xref: /openbmc/linux/drivers/media/tuners/xc5000.c (revision d2999e1b)
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/workqueue.h>
29 #include <linux/dvb/frontend.h>
30 #include <linux/i2c.h>
31 
32 #include "dvb_frontend.h"
33 
34 #include "xc5000.h"
35 #include "tuner-i2c.h"
36 
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 
41 static int no_poweroff;
42 module_param(no_poweroff, int, 0644);
43 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
44 	"\t\t1 keep device energized and with tuner ready all the times.\n"
45 	"\t\tFaster, but consumes more power and keeps the device hotter");
46 
47 static DEFINE_MUTEX(xc5000_list_mutex);
48 static LIST_HEAD(hybrid_tuner_instance_list);
49 
50 #define dprintk(level, fmt, arg...) if (debug >= level) \
51 	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 
53 struct xc5000_priv {
54 	struct tuner_i2c_props i2c_props;
55 	struct list_head hybrid_tuner_instance_list;
56 
57 	u32 if_khz;
58 	u16 xtal_khz;
59 	u32 freq_hz;
60 	u32 bandwidth;
61 	u8  video_standard;
62 	u8  rf_mode;
63 	u8  radio_input;
64 
65 	int chip_id;
66 	u16 pll_register_no;
67 	u8 init_status_supported;
68 	u8 fw_checksum_supported;
69 
70 	struct dvb_frontend *fe;
71 	struct delayed_work timer_sleep;
72 };
73 
74 /* Misc Defines */
75 #define MAX_TV_STANDARD			24
76 #define XC_MAX_I2C_WRITE_LENGTH		64
77 
78 /* Time to suspend after the .sleep callback is called */
79 #define XC5000_SLEEP_TIME		5000 /* ms */
80 
81 /* Signal Types */
82 #define XC_RF_MODE_AIR			0
83 #define XC_RF_MODE_CABLE		1
84 
85 /* Product id */
86 #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
87 #define XC_PRODUCT_ID_FW_LOADED	0x1388
88 
89 /* Registers */
90 #define XREG_INIT         0x00
91 #define XREG_VIDEO_MODE   0x01
92 #define XREG_AUDIO_MODE   0x02
93 #define XREG_RF_FREQ      0x03
94 #define XREG_D_CODE       0x04
95 #define XREG_IF_OUT       0x05
96 #define XREG_SEEK_MODE    0x07
97 #define XREG_POWER_DOWN   0x0A /* Obsolete */
98 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
99 #define XREG_OUTPUT_AMP   0x0B
100 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
101 #define XREG_SMOOTHEDCVBS 0x0E
102 #define XREG_XTALFREQ     0x0F
103 #define XREG_FINERFREQ    0x10
104 #define XREG_DDIMODE      0x11
105 
106 #define XREG_ADC_ENV      0x00
107 #define XREG_QUALITY      0x01
108 #define XREG_FRAME_LINES  0x02
109 #define XREG_HSYNC_FREQ   0x03
110 #define XREG_LOCK         0x04
111 #define XREG_FREQ_ERROR   0x05
112 #define XREG_SNR          0x06
113 #define XREG_VERSION      0x07
114 #define XREG_PRODUCT_ID   0x08
115 #define XREG_BUSY         0x09
116 #define XREG_BUILD        0x0D
117 #define XREG_TOTALGAIN    0x0F
118 #define XREG_FW_CHECKSUM  0x12
119 #define XREG_INIT_STATUS  0x13
120 
121 /*
122    Basic firmware description. This will remain with
123    the driver for documentation purposes.
124 
125    This represents an I2C firmware file encoded as a
126    string of unsigned char. Format is as follows:
127 
128    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
129    char[1  ]=len0_LSB  -> length of first write transaction
130    char[2  ]=data0 -> first byte to be sent
131    char[3  ]=data1
132    char[4  ]=data2
133    char[   ]=...
134    char[M  ]=dataN  -> last byte to be sent
135    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
136    char[M+2]=len1_LSB  -> length of second write transaction
137    char[M+3]=data0
138    char[M+4]=data1
139    ...
140    etc.
141 
142    The [len] value should be interpreted as follows:
143 
144    len= len_MSB _ len_LSB
145    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
146    len=0000_0000_0000_0000   : Reset command: Do hardware reset
147    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
148    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
149 
150    For the RESET and WAIT commands, the two following bytes will contain
151    immediately the length of the following transaction.
