OV6630;
2804 		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2805 		break;
2806 	default:
2807 		PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2808 		return;
2809 	}
2810 
2811 	/* Set sensor-specific vars */
2812 	sd->sif = 1;
2813 }
2814 
2815 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2816 static void ov51x_led_control(struct sd *sd, int on)
2817 {
2818 	if (sd->invert_led)
2819 		on = !on;
2820 
2821 	switch (sd->bridge) {
2822 	/* OV511 has no LED control */
2823 	case BRIDGE_OV511PLUS:
2824 		reg_w(sd, R511_SYS_LED_CTL, on);
2825 		break;
2826 	case BRIDGE_OV518:
2827 	case BRIDGE_OV518PLUS:
2828 		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2829 		break;
2830 	case BRIDGE_OV519:
2831 		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2832 		break;
2833 	}
2834 }
2835 
2836 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2837 {
2838 	struct sd *sd = (struct sd *) gspca_dev;
2839 
2840 	if (!sd->snapshot_needs_reset)
2841 		return;
2842 
2843 	/* Note it is important that we clear sd->snapshot_needs_reset,
2844 	   before actually clearing the snapshot state in the bridge
2845 	   otherwise we might race with the pkt_scan interrupt handler */
2846 	sd->snapshot_needs_reset = 0;
2847 
2848 	switch (sd->bridge) {
2849 	case BRIDGE_OV511:
2850 	case BRIDGE_OV511PLUS:
2851 		reg_w(sd, R51x_SYS_SNAP, 0x02);
2852 		reg_w(sd, R51x_SYS_SNAP, 0x00);
2853 		break;
2854 	case BRIDGE_OV518:
2855 	case BRIDGE_OV518PLUS:
2856 		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2857 		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2858 		break;
2859 	case BRIDGE_OV519:
2860 		reg_w(sd, R51x_SYS_RESET, 0x40);
2861 		reg_w(sd, R51x_SYS_RESET, 0x00);
2862 		break;
2863 	}
2864 }
2865 
2866 static void ov51x_upload_quan_tables(struct sd *sd)
2867 {
2868 	const unsigned char yQuanTable511[] = {
2869 		0, 1, 1, 2, 2, 3, 3, 4,
2870 		1, 1, 1, 2, 2, 3, 4, 4,
2871 		1, 1, 2, 2, 3, 4, 4, 4,
2872 		2, 2, 2, 3, 4, 4, 4, 4,
2873 		2, 2, 3, 4, 4, 5, 5, 5,
2874 		3, 3, 4, 4, 5, 5, 5, 5,
2875 		3, 4, 4, 4, 5, 5, 5, 5,
2876 		4, 4, 4, 4, 5, 5, 5, 5
2877 	};
2878 
2879 	const unsigned char uvQuanTable511[] = {
2880 		0, 2, 2, 3, 4, 4, 4, 4,
2881 		2, 2, 2, 4, 4, 4, 4, 4,
2882 		2, 2, 3, 4, 4, 4, 4, 4,
2883 		3, 4, 4, 4, 4, 4, 4, 4,
2884 		4, 4, 4, 4, 4, 4, 4, 4,
2885 		4, 4, 4, 4, 4, 4, 4, 4,
2886 		4, 4, 4, 4, 4, 4, 4, 4,
2887 		4, 4, 4, 4, 4, 4, 4, 4
2888 	};
2889 
2890 	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2891 	const unsigned char yQuanTable518[] = {
2892 		5, 4, 5, 6, 6, 7, 7, 7,
2893 		5, 5, 5, 5, 6, 7, 7, 7,
2894 		6, 6, 6, 6, 7, 7, 7, 8,
2895 		7, 7, 6, 7, 7, 7, 8, 8
2896 	};
2897 	const unsigned char uvQuanTable518[] = {
2898 		6, 6, 6, 7, 7, 7, 7, 7,
2899 		6, 6, 6, 7, 7, 7, 7, 7,
2900 		6, 6, 6, 7, 7, 7, 7, 8,
2901 		7, 7, 7, 7, 7, 7, 8, 8
2902 	};
2903 
2904 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2905 	const unsigned char *pYTable, *pUVTable;
2906 	unsigned char val0, val1;
2907 	int i, size, reg = R51x_COMP_LUT_BEGIN;
2908 
2909 	PDEBUG(D_PROBE, "Uploading quantization tables");
2910 
2911 	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2912 		pYTable = yQuanTable511;
2913 		pUVTable = uvQuanTable511;
2914 		size = 32;
2915 	} else {
2916 		pYTable = yQuanTable518;
2917 		pUVTable = uvQuanTable518;
2918 		size = 16;
2919 	}
2920 
2921 	for (i = 0; i < size; i++) {
2922 		val0 = *pYTable++;
2923 		val1 = *pYTable++;
2924 		val0 &= 0x0f;
2925 		val1 &= 0x0f;
2926 		val0 |= val1 << 4;
2927 		reg_w(sd, reg, val0);
2928 
2929 		val0 = *pUVTable++;
2930 		val1 = *pUVTable++;
2931 		val0 &= 0x0f;
2932 		val1 &= 0x0f;
2933 		val0 |= val1 << 4;
2934 		reg_w(sd, reg + size, val0);
2935 
2936 		reg++;
2937 	}
2938 }
2939 
2940 /* This initializes the OV511/OV511+ and the sensor */
2941 static void ov511_configure(struct gspca_dev *gspca_dev)
2942 {
2943 	struct sd *sd = (struct sd *) gspca_dev;
2944 
2945 	/* For 511 and 511+ */
2946 	const struct ov_regvals init_511[] = {
2947 		{ R51x_SYS_RESET,	0x7f },
2948 		{ R51x_SYS_INIT,	0x01 },
2949 		{ R51x_SYS_RESET,	0x7f },
2950 		{ R51x_SYS_INIT,	0x01 },
2951 		{ R51x_SYS_RESET,	0x3f },
2952 		{ R51x_SYS_INIT,	0x01 },
2953 		{ R51x_SYS_RESET,	0x3d },
2954 	};
2955 
2956 	const struct ov_regvals norm_511[] = {
2957 		{ R511_DRAM_FLOW_CTL,	0x01 },
2958 		{ R51x_SYS_SNAP,	0x00 },
2959 		{ R51x_SYS_SNAP,	0x02 },
2960 		{ R51x_SYS_SNAP,	0x00 },
2961 		{ R511_FIFO_OPTS,	0x1f },
2962 		{ R511_COMP_EN,		0x00 },
2963 		{ R511_COMP_LUT_EN,	0x03 },
2964 	};
2965 
2966 	const struct ov_regvals norm_511_p[] = {
2967 		{ R511_DRAM_FLOW_CTL,	0xff },
2968 		{ R51x_SYS_SNAP,	0x00 },
2969 		{ R51x_SYS_SNAP,	0x02 },
2970 		{ R51x_SYS_SNAP,	0x00 },
2971 		{ R511_FIFO_OPTS,	0xff },
2972 		{ R511_COMP_EN,		0x00 },
2973 		{ R511_COMP_LUT_EN,	0x03 },
2974 	};
2975 
2976 	const struct ov_regvals compress_511[] = {
2977 		{ 0x70, 0x1f },
2978 		{ 0x71, 0x05 },
2979 		{ 0x72, 0x06 },
2980 		{ 0x73, 0x06 },
2981 		{ 0x74, 0x14 },
2982 		{ 0x75, 0x03 },
2983 		{ 0x76, 0x04 },
2984 		{ 0x77, 0x04 },
2985 	};
2986 
2987 	PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
2988 
2989 	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2990 
2991 	switch (sd->bridge) {
2992 	case BRIDGE_OV511:
2993 		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2994 		break;
2995 	case BRIDGE_OV511PLUS:
2996 		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2997 		break;
2998 	}
2999 
3000 	/* Init compression */
3001 	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3002 
3003 	ov51x_upload_quan_tables(sd);
3004 }
3005 
3006 /* This initializes the OV518/OV518+ and the sensor */
3007 static void ov518_configure(struct gspca_dev *gspca_dev)
3008 {
3009 	struct sd *sd = (struct sd *) gspca_dev;
3010 
3011 	/* For 518 and 518+ */
3012 	const struct ov_regvals init_518[] = {
3013 		{ R51x_SYS_RESET,	0x40 },
3014 		{ R51x_SYS_INIT,	0xe1 },
3015 		{ R51x_SYS_RESET,	0x3e },
3016 		{ R51x_SYS_INIT,	0xe1 },
3017 		{ R51x_SYS_RESET,	0x00 },
3018 		{ R51x_SYS_INIT,	0xe1 },
3019 		{ 0x46,			0x00 },
3020 		{ 0x5d,			0x03 },
3021 	};
3022 
3023 	const struct ov_regvals norm_518[] = {
3024 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3025 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3026 		{ 0x31,			0x0f },
3027 		{ 0x5d,			0x03 },
3028 		{ 0x24,			0x9f },
3029 		{ 0x25,			0x90 },
3030 		{ 0x20,			0x00 },
3031 		{ 0x51,			0x04 },
3032 		{ 0x71,			0x19 },
3033 		{ 0x2f,			0x80 },
3034 	};
3035 
3036 	const struct ov_regvals norm_518_p[] = {
3037 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3038 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3039 		{ 0x31,			0x0f },
3040 		{ 0x5d,			0x03 },
3041 		{ 0x24,			0x9f },
3042 		{ 0x25,			0x90 },
3043 		{ 0x20,			0x60 },
3044 		{ 0x51,			0x02 },
3045 		{ 0x71,			0x19 },
3046 		{ 0x40,			0xff },
3047 		{ 0x41,			0x42 },
3048 		{ 0x46,			0x00 },
3049 		{ 0x33,			0x04 },
3050 		{ 0x21,			0x19 },
3051 		{ 0x3f,			0x10 },
3052 		{ 0x2f,			0x80 },
3053 	};
3054 
3055 	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3056 	sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3057 	PDEBUG(D_PROBE, "Device revision %d", sd->revision);
3058 
3059 	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3060 
3061 	/* Set LED GPIO pin to output mode */
3062 	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3063 
3064 	switch (sd->bridge) {
3065 	case BRIDGE_OV518:
3066 		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3067 		break;
3068 	case BRIDGE_OV518PLUS:
3069 		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3070 		break;
3071 	}
3072 
3073 	ov51x_upload_quan_tables(sd);
3074 
3075 	reg_w(sd, 0x2f, 0x80);
3076 }
3077 
3078 static void ov519_configure(struct sd *sd)
