1 /* 2 * Driver for mt2063 Micronas tuner 3 * 4 * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com> 5 * 6 * This driver came from a driver originally written by: 7 * Henry Wang <Henry.wang@AzureWave.com> 8 * Made publicly available by Terratec, at: 9 * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz 10 * The original driver's license is GPL, as declared with MODULE_LICENSE() 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation under version 2 of the License. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 */ 21 22 #include <linux/init.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/string.h> 26 #include <linux/videodev2.h> 27 28 #include "mt2063.h" 29 30 static unsigned int debug; 31 module_param(debug, int, 0644); 32 MODULE_PARM_DESC(debug, "Set Verbosity level"); 33 34 #define dprintk(level, fmt, arg...) do { \ 35 if (debug >= level) \ 36 printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ 37 } while (0) 38 39 40 /* positive error codes used internally */ 41 42 /* Info: Unavoidable LO-related spur may be present in the output */ 43 #define MT2063_SPUR_PRESENT_ERR (0x00800000) 44 45 /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ 46 #define MT2063_SPUR_CNT_MASK (0x001f0000) 47 #define MT2063_SPUR_SHIFT (16) 48 49 /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ 50 #define MT2063_UPC_RANGE (0x04000000) 51 52 /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ 53 #define MT2063_DNC_RANGE (0x08000000) 54 55 /* 56 * Constant defining the version of the following structure 57 * and therefore the API for this code. 58 * 59 * When compiling the tuner driver, the preprocessor will 60 * check against this version number to make sure that 61 * it matches the version that the tuner driver knows about. 62 */ 63 64 /* DECT Frequency Avoidance */ 65 #define MT2063_DECT_AVOID_US_FREQS 0x00000001 66 67 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 68 69 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) 70 71 #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) 72 73 enum MT2063_DECT_Avoid_Type { 74 MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ 75 MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ 76 MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ 77 MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ 78 }; 79 80 #define MT2063_MAX_ZONES 48 81 82 struct MT2063_ExclZone_t { 83 u32 min_; 84 u32 max_; 85 struct MT2063_ExclZone_t *next_; 86 }; 87 88 /* 89 * Structure of data needed for Spur Avoidance 90 */ 91 struct MT2063_AvoidSpursData_t { 92 u32 f_ref; 93 u32 f_in; 94 u32 f_LO1; 95 u32 f_if1_Center; 96 u32 f_if1_Request; 97 u32 f_if1_bw; 98 u32 f_LO2; 99 u32 f_out; 100 u32 f_out_bw; 101 u32 f_LO1_Step; 102 u32 f_LO2_Step; 103 u32 f_LO1_FracN_Avoid; 104 u32 f_LO2_FracN_Avoid; 105 u32 f_zif_bw; 106 u32 f_min_LO_Separation; 107 u32 maxH1; 108 u32 maxH2; 109 enum MT2063_DECT_Avoid_Type avoidDECT; 110 u32 bSpurPresent; 111 u32 bSpurAvoided; 112 u32 nSpursFound; 113 u32 nZones; 114 struct MT2063_ExclZone_t *freeZones; 115 struct MT2063_ExclZone_t *usedZones; 116 struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; 117 }; 118 119 /* 120 * Parameter for function MT2063_SetPowerMask that specifies the power down 121 * of various sections of the MT2063. 122 */ 123 enum MT2063_Mask_Bits { 124 MT2063_REG_SD = 0x0040, /* Shutdown regulator */ 125 MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ 126 MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ 127 MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ 128 MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ 129 MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ 130 MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ 131 MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ 132 MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ 133 MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ 134 MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ 135 MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ 136 MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ 137 MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ 138 MT2063_NONE_SD = 0x0000 /* No shutdown bits */ 139 }; 140 141 /* 142 * Possible values for MT2063_DNC_OUTPUT 143 */ 144 enum MT2063_DNC_Output_Enable { 145 MT2063_DNC_NONE = 0, 146 MT2063_DNC_1, 147 MT2063_DNC_2, 148 MT2063_DNC_BOTH 149 }; 150 151 /* 152 * Two-wire serial bus subaddresses of the tuner registers. 153 * Also known as the tuner's register addresses. 154 */ 155 enum MT2063_Register_Offsets { 156 MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ 157 MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ 158 MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ 159 MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ 160 MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ 161 MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ 162 MT2063_REG_RSVD_06, /* 0x06: Reserved */ 163 MT2063_REG_LO_STATUS, /* 0x07: LO Status */ 164 MT2063_REG_FIFFC, /* 0x08: FIFF Center */ 165 MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ 166 MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ 167 MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ 168 MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ 169 MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ 170 MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ 171 MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ 172 MT2063_REG_RSVD_10, /* 0x10: Reserved */ 173 MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ 174 MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ 175 MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ 176 MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ 177 MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ 178 MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ 179 MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ 180 MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ 181 MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ 182 MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ 183 MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ 184 MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ 185 MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ 186 MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ 187 MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ 188 MT2063_REG_RSVD_20, /* 0x20: Reserved */ 189 MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ 190 MT2063_REG_RSVD_22, /* 0x22: Reserved */ 191 MT2063_REG_RSVD_23, /* 0x23: Reserved */ 192 MT2063_REG_RSVD_24, /* 0x24: Reserved */ 193 MT2063_REG_RSVD_25, /* 0x25: Reserved */ 194 MT2063_REG_RSVD_26, /* 0x26: Reserved */ 195 MT2063_REG_RSVD_27, /* 0x27: Reserved */ 196 MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ 197 MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ 198 MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ 199 MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ 200 MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ 201 MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ 202 MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ 203 MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ 204 MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ 205 MT2063_REG_RSVD_31, /* 0x31: Reserved */ 206 MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ 207 MT2063_REG_RSVD_33, /* 0x33: Reserved */ 208 MT2063_REG_RSVD_34, /* 0x34: Reserved */ 209 MT2063_REG_RSVD_35, /* 0x35: Reserved */ 210 MT2063_REG_RSVD_36, /* 0x36: Reserved */ 211 MT2063_REG_RSVD_37, /* 0x37: Reserved */ 212 MT2063_REG_RSVD_38, /* 