152 
153 */
154 struct XC_TV_STANDARD {
155 	char *name;
156 	u16 audio_mode;
157 	u16 video_mode;
158 };
159 
160 /* Tuner standards */
161 #define MN_NTSC_PAL_BTSC	0
162 #define MN_NTSC_PAL_A2		1
163 #define MN_NTSC_PAL_EIAJ	2
164 #define MN_NTSC_PAL_MONO	3
165 #define BG_PAL_A2		4
166 #define BG_PAL_NICAM		5
167 #define BG_PAL_MONO		6
168 #define I_PAL_NICAM		7
169 #define I_PAL_NICAM_MONO	8
170 #define DK_PAL_A2		9
171 #define DK_PAL_NICAM		10
172 #define DK_PAL_MONO		11
173 #define DK_SECAM_A2DK1		12
174 #define DK_SECAM_A2LDK3		13
175 #define DK_SECAM_A2MONO		14
176 #define L_SECAM_NICAM		15
177 #define LC_SECAM_NICAM		16
178 #define DTV6			17
179 #define DTV8			18
180 #define DTV7_8			19
181 #define DTV7			20
182 #define FM_RADIO_INPUT2		21
183 #define FM_RADIO_INPUT1		22
184 #define FM_RADIO_INPUT1_MONO	23
185 
186 static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = {
187 	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
188 	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
189 	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
190 	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
191 	{"B/G-PAL-A2",        0x0A00, 0x8049},
192 	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
193 	{"B/G-PAL-MONO",      0x0878, 0x8059},
194 	{"I-PAL-NICAM",       0x1080, 0x8009},
195 	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
196 	{"D/K-PAL-A2",        0x1600, 0x8009},
197 	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
198 	{"D/K-PAL-MONO",      0x1478, 0x8009},
199 	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
200 	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
201 	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
202 	{"L-SECAM-NICAM",     0x8E82, 0x0009},
203 	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
204 	{"DTV6",              0x00C0, 0x8002},
205 	{"DTV8",              0x00C0, 0x800B},
206 	{"DTV7/8",            0x00C0, 0x801B},
207 	{"DTV7",              0x00C0, 0x8007},
208 	{"FM Radio-INPUT2",   0x9802, 0x9002},
209 	{"FM Radio-INPUT1",   0x0208, 0x9002},
210 	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
211 };
212 
213 
214 struct xc5000_fw_cfg {
215 	char *name;
216 	u16 size;
217 	u16 pll_reg;
218 	u8 init_status_supported;
219 	u8 fw_checksum_supported;
220 };
221 
222 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
223 static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
224 	.name = XC5000A_FIRMWARE,
225 	.size = 12401,
226 	.pll_reg = 0x806c,
227 };
228 
229 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
230 static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
231 	.name = XC5000C_FIRMWARE,
232 	.size = 16497,
233 	.pll_reg = 0x13,
234 	.init_status_supported = 1,
235 	.fw_checksum_supported = 1,
236 };
237 
238 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
239 {
240 	switch (chip_id) {
241 	default:
242 	case XC5000A:
243 		return &xc5000a_1_6_114;
244 	case XC5000C:
245 		return &xc5000c_41_024_5;
246 	}
247 }
248 
249 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
250 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
251 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
252 static int xc5000_tuner_reset(struct dvb_frontend *fe);
253 
254 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
255 {
256 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
257 			       .flags = 0, .buf = buf, .len = len };
258 
259 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
260 		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
261 		return -EREMOTEIO;
262 	}
263 	return 0;
264 }
265 
266 #if 0
267 /* This routine is never used because the only time we read data from the
268    i2c bus is when we read registers, and we want that to be an atomic i2c
269    transaction in case we are on a multi-master bus */
270 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
271 {
272 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
273 		.flags = I2C_M_RD, .buf = buf, .len = len };
274 
275 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
276 		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
277 		return -EREMOTEIO;
278 	}
279 	return 0;
280 }
281 #endif
282 
283 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
284 {
285 	u8 buf[2] = { reg >> 8, reg & 0xff };
286 	u8 bval[2] = { 0, 0 };
287 	struct i2c_msg msg[2] = {
288 		{ .addr = priv->i2c_props.addr,
289 			.flags = 0, .buf = &buf[0], .len = 2 },
290 		{ .addr = priv->i2c_props.addr,
291 			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
292 	};
293 
294 	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
295 		printk(KERN_WARNING "xc5000: I2C read failed\n");
296 		return -EREMOTEIO;
297 	}
298 
299 	*val = (bval[0] << 8) | bval[1];
300 	return 0;
301 }
302 
303 static int xc5000_tuner_reset(struct dvb_frontend *fe)
304 {
305 	struct xc5000_priv *priv = fe->tuner_priv;
306 	int ret;
307 
308 	dprintk(1, "%s()\n", __func__);
309 
310 	if (fe->callback) {
311 		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
312 					   fe->dvb->priv :
313 					   priv->i2c_props.adap->algo_data,