3079 {
3080 	static const struct ov_regvals init_519[] = {
3081 		{ 0x5a, 0x6d }, /* EnableSystem */
3082 		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3083 		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3084 		{ 0x5d, 0x03 },
3085 		{ 0x49, 0x01 },
3086 		{ 0x48, 0x00 },
3087 		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3088 		 * detection will fail. This deserves further investigation. */
3089 		{ OV519_GPIO_IO_CTRL0,   0xee },
3090 		{ OV519_R51_RESET1, 0x0f },
3091 		{ OV519_R51_RESET1, 0x00 },
3092 		{ 0x22, 0x00 },
3093 		/* windows reads 0x55 at this point*/
3094 	};
3095 
3096 	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3097 }
3098 
3099 static void ovfx2_configure(struct sd *sd)
3100 {
3101 	static const struct ov_regvals init_fx2[] = {
3102 		{ 0x00, 0x60 },
3103 		{ 0x02, 0x01 },
3104 		{ 0x0f, 0x1d },
3105 		{ 0xe9, 0x82 },
3106 		{ 0xea, 0xc7 },
3107 		{ 0xeb, 0x10 },
3108 		{ 0xec, 0xf6 },
3109 	};
3110 
3111 	sd->stopped = 1;
3112 
3113 	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3114 }
3115 
3116 /* set the mode */
3117 /* This function works for ov7660 only */
3118 static void ov519_set_mode(struct sd *sd)
3119 {
3120 	static const struct ov_regvals bridge_ov7660[2][10] = {
3121 		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3122 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3123 		 {0x25, 0x01}, {0x26, 0x00}},
3124 		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3125 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3126 		 {0x25, 0x03}, {0x26, 0x00}}
3127 	};
3128 	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3129 		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3130 		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3131 	};
3132 	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3133 		{OV7670_R17_HSTART, 0x13},
3134 		{OV7670_R18_HSTOP, 0x01},
3135 		{OV7670_R32_HREF, 0x92},
3136 		{OV7670_R19_VSTART, 0x02},
3137 		{OV7670_R1A_VSTOP, 0x7a},
3138 		{OV7670_R03_VREF, 0x00},
3139 /*		{0x33, 0x00}, */
3140 /*		{0x34, 0x07}, */
3141 /*		{0x36, 0x00}, */
3142 /*		{0x6b, 0x0a}, */
3143 	};
3144 
3145 	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3146 			ARRAY_SIZE(bridge_ov7660[0]));
3147 	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3148 			ARRAY_SIZE(sensor_ov7660[0]));
3149 	write_i2c_regvals(sd, sensor_ov7660_2,
3150 			ARRAY_SIZE(sensor_ov7660_2));
3151 }
3152 
3153 /* set the frame rate */
3154 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3155 static void ov519_set_fr(struct sd *sd)
3156 {
3157 	int fr;
3158 	u8 clock;
3159 	/* frame rate table with indices:
3160 	 *	- mode = 0: 320x240, 1: 640x480
3161 	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3162 	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3163 	 */
3164 	static const u8 fr_tb[2][6][3] = {
3165 		{{0x04, 0xff, 0x00},
3166 		 {0x04, 0x1f, 0x00},
3167 		 {0x04, 0x1b, 0x00},
3168 		 {0x04, 0x15, 0x00},
3169 		 {0x04, 0x09, 0x00},
3170 		 {0x04, 0x01, 0x00}},
3171 		{{0x0c, 0xff, 0x00},
3172 		 {0x0c, 0x1f, 0x00},
3173 		 {0x0c, 0x1b, 0x00},
3174 		 {0x04, 0xff, 0x01},
3175 		 {0x04, 0x1f, 0x01},
3176 		 {0x04, 0x1b, 0x01}},
3177 	};
3178 
3179 	if (frame_rate > 0)
3180 		sd->frame_rate = frame_rate;
3181 	if (sd->frame_rate >= 30)
3182 		fr = 0;
3183 	else if (sd->frame_rate >= 25)
3184 		fr = 1;
3185 	else if (sd->frame_rate >= 20)
3186 		fr = 2;
3187 	else if (sd->frame_rate >= 15)
3188 		fr = 3;
3189 	else if (sd->frame_rate >= 10)
3190 		fr = 4;
3191 	else
3192 		fr = 5;
3193 	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3194 	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3195 	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3196 	if (sd->sensor == SEN_OV7660)
3197 		clock |= 0x80;		/* enable double clock */
3198 	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3199 }
3200 
3201 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3202 {
3203 	struct sd *sd = (struct sd *) gspca_dev;
3204 
3205 	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3206 }
3207 
3208 /* this function is called at probe time */
3209 static int sd_config(struct gspca_dev *gspca_dev,
3210 			const struct usb_device_id *id)
3211 {
3212 	struct sd *sd = (struct sd *) gspca_dev;
3213 	struct cam *cam = &gspca_dev->cam;
3214 
3215 	sd->bridge = id->driver_info & BRIDGE_MASK;
3216 	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3217 
3218 	switch (sd->bridge) {
3219 	case BRIDGE_OV511:
3220 	case BRIDGE_OV511PLUS:
3221 		cam->cam_mode = ov511_vga_mode;
3222 		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3223 		break;
3224 	case BRIDGE_OV518:
3225 	case BRIDGE_OV518PLUS:
3226 		cam->cam_mode = ov518_vga_mode;
3227 		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3228 		break;
3229 	case BRIDGE_OV519:
3230 		cam->cam_mode = ov519_vga_mode;
3231 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3232 		break;
3233 	case BRIDGE_OVFX2:
3234 		cam->cam_mode = ov519_vga_mode;
3235 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3236 		cam->bulk_size = OVFX2_BULK_SIZE;
3237 		cam->bulk_nurbs = MAX_NURBS;
3238 		cam->bulk = 1;
3239 		break;
3240 	case BRIDGE_W9968CF:
3241 		cam->cam_mode = w9968cf_vga_mode;
3242 		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3243 		break;
3244 	}
3245 
3246 	sd->frame_rate = 15;
3247 
3248 	return 0;
3249 }
3250 
3251 /* this function is called at probe and resume time */
3252 static int sd_init(struct gspca_dev *gspca_dev)
3253 {
3254 	struct sd *sd = (struct sd *) gspca_dev;
3255 	struct cam *cam = &gspca_dev->cam;
3256 
3257 	switch (sd->bridge) {
3258 	case BRIDGE_OV511:
3259 	case BRIDGE_OV511PLUS:
3260 		ov511_configure(gspca_dev);
3261 		break;
3262 	case BRIDGE_OV518:
3263 	case BRIDGE_OV518PLUS:
3264 		ov518_configure(gspca_dev);
3265 		break;
3266 	case BRIDGE_OV519:
3267 		ov519_configure(sd);
3268 		break;
3269 	case BRIDGE_OVFX2:
3270 		ovfx2_configure(sd);
3271 		break;
3272 	case BRIDGE_W9968CF:
3273 		w9968cf_configure(sd);
3274 		break;
3275 	}
3276 
3277 	/* The OV519 must be more aggressive about sensor detection since
3278 	 * I2C write will never fail if the sensor is not present. We have
3279 	 * to try to initialize the sensor to detect its presence */
3280 	sd->sensor = -1;
3281 
3282 	/* Test for 76xx */
3283 	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3284 		ov7xx0_configure(sd);
3285 
3286 	/* Test for 6xx0 */
3287 	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3288 		ov6xx0_configure(sd);
3289 
3290 	/* Test for 8xx0 */
3291 	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3292 		ov8xx0_configure(sd);
3293 
3294 	/* Test for 3xxx / 2xxx */
3295 	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3296 		ov_hires_configure(sd);
3297 	} else {
3298 		PERR("Can't determine sensor slave IDs\n");
3299 		goto error;
3300 	}
3301 
3302 	if (sd->sensor < 0)
3303 		goto error;
3304 
3305 	ov51x_led_control(sd, 0);	/* turn LED off */
3306 
3307 	switch (sd->bridge) {
3308 	case BRIDGE_OV511:
3309 	case BRIDGE_OV511PLUS:
3310 		if (sd->sif) {
3311 			cam->cam_mode = ov511_sif_mode;
3312 			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3313 		}
3314 		break;
3315 	case BRIDGE_OV518:
3316 	case BRIDGE_OV518PLUS:
3317 		if (sd->sif) {
3318 			cam->cam_mode = ov518_sif_mode;
3319 			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3320 		}
3321 		break;
3322 	case BRIDGE_OV519:
3323 		if (sd->sif) {
3324 			cam->cam_mode = ov519_sif_mode;
3325 			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3326 		}
3327 		break;
3328 	case BRIDGE_OVFX2:
3329 		switch (sd->sensor) {
3330 		case SEN_OV2610:
3331 		case SEN_OV2610AE:
3332 			cam->cam_mode = ovfx2_ov2610_mode;
