1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Sharp QM1D1C0042 8PSK tuner driver 4 * 5 * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com> 6 */ 7 8 /* 9 * NOTICE: 10 * As the disclosed information on the chip is very limited, 11 * this driver lacks some features, including chip config like IF freq. 12 * It assumes that users of this driver (such as a PCI bridge of 13 * DTV receiver cards) know the relevant info and 14 * configure the chip via I2C if necessary. 15 * 16 * Currently, PT3 driver is the only one that uses this driver, 17 * and contains init/config code in its firmware. 18 * Thus some part of the code might be dependent on PT3 specific config. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/math64.h> 23 #include "qm1d1c0042.h" 24 25 #define QM1D1C0042_NUM_REGS 0x20 26 #define QM1D1C0042_NUM_REG_ROWS 2 27 28 static const u8 29 reg_initval[QM1D1C0042_NUM_REG_ROWS][QM1D1C0042_NUM_REGS] = { { 30 0x48, 0x1c, 0xa0, 0x10, 0xbc, 0xc5, 0x20, 0x33, 31 0x06, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 32 0x00, 0xff, 0xf3, 0x00, 0x2a, 0x64, 0xa6, 0x86, 33 0x8c, 0xcf, 0xb8, 0xf1, 0xa8, 0xf2, 0x89, 0x00 34 }, { 35 0x68, 0x1c, 0xc0, 0x10, 0xbc, 0xc1, 0x11, 0x33, 36 0x03, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 37 0x00, 0xff, 0xf3, 0x00, 0x3f, 0x25, 0x5c, 0xd6, 38 0x55, 0xcf, 0x95, 0xf6, 0x36, 0xf2, 0x09, 0x00 39 } 40 }; 41 42 static int reg_index; 43 44 static const struct qm1d1c0042_config default_cfg = { 45 .xtal_freq = 16000, 46 .lpf = 1, 47 .fast_srch = 0, 48 .lpf_wait = 20, 49 .fast_srch_wait = 4, 50 .normal_srch_wait = 15, 51 }; 52 53 struct qm1d1c0042_state { 54 struct qm1d1c0042_config cfg; 55 struct i2c_client *i2c; 56 u8 regs[QM1D1C0042_NUM_REGS]; 57 }; 58 59 static struct qm1d1c0042_state *cfg_to_state(struct qm1d1c0042_config *c) 60 { 61 return container_of(c, struct qm1d1c0042_state, cfg); 62 } 63 64 static int reg_write(struct qm1d1c0042_state *state, u8 reg, u8 val) 65 { 66 u8 wbuf[2] = { reg, val }; 67 int ret; 68 69 ret = i2c_master_send(state->i2c, wbuf, sizeof(wbuf)); 70 if (ret >= 0 && ret < sizeof(wbuf)) 71 ret = -EIO; 72 return (ret == sizeof(wbuf)) ? 0 : ret; 73 } 74 75 static int reg_read(struct qm1d1c0042_state *state, u8 reg, u8 *val) 76 { 77 struct i2c_msg msgs[2] = { 78 { 79 .addr = state->i2c->addr, 80 .flags = 0, 81 .buf = ®, 82 .len = 1, 83 }, 84 { 85 .addr = state->i2c->addr, 86 .flags = I2C_M_RD, 87 .buf = val, 88 .len = 1, 89 }, 90 }; 91 int ret; 92 93 ret = i2c_transfer(state->i2c->adapter, msgs, ARRAY_SIZE(msgs)); 94 if (ret >= 0 && ret < ARRAY_SIZE(msgs)) 95 ret = -EIO; 96 return (ret == ARRAY_SIZE(msgs)) ? 