314 					   DVB_FRONTEND_COMPONENT_TUNER,
315 					   XC5000_TUNER_RESET, 0);
316 		if (ret) {
317 			printk(KERN_ERR "xc5000: reset failed\n");
318 			return ret;
319 		}
320 	} else {
321 		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
322 		return -EINVAL;
323 	}
324 	return 0;
325 }
326 
327 static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data)
328 {
329 	u8 buf[4];
330 	int watch_dog_timer = 100;
331 	int result;
332 
333 	buf[0] = (reg_addr >> 8) & 0xFF;
334 	buf[1] = reg_addr & 0xFF;
335 	buf[2] = (i2c_data >> 8) & 0xFF;
336 	buf[3] = i2c_data & 0xFF;
337 	result = xc_send_i2c_data(priv, buf, 4);
338 	if (result == 0) {
339 		/* wait for busy flag to clear */
340 		while ((watch_dog_timer > 0) && (result == 0)) {
341 			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
342 			if (result == 0) {
343 				if ((buf[0] == 0) && (buf[1] == 0)) {
344 					/* busy flag cleared */
345 					break;
346 				} else {
347 					msleep(5); /* wait 5 ms */
348 					watch_dog_timer--;
349 				}
350 			}
351 		}
352 	}
353 	if (watch_dog_timer <= 0)
354 		result = -EREMOTEIO;
355 
356 	return result;
357 }
358 
359 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
360 {
361 	struct xc5000_priv *priv = fe->tuner_priv;
362 
363 	int i, nbytes_to_send, result;
364 	unsigned int len, pos, index;
365 	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
366 
367 	index = 0;
368 	while ((i2c_sequence[index] != 0xFF) ||
369 		(i2c_sequence[index + 1] != 0xFF)) {
370 		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
371 		if (len == 0x0000) {
372 			/* RESET command */
373 			result = xc5000_tuner_reset(fe);
374 			index += 2;
375 			if (result != 0)
376 				return result;
377 		} else if (len & 0x8000) {
378 			/* WAIT command */
379 			msleep(len & 0x7FFF);
380 			index += 2;
381 		} else {
382 			/* Send i2c data whilst ensuring individual transactions
383 			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
384 			 */
385 			index += 2;
386 			buf[0] = i2c_sequence[index];
387 			buf[1] = i2c_sequence[index + 1];
388 			pos = 2;
389 			while (pos < len) {
390 				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
391 					nbytes_to_send =
392 						XC_MAX_I2C_WRITE_LENGTH;
393 				else
394 					nbytes_to_send = (len - pos + 2);
395 				for (i = 2; i < nbytes_to_send; i++) {
396 					buf[i] = i2c_sequence[index + pos +
397 						i - 2];
398 				}
399 				result = xc_send_i2c_data(priv, buf,
400 					nbytes_to_send);
401 
402 				if (result != 0)
403 					return result;
404 
405 				pos += nbytes_to_send - 2;
406 			}
407 			index += len;
408 		}
409 	}
410 	return 0;
411 }
412 
413 static int xc_initialize(struct xc5000_priv *priv)
414 {
415 	dprintk(1, "%s()\n", __func__);
416 	return xc_write_reg(priv, XREG_INIT, 0);
417 }
418 
419 static int xc_set_tv_standard(struct xc5000_priv *priv,
420 	u16 video_mode, u16 audio_mode, u8 radio_mode)
421 {
422 	int ret;
423 	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
424 	if (radio_mode) {
425 		dprintk(1, "%s() Standard = %s\n",
426 			__func__,
427 			xc5000_standard[radio_mode].name);
428 	} else {
429 		dprintk(1, "%s() Standard = %s\n",
430 			__func__,
431 			xc5000_standard[priv->video_standard].name);
432 	}
433 
434 	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
435 	if (ret == 0)
436 		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
437 
438 	return ret;
439 }
440 
441 static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode)
442 {
443 	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
444 		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
445 
446 	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
447 		rf_mode = XC_RF_MODE_CABLE;
448 		printk(KERN_ERR
449 			"%s(), Invalid mode, defaulting to CABLE",
450 			__func__);
451 	}
452 	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
453 }
454 
455 static const struct dvb_tuner_ops xc5000_tuner_ops;
456 
457 static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz)
458 {
459 	u16 freq_code;
460 
461 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
462 
463 	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
464 		(freq_hz < xc5000_tuner_ops.info.frequency_min))
465 		return -EINVAL;
466 
467 	freq_code = (u16)(freq_hz / 15625);
468 
469 	/* Starting in firmware version 1.1.44, Xceive recommends using the
470 	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
471 	   only be used for fast scanning for channel lock) */
472 	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
473 }
474 
475 
476 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
477 {
478 	u32 freq_code = (freq_khz * 1024)/1000;
479 	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
480 		__func__, freq_khz, freq_code);
481 
482 	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
483 }
484 
485 
486 static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope)
487 {
488 	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
489 }
490 
491 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
492 {
493 	int result;
494 	u16 reg_data;
495 	u32 tmp;
496 