0x38: Reserved */ 213 MT2063_REG_RSVD_39, /* 0x39: Reserved */ 214 MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ 215 MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ 216 MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ 217 MT2063_REG_END_REGS 218 }; 219 220 struct mt2063_state { 221 struct i2c_adapter *i2c; 222 223 bool init; 224 225 const struct mt2063_config *config; 226 struct dvb_tuner_ops ops; 227 struct dvb_frontend *frontend; 228 struct tuner_state status; 229 230 u32 frequency; 231 u32 srate; 232 u32 bandwidth; 233 u32 reference; 234 235 u32 tuner_id; 236 struct MT2063_AvoidSpursData_t AS_Data; 237 u32 f_IF1_actual; 238 u32 rcvr_mode; 239 u32 ctfilt_sw; 240 u32 CTFiltMax[31]; 241 u32 num_regs; 242 u8 reg[MT2063_REG_END_REGS]; 243 }; 244 245 /* 246 * mt2063_write - Write data into the I2C bus 247 */ 248 static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) 249 { 250 struct dvb_frontend *fe = state->frontend; 251 int ret; 252 u8 buf[60]; 253 struct i2c_msg msg = { 254 .addr = state->config->tuner_address, 255 .flags = 0, 256 .buf = buf, 257 .len = len + 1 258 }; 259 260 dprintk(2, "\n"); 261 262 msg.buf[0] = reg; 263 memcpy(msg.buf + 1, data, len); 264 265 if (fe->ops.i2c_gate_ctrl) 266 fe->ops.i2c_gate_ctrl(fe, 1); 267 ret = i2c_transfer(state->i2c, &msg, 1); 268 if (fe->ops.i2c_gate_ctrl) 269 fe->ops.i2c_gate_ctrl(fe, 0); 270 271 if (ret < 0) 272 printk(KERN_ERR "%s error ret=%d\n", __func__, ret); 273 274 return ret; 275 } 276 277 /* 278 * mt2063_write - Write register data into the I2C bus, caching the value 279 */ 280 static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) 281 { 282 int status; 283 284 dprintk(2, "\n"); 285 286 if (reg >= MT2063_REG_END_REGS) 287 return -ERANGE; 288 289 status = mt2063_write(state, reg, &val, 1); 290 if (status < 0) 291 return status; 292 293 state->reg[reg] = val; 294 295 return 0; 296 } 297 298 /* 299 * mt2063_read - Read data from the I2C bus 300 */ 301 static int mt2063_read(struct mt2063_state *state, 302 u8 subAddress, u8 *pData, u32 cnt) 303 { 304 int status = 0; /* Status to be returned */ 305 struct dvb_frontend *fe = state->frontend; 306 u32 i = 0; 307 308 dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); 309 310 if (fe->ops.i2c_gate_ctrl) 311 fe->ops.i2c_gate_ctrl(fe, 1); 312 313 for (i = 0; i < cnt; i++) { 314 u8 b0[] = { subAddress + i }; 315 struct i2c_msg msg[] = { 316 { 317 .addr = state->config->tuner_address, 318 .flags = 0, 319 .buf = b0, 320 .len = 1 321 }, { 322 .addr = state->config->tuner_address, 323 .flags = I2C_M_RD, 324 .buf = pData + i, 325 .len = 1 326 } 327 }; 328 329 status = i2c_transfer(state->i2c, msg, 2); 330 dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", 331 subAddress + i, status, *(pData + i)); 332 if (status < 0) 333 break; 334 } 335 if (fe->ops.i2c_gate_ctrl) 336 fe->ops.i2c_gate_ctrl(fe, 0); 337 338 if (status < 0) 339 printk(KERN_ERR "Can't read from address 0x%02x,\n", 340 subAddress + i); 341 342 return status; 343 } 344 345 /* 346 * FIXME: Is this really needed? 347 */ 348 static int MT2063_Sleep(struct dvb_frontend *fe) 349 { 350 /* 351 * ToDo: Add code here to implement a OS blocking 352 */ 353 msleep(100); 354 355 return 0; 356 } 357 358 /* 359 * Microtune spur avoidance 360 */ 361 362 /* Implement ceiling, floor functions. */ 363 #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) 364 #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) 365 366 struct MT2063_FIFZone_t { 367 s32 min_; 368 s32 max_; 369 }; 370 371 static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t 372 *pAS_Info, 373 struct MT2063_ExclZone_t *pPrevNode) 374 { 375 struct MT2063_ExclZone_t *pNode; 376 377 dprintk(2, "\n"); 378 379 /* Check for a node in the free list */ 380 if (pAS_Info->freeZones != NULL) { 381 /* Use one from the free list */ 382 pNode = pAS_Info->freeZones; 383 pAS_Info->freeZones = pNode->next_; 384 } else { 385 /* Grab a node from the array */ 386 pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; 387 } 388 389 if (pPrevNode != NULL) { 390 pNode->next_ = pPrevNode->next_; 391 pPrevNode->next_ = pNode; 392 } else { /* insert at the beginning of the list */ 393 394 pNode->next_ = pAS_Info->usedZones; 395 pAS_Info->usedZones = pNode; 396 } 397 398 pAS_Info->nZones++; 399 return pNode; 400 } 401 402 static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t 403 *pAS_Info, 404 struct MT2063_ExclZone_t *pPrevNode, 405 struct MT2063_ExclZone_t 406 *pNodeToRemove) 407 { 408 struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; 409 410 dprintk(2, "\n"); 411 412 /* Make previous node point to the subsequent node */ 413 if (pPrevNode != NULL) 414 pPrevNode->next_ = pNext; 415 416 /* Add pNodeToRemove to the beginning of the freeZones */ 417 pNodeToRemove->next_ = pAS_Info->freeZones; 418 pAS_Info->freeZones = pNodeToRemove; 419 420 /* Decrement node count */ 421 pAS_Info->nZones--; 422 423 return pNext; 424 } 425 426 /* 427 * MT_AddExclZone() 428 * 429 * Add (and merge) an exclusion zone into the list. 430 * If the range (f_min, f_max) is totally outside the 431 * 1st IF BW, ignore the entry. 432 * If the range (f_min, f_max) is negative, ignore the entry. 433 */ 434 static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, 435 u32 f_min, u32 f_max) 436 { 437 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; 438 struct MT2063_ExclZone_t *pPrev = NULL; 439 struct MT2063_ExclZone_t *pNext = NULL; 440 441 dprintk(2, "\n"); 442 443 /* Check to see if this overlaps the 1st IF filter */ 444 if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) 445 && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) 446 && (f_min < f_max)) { 447 /* 448 * 1 2 3 4 5 6 449 * 450 * New entry: |---| |--| |--| |-| |---| |--| 451 * or or or or or 452 * Existing: |--| |--| |--| |---| |-| |--| 453 */ 454 455 /* Check for our place in the list */ 456 while ((pNode != NULL) && (pNode->max_ < f_min)) { 457 pPrev = pNode; 458 pNode = pNode->next_; 459 } 460 461 if ((pNode != NULL) && (pNode->min_ < f_max)) { 462 /* Combine me with pNode */ 463 if (f_min < pNode->min_) 464 pNode->min_ = f_min; 465 if (f_max > pNode->max_) 466 pNode->max_ = f_max; 467 } else { 468 pNode = InsertNode(pAS_Info, pPrev); 469 pNode->min_ = f_min; 470 pNode->max_ = f_max; 471 } 472 473 /* Look for merging possibilities */ 474 pNext = pNode->next_; 475 while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { 476 if (pNext->max_ > pNode->max_) 477 pNode->max_ = pNext->max_; 478 /* Remove pNext, return ptr to pNext->next */ 479 pNext = RemoveNode(pAS_Info, pNode, pNext); 480 } 481 } 482 } 483 484 /* 485 * Reset all exclusion zones. 