0 : ret; 97 } 98 99 100 static int qm1d1c0042_set_srch_mode(struct qm1d1c0042_state *state, bool fast) 101 { 102 if (fast) 103 state->regs[0x03] |= 0x01; /* set fast search mode */ 104 else 105 state->regs[0x03] &= ~0x01 & 0xff; 106 107 return reg_write(state, 0x03, state->regs[0x03]); 108 } 109 110 static int qm1d1c0042_wakeup(struct qm1d1c0042_state *state) 111 { 112 int ret; 113 114 state->regs[0x01] |= 1 << 3; /* BB_Reg_enable */ 115 state->regs[0x01] &= (~(1 << 0)) & 0xff; /* NORMAL (wake-up) */ 116 state->regs[0x05] &= (~(1 << 3)) & 0xff; /* pfd_rst NORMAL */ 117 ret = reg_write(state, 0x01, state->regs[0x01]); 118 if (ret == 0) 119 ret = reg_write(state, 0x05, state->regs[0x05]); 120 121 if (ret < 0) 122 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 123 __func__, state->cfg.fe->dvb->num, state->cfg.fe->id); 124 return ret; 125 } 126 127 /* tuner_ops */ 128 129 static int qm1d1c0042_set_config(struct dvb_frontend *fe, void *priv_cfg) 130 { 131 struct qm1d1c0042_state *state; 132 struct qm1d1c0042_config *cfg; 133 134 state = fe->tuner_priv; 135 cfg = priv_cfg; 136 137 if (cfg->fe) 138 state->cfg.fe = cfg->fe; 139 140 if (cfg->xtal_freq != QM1D1C0042_CFG_XTAL_DFLT) 141 dev_warn(&state->i2c->dev, 142 "(%s) changing xtal_freq not supported. ", __func__); 143 state->cfg.xtal_freq = default_cfg.xtal_freq; 144 145 state->cfg.lpf = cfg->lpf; 146 state->cfg.fast_srch = cfg->fast_srch; 147 148 if (cfg->lpf_wait != QM1D1C0042_CFG_WAIT_DFLT) 149 state->cfg.lpf_wait = cfg->lpf_wait; 150 else 151 state->cfg.lpf_wait = default_cfg.lpf_wait; 152 153 if (cfg->fast_srch_wait != QM1D1C0042_CFG_WAIT_DFLT) 154 state->cfg.fast_srch_wait = cfg->fast_srch_wait; 155 else 156 state->cfg.fast_srch_wait = default_cfg.fast_srch_wait; 157 158 if (cfg->normal_srch_wait != QM1D1C0042_CFG_WAIT_DFLT) 159 state->cfg.normal_srch_wait = cfg->normal_srch_wait; 160 else 161 state->cfg.normal_srch_wait = default_cfg.normal_srch_wait; 162 return 0; 163 } 164 165 /* divisor, vco_band parameters */ 166 /* {maxfreq, param1(band?), param2(div?) */ 167 static const u32 conv_table[9][3] = { 168 { 2151000, 1, 7 }, 169 { 1950000, 1, 6 }, 170 { 1800000, 1, 5 }, 171 { 1600000, 1, 4 }, 172 { 1450000, 1, 3 }, 173 { 1250000, 1, 2 }, 174 { 1200000, 0, 7 }, 175 { 975000, 0, 6 }, 176 { 950000, 0, 0 } 177 }; 178 179 static int qm1d1c0042_set_params(struct dvb_frontend *fe) 180 { 181 struct qm1d1c0042_state *state; 182 u32 freq; 183 int i, ret; 184 u8 val, mask; 185 u32 a, sd; 186 s32 b; 187 188 state = fe->tuner_priv; 189 freq = fe->dtv_property_cache.frequency; 190 191 state->regs[0x08] &= 0xf0; 192 state->regs[0x08] |= 0x09; 193 194 state->regs[0x13] &= 0x9f; 195 state->regs[0x13] |= 0x20; 196 197 /* div2/vco_band */ 198 val = state->regs[0x02] & 0x0f; 199 for (i = 0; i < 8; i++) 200 if (freq < conv_table[i][0] && freq >= conv_table[i + 1][0]) { 201 val |= conv_table[i][1] << 7; 202 val |= conv_table[i][2] << 4; 203 break; 204 } 205 ret = reg_write(state, 0x02, val); 206 if (ret < 0) 207 return ret; 208 209 a = (freq + state->cfg.xtal_freq / 2) / state->cfg.xtal_freq; 210 211 state->regs[0x06] &= 0x40; 212 state->regs[0x06] |= (a - 12) / 4; 213 ret = reg_write(state, 0x06, state->regs[0x06]); 214 if (ret < 0) 215 return ret; 216 217 state->regs[0x07] &= 0xf0; 218 state->regs[0x07] |= (a - 4 * ((a - 12) / 4 + 1) - 5) & 0x0f; 219 ret = reg_write(state, 0x07, state->regs[0x07]); 220 if (ret < 0) 221 return ret; 222 223 /* LPF */ 224 val = state->regs[0x08]; 225 if (state->cfg.lpf) { 226 /* LPF_CLK, LPF_FC */ 227 val &= 0xf0; 228 val |= 0x02; 229 } 230 ret = reg_write(state, 0x08, val); 231 if (ret < 0) 232 return ret; 233 234 /* 235 * b = (freq / state->cfg.xtal_freq - a) << 20; 236 * sd = b (b >= 0) 237 * 1<<22 + b (b < 0) 238 */ 239 b = (s32)div64_s64(((s64) freq) << 20, state->cfg.xtal_freq) 240 - (((s64) a) << 20); 241 242 if (b >= 0) 243 sd = b; 244 else 245 sd = (1 << 22) + b; 246 247 state->regs[0x09] &= 0xc0; 248 state->regs[0x09] |= (sd >> 16) & 0x3f; 249 state->regs[0x0a] = (sd >> 8) & 0xff; 250 state->regs[0x0b] = sd & 0xff; 251 ret = reg_write(state, 0x09, state->regs[0x09]); 252 if (ret == 0) 253 ret = reg_write(state, 0x0a, state->regs[0x0a]); 254 if (ret == 0) 255 ret = reg_write(state, 0x0b, state->regs[0x0b]); 256 if (ret != 0) 257 return ret; 258 259 if (!state->cfg.lpf) { 260 /* CSEL_Offset */ 261 ret = reg_write(state, 0x13, state->regs[0x13]); 262 if (ret < 0) 263 return ret; 264 } 265 266 /* VCO_TM, LPF_TM */ 267 mask = state->cfg.lpf ? 0x3f : 0x7f; 268 val = state->regs[0x0c] & mask; 269 ret = reg_write(state, 0x0c, val); 270 if (ret < 0) 271 return ret; 272 usleep_range(2000, 3000); 273 val = state->regs[0x0c] | ~mask; 274 ret = reg_write(state, 0x0c, val); 275 if (ret < 0) 276 return ret; 277 278 if (state->cfg.lpf) 279 msleep(state->cfg.lpf_wait); 280 else if (state->regs[0x03] & 0x01) 281 msleep(state->cfg.fast_srch_wait); 282 else 283 msleep(state->cfg.normal_srch_wait); 284 285 if (state->cfg.lpf) { 286 /* LPF_FC */ 287 ret = reg_write(state, 0x08, 0x09); 288 if (ret < 0) 289 return ret; 290 291 /* CSEL_Offset */ 292 ret = reg_write(state, 0x13, state->regs[0x13]); 293 if (ret < 0) 294 return ret; 295 } 296 return 0; 297 } 298 299 static int qm1d1c0042_sleep(struct dvb_frontend *fe) 300 { 301 struct qm1d1c0042_state *state; 302 int ret; 303 304 state = fe->tuner_priv; 305 state->regs[0x01] &= (~(1 << 3)) & 0xff; /* BB_Reg_disable */ 306 state->regs[0x01] |= 1 << 0; /* STDBY */ 307 state->regs[0x05] |= 1 << 3; /* pfd_rst STANDBY */ 308 ret = reg_write(state, 0x05, state->regs[0x05]); 309 if (ret == 0) 310 ret = reg_write(state, 0x01, state->regs[0x01]); 311 if (ret < 0) 312 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 313 __func__, fe->dvb->num, fe->id); 314 return ret; 315 } 316 317 static int qm1d1c0042_init(struct dvb_frontend *fe) 318 { 319 struct qm1d1c0042_state *state; 320 u8 val; 321 int i, ret; 322 323 state = fe->tuner_priv; 324 325 reg_write(state, 0x01, 0x0c); 326 reg_write(state, 0x01, 0x0c); 327 328 ret = reg_write(state, 0x01, 0x0c); /* soft reset on */ 329 if (ret < 0) 330 goto failed; 331 usleep_range(2000, 3000); 332 333 ret = reg_write(state, 0x01, 0x1c); /* soft reset off */ 334 if (ret < 0) 335 goto failed; 336 337 /* check ID and choose initial registers