497 	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &reg_data);
498 	if (result != 0)
499 		return result;
500 
501 	tmp = (u32)reg_data;
502 	(*freq_error_hz) = (tmp * 15625) / 1000;
503 	return result;
504 }
505 
506 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
507 {
508 	return xc5000_readreg(priv, XREG_LOCK, lock_status);
509 }
510 
511 static int xc_get_version(struct xc5000_priv *priv,
512 	u8 *hw_majorversion, u8 *hw_minorversion,
513 	u8 *fw_majorversion, u8 *fw_minorversion)
514 {
515 	u16 data;
516 	int result;
517 
518 	result = xc5000_readreg(priv, XREG_VERSION, &data);
519 	if (result != 0)
520 		return result;
521 
522 	(*hw_majorversion) = (data >> 12) & 0x0F;
523 	(*hw_minorversion) = (data >>  8) & 0x0F;
524 	(*fw_majorversion) = (data >>  4) & 0x0F;
525 	(*fw_minorversion) = data & 0x0F;
526 
527 	return 0;
528 }
529 
530 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
531 {
532 	return xc5000_readreg(priv, XREG_BUILD, buildrev);
533 }
534 
535 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
536 {
537 	u16 reg_data;
538 	int result;
539 
540 	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &reg_data);
541 	if (result != 0)
542 		return result;
543 
544 	(*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100;
545 	return result;
546 }
547 
548 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
549 {
550 	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
551 }
552 
553 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
554 {
555 	return xc5000_readreg(priv, XREG_QUALITY, quality);
556 }
557 
558 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
559 {
560 	return xc5000_readreg(priv, XREG_SNR, snr);
561 }
562 
563 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
564 {
565 	return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
566 }
567 
568 static u16 wait_for_lock(struct xc5000_priv *priv)
569 {
570 	u16 lock_state = 0;
571 	int watch_dog_count = 40;
572 
573 	while ((lock_state == 0) && (watch_dog_count > 0)) {
574 		xc_get_lock_status(priv, &lock_state);
575 		if (lock_state != 1) {
576 			msleep(5);
577 			watch_dog_count--;
578 		}
579 	}
580 	return lock_state;
581 }
582 
583 #define XC_TUNE_ANALOG  0
584 #define XC_TUNE_DIGITAL 1
585 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
586 {
587 	int found = 0;
588 
589 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
590 
591 	if (xc_set_rf_frequency(priv, freq_hz) != 0)
592 		return 0;
593 
594 	if (mode == XC_TUNE_ANALOG) {
595 		if (wait_for_lock(priv) == 1)
596 			found = 1;
597 	}
598 
599 	return found;
600 }
601 
602 static int xc_set_xtal(struct dvb_frontend *fe)
603 {
604 	struct xc5000_priv *priv = fe->tuner_priv;
605 	int ret = 0;
606 
607 	switch (priv->chip_id) {
608 	default:
609 	case XC5000A:
610 		/* 32.000 MHz xtal is default */
611 		break;
612 	case XC5000C:
613 		switch (priv->xtal_khz) {
614 		default:
615 		case 32000:
616 			/* 32.000 MHz xtal is default */
617 			break;
618 		case 31875:
619 			/* 31.875 MHz xtal configuration */
620 			ret = xc_write_reg(priv, 0x000f, 0x8081);
621 			break;
622 		}
623 		break;
624 	}
625 	return ret;
626 }
627 
628 static int xc5000_fwupload(struct dvb_frontend *fe)
629 {
630 	struct xc5000_priv *priv = fe->tuner_priv;
631 	const struct firmware *fw;
632 	int ret;
633 	const struct xc5000_fw_cfg *desired_fw =
634 		xc5000_assign_firmware(priv->chip_id);
635 	priv->pll_register_no = desired_fw->pll_reg;
636 	priv->init_status_supported = desired_fw->init_status_supported;
637 	priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
638 
639 	/* request the firmware, this will block and timeout */
640 	printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
641 		desired_fw->name);
642 
643 	ret = request_firmware(&fw, desired_fw->name,
644 		priv->i2c_props.adap->dev.parent);
645 	if (ret) {
646 		printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
647 		goto out;
648 	} else {
649 		printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
650 		       fw->size);
651 		ret = 0;
652 	}
653 
654 	if (fw->size != desired_fw->size) {
655 		printk(KERN_ERR "xc5000: firmware incorrect size\n");
656 		ret = -EINVAL;
657 	} else {
658 		printk(KERN_INFO "xc5000: firmware uploading...\n");
659 		ret = xc_load_i2c_sequence(fe,  fw->data);
660 		if (0 == ret)
661 			ret = xc_set_xtal(fe);
662 		if (0 == ret)
663 			printk(KERN_INFO "xc5000: firmware upload complete...\n");
664 		else
665 			printk(KERN_ERR "xc5000: firmware upload failed...\n");
666 	}
667 
668 out:
669 	release_firmware(fw);
670 	return ret;
671 }
672 
673 static void xc_debug_dump(struct xc5000_priv *priv)
674 {
675 	u16 adc_envelope;
676 	u32 freq_error_hz = 0;
677 	u16 lock_status;
678 	u32 hsync_freq_hz = 0;
679 	u16 frame_lines;
680 	u16 quality;
681 	u16 snr;
682 	u16 totalgain;
683 	u8 hw_majorversion = 0, hw_minorversion = 0;
684 	u8 fw_majorversion = 0, fw_minorversion = 0;
685 	u16 fw_buildversion = 0;
686 	u16 regval;
687 
688 	/* Wait for stats to stabilize.
689 	 * Frame Lines needs two frame times after initial lock
690 	 * before it is valid.