486 * Add zones to protect the PLL FracN regions near zero 487 */ 488 static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) 489 { 490 u32 center; 491 492 dprintk(2, "\n"); 493 494 pAS_Info->nZones = 0; /* this clears the used list */ 495 pAS_Info->usedZones = NULL; /* reset ptr */ 496 pAS_Info->freeZones = NULL; /* reset ptr */ 497 498 center = 499 pAS_Info->f_ref * 500 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + 501 pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; 502 while (center < 503 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + 504 pAS_Info->f_LO1_FracN_Avoid) { 505 /* Exclude LO1 FracN */ 506 MT2063_AddExclZone(pAS_Info, 507 center - pAS_Info->f_LO1_FracN_Avoid, 508 center - 1); 509 MT2063_AddExclZone(pAS_Info, center + 1, 510 center + pAS_Info->f_LO1_FracN_Avoid); 511 center += pAS_Info->f_ref; 512 } 513 514 center = 515 pAS_Info->f_ref * 516 ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - 517 pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; 518 while (center < 519 pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + 520 pAS_Info->f_LO2_FracN_Avoid) { 521 /* Exclude LO2 FracN */ 522 MT2063_AddExclZone(pAS_Info, 523 center - pAS_Info->f_LO2_FracN_Avoid, 524 center - 1); 525 MT2063_AddExclZone(pAS_Info, center + 1, 526 center + pAS_Info->f_LO2_FracN_Avoid); 527 center += pAS_Info->f_ref; 528 } 529 530 if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { 531 /* Exclude LO1 values that conflict with DECT channels */ 532 MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ 533 MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ 534 MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ 535 MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ 536 MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ 537 } 538 539 if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { 540 MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ 541 MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ 542 MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ 543 MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ 544 MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ 545 MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ 546 MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ 547 MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ 548 MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ 549 MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ 550 } 551 } 552 553 /* 554 * MT_ChooseFirstIF - Choose the best available 1st IF 555 * If f_Desired is not excluded, choose that first. 556 * Otherwise, return the value closest to f_Center that is 557 * not excluded 558 */ 559 static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) 560 { 561 /* 562 * Update "f_Desired" to be the nearest "combinational-multiple" of 563 * "f_LO1_Step". 564 * The resulting number, F_LO1 must be a multiple of f_LO1_Step. 565 * And F_LO1 is the arithmetic sum of f_in + f_Center. 566 * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. 567 * However, the sum must be. 568 */ 569 const u32 f_Desired = 570 pAS_Info->f_LO1_Step * 571 ((pAS_Info->f_if1_Request + pAS_Info->f_in + 572 pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - 573 pAS_Info->f_in; 574 const u32 f_Step = 575 (pAS_Info->f_LO1_Step > 576 pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> 577 f_LO2_Step; 578 u32 f_Center; 579 s32 i; 580 s32 j = 0; 581 u32 bDesiredExcluded = 0; 582 u32 bZeroExcluded = 0; 583 s32 tmpMin, tmpMax; 584 s32 bestDiff; 585 struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; 586 struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; 587 588 dprintk(2, "\n"); 589 590 if (pAS_Info->nZones == 0) 591 return f_Desired; 592 593 /* 594 * f_Center needs to be an integer multiple of f_Step away 595 * from f_Desired 596 */ 597 if (pAS_Info->f_if1_Center > f_Desired) 598 f_Center = 599 f_Desired + 600 f_Step * 601 ((pAS_Info->f_if1_Center - f_Desired + 602 f_Step / 2) / f_Step); 603 else 604 f_Center = 605 f_Desired - 606 f_Step * 607 ((f_Desired - pAS_Info->f_if1_Center + 608 f_Step / 2) / f_Step); 609 610 /* 611 * Take MT_ExclZones, center around f_Center and change the 612 * resolution to f_Step 613 */ 614 while (pNode != NULL) { 615 /* floor function */ 616 tmpMin = 617 floor((s32) (pNode->min_ - f_Center), (s32) f_Step); 618 619 /* ceil function */ 620 tmpMax = 621 ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); 622 623 if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) 624 bDesiredExcluded = 1; 625 626 if ((tmpMin < 0) && (tmpMax > 0)) 627 bZeroExcluded = 1; 628 629 /* See if this zone overlaps the previous */ 630 if ((j > 0) && (tmpMin < zones[j - 1].max_)) 631 zones[j - 1].max_ = tmpMax; 632 else { 633 /* Add new zone */ 634 zones[j].min_ = tmpMin; 635 zones[j].max_ = tmpMax; 636 j++; 637 } 638 pNode = pNode->next_; 639 } 640 641 /* 642 * If the desired is okay, return with it 643 */ 644 if (bDesiredExcluded == 0) 645 return f_Desired; 646 647 /* 648 * If the desired is excluded and the center is okay, return with it 649 */ 650 if (bZeroExcluded == 0) 651 return f_Center; 652 653 /* Find the value closest to 0 (f_Center) */ 654 bestDiff = zones[0].min_; 655 for (i = 0; i < j; i++) { 656 if (abs(zones[i].min_) < abs(bestDiff)) 657 bestDiff = zones[i].min_; 658 if (abs(zones[i].max_) < abs(bestDiff)) 659 bestDiff = zones[i].max_; 660 } 661 662 if (bestDiff < 0) 663 return f_Center - ((u32) (-bestDiff) * f_Step); 664 665 return f_Center + (bestDiff * f_Step); 666 } 667 668 /** 669 * gcd() - Uses Euclid's algorithm 670 * 671 * @u, @v: Unsigned values whose GCD is desired. 672 * 673 * Returns THE greatest common divisor of u and v, if either value is 0, 674 * the other value is returned as the result. 675 */ 676 static u32 MT2063_gcd(u32 u, u32 v) 677 { 678 u32 r; 679 680 while (v != 0) { 681 r = u % v; 682 u = v; 683 v = r; 684 } 685 686 return u; 687 } 688 689 /** 690 * IsSpurInBand() - Checks to see if a spur will be present within the IF's 691 * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) 692 * 693 * ma mb mc md 694 * <--+-+-+-------------------+-------------------+-+-+--> 695 * | ^ 0 ^ | 696 * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ 697 * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 698 * 699 * Note that some equations are doubled to prevent round-off 700 * problems when calculating fIFBW/2 701 * 702 * @pAS_Info: Avoid Spurs information block 703 * @fm: If spur, amount f_IF1 has to move negative 704 * @fp: If spur, amount f_IF1 has to move positive 705 * 706 * Returns 1 if an LO spur would be present, otherwise 0. 707 */ 708 static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, 709 u32 *fm, u32 * fp) 710 { 711 /* 712 ** Calculate LO frequency settings. 713 */ 714 u32 n, n0; 715 const u32 f_LO1 = pAS_Info->f_LO1; 716 const u32 f_LO2 = pAS_Info->f_LO2; 717 const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; 718 const u32 c = d - pAS_Info->f_out_bw; 719 const u32 f = pAS_Info->f_zif_bw / 2; 720 const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; 721 s32 f_nsLO1, f_nsLO2; 722 s32 f_Spur; 723 u32 ma, mb, mc, md, me, mf; 724 u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; 725 726 dprintk(2, "\n"); 727 728 *fm = 0; 729 730 /* 731 ** For each edge (d, c & f), calculate a scale, based on the gcd 732 ** of f_LO1, f_LO2 and the edge value. Use the larger of this 733 ** gcd-based scale factor or f_Scale. 734 */ 735 lo_gcd = MT2063_gcd(f_LO1, f_LO2); 736 gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale); 737 hgds = gd_Scale / 2; 738 gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale); 739 hgcs = gc_Scale / 2; 740 gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale); 741 hgfs = gf_Scale / 2; 742 743 n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); 744 745 /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ 746 for (n = n0; n <= pAS_Info->maxH1; ++n) { 747 md = (n * ((f_LO1 + hgds) / gd_Scale) - 748 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); 749 750 /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ 751 if (md >= pAS_Info->maxH1) 752 break; 753 754 ma = (n * ((f_LO1 + hgds) / gd_Scale) + 755 ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); 756 757 /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ 758 if (md == ma) 759 continue; 760 761 mc = (n * ((f_LO1 + hgcs) / gc_Scale) - 762 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); 763 if (mc != md) { 764 f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); 765 f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); 766 