3333 			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3334 			break;
3335 		case SEN_OV3610:
3336 			cam->cam_mode = ovfx2_ov3610_mode;
3337 			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3338 			break;
3339 		case SEN_OV9600:
3340 			cam->cam_mode = ovfx2_ov9600_mode;
3341 			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3342 			break;
3343 		default:
3344 			if (sd->sif) {
3345 				cam->cam_mode = ov519_sif_mode;
3346 				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3347 			}
3348 			break;
3349 		}
3350 		break;
3351 	case BRIDGE_W9968CF:
3352 		if (sd->sif)
3353 			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3354 
3355 		/* w9968cf needs initialisation once the sensor is known */
3356 		w9968cf_init(sd);
3357 		break;
3358 	}
3359 
3360 	/* initialize the sensor */
3361 	switch (sd->sensor) {
3362 	case SEN_OV2610:
3363 		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3364 
3365 		/* Enable autogain, autoexpo, awb, bandfilter */
3366 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3367 		break;
3368 	case SEN_OV2610AE:
3369 		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3370 
3371 		/* enable autoexpo */
3372 		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3373 		break;
3374 	case SEN_OV3610:
3375 		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3376 
3377 		/* Enable autogain, autoexpo, awb, bandfilter */
3378 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3379 		break;
3380 	case SEN_OV6620:
3381 		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3382 		break;
3383 	case SEN_OV6630:
3384 	case SEN_OV66308AF:
3385 		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3386 		break;
3387 	default:
3388 /*	case SEN_OV7610: */
3389 /*	case SEN_OV76BE: */
3390 		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3391 		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3392 		break;
3393 	case SEN_OV7620:
3394 	case SEN_OV7620AE:
3395 		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3396 		break;
3397 	case SEN_OV7640:
3398 	case SEN_OV7648:
3399 		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3400 		break;
3401 	case SEN_OV7660:
3402 		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3403 		msleep(14);
3404 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3405 		write_regvals(sd, init_519_ov7660,
3406 				ARRAY_SIZE(init_519_ov7660));
3407 		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3408 		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3409 		ov519_set_mode(sd);
3410 		ov519_set_fr(sd);
3411 		sd_reset_snapshot(gspca_dev);
3412 		ov51x_restart(sd);
3413 		ov51x_stop(sd);			/* not in win traces */
3414 		ov51x_led_control(sd, 0);
3415 		break;
3416 	case SEN_OV7670:
3417 		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3418 		break;
3419 	case SEN_OV8610:
3420 		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3421 		break;
3422 	case SEN_OV9600:
3423 		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3424 
3425 		/* enable autoexpo */
3426 /*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3427 		break;
3428 	}
3429 	return gspca_dev->usb_err;
3430 error:
3431 	PERR("OV519 Config failed");
3432 	return -EINVAL;
3433 }
3434 
3435 /* function called at start time before URB creation */
3436 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3437 {
3438 	struct sd *sd = (struct sd *) gspca_dev;
3439 
3440 	switch (sd->bridge) {
3441 	case BRIDGE_OVFX2:
3442 		if (gspca_dev->pixfmt.width != 800)
3443 			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3444 		else
3445 			gspca_dev->cam.bulk_size = 7 * 4096;
3446 		break;
3447 	}
3448 	return 0;
3449 }
3450 
3451 /* Set up the OV511/OV511+ with the given image parameters.
3452  *
3453  * Do not put any sensor-specific code in here (including I2C I/O functions)
3454  */
3455 static void ov511_mode_init_regs(struct sd *sd)
3456 {
3457 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3458 	int hsegs, vsegs, packet_size, fps, needed;
3459 	int interlaced = 0;
3460 	struct usb_host_interface *alt;
3461 	struct usb_interface *intf;
3462 
3463 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3464 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3465 	if (!alt) {
3466 		PERR("Couldn't get altsetting\n");
3467 		sd->gspca_dev.usb_err = -EIO;
3468 		return;
3469 	}
3470 
3471 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3472 	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3473 
3474 	reg_w(sd, R511_CAM_UV_EN, 0x01);
3475 	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3476 	reg_w(sd, R511_SNAP_OPTS, 0x03);
3477 
3478 	/* Here I'm assuming that snapshot size == image size.
3479 	 * I hope that's always true. --claudio
3480 	 */
3481 	hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3482 	vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3483 
3484 	reg_w(sd, R511_CAM_PXCNT, hsegs);
3485 	reg_w(sd, R511_CAM_LNCNT, vsegs);
3486 	reg_w(sd, R511_CAM_PXDIV, 0x00);
3487 	reg_w(sd, R511_CAM_LNDIV, 0x00);
3488 
3489 	/* YUV420, low pass filter on */
3490 	reg_w(sd, R511_CAM_OPTS, 0x03);
3491 
3492 	/* Snapshot additions */
3493 	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3494 	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3495 	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3496 	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3497 
3498 	/******** Set the framerate ********/
3499 	if (frame_rate > 0)
3500 		sd->frame_rate = frame_rate;
3501 
3502 	switch (sd->sensor) {
3503 	case SEN_OV6620:
3504 		/* No framerate control, doesn't like higher rates yet */
3505 		sd->clockdiv = 3;
3506 		break;
3507 
3508 	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3509 	   for more sensors we need to do this for them too */
3510 	case SEN_OV7620:
3511 	case SEN_OV7620AE:
3512 	case SEN_OV7640:
3513 	case SEN_OV7648:
3514 	case SEN_OV76BE:
3515 		if (sd->gspca_dev.pixfmt.width == 320)
3516 			interlaced = 1;
3517 		/* Fall through */
3518 	case SEN_OV6630:
3519 	case SEN_OV7610:
3520 	case SEN_OV7670:
3521 		switch (sd->frame_rate) {
3522 		case 30:
3523 		case 25:
3524 			/* Not enough bandwidth to do 640x480 @ 30 fps */
3525 			if (sd->gspca_dev.pixfmt.width != 640) {
3526 				sd->clockdiv = 0;
3527 				break;
3528 			}
3529 			/* Fall through for 640x480 case */
3530 		default:
3531 /*		case 20: */
3532 /*		case 15: */
3533 			sd->clockdiv = 1;
3534 			break;
3535 		case 10:
3536 			sd->clockdiv = 2;
3537 			break;
3538 		case 5:
3539 			sd->clockdiv = 5;
3540 			break;
3541 		}
3542 		if (interlaced) {
3543 			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3544 			/* Higher then 10 does not work */
3545 			if (sd->clockdiv > 10)
3546 				sd->clockdiv = 10;
3547 		}
3548 		break;
3549 
3550 	case SEN_OV8610:
3551 		/* No framerate control ?? */
3552 		sd->clockdiv = 0;
3553 		break;
3554 	}
3555 
3556 	/* Check if we have enough bandwidth to disable compression */
3557 	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3558 	needed = fps * sd->gspca_dev.pixfmt.width *
3559 			sd->gspca_dev.pixfmt.height * 3 / 2;
3560 	/* 1000 isoc packets/sec */
3561 	if (needed > 1000 * packet_size) {
3562 		/* Enable Y and UV quantization and compression */
3563 		reg_w(sd, R511_COMP_EN, 0x07);
3564 		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3565 	} else {
3566 		reg_w(sd, R511_COMP_EN, 0x06);
3567 		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3568 	}
3569 
3570 	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3571 	reg_w(sd, R51x_SYS_RESET, 0);
3572 }
3573 
3574 /* Sets up the OV518/OV518+ with the given image parameters
3575  *
3576  * OV518 needs a completely different approach, until we can figure out what
3577  * the individual registers do. Also, only 15 FPS is supported now.