691 	 */
692 	msleep(100);
693 
694 	xc_get_adc_envelope(priv,  &adc_envelope);
695 	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
696 
697 	xc_get_frequency_error(priv, &freq_error_hz);
698 	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
699 
700 	xc_get_lock_status(priv,  &lock_status);
701 	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
702 		lock_status);
703 
704 	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
705 		&fw_majorversion, &fw_minorversion);
706 	xc_get_buildversion(priv,  &fw_buildversion);
707 	dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
708 		hw_majorversion, hw_minorversion,
709 		fw_majorversion, fw_minorversion, fw_buildversion);
710 
711 	xc_get_hsync_freq(priv,  &hsync_freq_hz);
712 	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
713 
714 	xc_get_frame_lines(priv,  &frame_lines);
715 	dprintk(1, "*** Frame lines = %d\n", frame_lines);
716 
717 	xc_get_quality(priv,  &quality);
718 	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
719 
720 	xc_get_analogsnr(priv,  &snr);
721 	dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
722 
723 	xc_get_totalgain(priv,  &totalgain);
724 	dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
725 		(totalgain % 256) * 100 / 256);
726 
727 	if (priv->pll_register_no) {
728 		xc5000_readreg(priv, priv->pll_register_no, &regval);
729 		dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
730 	}
731 }
732 
733 static int xc5000_set_params(struct dvb_frontend *fe)
734 {
735 	int ret, b;
736 	struct xc5000_priv *priv = fe->tuner_priv;
737 	u32 bw = fe->dtv_property_cache.bandwidth_hz;
738 	u32 freq = fe->dtv_property_cache.frequency;
739 	u32 delsys  = fe->dtv_property_cache.delivery_system;
740 
741 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
742 		dprintk(1, "Unable to load firmware and init tuner\n");
743 		return -EINVAL;
744 	}
745 
746 	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
747 
748 	switch (delsys) {
749 	case SYS_ATSC:
750 		dprintk(1, "%s() VSB modulation\n", __func__);
751 		priv->rf_mode = XC_RF_MODE_AIR;
752 		priv->freq_hz = freq - 1750000;
753 		priv->video_standard = DTV6;
754 		break;
755 	case SYS_DVBC_ANNEX_B:
756 		dprintk(1, "%s() QAM modulation\n", __func__);
757 		priv->rf_mode = XC_RF_MODE_CABLE;
758 		priv->freq_hz = freq - 1750000;
759 		priv->video_standard = DTV6;
760 		break;
761 	case SYS_ISDBT:
762 		/* All ISDB-T are currently for 6 MHz bw */
763 		if (!bw)
764 			bw = 6000000;
765 		/* fall to OFDM handling */
766 	case SYS_DMBTH:
767 	case SYS_DVBT:
768 	case SYS_DVBT2:
769 		dprintk(1, "%s() OFDM\n", __func__);
770 		switch (bw) {
771 		case 6000000:
772 			priv->video_standard = DTV6;
773 			priv->freq_hz = freq - 1750000;
774 			break;
775 		case 7000000:
776 			priv->video_standard = DTV7;
777 			priv->freq_hz = freq - 2250000;
778 			break;
779 		case 8000000:
780 			priv->video_standard = DTV8;
781 			priv->freq_hz = freq - 2750000;
782 			break;
783 		default:
784 			printk(KERN_ERR "xc5000 bandwidth not set!\n");
785 			return -EINVAL;
786 		}
787 		priv->rf_mode = XC_RF_MODE_AIR;
788 		break;
789 	case SYS_DVBC_ANNEX_A:
790 	case SYS_DVBC_ANNEX_C:
791 		dprintk(1, "%s() QAM modulation\n", __func__);
792 		priv->rf_mode = XC_RF_MODE_CABLE;
793 		if (bw <= 6000000) {
794 			priv->video_standard = DTV6;
795 			priv->freq_hz = freq - 1750000;
796 			b = 6;
797 		} else if (bw <= 7000000) {
798 			priv->video_standard = DTV7;
799 			priv->freq_hz = freq - 2250000;
800 			b = 7;
801 		} else {
802 			priv->video_standard = DTV7_8;
803 			priv->freq_hz = freq - 2750000;
804 			b = 8;
805 		}
806 		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
807 			b, bw);
808 		break;
809 	default:
810 		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
811 		return -EINVAL;
812 	}
813 
814 	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
815 		__func__, freq, priv->freq_hz);
816 
817 	ret = xc_set_signal_source(priv, priv->rf_mode);
818 	if (ret != 0) {
819 		printk(KERN_ERR
820 			"xc5000: xc_set_signal_source(%d) failed\n",
821 			priv->rf_mode);
822 		return -EREMOTEIO;
823 	}
824 
825 	ret = xc_set_tv_standard(priv,
826 		xc5000_standard[priv->video_standard].video_mode,
827 		xc5000_standard[priv->video_standard].audio_mode, 0);
828 	if (ret != 0) {
829 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
830 		return -EREMOTEIO;
831 	}
832 
833 	ret = xc_set_IF_frequency(priv, priv->if_khz);
834 	if (ret != 0) {
835 		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
836 		       priv->if_khz);
837 		return -EIO;
838 	}
839 
840 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
841 
842 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
843 
844 	if (debug)
845 		xc_debug_dump(priv);
846 
847 	priv->bandwidth = bw;
848 
849 	return 0;
850 }
851 
852 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
853 {
854 	struct xc5000_priv *priv = fe->tuner_priv;
855 	int ret;
856 	u16 id;
857 
858 	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
859 	if (ret == 0) {
860 		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
861 			ret = -ENOENT;
862 		else
863 			ret = 0;
864 	}
865 
866 	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
867 		ret == 0 ? "True" : "False", id);
868 	return ret;
869 }
870 
871 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
872 	struct analog_parameters *params)
873 {
874 	struct xc5000_priv *priv = fe->tuner_priv;
875 	u16 pll_lock_status;
876 	int ret;
877 
878 	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
879 		__func__, params->frequency);
880 
881 	/* Fix me: it could be air. */
882 	priv->rf_mode = params->mode;
883 	if (params->mode > XC_RF_MODE_CABLE)
884 		priv->rf_mode = XC_RF_MODE_CABLE;
885 
886 	/* params->frequency is in units of 62.5khz */
887 	priv->freq_hz = params->frequency * 62500;
888 
889 	/* FIX ME: Some video standards may have several possible audio
890 		   standards. We simply default to one of them here.