f_Spur = 767 (gc_Scale * (f_nsLO1 - f_nsLO2)) + 768 n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); 769 770 *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; 771 *fm = (((s32) d - f_Spur) / (mc - n)) + 1; 772 return 1; 773 } 774 775 /* Location of Zero-IF-spur to be checked */ 776 me = (n * ((f_LO1 + hgfs) / gf_Scale) + 777 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); 778 mf = (n * ((f_LO1 + hgfs) / gf_Scale) - 779 ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); 780 if (me != mf) { 781 f_nsLO1 = n * (f_LO1 / gf_Scale); 782 f_nsLO2 = me * (f_LO2 / gf_Scale); 783 f_Spur = 784 (gf_Scale * (f_nsLO1 - f_nsLO2)) + 785 n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); 786 787 *fp = ((f_Spur + (s32) f) / (me - n)) + 1; 788 *fm = (((s32) f - f_Spur) / (me - n)) + 1; 789 return 1; 790 } 791 792 mb = (n * ((f_LO1 + hgcs) / gc_Scale) + 793 ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); 794 if (ma != mb) { 795 f_nsLO1 = n * (f_LO1 / gc_Scale); 796 f_nsLO2 = ma * (f_LO2 / gc_Scale); 797 f_Spur = 798 (gc_Scale * (f_nsLO1 - f_nsLO2)) + 799 n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); 800 801 *fp = (((s32) d + f_Spur) / (ma - n)) + 1; 802 *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; 803 return 1; 804 } 805 } 806 807 /* No spurs found */ 808 return 0; 809 } 810 811 /* 812 * MT_AvoidSpurs() - Main entry point to avoid spurs. 813 * Checks for existing spurs in present LO1, LO2 freqs 814 * and if present, chooses spur-free LO1, LO2 combination 815 * that tunes the same input/output frequencies. 816 */ 817 static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) 818 { 819 int status = 0; 820 u32 fm, fp; /* restricted range on LO's */ 821 pAS_Info->bSpurAvoided = 0; 822 pAS_Info->nSpursFound = 0; 823 824 dprintk(2, "\n"); 825 826 if (pAS_Info->maxH1 == 0) 827 return 0; 828 829 /* 830 * Avoid LO Generated Spurs 831 * 832 * Make sure that have no LO-related spurs within the IF output 833 * bandwidth. 834 * 835 * If there is an LO spur in this band, start at the current IF1 frequency 836 * and work out until we find a spur-free frequency or run up against the 837 * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they 838 * will be unchanged if a spur-free setting is not found. 839 */ 840 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); 841 if (pAS_Info->bSpurPresent) { 842 u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ 843 u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ 844 u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ 845 u32 delta_IF1; 846 u32 new_IF1; 847 848 /* 849 ** Spur was found, attempt to find a spur-free 1st IF 850 */ 851 do { 852 pAS_Info->nSpursFound++; 853 854 /* Raise f_IF1_upper, if needed */ 855 MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); 856 857 /* Choose next IF1 that is closest to f_IF1_CENTER */ 858 new_IF1 = MT2063_ChooseFirstIF(pAS_Info); 859 860 if (new_IF1 > zfIF1) { 861 pAS_Info->f_LO1 += (new_IF1 - zfIF1); 862 pAS_Info->f_LO2 += (new_IF1 - zfIF1); 863 } else { 864 pAS_Info->f_LO1 -= (zfIF1 - new_IF1); 865 pAS_Info->f_LO2 -= (zfIF1 - new_IF1); 866 } 867 zfIF1 = new_IF1; 868 869 if (zfIF1 > pAS_Info->f_if1_Center) 870 delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; 871 else 872 delta_IF1 = pAS_Info->f_if1_Center - zfIF1; 873 874 pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); 875 /* 876 * Continue while the new 1st IF is still within the 1st IF bandwidth 877 * and there is a spur in the band (again) 878 */ 879 } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); 880 881 /* 882 * Use the LO-spur free values found. If the search went all 883 * the way to the 1st IF band edge and always found spurs, just 884 * leave the original choice. It's as "good" as any other. 885 */ 886 if (pAS_Info->bSpurPresent == 1) { 887 status |= MT2063_SPUR_PRESENT_ERR; 888 pAS_Info->f_LO1 = zfLO1; 889 pAS_Info->f_LO2 = zfLO2; 890 } else 891 pAS_Info->bSpurAvoided = 1; 892 } 893 894 status |= 895 ((pAS_Info-> 896 nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); 897 898 return status; 899 } 900 901 /* 902 * Constants used by the tuning algorithm 903 */ 904 #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ 905 #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ 906 #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ 907 #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ 908 #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ 909 #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ 910 #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ 911 #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ 912 #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ 913 #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ 914 #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ 915 #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ 916 #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ 917 #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ 918 #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ 919 #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ 920 #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ 921 #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ 922 923 /* 924 * Define the supported Part/Rev codes for the MT2063 925 */ 926 #define MT2063_B0 (0x9B) 927 #define MT2063_B1 (0x9C) 928 #define MT2063_B2 (0x9D) 929 #define MT2063_B3 (0x9E) 930 931 /** 932 * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked 933 * 934 * @state: struct mt2063_state pointer 935 * 936 * This function returns 0, if no lock, 1 if locked and a value < 1 if error 937 */ 938 static int mt2063_lockStatus(struct mt2063_state *state) 939 { 940 const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ 941 const u32 nPollRate = 2; /* poll status bits every 2 ms */ 942 const u32 nMaxLoops = nMaxWait / nPollRate; 943 const u8 LO1LK = 0x80; 944 u8 LO2LK = 0x08; 945 int status; 946 u32 nDelays = 0; 947 948 dprintk(2, "\n"); 949 950 /* LO2 Lock bit was in a different place for B0 version */ 951 if (state->tuner_id == MT2063_B0) 952 LO2LK = 0x40; 953 954 do { 955 status = mt2063_read(state, MT2063_REG_LO_STATUS, 956 &state->reg[MT2063_REG_LO_STATUS], 1); 957 958 if (status < 0) 959 return status; 960 961 if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == 962 (LO1LK | LO2LK)) { 963 return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; 964 } 965 msleep(nPollRate); /* Wait between retries */ 966 } while (++nDelays < nMaxLoops); 967 968 /* 969 * Got no lock or partial lock 970 */ 971 return 0; 972 } 973 974 /* 975 * Constants for setting receiver modes. 