3578  *
3579  * Do not put any sensor-specific code in here (including I2C I/O functions)
3580  */
3581 static void ov518_mode_init_regs(struct sd *sd)
3582 {
3583 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3584 	int hsegs, vsegs, packet_size;
3585 	struct usb_host_interface *alt;
3586 	struct usb_interface *intf;
3587 
3588 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3589 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3590 	if (!alt) {
3591 		PERR("Couldn't get altsetting\n");
3592 		sd->gspca_dev.usb_err = -EIO;
3593 		return;
3594 	}
3595 
3596 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3597 	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3598 
3599 	/******** Set the mode ********/
3600 	reg_w(sd, 0x2b, 0);
3601 	reg_w(sd, 0x2c, 0);
3602 	reg_w(sd, 0x2d, 0);
3603 	reg_w(sd, 0x2e, 0);
3604 	reg_w(sd, 0x3b, 0);
3605 	reg_w(sd, 0x3c, 0);
3606 	reg_w(sd, 0x3d, 0);
3607 	reg_w(sd, 0x3e, 0);
3608 
3609 	if (sd->bridge == BRIDGE_OV518) {
3610 		/* Set 8-bit (YVYU) input format */
3611 		reg_w_mask(sd, 0x20, 0x08, 0x08);
3612 
3613 		/* Set 12-bit (4:2:0) output format */
3614 		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3615 		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3616 	} else {
3617 		reg_w(sd, 0x28, 0x80);
3618 		reg_w(sd, 0x38, 0x80);
3619 	}
3620 
3621 	hsegs = sd->gspca_dev.pixfmt.width / 16;
3622 	vsegs = sd->gspca_dev.pixfmt.height / 4;
3623 
3624 	reg_w(sd, 0x29, hsegs);
3625 	reg_w(sd, 0x2a, vsegs);
3626 
3627 	reg_w(sd, 0x39, hsegs);
3628 	reg_w(sd, 0x3a, vsegs);
3629 
3630 	/* Windows driver does this here; who knows why */
3631 	reg_w(sd, 0x2f, 0x80);
3632 
3633 	/******** Set the framerate ********/
3634 	if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3635 					      sd->sensor == SEN_OV7620AE)
3636 		sd->clockdiv = 0;
3637 	else
3638 		sd->clockdiv = 1;
3639 
3640 	/* Mode independent, but framerate dependent, regs */
3641 	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3642 	reg_w(sd, 0x51, 0x04);
3643 	reg_w(sd, 0x22, 0x18);
3644 	reg_w(sd, 0x23, 0xff);
3645 
3646 	if (sd->bridge == BRIDGE_OV518PLUS) {
3647 		switch (sd->sensor) {
3648 		case SEN_OV7620AE:
3649 			/*
3650 			 * HdG: 640x480 needs special handling on device
3651 			 * revision 2, we check for device revison > 0 to
3652 			 * avoid regressions, as we don't know the correct
3653 			 * thing todo for revision 1.
3654 			 *
3655 			 * Also this likely means we don't need to
3656 			 * differentiate between the OV7620 and OV7620AE,
3657 			 * earlier testing hitting this same problem likely
3658 			 * happened to be with revision < 2 cams using an
3659 			 * OV7620 and revision 2 cams using an OV7620AE.
3660 			 */
3661 			if (sd->revision > 0 &&
3662 					sd->gspca_dev.pixfmt.width == 640) {
3663 				reg_w(sd, 0x20, 0x60);
3664 				reg_w(sd, 0x21, 0x1f);
3665 			} else {
3666 				reg_w(sd, 0x20, 0x00);
3667 				reg_w(sd, 0x21, 0x19);
3668 			}
3669 			break;
3670 		case SEN_OV7620:
3671 			reg_w(sd, 0x20, 0x00);
3672 			reg_w(sd, 0x21, 0x19);
3673 			break;
3674 		default:
3675 			reg_w(sd, 0x21, 0x19);
3676 		}
3677 	} else
3678 		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3679 
3680 	/* FIXME: Sensor-specific */
3681 	/* Bit 5 is what matters here. Of course, it is "reserved" */
3682 	i2c_w(sd, 0x54, 0x23);
3683 
3684 	reg_w(sd, 0x2f, 0x80);
3685 
3686 	if (sd->bridge == BRIDGE_OV518PLUS) {
3687 		reg_w(sd, 0x24, 0x94);
3688 		reg_w(sd, 0x25, 0x90);
3689 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3690 		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3691 		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3692 		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3693 		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3694 		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3695 		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3696 		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3697 		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3698 	} else {
3699 		reg_w(sd, 0x24, 0x9f);
3700 		reg_w(sd, 0x25, 0x90);
3701 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3702 		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3703 		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3704 		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3705 		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3706 		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3707 		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3708 		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3709 		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3710 	}
3711 
3712 	reg_w(sd, 0x2f, 0x80);
3713 }
3714 
3715 /* Sets up the OV519 with the given image parameters
3716  *
3717  * OV519 needs a completely different approach, until we can figure out what
3718  * the individual registers do.
3719  *
3720  * Do not put any sensor-specific code in here (including I2C I/O functions)
3721  */
3722 static void ov519_mode_init_regs(struct sd *sd)
3723 {
3724 	static const struct ov_regvals mode_init_519_ov7670[] = {
3725 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3726 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3727 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3728 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3729 		{ 0xa3,	0x18 },
3730 		{ 0xa4,	0x04 },
3731 		{ 0xa5,	0x28 },
3732 		{ 0x37,	0x00 },	/* SetUsbInit */
3733 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3734 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3735 		{ 0x20,	0x0c },
3736 		{ 0x21,	0x38 },
3737 		{ 0x22,	0x1d },
3738 		{ 0x17,	0x50 }, /* undocumented */
3739 		{ 0x37,	0x00 }, /* undocumented */
3740 		{ 0x40,	0xff }, /* I2C timeout counter */
3741 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3742 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3743 		{ 0xff,	0x00 }, /* undocumented */
3744 		/* windows reads 0x55 at this point, why? */
3745 	};
3746 
3747 	static const struct ov_regvals mode_init_519[] = {
3748 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3749 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3750 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3751 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3752 		{ 0xa3,	0x18 },
3753 		{ 0xa4,	0x04 },
3754 		{ 0xa5,	0x28 },
3755 		{ 0x37,	0x00 },	/* SetUsbInit */
3756 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3757 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3758 		{ 0x22,	0x1d },
3759 		{ 0x17,	0x50 }, /* undocumented */
3760 		{ 0x37,	0x00 }, /* undocumented */
3761 		{ 0x40,	0xff }, /* I2C timeout counter */
3762 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3763 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3764 		{ 0xff,	0x00 }, /* undocumented */
3765 		/* windows reads 0x55 at this point, why? */
3766 	};
3767 
3768 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3769 
3770 	/******** Set the mode ********/
3771 	switch (sd->sensor) {
3772 	default:
3773 		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3774 		if (sd->sensor == SEN_OV7640 ||
3775 		    sd->sensor == SEN_OV7648) {
3776 			/* Select 8-bit input mode */
3777 			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3778 		}
3779 		break;
3780 	case SEN_OV7660:
3781 		return;		/* done by ov519_set_mode/fr() */
3782 	case SEN_OV7670:
3783 		write_regvals(sd, mode_init_519_ov7670,
3784 				ARRAY_SIZE(mode_init_519_ov7670));
3785 		break;
3786 	}
3787 
3788 	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.pixfmt.width >> 4);
3789 	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.pixfmt.height >> 3);
3790 	if (sd->sensor == SEN_OV7670 &&
3791 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3792 		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3793 	else if (sd->sensor == SEN_OV7648 &&
3794 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3795 		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3796 	else
3797 		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3798 	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3799 	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3800 	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3801 	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3802 	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3803 	reg_w(sd, 0x26,			0x00); /* Undocumented */
3804 
3805 	/******** Set the framerate ********/
3806 	if (frame_rate > 0)
3807 		sd->frame_rate = frame_rate;
3808 
3809 /* FIXME: These are only valid at the max resolution. */
3810 	sd->clockdiv = 0;
3811 	switch (sd->sensor) {
3812 	case SEN_OV7640:
3813 	case SEN_OV7648:
3814 		switch (sd->frame_rate) {
3815 		default:
3816 /*		case 30: */
3817 			reg_w(sd, 0xa4, 0x0c);
3818 			reg_w(sd, 0x23, 0xff);
3819 			break;
3820 		case 25:
3821 			reg_w(sd, 0xa4, 0x0c);
3822 			reg_w(sd, 0x23, 0x1f);
3823 			break;
3824 		case 20:
3825 			reg_w(sd, 0xa4, 0x0c);
3826 			reg_w(sd, 0x23, 0x1b);
3827 			break;
3828 		case 15:
3829 			reg_w(sd, 0xa4, 0x04);
3830 			reg_w(sd, 0x23, 0xff);
3831 			sd->clockdiv = 1;
3832 			break;
3833 		case 10:
3834 			reg_w(sd, 0xa4, 0x04);
3835 			reg_w(sd, 0x23, 0x1f);
3836 			sd->clockdiv = 1;
3837 			break;
3838 		case 5:
3839 			reg_w(sd, 0xa4, 0x04);
3840 			reg_w(sd, 0x23, 0x1b);
3841 			sd->clockdiv = 1;
3842 			break;
3843 		}
3844 		break;
3845 	case SEN_OV8610:
3846 		switch (sd->frame_rate) {
3847 		default:	/* 15 fps */
3848 /*		case 15: */
3849 			reg_w(sd, 0xa4, 0x06);
3850 			reg_w(sd, 0x23, 0xff);
3851 			break;
3852 		case 10:
3853 			reg_w(sd, 0xa4, 0x06);
3854 			reg_w(sd, 0x23, 0x1f);
3855 			break;
3856 		case 5:
3857 			reg_w(sd, 0xa4, 0x06);
3858 			reg_w(sd, 0x23, 0x1b);
3859 			break;
3860 		}
3861 		break;
3862 	case SEN_OV7670:		/* guesses, based on 7640 */
3863 		PDEBUG(D_STREAM, "Setting framerate to %d fps",
3864 				 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3865 		reg_w(sd, 0xa4, 0x10);
3866 		switch (sd->frame_rate) {
3867 		case 30:
3868 			reg_w(sd, 0x23, 0xff);
3869 			break;
3870 		case 20:
3871 			reg_w(sd, 0x23, 0x1b);
3872 			break;
3873 		default:
3874 /*		case 15: */
3875 			reg_w(sd, 0x23, 0xff);
3876 			sd->clockdiv = 1;
3877 			break;
3878 		}
3879 		break;
3880 	}
3881 }
3882 
3883 static void mode_init_ov_sensor_regs(struct sd *sd)
3884 {
3885 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3886 	int qvga, xstart, xend, ystart, yend;
3887 	u8 v;
3888 
3889 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3890 
3891 	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3892 	switch (sd->sensor) {
3893 	case SEN_OV2610:
3894 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3895 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3896 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3897 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3898 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3899 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3900 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3901 		return;
3902 	case SEN_OV2610AE: {
3903 		u8 v;
3904 
3905 		/* frame rates:
3906 		 *	10fps / 5 fps for 1600x1200
3907 		 *	40fps / 20fps for 800x600
3908 		 */
3909 		v = 80;
3910 		if (qvga) {
3911 			if (sd->frame_rate < 25)
3912 				v = 0x81;
3913 		} else {
3914 			if (sd->frame_rate < 10)
3915 				v = 0x81;
3916 		}
3917 		i2c_w(sd, 0x11, v);
3918 		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3919 		return;
3920 	    }
3921 	case SEN_OV3610:
3922 		if (qvga) {
3923 			xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3924 				(0x1f << 4);
3925 			ystart = (776 - gspca_dev->pixfmt.height) / 2;
3926 		} else {
3927 			xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3928 				(0x10 << 4);
3929 			ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3930 		}
3931 		xend = xstart + gspca_dev->pixfmt.width;
3932 		yend = ystart + gspca_dev->pixfmt.height;
3933 		/* Writing to the COMH register resets the other windowing regs
3934 		   to their default values, so we must do this first. */
3935 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3936 		i2c_w_mask(sd, 0x32,
3937 			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3938 			   0x3f);
3939 		i2c_w_mask(sd, 0x03,
3940 			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3941 			   0x0f);
3942 		i2c_w(sd, 0x17, xstart >> 4);
3943 		i2c_w(sd, 0x18, xend >> 4);
3944 		i2c_w(sd, 0x19, ystart >> 3);
3945 		i2c_w(sd, 0x1a, yend >> 3);
3946 		return;
3947 	case SEN_OV8610:
3948 		/* For OV8610 qvga means qsvga */
3949 		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3950 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3951 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3952 		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3953 		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3954 		break;
3955 	case SEN_OV7610:
3956 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3957 		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3958 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3959 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3960 		break;
3961 	case SEN_OV7620:
3962 	case SEN_OV7620AE:
3963 	case SEN_OV76BE:
3964 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3965 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3966 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3967 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3968 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3969 		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3970 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3971 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3972 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3973 		if (sd->sensor == SEN_OV76BE)
3974 			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3975 		break;
3976 	case SEN_OV7640:
3977 	case SEN_OV7648:
3978 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3979 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3980 		/* Setting this undocumented bit in qvga mode removes a very
3981 		   annoying vertical shaking of the image */
3982 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3983 		/* Unknown */
3984 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3985 		/* Allow higher automatic gain (to allow higher framerates) */
3986 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3987 		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3988 		break;
3989 	case SEN_OV7670:
3990 		/* set COM7_FMT_VGA or COM7_FMT_QVGA
3991 		 * do we need to set anything else?
3992 		 *	HSTART etc are set in set_ov_sensor_window itself */
3993 		i2c_w_mask(sd, OV7670_R12_COM7,
3994 			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3995 			 OV7670_COM7_FMT_MASK);
3996 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3997 		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
3998 				OV7670_COM8_AWB);
3999 		if (qvga) {		/* QVGA from ov7670.c by
4000 					 * Jonathan Corbet */
4001 			xstart = 164;
4002 			xend = 28;
4003 			ystart = 14;
4004 			yend = 494;
4005 		} else {		/* VGA */
4006 			xstart = 158;
4007 			xend = 14;
4008 			ystart = 10;
4009 			yend = 490;
4010 		}
4011 		/* OV7670 hardware window registers are split across
4012 		 * multiple locations */
4013 		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4014 		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4015 		v = i2c_r(sd, OV7670_R32_HREF);
4016 		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4017 		msleep(10);	/* need to sleep between read and write to
4018 				 * same reg! */
4019 		i2c_w(sd, OV7670_R32_HREF, v);
4020 
4021 		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4022 		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4023 		v = i2c_r(sd, OV7670_R03_VREF);
4024 		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4025 		msleep(10);	/* need to sleep between read and write to
4026 				 * same reg! */
4027 		i2c_w(sd, OV7670_R03_VREF, v);
4028 		break;
4029 	case SEN_OV6620:
4030 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4031 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4032 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4033 		break;
4034 	case SEN_OV6630:
4035 	case SEN_OV66308AF:
4036 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4037 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4038 		break;
4039 	case SEN_OV9600: {
4040 		const struct ov_i2c_regvals *vals;
4041 		static const struct ov_i2c_regvals sxga_15[] = {
4042 			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4043 		};
4044 		static const struct ov_i2c_regvals sxga_7_5[] = {
4045 			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4046 		};
4047 		static const struct ov_i2c_regvals vga_30[] = {
4048 			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4049 		};
4050 		static const struct ov_i2c_regvals vga_15[] = {
4051 			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4052 		};
4053 
4054 		/* frame rates:
4055 		 *	15fps / 7.5 fps for 1280x1024
4056 		 *	30fps / 15fps for 640x480
4057 		 */
4058 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4059 		if (qvga)
4060 			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4061 		else
4062 			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4063 		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4064 		return;
4065 	    }
4066 	default:
4067 		return;
4068 	}
4069 
4070 	/******** Clock programming ********/
4071 	i2c_w(sd, 0x11, sd->clockdiv);
4072 }
4073 
4074 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4075 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4076 {
4077 	struct sd *sd = (struct sd *) gspca_dev;
4078 
4079 	if (sd->gspca_dev.streaming)
4080 		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4081 	i2c_w_mask(sd, OV7670_R1E_MVFP,
4082 		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4083 		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4084 	if (sd->gspca_dev.streaming)
4085 		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4086 }
4087 
4088 static void set_ov_sensor_window(struct sd *sd)
4089 {
4090 	struct gspca_dev *gspca_dev;
4091 	int qvga, crop;
4092 	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4093 
4094 	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4095 	switch (sd->sensor) {
4096 	case SEN_OV2610:
4097 	case SEN_OV2610AE:
4098 	case SEN_OV3610:
4099 	case SEN_OV7670:
4100 	case SEN_OV9600:
4101 		mode_init_ov_sensor_regs(sd);
4102 		return;
4103 	case SEN_OV7660:
4104 		ov519_set_mode(sd);
4105 		ov519_set_fr(sd);
4106 		return;
4107 	}
4108 
4109 	gspca_dev = &sd->gspca_dev;
4110 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4111 	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4112 
4113 	/* The different sensor ICs handle setting up of window differently.