corresponding ID */ 338 ret = reg_read(state, 0x00, &val); 339 if (ret < 0) 340 goto failed; 341 for (reg_index = 0; reg_index < QM1D1C0042_NUM_REG_ROWS; 342 reg_index++) { 343 if (val == reg_initval[reg_index][0x00]) 344 break; 345 } 346 if (reg_index >= QM1D1C0042_NUM_REG_ROWS) 347 goto failed; 348 memcpy(state->regs, reg_initval[reg_index], QM1D1C0042_NUM_REGS); 349 usleep_range(2000, 3000); 350 351 state->regs[0x0c] |= 0x40; 352 ret = reg_write(state, 0x0c, state->regs[0x0c]); 353 if (ret < 0) 354 goto failed; 355 msleep(state->cfg.lpf_wait); 356 357 /* set all writable registers */ 358 for (i = 1; i <= 0x0c ; i++) { 359 ret = reg_write(state, i, state->regs[i]); 360 if (ret < 0) 361 goto failed; 362 } 363 for (i = 0x11; i < QM1D1C0042_NUM_REGS; i++) { 364 ret = reg_write(state, i, state->regs[i]); 365 if (ret < 0) 366 goto failed; 367 } 368 369 ret = qm1d1c0042_wakeup(state); 370 if (ret < 0) 371 goto failed; 372 373 ret = qm1d1c0042_set_srch_mode(state, state->cfg.fast_srch); 374 if (ret < 0) 375 goto failed; 376 377 return ret; 378 379 failed: 380 dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", 381 __func__, fe->dvb->num, fe->id); 382 return ret; 383 } 384 385 /* I2C driver functions */ 386 387 static const struct dvb_tuner_ops qm1d1c0042_ops = { 388 .info = { 389 .name = "Sharp QM1D1C0042", 390 391 .frequency_min_hz = 950 * MHz, 392 .frequency_max_hz = 2150 * MHz, 393 }, 394 395 .init = qm1d1c0042_init, 396 .sleep = qm1d1c0042_sleep, 397 .set_config = qm1d1c0042_set_config, 398 .set_params = qm1d1c0042_set_params, 399 }; 400 401 402 static int qm1d1c0042_probe(struct i2c_client *client, 403 const struct i2c_device_id *id) 404 { 405 struct qm1d1c0042_state *state; 406 struct qm1d1c0042_config *cfg; 407 struct dvb_frontend *fe; 408 409 state = kzalloc(sizeof(*state), GFP_KERNEL); 410 if (!state) 411 return -ENOMEM; 412 state->i2c = client; 413 414 cfg = client->dev.platform_data; 415 fe = cfg->fe; 416 fe->tuner_priv = state; 417 qm1d1c0042_set_config(fe, cfg); 418 memcpy(&fe->ops.tuner_ops, &qm1d1c0042_ops, sizeof(qm1d1c0042_ops)); 419 420 i2c_set_clientdata(client, &state->cfg); 421 dev_info(&client->dev, "Sharp QM1D1C0042 attached.\n"); 422 return 0; 423 } 424 425 static int qm1d1c0042_remove(struct i2c_client *client) 426 { 427 struct qm1d1c0042_state *state; 428 429 state = cfg_to_state(i2c_get_clientdata(client)); 430 state->cfg.fe->tuner_priv = NULL; 431 kfree(state); 432 return 0; 433 } 434 435 436 static const struct i2c_device_id qm1d1c0042_id[] = { 437 {"qm1d1c0042", 0}, 438 {} 439 }; 440 MODULE_DEVICE_TABLE(i2c, qm1d1c0042_id); 441 442 static struct i2c_driver qm1d1c0042_driver = { 443 .driver = { 444 .name = "qm1d1c0042", 445 }, 446 .probe = qm1d1c0042_probe, 447 .remove = qm1d1c0042_remove, 448 .id_table = qm1d1c0042_id, 449 }; 450 451 module_i2c_driver(qm1d1c0042_driver); 452 453 MODULE_DESCRIPTION("Sharp QM1D1C0042 tuner"); 454 MODULE_AUTHOR("Akihiro TSUKADA"); 455 MODULE_LICENSE("GPL"); 456