976 * (6 modes defined at this time, enumerated by mt2063_delivery_sys) 977 * (DNC1GC & DNC2GC are the values, which are used, when the specific 978 * DNC Output is selected, the other is always off) 979 * 980 * enum mt2063_delivery_sys 981 * -------------+---------------------------------------------- 982 * Mode 0 : | MT2063_CABLE_QAM 983 * Mode 1 : | MT2063_CABLE_ANALOG 984 * Mode 2 : | MT2063_OFFAIR_COFDM 985 * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS 986 * Mode 4 : | MT2063_OFFAIR_ANALOG 987 * Mode 5 : | MT2063_OFFAIR_8VSB 988 * --------------+---------------------------------------------- 989 * 990 * |<---------- Mode -------------->| 991 * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | 992 * ------------+-----+-----+-----+-----+-----+-----+ 993 * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF 994 * LNARin | 0 | 0 | 3 | 3 | 3 | 3 995 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 996 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 997 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 998 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 999 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 1000 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 1001 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 1002 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 1003 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 1004 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 1005 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 1006 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 1007 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 1008 */ 1009 1010 enum mt2063_delivery_sys { 1011 MT2063_CABLE_QAM = 0, 1012 MT2063_CABLE_ANALOG, 1013 MT2063_OFFAIR_COFDM, 1014 MT2063_OFFAIR_COFDM_SAWLESS, 1015 MT2063_OFFAIR_ANALOG, 1016 MT2063_OFFAIR_8VSB, 1017 MT2063_NUM_RCVR_MODES 1018 }; 1019 1020 static const char *mt2063_mode_name[] = { 1021 [MT2063_CABLE_QAM] = "digital cable", 1022 [MT2063_CABLE_ANALOG] = "analog cable", 1023 [MT2063_OFFAIR_COFDM] = "digital offair", 1024 [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", 1025 [MT2063_OFFAIR_ANALOG] = "analog offair", 1026 [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", 1027 }; 1028 1029 static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; 1030 static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; 1031 static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; 1032 static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; 1033 static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; 1034 static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; 1035 static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; 1036 static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; 1037 static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; 1038 static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; 1039 static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; 1040 static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; 1041 static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; 1042 static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; 1043 1044 /* 1045 * mt2063_set_dnc_output_enable() 1046 */ 1047 static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, 1048 enum MT2063_DNC_Output_Enable *pValue) 1049 { 1050 dprintk(2, "\n"); 1051 1052 if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ 1053 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ 1054 *pValue = MT2063_DNC_NONE; 1055 else 1056 *pValue = MT2063_DNC_2; 1057 } else { /* DNC1 is on */ 1058 if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ 1059 *pValue = MT2063_DNC_1; 1060 else 1061 *pValue = MT2063_DNC_BOTH; 1062 } 1063 return 0; 1064 } 1065 1066 /* 1067 * mt2063_set_dnc_output_enable() 1068 */ 1069 static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, 1070 enum MT2063_DNC_Output_Enable nValue) 1071 { 1072 int status = 0; /* Status to be returned */ 1073 u8 val = 0; 1074 1075 dprintk(2, "\n"); 1076 1077 /* selects, which DNC output is used */ 1078 switch (nValue) { 1079 case MT2063_DNC_NONE: 1080 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ 1081 if (state->reg[MT2063_REG_DNC_GAIN] != 1082 val) 1083 status |= 1084 mt2063_setreg(state, 1085 MT2063_REG_DNC_GAIN, 1086 val); 1087 1088 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ 1089 if (state->reg[MT2063_REG_VGA_GAIN] != 1090 val) 1091 status |= 1092 mt2063_setreg(state, 1093 MT2063_REG_VGA_GAIN, 1094 val); 1095 1096 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ 1097 if (state->reg[MT2063_REG_RSVD_20] != 1098 val) 1099 status |= 1100 mt2063_setreg(state, 1101 MT2063_REG_RSVD_20, 1102 val); 1103 1104 break; 1105 case MT2063_DNC_1: 1106 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ 1107 if (state->reg[MT2063_REG_DNC_GAIN] != 1108 val) 1109 status |= 1110 mt2063_setreg(state, 1111 MT2063_REG_DNC_GAIN, 1112 val); 1113 1114 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ 1115 if (state->reg[MT2063_REG_VGA_GAIN] != 1116 val) 1117 status |= 1118 mt2063_setreg(state, 1119 MT2063_REG_VGA_GAIN, 1120 val); 1121 1122 val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ 1123 if (state->reg[MT2063_REG_RSVD_20] != 1124 val) 1125 status |= 1126 mt2063_setreg(state, 1127 MT2063_REG_RSVD_20, 1128 val); 1129 1130 break; 1131 case MT2063_DNC_2: 1132 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ 1133 if (state->reg[MT2063_REG_DNC_GAIN] != 1134 val) 1135 status |= 1136 mt2063_setreg(state, 1137 MT2063_REG_DNC_GAIN, 1138 val); 1139 1140 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ 1141 if (state->reg[MT2063_REG_VGA_GAIN] != 1142 val) 1143 status |= 1144 mt2063_setreg(state, 1145 MT2063_REG_VGA_GAIN, 1146 val); 1147 1148 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ 1149 if (state->reg[MT2063_REG_RSVD_20] != 1150 val) 1151 status |= 1152 mt2063_setreg(state, 1153 MT2063_REG_RSVD_20, 1154 val); 1155 1156 break; 1157 case MT2063_DNC_BOTH: 1158 val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ 1159 if (state->reg[MT2063_REG_DNC_GAIN] != 1160 val) 1161 status |= 1162 mt2063_setreg(state, 1163 MT2063_REG_DNC_GAIN, 1164 val); 1165 1166 val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ 1167 if (state->reg[MT2063_REG_VGA_GAIN] != 1168 val) 1169 status |= 1170 mt2063_setreg(state, 1171 MT2063_REG_VGA_GAIN, 1172 val); 1173 1174 val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ 1175 if (state->reg[MT2063_REG_RSVD_20] != 1176 val) 1177 status |= 1178 mt2063_setreg(state, 1179 MT2063_REG_RSVD_20, 1180 val); 1181 1182 break; 1183 default: 1184 break; 1185 } 1186 1187 return status; 1188 } 1189 1190 /* 1191 * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with 1192 * the selected enum mt2063_delivery_sys type. 1193 * 1194 * (DNC1GC & DNC2GC are the values, which are used, when the specific 1195 * DNC Output is selected, the other is always off) 1196 * 1197 * @state: ptr to mt2063_state structure 1198 * @Mode: desired reciever delivery system 1199 * 1200 * Note: Register cache must be valid for it to work 1201 */ 1202 1203 static u32 MT2063_SetReceiverMode(struct mt2063_state *state, 1204 enum mt2063_delivery_sys Mode) 1205 { 1206 int status = 0; /* Status to be returned */ 1207 u8 val; 1208 u32 longval; 1209 1210 dprintk(2, "\n"); 1211 1212 if (Mode >= MT2063_NUM_RCVR_MODES) 1213 status = -ERANGE; 1214 1215 /* RFAGCen */ 1216 if (status >= 0) { 1217 val = 1218 (state-> 1219 reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode] 1220 ? 