4114 	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4115 	switch (sd->sensor) {
4116 	case SEN_OV8610:
4117 		hwsbase = 0x1e;
4118 		hwebase = 0x1e;
4119 		vwsbase = 0x02;
4120 		vwebase = 0x02;
4121 		break;
4122 	case SEN_OV7610:
4123 	case SEN_OV76BE:
4124 		hwsbase = 0x38;
4125 		hwebase = 0x3a;
4126 		vwsbase = vwebase = 0x05;
4127 		break;
4128 	case SEN_OV6620:
4129 	case SEN_OV6630:
4130 	case SEN_OV66308AF:
4131 		hwsbase = 0x38;
4132 		hwebase = 0x3a;
4133 		vwsbase = 0x05;
4134 		vwebase = 0x06;
4135 		if (sd->sensor == SEN_OV66308AF && qvga)
4136 			/* HDG: this fixes U and V getting swapped */
4137 			hwsbase++;
4138 		if (crop) {
4139 			hwsbase += 8;
4140 			hwebase += 8;
4141 			vwsbase += 11;
4142 			vwebase += 11;
4143 		}
4144 		break;
4145 	case SEN_OV7620:
4146 	case SEN_OV7620AE:
4147 		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4148 		hwebase = 0x2f;
4149 		vwsbase = vwebase = 0x05;
4150 		break;
4151 	case SEN_OV7640:
4152 	case SEN_OV7648:
4153 		hwsbase = 0x1a;
4154 		hwebase = 0x1a;
4155 		vwsbase = vwebase = 0x03;
4156 		break;
4157 	default:
4158 		return;
4159 	}
4160 
4161 	switch (sd->sensor) {
4162 	case SEN_OV6620:
4163 	case SEN_OV6630:
4164 	case SEN_OV66308AF:
4165 		if (qvga) {		/* QCIF */
4166 			hwscale = 0;
4167 			vwscale = 0;
4168 		} else {		/* CIF */
4169 			hwscale = 1;
4170 			vwscale = 1;	/* The datasheet says 0;
4171 					 * it's wrong */
4172 		}
4173 		break;
4174 	case SEN_OV8610:
4175 		if (qvga) {		/* QSVGA */
4176 			hwscale = 1;
4177 			vwscale = 1;
4178 		} else {		/* SVGA */
4179 			hwscale = 2;
4180 			vwscale = 2;
4181 		}
4182 		break;
4183 	default:			/* SEN_OV7xx0 */
4184 		if (qvga) {		/* QVGA */
4185 			hwscale = 1;
4186 			vwscale = 0;
4187 		} else {		/* VGA */
4188 			hwscale = 2;
4189 			vwscale = 1;
4190 		}
4191 	}
4192 
4193 	mode_init_ov_sensor_regs(sd);
4194 
4195 	i2c_w(sd, 0x17, hwsbase);
4196 	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4197 	i2c_w(sd, 0x19, vwsbase);
4198 	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4199 }
4200 
4201 /* -- start the camera -- */
4202 static int sd_start(struct gspca_dev *gspca_dev)
4203 {
4204 	struct sd *sd = (struct sd *) gspca_dev;
4205 
4206 	/* Default for most bridges, allow bridge_mode_init_regs to override */
4207 	sd->sensor_width = sd->gspca_dev.pixfmt.width;
4208 	sd->sensor_height = sd->gspca_dev.pixfmt.height;
4209 
4210 	switch (sd->bridge) {
4211 	case BRIDGE_OV511:
4212 	case BRIDGE_OV511PLUS:
4213 		ov511_mode_init_regs(sd);
4214 		break;
4215 	case BRIDGE_OV518:
4216 	case BRIDGE_OV518PLUS:
4217 		ov518_mode_init_regs(sd);
4218 		break;
4219 	case BRIDGE_OV519:
4220 		ov519_mode_init_regs(sd);
4221 		break;
4222 	/* case BRIDGE_OVFX2: nothing to do */
4223 	case BRIDGE_W9968CF:
4224 		w9968cf_mode_init_regs(sd);
4225 		break;
4226 	}
4227 
4228 	set_ov_sensor_window(sd);
4229 
4230 	/* Force clear snapshot state in case the snapshot button was
4231 	   pressed while we weren't streaming */
4232 	sd->snapshot_needs_reset = 1;
4233 	sd_reset_snapshot(gspca_dev);
4234 
4235 	sd->first_frame = 3;
4236 
4237 	ov51x_restart(sd);
4238 	ov51x_led_control(sd, 1);
4239 	return gspca_dev->usb_err;
4240 }
4241 
4242 static void sd_stopN(struct gspca_dev *gspca_dev)
4243 {
4244 	struct sd *sd = (struct sd *) gspca_dev;
4245 
4246 	ov51x_stop(sd);
4247 	ov51x_led_control(sd, 0);
4248 }
4249 
4250 static void sd_stop0(struct gspca_dev *gspca_dev)
4251 {
4252 	struct sd *sd = (struct sd *) gspca_dev;
4253 
4254 	if (!sd->gspca_dev.present)
4255 		return;
4256 	if (sd->bridge == BRIDGE_W9968CF)
4257 		w9968cf_stop0(sd);
4258 
4259 #if IS_ENABLED(CONFIG_INPUT)
4260 	/* If the last button state is pressed, release it now! */
4261 	if (sd->snapshot_pressed) {
4262 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4263 		input_sync(gspca_dev->input_dev);
4264 		sd->snapshot_pressed = 0;
4265 	}
4266 #endif
4267 	if (sd->bridge == BRIDGE_OV519)
4268 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4269 }
4270 
4271 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4272 {
4273 	struct sd *sd = (struct sd *) gspca_dev;
4274 
4275 	if (sd->snapshot_pressed != state) {
4276 #if IS_ENABLED(CONFIG_INPUT)
4277 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4278 		input_sync(gspca_dev->input_dev);
4279 #endif
4280 		if (state)
4281 			sd->snapshot_needs_reset = 1;
4282 
4283 		sd->snapshot_pressed = state;
4284 	} else {
4285 		/* On the ov511 / ov519 we need to reset the button state
4286 		   multiple times, as resetting does not work as long as the
4287 		   button stays pressed */
4288 		switch (sd->bridge) {
4289 		case BRIDGE_OV511:
4290 		case BRIDGE_OV511PLUS:
4291 		case BRIDGE_OV519:
4292 			if (state)
4293 				sd->snapshot_needs_reset = 1;
4294 			break;
4295 		}
4296 	}
4297 }
4298 
4299 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4300 			u8 *in,			/* isoc packet */
4301 			int len)		/* iso packet length */
4302 {
4303 	struct sd *sd = (struct sd *) gspca_dev;
4304 
4305 	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4306 	 * byte non-zero. The EOF packet has image width/height in the
4307 	 * 10th and 11th bytes. The 9th byte is given as follows:
4308 	 *
4309 	 * bit 7: EOF
4310 	 *     6: compression enabled
4311 	 *     5: 422/420/400 modes
4312 	 *     4: 422/420/400 modes
4313 	 *     3: 1
4314 	 *     2: snapshot button on
4315 	 *     1: snapshot frame
4316 	 *     0: even/odd field
4317 	 */
4318 	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4319 	    (in[8] & 0x08)) {
4320 		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4321 		if (in[8] & 0x80) {
4322 			/* Frame end */
4323 			if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4324 			    (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4325 				PERR("Invalid frame size, got: %dx%d, requested: %dx%d\n",
4326 					(in[9] + 1) * 8, (in[10] + 1) * 8,
4327 					gspca_dev->pixfmt.width,
4328 					gspca_dev->pixfmt.height);
4329 				gspca_dev->last_packet_type = DISCARD_PACKET;
4330 				return;
4331 			}
4332 			/* Add 11 byte footer to frame, might be useful */
4333 			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4334 			return;
4335 		} else {
4336 			/* Frame start */
4337 			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4338 			sd->packet_nr = 0;
4339 		}
4340 	}
4341 
4342 	/* Ignore the packet number */
4343 	len--;
4344 
4345 	/* intermediate packet */
4346 	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4347 }
4348 
4349 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4350 			u8 *data,			/* isoc packet */
4351 			int len)			/* iso packet length */
4352 {
4353 	struct sd *sd = (struct sd *) gspca_dev;
4354 
4355 	/* A false positive here is likely, until OVT gives me
4356 	 * the definitive SOF/EOF format */
4357 	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4358 		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4359 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4360 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4361 		sd->packet_nr = 0;
4362 	}
4363 
4364 	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4365 		return;
4366 
4367 	/* Does this device use packet numbers ? */
4368 	if (len & 7) {
4369 		len--;
4370 		if (sd->packet_nr == data[len])
4371 			sd->packet_nr++;
4372 		/* The last few packets of the frame (which are all 0's
4373 		   except that they may contain part of the footer), are
4374 		   numbered 0 */
4375 		else if (sd->packet_nr == 0 || data[len]) {
4376 			PERR("Invalid packet nr: %d (expect: %d)",
4377 				(int)data[len], (int)sd->packet_nr);
4378 			gspca_dev->last_packet_type = DISCARD_PACKET;
4379 			return;
4380 		}
4381 	}
4382 
4383 	/* intermediate packet */
4384 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4385 }
4386 
4387 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4388 			u8 *data,			/* isoc packet */
4389 			int len)			/* iso packet length */
4390 {
4391 	/* Header of ov519 is 16 bytes:
4392 	 *     Byte     Value      Description
4393 	 *	0	0xff	magic
4394 	 *	1	0xff	magic
4395 	 *	2	0xff	magic
4396 	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4397 	 *	9	0xXX	0x01 initial frame without data,
4398 	 *			0x00 standard frame with image
4399 	 *	14	Lo	in EOF: length of image data / 8
4400 	 *	15	Hi
4401 	 */
4402 
4403 	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4404 		switch (data[3]) {
4405 		case 0x50:		/* start of frame */
4406 			/* Don't check the button state here, as the state
4407 			   usually (always ?) changes at EOF and checking it
4408 			   here leads to unnecessary snapshot state resets. */
4409 #define HDRSZ 16
4410 			data += HDRSZ;
4411 			len -= HDRSZ;
4412 #undef HDRSZ
4413 			if (data[0] == 0xff || data[1] == 0xd8)
4414 				gspca_frame_add(gspca_dev, FIRST_PACKET,
4415 						data, len);
4416 			else
4417 				gspca_dev->last_packet_type = DISCARD_PACKET;
4418 			return;
4419 		case 0x51:		/* end of frame */
4420 			ov51x_handle_button(gspca_dev, data[11] & 1);
4421 			if (data[9] != 0)
4422 				gspca_dev->last_packet_type = DISCARD_PACKET;
4423 			gspca_frame_add(gspca_dev, LAST_PACKET,
4424 					NULL, 0);
4425 			return;
4426 		}
4427 	}
4428 
4429 	/* intermediate packet */
4430 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4431 }
4432 
4433 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4434 			u8 *data,			/* isoc packet */
4435 			int len)			/* iso packet length */
4436 {
4437 	struct sd *sd = (struct sd *) gspca_dev;
4438 
4439 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4440 
4441 	/* A short read signals EOF */
4442 	if (len < gspca_dev->cam.bulk_size) {
4443 		/* If the frame is short, and it is one of the first ones
4444 		   the sensor and bridge are still syncing, so drop it. */
4445 		if (sd->first_frame) {
4446 			sd->first_frame--;
4447 			if (gspca_dev->image_len <
4448 				  sd->gspca_dev.pixfmt.width *
4449 					sd->gspca_dev.pixfmt.height)
4450 				gspca_dev->last_packet_type = DISCARD_PACKET;
4451 		}
4452 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4453 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4454 	}