891 	 */
892 	if (params->std & V4L2_STD_MN) {
893 		/* default to BTSC audio standard */
894 		priv->video_standard = MN_NTSC_PAL_BTSC;
895 		goto tune_channel;
896 	}
897 
898 	if (params->std & V4L2_STD_PAL_BG) {
899 		/* default to NICAM audio standard */
900 		priv->video_standard = BG_PAL_NICAM;
901 		goto tune_channel;
902 	}
903 
904 	if (params->std & V4L2_STD_PAL_I) {
905 		/* default to NICAM audio standard */
906 		priv->video_standard = I_PAL_NICAM;
907 		goto tune_channel;
908 	}
909 
910 	if (params->std & V4L2_STD_PAL_DK) {
911 		/* default to NICAM audio standard */
912 		priv->video_standard = DK_PAL_NICAM;
913 		goto tune_channel;
914 	}
915 
916 	if (params->std & V4L2_STD_SECAM_DK) {
917 		/* default to A2 DK1 audio standard */
918 		priv->video_standard = DK_SECAM_A2DK1;
919 		goto tune_channel;
920 	}
921 
922 	if (params->std & V4L2_STD_SECAM_L) {
923 		priv->video_standard = L_SECAM_NICAM;
924 		goto tune_channel;
925 	}
926 
927 	if (params->std & V4L2_STD_SECAM_LC) {
928 		priv->video_standard = LC_SECAM_NICAM;
929 		goto tune_channel;
930 	}
931 
932 tune_channel:
933 	ret = xc_set_signal_source(priv, priv->rf_mode);
934 	if (ret != 0) {
935 		printk(KERN_ERR
936 			"xc5000: xc_set_signal_source(%d) failed\n",
937 			priv->rf_mode);
938 		return -EREMOTEIO;
939 	}
940 
941 	ret = xc_set_tv_standard(priv,
942 		xc5000_standard[priv->video_standard].video_mode,
943 		xc5000_standard[priv->video_standard].audio_mode, 0);
944 	if (ret != 0) {
945 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
946 		return -EREMOTEIO;
947 	}
948 
949 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
950 
951 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
952 
953 	if (debug)
954 		xc_debug_dump(priv);
955 
956 	if (priv->pll_register_no != 0) {
957 		msleep(20);
958 		xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
959 		if (pll_lock_status > 63) {
960 			/* PLL is unlocked, force reload of the firmware */
961 			dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
962 				pll_lock_status);
963 			if (xc_load_fw_and_init_tuner(fe, 1) != 0) {
964 				printk(KERN_ERR "xc5000: Unable to reload fw\n");
965 				return -EREMOTEIO;
966 			}
967 			goto tune_channel;
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
975 	struct analog_parameters *params)
976 {
977 	struct xc5000_priv *priv = fe->tuner_priv;
978 	int ret = -EINVAL;
979 	u8 radio_input;
980 
981 	dprintk(1, "%s() frequency=%d (in units of khz)\n",
982 		__func__, params->frequency);
983 
984 	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
985 		dprintk(1, "%s() radio input not configured\n", __func__);
986 		return -EINVAL;
987 	}
988 
989 	if (priv->radio_input == XC5000_RADIO_FM1)
990 		radio_input = FM_RADIO_INPUT1;
991 	else if  (priv->radio_input == XC5000_RADIO_FM2)
992 		radio_input = FM_RADIO_INPUT2;
993 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
994 		radio_input = FM_RADIO_INPUT1_MONO;
995 	else {
996 		dprintk(1, "%s() unknown radio input %d\n", __func__,
997 			priv->radio_input);
998 		return -EINVAL;
999 	}
1000 
1001 	priv->freq_hz = params->frequency * 125 / 2;
1002 
1003 	priv->rf_mode = XC_RF_MODE_AIR;
1004 
1005 	ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode,
1006 			       xc5000_standard[radio_input].audio_mode, radio_input);
1007 
1008 	if (ret != 0) {
1009 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
1010 		return -EREMOTEIO;
1011 	}
1012 
1013 	ret = xc_set_signal_source(priv, priv->rf_mode);
1014 	if (ret != 0) {
1015 		printk(KERN_ERR
1016 			"xc5000: xc_set_signal_source(%d) failed\n",
1017 			priv->rf_mode);
1018 		return -EREMOTEIO;
1019 	}
1020 
1021 	if ((priv->radio_input == XC5000_RADIO_FM1) ||
1022 				(priv->radio_input == XC5000_RADIO_FM2))
1023 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
1024 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1025 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
1026 
1027 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
1028 
1029 	return 0;
1030 }
1031 
1032 static int xc5000_set_analog_params(struct dvb_frontend *fe,
1033 			     struct analog_parameters *params)
1034 {
1035 	struct xc5000_priv *priv = fe->tuner_priv;
1036 	int ret = -EINVAL;
1037 
1038 	if (priv->i2c_props.adap == NULL)
1039 		return -EINVAL;
1040 
1041 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1042 		dprintk(1, "Unable to load firmware and init tuner\n");
1043 		return -EINVAL;
1044 	}
1045 
1046 	switch (params->mode) {
1047 	case V4L2_TUNER_RADIO:
1048 		ret = xc5000_set_radio_freq(fe, params);
1049 		break;
1050 	case V4L2_TUNER_ANALOG_TV:
1051 	case V4L2_TUNER_DIGITAL_TV:
1052 		ret = xc5000_set_tv_freq(fe, params);
1053 		break;
1054 	}
1055 
1056 	return ret;
1057 }
1058 
1059 
1060 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1061 {
1062 	struct xc5000_priv *priv = fe->tuner_priv;
1063 	dprintk(1, "%s()\n", __func__);
1064 	*freq = priv->freq_hz;
1065 	return 0;
1066 }
1067 
1068 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
1069 {
1070 	struct xc5000_priv *priv = fe->tuner_priv;
1071 	dprintk(1, "%s()\n", __func__);
1072 	*freq = priv->if_khz * 1000;
1073 	return 0;
1074 }
1075 
1076 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1077 {
1078 	struct xc5000_priv *priv = fe->tuner_priv;
1079 	dprintk(1, "%s()\n", __func__);
1080 
1081 	*bw = priv->bandwidth;
1082 	return 0;
1083 }
1084 
1085 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
1086 {
1087 	struct xc5000_priv *priv = fe->tuner_priv;
1088 	u16 lock_status = 0;
1089 
1090 	xc_get_lock_status(priv, &lock_status);
1091 
1092 	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1093 
1094 	*status = lock_status;
1095 
1096 	return 0;
1097 }
1098 
1099 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1100 {
1101 	struct xc5000_priv *priv = fe->tuner_priv;
1102 	int ret = 0;
1103 	u16 pll_lock_status;
1104 	u16 fw_ck;
1105 
1106 	cancel_delayed_work(&priv->timer_sleep);
1107 
1108 	if (force || xc5000_is_firmware_loaded(fe) != 0) {
1109 
1110 fw_retry:
1111 
1112 		ret = xc5000_fwupload(fe);
1113 		if (ret != 0)
1114 			return ret;
1115 
1116 		msleep(20);
1117 
1118 		if (priv->fw_checksum_supported) {
1119 			if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)
1120 			    != 0) {
1121 				dprintk(1, "%s() FW checksum reading failed.\n",
1122 					__func__);
1123 				goto fw_retry;
1124 			}
1125 
1126 			if (fw_ck == 0) {
1127 				dprintk(1, "%s() FW checksum failed = 0x%04x\n",
1128 					__func__, fw_ck);
1129 				goto fw_retry;
1130 			}
1131 		}
1132 
1133 		/* Start the tuner self-calibration process */
1134 		ret |= xc_initialize(priv);
1135 
1136 		if (ret != 0)
1137 			goto fw_retry;
1138 
1139 		/* Wait for calibration to complete.
1140 		 * We could continue but XC5000 will clock stretch subsequent
1141 		 * I2C transactions until calibration is complete.  This way we
1142 		 * don't have to rely on clock stretching working.
1143 		 */
1144 		msleep(100);
1145 
1146 		if (priv->init_status_supported) {
1147 			if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck) != 0) {
1148 				dprintk(1, "%s() FW failed reading init status.\n",
1149 					__func__);
1150 				goto fw_retry;
1151 			}
1152 
1153 			if (fw_ck == 0) {
1154 				dprintk(1, "%s() FW init status failed = 0x%04x\n", __func__, fw_ck);
1155 				goto fw_retry;
1156 			}
1157 		}
1158 
1159 		if (priv->pll_register_no) {
1160 			xc5000_readreg(priv, priv->pll_register_no,
1161 				       &pll_lock_status);
1162 			if (pll_lock_status > 63) {
1163 				/* PLL is unlocked, force reload of the firmware */
1164 				printk(KERN_ERR "xc5000: PLL not running after fwload.\n");
1165 				goto fw_retry;
1166 			}
1167 		}
1168 
1169 		/* Default to "CABLE" mode */
1170 		ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 static void xc5000_do_timer_sleep(struct work_struct *timer_sleep)
1177 {
1178 	struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv,
1179 					       timer_sleep.work);
1180 	struct dvb_frontend *fe = priv->fe;
1181 	int ret;
1182 
1183 	dprintk(1, "%s()\n", __func__);
1184 
1185 	/* According to Xceive technical support, the "powerdown" register
1186 	   was removed in newer versions of the firmware.  The "supported"
1187 	   way to sleep the tuner is to pull the reset pin low for 10ms */
1188 	ret = xc5000_tuner_reset(fe);
1189 	if (ret != 0)
1190 		printk(KERN_ERR
1191 			"xc5000: %s() unable to shutdown tuner\n",
1192 			__func__);
1193 }
1194 
1195 static int xc5000_sleep(struct dvb_frontend *fe)
1196 {
1197 	struct xc5000_priv *priv = fe->tuner_priv;
1198 
1199 	dprintk(1, "%s()\n", __func__);
1200 
1201 	/* Avoid firmware reload on slow devices */
1202 	if (no_poweroff)
1203 		return 0;
1204 
1205 	schedule_delayed_work(&priv->timer_sleep,
1206 			      msecs_to_jiffies(XC5000_SLEEP_TIME));
1207 
1208 	return 0;
1209 }
1210 
1211 static int xc5000_init(struct dvb_frontend *fe)
1212 {
1213 	struct xc5000_priv *priv = fe->tuner_priv;
1214 	dprintk(1, "%s()\n", __func__);
1215 
1216 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1217 		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1218 		return -EREMOTEIO;
1219 	}
1220 
1221 	if (debug)
1222 		xc_debug_dump(priv);
1223 
1224 	return 0;
1225 }
1226 