0x40 : 1221 0x00); 1222 if (state->reg[MT2063_REG_PD1_TGT] != val) 1223 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); 1224 } 1225 1226 /* LNARin */ 1227 if (status >= 0) { 1228 u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) | 1229 (LNARIN[Mode] & 0x03); 1230 if (state->reg[MT2063_REG_CTRL_2C] != val) 1231 status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); 1232 } 1233 1234 /* FIFFQEN and FIFFQ */ 1235 if (status >= 0) { 1236 val = 1237 (state-> 1238 reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) | 1239 (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); 1240 if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { 1241 status |= 1242 mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); 1243 /* trigger FIFF calibration, needed after changing FIFFQ */ 1244 val = 1245 (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01); 1246 status |= 1247 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); 1248 val = 1249 (state-> 1250 reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01); 1251 status |= 1252 mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); 1253 } 1254 } 1255 1256 /* DNC1GC & DNC2GC */ 1257 status |= mt2063_get_dnc_output_enable(state, &longval); 1258 status |= mt2063_set_dnc_output_enable(state, longval); 1259 1260 /* acLNAmax */ 1261 if (status >= 0) { 1262 u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) | 1263 (ACLNAMAX[Mode] & 0x1F); 1264 if (state->reg[MT2063_REG_LNA_OV] != val) 1265 status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); 1266 } 1267 1268 /* LNATGT */ 1269 if (status >= 0) { 1270 u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) | 1271 (LNATGT[Mode] & 0x3F); 1272 if (state->reg[MT2063_REG_LNA_TGT] != val) 1273 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); 1274 } 1275 1276 /* ACRF */ 1277 if (status >= 0) { 1278 u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) | 1279 (ACRFMAX[Mode] & 0x1F); 1280 if (state->reg[MT2063_REG_RF_OV] != val) 1281 status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); 1282 } 1283 1284 /* PD1TGT */ 1285 if (status >= 0) { 1286 u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) | 1287 (PD1TGT[Mode] & 0x3F); 1288 if (state->reg[MT2063_REG_PD1_TGT] != val) 1289 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); 1290 } 1291 1292 /* FIFATN */ 1293 if (status >= 0) { 1294 u8 val = ACFIFMAX[Mode]; 1295 if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) 1296 val = 5; 1297 val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) | 1298 (val & 0x1F); 1299 if (state->reg[MT2063_REG_FIF_OV] != val) 1300 status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); 1301 } 1302 1303 /* PD2TGT */ 1304 if (status >= 0) { 1305 u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) | 1306 (PD2TGT[Mode] & 0x3F); 1307 if (state->reg[MT2063_REG_PD2_TGT] != val) 1308 status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); 1309 } 1310 1311 /* Ignore ATN Overload */ 1312 if (status >= 0) { 1313 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) | 1314 (RFOVDIS[Mode] ? 0x80 : 0x00); 1315 if (state->reg[MT2063_REG_LNA_TGT] != val) 1316 status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); 1317 } 1318 1319 /* Ignore FIF Overload */ 1320 if (status >= 0) { 1321 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) | 1322 (FIFOVDIS[Mode] ? 0x80 : 0x00); 1323 if (state->reg[MT2063_REG_PD1_TGT] != val) 1324 status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); 1325 } 1326 1327 if (status >= 0) { 1328 state->rcvr_mode = Mode; 1329 dprintk(1, "mt2063 mode changed to %s\n", 1330 mt2063_mode_name[state->rcvr_mode]); 1331 } 1332 1333 return status; 1334 } 1335 1336 /* 1337 * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various 1338 * sections of the MT2063 1339 * 1340 * @Bits: Mask bits to be cleared. 1341 * 1342 * See definition of MT2063_Mask_Bits type for description 1343 * of each of the power bits. 1344 */ 1345 static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, 1346 enum MT2063_Mask_Bits Bits) 1347 { 1348 int status = 0; 1349 1350 dprintk(2, "\n"); 1351 Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ 1352 if ((Bits & 0xFF00) != 0) { 1353 state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); 1354 status |= 1355 mt2063_write(state, 1356 MT2063_REG_PWR_2, 1357 &state->reg[MT2063_REG_PWR_2], 1); 1358 } 1359 if ((Bits & 0xFF) != 0) { 1360 state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); 1361 status |= 1362 mt2063_write(state, 1363 MT2063_REG_PWR_1, 1364 &state->reg[MT2063_REG_PWR_1], 1); 1365 } 1366 1367 return status; 1368 } 1369 1370 /* 1371 * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. 1372 * When Shutdown is 1, any section whose power 1373 * mask is set will be shutdown. 1374 */ 1375 static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) 1376 { 1377 int status; 1378 1379 dprintk(2, "\n"); 1380 if (Shutdown == 1) 1381 state->reg[MT2063_REG_PWR_1] |= 0x04; 1382 else 1383 state->reg[MT2063_REG_PWR_1] &= ~0x04; 1384 1385 status = mt2063_write(state, 1386 MT2063_REG_PWR_1, 1387 &state->reg[MT2063_REG_PWR_1], 1); 1388 1389 if (Shutdown != 1) { 1390 state->reg[MT2063_REG_BYP_CTRL] = 1391 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; 1392 status |= 1393 mt2063_write(state, 1394 MT2063_REG_BYP_CTRL, 1395 &state->reg[MT2063_REG_BYP_CTRL], 1396 1); 1397 state->reg[MT2063_REG_BYP_CTRL] = 1398 (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); 1399 status |= 1400 mt2063_write(state, 1401 MT2063_REG_BYP_CTRL, 1402 &state->reg[MT2063_REG_BYP_CTRL], 1403 1); 1404 } 1405 1406 return status; 1407 } 1408 1409 static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) 1410 { 1411 return f_ref * (f_LO / f_ref) 1412 + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); 1413 } 1414 1415 /** 1416 * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. 1417 * This function preserves maximum precision without 1418 * risk of overflow. It accurately calculates 1419 * f_ref * num / denom to within 1 HZ with fixed math. 1420 * 1421 * @num : Fractional portion of the multiplier 1422 * @denom: denominator portion of the ratio 1423 * @f_Ref: SRO frequency. 1424 * 1425 * This calculation handles f_ref as two separate 14-bit fields. 1426 * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. 1427 * This is the genesis of the magic number "14" and the magic mask value of 1428 * 0x03FFF. 1429 * 1430 * This routine successfully handles denom values up to and including 2^18. 1431 * Returns: f_ref * num / denom 1432 */ 1433 static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) 1434 { 1435 u32 t1 = (f_ref >> 14) * num; 1436 u32 term1 = t1 / denom; 1437 u32 loss = t1 % denom; 1438 u32 term2 = 1439 (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; 1440 return (term1 << 14) + term2; 1441 } 1442 1443 /* 1444 * CalcLO1Mult()- Calculates Integer divider value and the numerator 1445 * value for a FracN PLL. 1446 * 1447 * This function assumes that the f_LO and f_Ref are 1448 * evenly divisible by f_LO_Step. 1449 * 1450 * @Div: OUTPUT: Whole number portion of the multiplier 1451 * @FracN: OUTPUT: Fractional portion of the multiplier 1452 * @f_LO: desired LO frequency. 1453 * @f_LO_Step: Minimum step size for the LO (in Hz). 1454 * @f_Ref: SRO frequency. 1455 * @f_Avoid: Range of PLL frequencies to avoid near integer multiples 1456 * of f_Ref (in Hz). 1457 * 1458 * Returns: Recalculated LO frequency. 1459 */ 1460 static u32 MT2063_CalcLO1Mult(u32 *Div, 1461 u32 *FracN, 1462 u32 f_LO, 1463 u32 f_LO_Step, u32 f_Ref) 1464 { 1465 /* Calculate the whole number portion of the divider */ 1466 *Div = f_LO / f_Ref; 1467 1468 /* Calculate the numerator value (round to nearest f_LO_Step) */ 1469 *FracN = 1470 (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + 1471 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); 1472 1473 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); 1474 } 1475 1476 /** 1477 * CalcLO2Mult() - Calculates Integer divider value and the numerator 1478 * value for a FracN PLL. 1479 * 1480 * This function assumes that the f_LO and f_Ref are 1481 * evenly divisible by f_LO_Step. 1482 * 1483 * @Div: OUTPUT: Whole number portion of the multiplier 1484 * @FracN: OUTPUT: Fractional portion of the multiplier 1485 * @f_LO: desired LO frequency. 1486 * @f_LO_Step: Minimum step size for the LO (in Hz). 1487 * @f_Ref: SRO frequency. 1488 * @f_Avoid: Range of PLL frequencies to avoid near 1489 * integer multiples of f_Ref (in Hz). 1490 * 1491 * Returns: Recalculated LO frequency. 