4455 }
4456 
4457 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4458 			u8 *data,			/* isoc packet */
4459 			int len)			/* iso packet length */
4460 {
4461 	struct sd *sd = (struct sd *) gspca_dev;
4462 
4463 	switch (sd->bridge) {
4464 	case BRIDGE_OV511:
4465 	case BRIDGE_OV511PLUS:
4466 		ov511_pkt_scan(gspca_dev, data, len);
4467 		break;
4468 	case BRIDGE_OV518:
4469 	case BRIDGE_OV518PLUS:
4470 		ov518_pkt_scan(gspca_dev, data, len);
4471 		break;
4472 	case BRIDGE_OV519:
4473 		ov519_pkt_scan(gspca_dev, data, len);
4474 		break;
4475 	case BRIDGE_OVFX2:
4476 		ovfx2_pkt_scan(gspca_dev, data, len);
4477 		break;
4478 	case BRIDGE_W9968CF:
4479 		w9968cf_pkt_scan(gspca_dev, data, len);
4480 		break;
4481 	}
4482 }
4483 
4484 /* -- management routines -- */
4485 
4486 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4487 {
4488 	struct sd *sd = (struct sd *) gspca_dev;
4489 	static const struct ov_i2c_regvals brit_7660[][7] = {
4490 		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4491 			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4492 		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4493 			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4494 		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4495 			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4496 		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4497 			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4498 		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4499 			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4500 		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4501 			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4502 		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4503 			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4504 	};
4505 
4506 	switch (sd->sensor) {
4507 	case SEN_OV8610:
4508 	case SEN_OV7610:
4509 	case SEN_OV76BE:
4510 	case SEN_OV6620:
4511 	case SEN_OV6630:
4512 	case SEN_OV66308AF:
4513 	case SEN_OV7640:
4514 	case SEN_OV7648:
4515 		i2c_w(sd, OV7610_REG_BRT, val);
4516 		break;
4517 	case SEN_OV7620:
4518 	case SEN_OV7620AE:
4519 		i2c_w(sd, OV7610_REG_BRT, val);
4520 		break;
4521 	case SEN_OV7660:
4522 		write_i2c_regvals(sd, brit_7660[val],
4523 				ARRAY_SIZE(brit_7660[0]));
4524 		break;
4525 	case SEN_OV7670:
4526 /*win trace
4527  *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4528 		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4529 		break;
4530 	}
4531 }
4532 
4533 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4534 {
4535 	struct sd *sd = (struct sd *) gspca_dev;
4536 	static const struct ov_i2c_regvals contrast_7660[][31] = {
4537 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4538 		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4539 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4540 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4541 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4542 		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4543 		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4544 		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4545 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4546 		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4547 		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4548 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4549 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4550 		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4551 		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4552 		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4553 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4554 		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4555 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4556 		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4557 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4558 		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4559 		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4560 		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4561 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4562 		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4563 		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4564 		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4565 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4566 		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4567 		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4568 		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4569 		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4570 		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4571 		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4572 		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4573 		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4574 		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4575 		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4576 		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4577 		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4578 		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4579 		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4580 		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4581 		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4582 		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4583 		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4584 		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4585 		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4586 		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4587 		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4588 		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4589 		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4590 		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4591 		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4592 		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4593 	};
4594 
4595 	switch (sd->sensor) {
4596 	case SEN_OV7610:
4597 	case SEN_OV6620:
4598 		i2c_w(sd, OV7610_REG_CNT, val);
4599 		break;
4600 	case SEN_OV6630:
4601 	case SEN_OV66308AF:
4602 		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4603 		break;
4604 	case SEN_OV8610: {
4605 		static const u8 ctab[] = {
4606 			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4607 		};
4608 
4609 		/* Use Y gamma control instead. Bit 0 enables it. */
4610 		i2c_w(sd, 0x64, ctab[val >> 5]);
4611 		break;
4612 	    }
4613 	case SEN_OV7620:
4614 	case SEN_OV7620AE: {
4615 		static const u8 ctab[] = {
4616 			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4617 			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4618 		};
4619 
4620 		/* Use Y gamma control instead. Bit 0 enables it. */
4621 		i2c_w(sd, 0x64, ctab[val >> 4]);
4622 		break;
4623 	    }
4624 	case SEN_OV7660:
4625 		write_i2c_regvals(sd, contrast_7660[val],
4626 					ARRAY_SIZE(contrast_7660[0]));
4627 		break;
4628 	case SEN_OV7670:
4629 		/* check that this isn't just the same as ov7610 */
4630 		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4631 		break;
4632 	}
4633 }
4634 
4635 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4636 {
4637 	struct sd *sd = (struct sd *) gspca_dev;
4638 
4639 	i2c_w(sd, 0x10, val);
4640 }
4641 
4642 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4643 {
4644 	struct sd *sd = (struct sd *) gspca_dev;
4645 	static const struct ov_i2c_regvals colors_7660[][6] = {
4646 		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4647 		 {0x53, 0x19}, {0x54, 0x23}},
4648 		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4649 		 {0x53, 0x2c}, {0x54, 0x3e}},
4650 		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4651 		 {0x53, 0x40}, {0x54, 0x59}},
4652 		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4653 		 {0x53, 0x53}, {0x54, 0x73}},
4654 		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4655 		 {0x53, 0x66}, {0x54, 0x8e}},
4656 	};
4657 
4658 	switch (sd->sensor) {
4659 	case SEN_OV8610:
4660 	case SEN_OV7610:
4661 	case SEN_OV76BE:
4662 	case SEN_OV6620:
4663 	case SEN_OV6630:
4664 	case SEN_OV66308AF:
4665 		i2c_w(sd, OV7610_REG_SAT, val);
4666 		break;
4667 	case SEN_OV7620:
4668 	case SEN_OV7620AE:
4669 		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4670 /*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4671 		if (rc < 0)
4672 			goto out; */
4673 		i2c_w(sd, OV7610_REG_SAT, val);
4674 		break;
4675 	case SEN_OV7640:
4676 	case SEN_OV7648:
4677 		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4678 		break;
4679 	case SEN_OV7660:
4680 		write_i2c_regvals(sd, colors_7660[val],
4681 					ARRAY_SIZE(colors_7660[0]));
4682 		break;
4683 	case SEN_OV7670:
4684 		/* supported later once I work out how to do it
4685 		 * transparently fail now! */
4686 		/* set REG_COM13 values for UV sat auto mode */
4687 		break;
4688 	}
4689 }
4690 
4691 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4692 {
4693 	struct sd *sd = (struct sd *) gspca_dev;
4694 
4695 	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4696 }
4697 
4698 static void setfreq_i(struct sd *sd, s32 val)
4699 {
4700 	if (sd->sensor == SEN_OV7660
4701 	 || sd->sensor == SEN_OV7670) {
4702 		switch (val) {
4703 		case 0: /* Banding filter disabled */
4704 			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4705 			break;
4706 		case 1: /* 50 hz */
4707 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4708 				   OV7670_COM8_BFILT);
4709 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4710 			break;
4711 		case 2: /* 60 hz */
4712 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4713 				   OV7670_COM8_BFILT);
4714 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4715 			break;
4716 		case 3: /* Auto hz - ov7670 only */
4717 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4718 				   OV7670_COM8_BFILT);
4719 			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4720 				   0x18);
4721 			break;
4722 		}
4723 	} else {
4724 		switch (val) {
4725 		case 0: /* Banding filter disabled */