1227 static int xc5000_release(struct dvb_frontend *fe)
1228 {
1229 	struct xc5000_priv *priv = fe->tuner_priv;
1230 
1231 	dprintk(1, "%s()\n", __func__);
1232 
1233 	mutex_lock(&xc5000_list_mutex);
1234 
1235 	if (priv) {
1236 		cancel_delayed_work(&priv->timer_sleep);
1237 		hybrid_tuner_release_state(priv);
1238 	}
1239 
1240 	mutex_unlock(&xc5000_list_mutex);
1241 
1242 	fe->tuner_priv = NULL;
1243 
1244 	return 0;
1245 }
1246 
1247 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1248 {
1249 	struct xc5000_priv *priv = fe->tuner_priv;
1250 	struct xc5000_config *p = priv_cfg;
1251 
1252 	dprintk(1, "%s()\n", __func__);
1253 
1254 	if (p->if_khz)
1255 		priv->if_khz = p->if_khz;
1256 
1257 	if (p->radio_input)
1258 		priv->radio_input = p->radio_input;
1259 
1260 	return 0;
1261 }
1262 
1263 
1264 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1265 	.info = {
1266 		.name           = "Xceive XC5000",
1267 		.frequency_min  =    1000000,
1268 		.frequency_max  = 1023000000,
1269 		.frequency_step =      50000,
1270 	},
1271 
1272 	.release	   = xc5000_release,
1273 	.init		   = xc5000_init,
1274 	.sleep		   = xc5000_sleep,
1275 
1276 	.set_config	   = xc5000_set_config,
1277 	.set_params	   = xc5000_set_params,
1278 	.set_analog_params = xc5000_set_analog_params,
1279 	.get_frequency	   = xc5000_get_frequency,
1280 	.get_if_frequency  = xc5000_get_if_frequency,
1281 	.get_bandwidth	   = xc5000_get_bandwidth,
1282 	.get_status	   = xc5000_get_status
1283 };
1284 
1285 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1286 				   struct i2c_adapter *i2c,
1287 				   const struct xc5000_config *cfg)
1288 {
1289 	struct xc5000_priv *priv = NULL;
1290 	int instance;
1291 	u16 id = 0;
1292 
1293 	dprintk(1, "%s(%d-%04x)\n", __func__,
1294 		i2c ? i2c_adapter_id(i2c) : -1,
1295 		cfg ? cfg->i2c_address : -1);
1296 
1297 	mutex_lock(&xc5000_list_mutex);
1298 
1299 	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1300 					      hybrid_tuner_instance_list,
1301 					      i2c, cfg->i2c_address, "xc5000");
1302 	switch (instance) {
1303 	case 0:
1304 		goto fail;
1305 		break;
1306 	case 1:
1307 		/* new tuner instance */
1308 		priv->bandwidth = 6000000;
1309 		fe->tuner_priv = priv;
1310 		priv->fe = fe;
1311 		INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep);
1312 		break;
1313 	default:
1314 		/* existing tuner instance */
1315 		fe->tuner_priv = priv;
1316 		break;
1317 	}
1318 
1319 	if (priv->if_khz == 0) {
1320 		/* If the IF hasn't been set yet, use the value provided by
1321 		   the caller (occurs in hybrid devices where the analog
1322 		   call to xc5000_attach occurs before the digital side) */
1323 		priv->if_khz = cfg->if_khz;
1324 	}
1325 
1326 	if (priv->xtal_khz == 0)
1327 		priv->xtal_khz = cfg->xtal_khz;
1328 
1329 	if (priv->radio_input == 0)
1330 		priv->radio_input = cfg->radio_input;
1331 
1332 	/* don't override chip id if it's already been set
1333 	   unless explicitly specified */
1334 	if ((priv->chip_id == 0) || (cfg->chip_id))
1335 		/* use default chip id if none specified, set to 0 so
1336 		   it can be overridden if this is a hybrid driver */
1337 		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1338 
1339 	/* Check if firmware has been loaded. It is possible that another
1340 	   instance of the driver has loaded the firmware.
1341 	 */
1342 	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1343 		goto fail;
1344 
1345 	switch (id) {
1346 	case XC_PRODUCT_ID_FW_LOADED:
1347 		printk(KERN_INFO
1348 			"xc5000: Successfully identified at address 0x%02x\n",
1349 			cfg->i2c_address);
1350 		printk(KERN_INFO
1351 			"xc5000: Firmware has been loaded previously\n");
1352 		break;
1353 	case XC_PRODUCT_ID_FW_NOT_LOADED:
1354 		printk(KERN_INFO
1355 			"xc5000: Successfully identified at address 0x%02x\n",
1356 			cfg->i2c_address);
1357 		printk(KERN_INFO
1358 			"xc5000: Firmware has not been loaded previously\n");
1359 		break;
1360 	default:
1361 		printk(KERN_ERR
1362 			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
1363 			cfg->i2c_address, id);
1364 		goto fail;
1365 	}
1366 
1367 	mutex_unlock(&xc5000_list_mutex);
1368 
1369 	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1370 		sizeof(struct dvb_tuner_ops));
1371 
1372 	return fe;
1373 fail:
1374 	mutex_unlock(&xc5000_list_mutex);
1375 
1376 	xc5000_release(fe);
1377 	return NULL;
1378 }
1379 EXPORT_SYMBOL(xc5000_attach);
1380 
1381 MODULE_AUTHOR("Steven Toth");
1382 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1383 MODULE_LICENSE("GPL");
1384 MODULE_FIRMWARE(XC5000A_FIRMWARE);
1385 MODULE_FIRMWARE(XC5000C_FIRMWARE);
1386