1492 */ 1493 static u32 MT2063_CalcLO2Mult(u32 *Div, 1494 u32 *FracN, 1495 u32 f_LO, 1496 u32 f_LO_Step, u32 f_Ref) 1497 { 1498 /* Calculate the whole number portion of the divider */ 1499 *Div = f_LO / f_Ref; 1500 1501 /* Calculate the numerator value (round to nearest f_LO_Step) */ 1502 *FracN = 1503 (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + 1504 (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); 1505 1506 return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 1507 8191); 1508 } 1509 1510 /* 1511 * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be 1512 * used for a given input frequency. 1513 * 1514 * @state: ptr to tuner data structure 1515 * @f_in: RF input center frequency (in Hz). 1516 * 1517 * Returns: ClearTune filter number (0-31) 1518 */ 1519 static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) 1520 { 1521 u32 RFBand; 1522 u32 idx; /* index loop */ 1523 1524 /* 1525 ** Find RF Band setting 1526 */ 1527 RFBand = 31; /* def when f_in > all */ 1528 for (idx = 0; idx < 31; ++idx) { 1529 if (state->CTFiltMax[idx] >= f_in) { 1530 RFBand = idx; 1531 break; 1532 } 1533 } 1534 return RFBand; 1535 } 1536 1537 /* 1538 * MT2063_Tune() - Change the tuner's tuned frequency to RFin. 1539 */ 1540 static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) 1541 { /* RF input center frequency */ 1542 1543 int status = 0; 1544 u32 LO1; /* 1st LO register value */ 1545 u32 Num1; /* Numerator for LO1 reg. value */ 1546 u32 f_IF1; /* 1st IF requested */ 1547 u32 LO2; /* 2nd LO register value */ 1548 u32 Num2; /* Numerator for LO2 reg. value */ 1549 u32 ofLO1, ofLO2; /* last time's LO frequencies */ 1550 u8 fiffc = 0x80; /* FIFF center freq from tuner */ 1551 u32 fiffof; /* Offset from FIFF center freq */ 1552 const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ 1553 u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ 1554 u8 val; 1555 u32 RFBand; 1556 1557 dprintk(2, "\n"); 1558 /* Check the input and output frequency ranges */ 1559 if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) 1560 return -EINVAL; 1561 1562 if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) 1563 || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) 1564 return -EINVAL; 1565 1566 /* 1567 * Save original LO1 and LO2 register values 1568 */ 1569 ofLO1 = state->AS_Data.f_LO1; 1570 ofLO2 = state->AS_Data.f_LO2; 1571 1572 /* 1573 * Find and set RF Band setting 1574 */ 1575 if (state->ctfilt_sw == 1) { 1576 val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); 1577 if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { 1578 status |= 1579 mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); 1580 } 1581 val = state->reg[MT2063_REG_CTUNE_OV]; 1582 RFBand = FindClearTuneFilter(state, f_in); 1583 state->reg[MT2063_REG_CTUNE_OV] = 1584 (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) 1585 | RFBand); 1586 if (state->reg[MT2063_REG_CTUNE_OV] != val) { 1587 status |= 1588 mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); 1589 } 1590 } 1591 1592 /* 1593 * Read the FIFF Center Frequency from the tuner 1594 */ 1595 if (status >= 0) { 1596 status |= 1597 mt2063_read(state, 1598 MT2063_REG_FIFFC, 1599 &state->reg[MT2063_REG_FIFFC], 1); 1600 fiffc = state->reg[MT2063_REG_FIFFC]; 1601 } 1602 /* 1603 * Assign in the requested values 1604 */ 1605 state->AS_Data.f_in = f_in; 1606 /* Request a 1st IF such that LO1 is on a step size */ 1607 state->AS_Data.f_if1_Request = 1608 MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, 1609 state->AS_Data.f_LO1_Step, 1610 state->AS_Data.f_ref) - f_in; 1611 1612 /* 1613 * Calculate frequency settings. f_IF1_FREQ + f_in is the 1614 * desired LO1 frequency 1615 */ 1616 MT2063_ResetExclZones(&state->AS_Data); 1617 1618 f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); 1619 1620 state->AS_Data.f_LO1 = 1621 MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, 1622 state->AS_Data.f_ref); 1623 1624 state->AS_Data.f_LO2 = 1625 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, 1626 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); 1627 1628 /* 1629 * Check for any LO spurs in the output bandwidth and adjust 1630 * the LO settings to avoid them if needed 1631 */ 1632 status |= MT2063_AvoidSpurs(&state->AS_Data); 1633 /* 1634 * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. 1635 * Recalculate the LO frequencies and the values to be placed 1636 * in the tuning registers. 1637 */ 1638 state->AS_Data.f_LO1 = 1639 MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, 1640 state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); 1641 state->AS_Data.f_LO2 = 1642 MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, 1643 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); 1644 state->AS_Data.f_LO2 = 1645 MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, 1646 state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); 1647 1648 /* 1649 * Check the upconverter and downconverter frequency ranges 1650 */ 1651 if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) 1652 || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) 1653 status |= MT2063_UPC_RANGE; 1654 if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) 1655 || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) 1656 status |= MT2063_DNC_RANGE; 1657 /* LO2 Lock bit was in a different place for B0 version */ 1658 if (state->tuner_id == MT2063_B0) 1659 LO2LK = 0x40; 1660 1661 /* 1662 * If we have the same LO frequencies and we're already locked, 1663 * then skip re-programming the LO registers. 1664 */ 1665 if ((ofLO1 != state->AS_Data.f_LO1) 1666 || (ofLO2 != state->AS_Data.f_LO2) 1667 || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != 1668 (LO1LK | LO2LK))) { 1669 /* 1670 * Calculate the FIFFOF register value 1671 * 1672 * IF1_Actual 1673 * FIFFOF = ------------ - 8 * FIFFC - 4992 1674 * f_ref/64 1675 */ 1676 fiffof = 1677 (state->AS_Data.f_LO1 - 1678 f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - 1679 4992; 1680 if (fiffof > 0xFF) 1681 fiffof = 0xFF; 1682 1683 /* 1684 * Place all of the calculated values into the local tuner 1685 * register fields. 1686 */ 1687 if (status >= 0) { 1688 state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ 1689 state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ 1690 state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ 1691 |(Num2 >> 12)); /* NUM2q (hi) */ 1692 state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ 1693 state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ 1694 1695 /* 1696 * Now write out the computed register values 1697 * IMPORTANT: There is a required order for writing 1698 * (0x05 must follow all the others). 