4726 			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4727 			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4728 			break;
4729 		case 1: /* 50 hz (filter on and framerate adj) */
4730 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4731 			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4732 			/* 20 fps -> 16.667 fps */
4733 			if (sd->sensor == SEN_OV6620 ||
4734 			    sd->sensor == SEN_OV6630 ||
4735 			    sd->sensor == SEN_OV66308AF)
4736 				i2c_w(sd, 0x2b, 0x5e);
4737 			else
4738 				i2c_w(sd, 0x2b, 0xac);
4739 			break;
4740 		case 2: /* 60 hz (filter on, ...) */
4741 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4742 			if (sd->sensor == SEN_OV6620 ||
4743 			    sd->sensor == SEN_OV6630 ||
4744 			    sd->sensor == SEN_OV66308AF) {
4745 				/* 20 fps -> 15 fps */
4746 				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4747 				i2c_w(sd, 0x2b, 0xa8);
4748 			} else {
4749 				/* no framerate adj. */
4750 				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4751 			}
4752 			break;
4753 		}
4754 	}
4755 }
4756 
4757 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4758 {
4759 	struct sd *sd = (struct sd *) gspca_dev;
4760 
4761 	setfreq_i(sd, val);
4762 
4763 	/* Ugly but necessary */
4764 	if (sd->bridge == BRIDGE_W9968CF)
4765 		w9968cf_set_crop_window(sd);
4766 }
4767 
4768 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4769 			struct v4l2_jpegcompression *jcomp)
4770 {
4771 	struct sd *sd = (struct sd *) gspca_dev;
4772 
4773 	if (sd->bridge != BRIDGE_W9968CF)
4774 		return -ENOTTY;
4775 
4776 	memset(jcomp, 0, sizeof *jcomp);
4777 	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4778 	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4779 			      V4L2_JPEG_MARKER_DRI;
4780 	return 0;
4781 }
4782 
4783 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4784 			const struct v4l2_jpegcompression *jcomp)
4785 {
4786 	struct sd *sd = (struct sd *) gspca_dev;
4787 
4788 	if (sd->bridge != BRIDGE_W9968CF)
4789 		return -ENOTTY;
4790 
4791 	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4792 	return 0;
4793 }
4794 
4795 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4796 {
4797 	struct gspca_dev *gspca_dev =
4798 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4799 	struct sd *sd = (struct sd *)gspca_dev;
4800 
4801 	gspca_dev->usb_err = 0;
4802 
4803 	switch (ctrl->id) {
4804 	case V4L2_CID_AUTOGAIN:
4805 		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4806 		break;
4807 	}
4808 	return 0;
4809 }
4810 
4811 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4812 {
4813 	struct gspca_dev *gspca_dev =
4814 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4815 	struct sd *sd = (struct sd *)gspca_dev;
4816 
4817 	gspca_dev->usb_err = 0;
4818 
4819 	if (!gspca_dev->streaming)
4820 		return 0;
4821 
4822 	switch (ctrl->id) {
4823 	case V4L2_CID_BRIGHTNESS:
4824 		setbrightness(gspca_dev, ctrl->val);
4825 		break;
4826 	case V4L2_CID_CONTRAST:
4827 		setcontrast(gspca_dev, ctrl->val);
4828 		break;
4829 	case V4L2_CID_POWER_LINE_FREQUENCY:
4830 		setfreq(gspca_dev, ctrl->val);
4831 		break;
4832 	case V4L2_CID_AUTOBRIGHTNESS:
4833 		if (ctrl->is_new)
4834 			setautobright(gspca_dev, ctrl->val);
4835 		if (!ctrl->val && sd->brightness->is_new)
4836 			setbrightness(gspca_dev, sd->brightness->val);
4837 		break;
4838 	case V4L2_CID_SATURATION:
4839 		setcolors(gspca_dev, ctrl->val);
4840 		break;
4841 	case V4L2_CID_HFLIP:
4842 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4843 		break;
4844 	case V4L2_CID_AUTOGAIN:
4845 		if (ctrl->is_new)
4846 			setautogain(gspca_dev, ctrl->val);
4847 		if (!ctrl->val && gspca_dev->exposure->is_new)
4848 			setexposure(gspca_dev, gspca_dev->exposure->val);
4849 		break;
4850 	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4851 		return -EBUSY; /* Should never happen, as we grab the ctrl */
4852 	}
4853 	return gspca_dev->usb_err;
4854 }
4855 
4856 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4857 	.g_volatile_ctrl = sd_g_volatile_ctrl,
4858 	.s_ctrl = sd_s_ctrl,
4859 };
4860 
4861 static int sd_init_controls(struct gspca_dev *gspca_dev)
4862 {
4863 	struct sd *sd = (struct sd *)gspca_dev;
4864 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4865 
4866 	gspca_dev->vdev.ctrl_handler = hdl;
4867 	v4l2_ctrl_handler_init(hdl, 10);
4868 	if (valid_controls[sd->sensor].has_brightness)
4869 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4870 			V4L2_CID_BRIGHTNESS, 0,
4871 			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4872 			sd->sensor == SEN_OV7660 ? 3 : 127);
4873 	if (valid_controls[sd->sensor].has_contrast) {
4874 		if (sd->sensor == SEN_OV7660)
4875 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4876 				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4877 		else
4878 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4879 				V4L2_CID_CONTRAST, 0, 255, 1,
4880 				(sd->sensor == SEN_OV6630 ||
4881 				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4882 	}
4883 	if (valid_controls[sd->sensor].has_sat)
4884 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4885 			V4L2_CID_SATURATION, 0,
4886 			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4887 			sd->sensor == SEN_OV7660 ? 2 : 127);
4888 	if (valid_controls[sd->sensor].has_exposure)
4889 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4890 			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4891 	if (valid_controls[sd->sensor].has_hvflip) {
4892 		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4893 			V4L2_CID_HFLIP, 0, 1, 1, 0);
4894 		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4895 			V4L2_CID_VFLIP, 0, 1, 1, 0);
4896 	}
4897 	if (valid_controls[sd->sensor].has_autobright)
4898 		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4899 			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4900 	if (valid_controls[sd->sensor].has_autogain)
4901 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4902 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4903 	if (valid_controls[sd->sensor].has_freq) {
4904 		if (sd->sensor == SEN_OV7670)
4905 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4906 				V4L2_CID_POWER_LINE_FREQUENCY,
4907 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4908 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4909 		else
4910 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4911 				V4L2_CID_POWER_LINE_FREQUENCY,
4912 				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4913 	}
4914 	if (sd->bridge == BRIDGE_W9968CF)
4915 		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4916 			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4917 			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4918 
4919 	if (hdl->error) {
4920 		PERR("Could not initialize controls\n");
4921 		return hdl->error;
4922 	}
4923 	if (gspca_dev->autogain)
4924 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4925 	if (sd->autobright)
4926 		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4927 	if (sd->hflip)
4928 		v4l2_ctrl_cluster(2, &sd->hflip);
4929 	return 0;
4930 }
4931 
4932 /* sub-driver description */
4933 static const struct sd_desc sd_desc = {
4934 	.name = MODULE_NAME,
4935 	.config = sd_config,
4936 	.init = sd_init,
4937 	.init_controls = sd_init_controls,
4938 	.isoc_init = sd_isoc_init,
4939 	.start = sd_start,
4940 	.stopN = sd_stopN,
4941 	.stop0 = sd_stop0,
4942 	.pkt_scan = sd_pkt_scan,
4943 	.dq_callback = sd_reset_snapshot,
4944 	.get_jcomp = sd_get_jcomp,
4945 	.set_jcomp = sd_set_jcomp,
4946 #if IS_ENABLED(CONFIG_INPUT)
4947 	.other_input = 1,
4948 #endif
4949 };
4950 
4951 /* -- module initialisation -- */
4952 static const struct usb_device_id device_table[] = {
4953 	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4954 	{USB_DEVICE(0x041e, 0x4052),
4955 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4956 	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4957 	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4958 	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4959 	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4960 	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4961 	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4962 	{USB_DEVICE(0x045e, 0x028c),
4963 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4964 	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4965 	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4966 	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4967 	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4968 	{USB_DEVICE(0x05a9, 0x0519),
4969 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4970 	{USB_DEVICE(0x05a9, 0x0530),
4971 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4972 	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4973 	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4974 	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4975 	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4976 	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4977 	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4978 	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4979 	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4980 	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4981 	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4982 	{}
4983 };
4984 
4985 MODULE_DEVICE_TABLE(usb, device_table);
4986 
4987 /* -- device connect -- */
4988 static int sd_probe(struct usb_interface *intf,
4989 			const struct usb_device_id *id)
4990 {
4991 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4992 				THIS_MODULE);
4993 }
4994 
4995 static struct usb_driver sd_driver = {
4996 	.name = MODULE_NAME,
4997 	.id_table = device_table,
4998 	.probe = sd_probe,
4999 	.disconnect = gspca_disconnect,
5000 #ifdef CONFIG_PM
5001 	.suspend = gspca_suspend,
5002 	.resume = gspca_resume,
5003 	.reset_resume = gspca_resume,
5004 #endif
5005 };
5006 
5007 module_usb_driver(sd_driver);
5008 
5009 module_param(frame_rate, int, 0644);
5010 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5011