1699 */ 1700 status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ 1701 if (state->tuner_id == MT2063_B0) { 1702 /* Re-write the one-shot bits to trigger the tune operation */ 1703 status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ 1704 } 1705 /* Write out the FIFF offset only if it's changing */ 1706 if (state->reg[MT2063_REG_FIFF_OFFSET] != 1707 (u8) fiffof) { 1708 state->reg[MT2063_REG_FIFF_OFFSET] = 1709 (u8) fiffof; 1710 status |= 1711 mt2063_write(state, 1712 MT2063_REG_FIFF_OFFSET, 1713 &state-> 1714 reg[MT2063_REG_FIFF_OFFSET], 1715 1); 1716 } 1717 } 1718 1719 /* 1720 * Check for LO's locking 1721 */ 1722 1723 if (status < 0) 1724 return status; 1725 1726 status = mt2063_lockStatus(state); 1727 if (status < 0) 1728 return status; 1729 if (!status) 1730 return -EINVAL; /* Couldn't lock */ 1731 1732 /* 1733 * If we locked OK, assign calculated data to mt2063_state structure 1734 */ 1735 state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; 1736 } 1737 1738 return status; 1739 } 1740 1741 static const u8 MT2063B0_defaults[] = { 1742 /* Reg, Value */ 1743 0x19, 0x05, 1744 0x1B, 0x1D, 1745 0x1C, 0x1F, 1746 0x1D, 0x0F, 1747 0x1E, 0x3F, 1748 0x1F, 0x0F, 1749 0x20, 0x3F, 1750 0x22, 0x21, 1751 0x23, 0x3F, 1752 0x24, 0x20, 1753 0x25, 0x3F, 1754 0x27, 0xEE, 1755 0x2C, 0x27, /* bit at 0x20 is cleared below */ 1756 0x30, 0x03, 1757 0x2C, 0x07, /* bit at 0x20 is cleared here */ 1758 0x2D, 0x87, 1759 0x2E, 0xAA, 1760 0x28, 0xE1, /* Set the FIFCrst bit here */ 1761 0x28, 0xE0, /* Clear the FIFCrst bit here */ 1762 0x00 1763 }; 1764 1765 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ 1766 static const u8 MT2063B1_defaults[] = { 1767 /* Reg, Value */ 1768 0x05, 0xF0, 1769 0x11, 0x10, /* New Enable AFCsd */ 1770 0x19, 0x05, 1771 0x1A, 0x6C, 1772 0x1B, 0x24, 1773 0x1C, 0x28, 1774 0x1D, 0x8F, 1775 0x1E, 0x14, 1776 0x1F, 0x8F, 1777 0x20, 0x57, 1778 0x22, 0x21, /* New - ver 1.03 */ 1779 0x23, 0x3C, /* New - ver 1.10 */ 1780 0x24, 0x20, /* New - ver 1.03 */ 1781 0x2C, 0x24, /* bit at 0x20 is cleared below */ 1782 0x2D, 0x87, /* FIFFQ=0 */ 1783 0x2F, 0xF3, 1784 0x30, 0x0C, /* New - ver 1.11 */ 1785 0x31, 0x1B, /* New - ver 1.11 */ 1786 0x2C, 0x04, /* bit at 0x20 is cleared here */ 1787 0x28, 0xE1, /* Set the FIFCrst bit here */ 1788 0x28, 0xE0, /* Clear the FIFCrst bit here */ 1789 0x00 1790 }; 1791 1792 /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ 1793 static const u8 MT2063B3_defaults[] = { 1794 /* Reg, Value */ 1795 0x05, 0xF0, 1796 0x19, 0x3D, 1797 0x2C, 0x24, /* bit at 0x20 is cleared below */ 1798 0x2C, 0x04, /* bit at 0x20 is cleared here */ 1799 0x28, 0xE1, /* Set the FIFCrst bit here */ 1800 0x28, 0xE0, /* Clear the FIFCrst bit here */ 1801 0x00 1802 }; 1803 1804 static int mt2063_init(struct dvb_frontend *fe) 1805 { 1806 int status; 1807 struct mt2063_state *state = fe->tuner_priv; 1808 u8 all_resets = 0xF0; /* reset/load bits */ 1809 const u8 *def = NULL; 1810 char *step; 1811 u32 FCRUN; 1812 s32 maxReads; 1813 u32 fcu_osc; 1814 u32 i; 1815 1816 dprintk(2, "\n"); 1817 1818 state->rcvr_mode = MT2063_CABLE_QAM; 1819 1820 /* Read the Part/Rev code from the tuner */ 1821 status = mt2063_read(state, MT2063_REG_PART_REV, 1822 &state->reg[MT2063_REG_PART_REV], 1); 1823 if (status < 0) { 1824 printk(KERN_ERR "Can't read mt2063 part ID\n"); 1825 return status; 1826 } 1827 1828 /* Check the part/rev code */ 1829 switch (state->reg[MT2063_REG_PART_REV]) { 1830 case MT2063_B0: 1831 step = "B0"; 1832 break; 1833 case MT2063_B1: 1834 step = "B1"; 1835 break; 1836 case MT2063_B2: 1837 step = "B2"; 1838 break; 1839 case MT2063_B3: 1840 step = "B3"; 1841 break; 1842 default: 1843 printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", 1844 state->reg[MT2063_REG_PART_REV]); 1845 return -ENODEV; /* Wrong tuner Part/Rev code */ 1846 } 1847 1848 /* Check the 2nd byte of the Part/Rev code from the tuner */ 1849 status = mt2063_read(state, MT2063_REG_RSVD_3B, 1850 &state->reg[MT2063_REG_RSVD_3B], 1); 1851 1852 /* b7 != 0 ==> NOT MT2063 */ 1853 if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { 1854 printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", 1855 state->reg[MT2063_REG_PART_REV], 1856 state->reg[MT2063_REG_RSVD_3B]); 1857 return -ENODEV; /* Wrong tuner Part/Rev code */ 1858 } 1859 1860 printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); 1861 1862 /* Reset the tuner */ 1863 status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); 1864 if (status < 0) 1865 return status; 1866 1867 /* change all of the default values that vary from the HW reset values */ 1868 /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ 1869 switch (state->reg[MT2063_REG_PART_REV]) { 1870 case MT2063_B3: 1871 def = MT2063B3_defaults; 1872 break; 1873 1874 case MT2063_B1: 1875 def = MT2063B1_defaults; 1876 break; 1877 1878 case MT2063_B0: 1879 def = MT2063B0_defaults; 1880 break; 1881 1882 default: 1883 return -ENODEV; 1884 break; 1885 } 1886 1887 while (status >= 0 && *def) { 1888 u8 reg = *def++; 1889 u8 val = *def++; 1890 status = mt2063_write(state, reg, &val, 1); 1891 } 1892 if (status < 0) 1893 return status; 1894 1895 /* Wait for FIFF location to complete. */ 1896 FCRUN = 1; 1897 maxReads = 10; 1898 while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { 1899 msleep(2); 1900 status = mt2063_read(state, 1901 MT2063_REG_XO_STATUS, 1902 &state-> 1903 reg[MT2063_REG_XO_STATUS], 1); 1904 FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; 1905 } 1906 1907 if (FCRUN != 0 || status < 0) 1908 return -ENODEV; 1909 1910 status = mt2063_read(state, 1911 MT2063_REG_FIFFC, 1912 &state->reg[MT2063_REG_FIFFC], 1); 1913 if (status < 0) 1914 return status; 1915 1916 /* Read back all the registers from the tuner */ 1917 status = mt2063_read(state, 1918 MT2063_REG_PART_REV, 1919 state->reg, MT2063_REG_END_REGS); 1920 if (status < 0) 1921 return status; 1922 1923 /* Initialize the tuner state. */ 1924 state->tuner_id = state->reg[MT2063_REG_PART_REV]; 1925 state->AS_Data.f_ref = MT2063_REF_FREQ; 1926 state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * 1927 ((u32) state->reg[MT2063_REG_FIFFC] + 640); 1928 state->AS_Data.f_if1_bw = MT2063_IF1_BW; 1929 state->AS_Data.f_out = 43750000UL; 1930 state->AS_Data.f_out_bw = 6750000UL; 1931 state->AS_Data.f_zif_bw = MT2063_ZIF_BW; 1932 state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; 1933 state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; 1934 state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; 1935 state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; 1936 state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; 1937 state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; 1938 state->AS_Data.f_LO1 = 2181000000UL; 1939 state->AS_Data.f_LO2 = 1486249786UL; 1940 state->f_IF1_actual = state->AS_Data.f_if1_Center; 1941 state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; 1942 state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; 1943 state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; 1944 state->num_regs = MT2063_REG_END_REGS; 1945 state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; 1946 state->ctfilt_sw = 0; 1947 1948 state->CTFiltMax[0] = 69230000; 1949 state->CTFiltMax[1] = 105770000; 1950 state->CTFiltMax[2] = 140350000; 1951 state->CTFiltMax[3] = 177110000; 1952 state->CTFiltMax[4] = 212860000; 1953 state->CTFiltMax[5] = 241130000; 1954 state->CTFiltMax[6] = 274370000; 1955 state->CTFiltMax[7] = 309820000; 1956 state->CTFiltMax[8] = 342450000; 1957 state->CTFiltMax[9] = 378870000; 1958 state->CTFiltMax[10] = 416210000; 1959 state->CTFiltMax[11] = 456500000; 1960 state->CTFiltMax[12] = 495790000; 1961 state->CTFiltMax[13] = 534530000; 1962 state->CTFiltMax[14] = 572610000; 1963 state->CTFiltMax[15] = 598970000; 1964 state->CTFiltMax[16] = 635910000; 1965 state->CTFiltMax[17] = 672130000; 1966 state->CTFiltMax[18] = 714840000; 1967 state->CTFiltMax[19] = 739660000; 1968 state->CTFiltMax[20] = 770410000; 1969 state->CTFiltMax[21] = 814660000; 1970 state->CTFiltMax[22] = 846950000; 1971 state->CTFiltMax[23] = 867820000; 1972 state->CTFiltMax[24] = 915980000; 1973 state->CTFiltMax[25] = 947450000; 1974 state->CTFiltMax[26] = 983110000; 1975 state->CTFiltMax[27] = 1021630000; 1976 state->CTFiltMax[28] = 1061870000; 1977 state->CTFiltMax[29] = 1098330000; 1978 state->CTFiltMax[30] = 1138990000; 1979 1980 /* 1981 ** Fetch the FCU osc value and use it and the fRef value to 1982 ** scale all of the Band Max values 1983 */ 1984 1985 state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; 1986 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, 1987 &state->reg[MT2063_REG_CTUNE_CTRL], 1); 1988 if (status < 0) 1989 return status; 1990 1991 /* Read the ClearTune filter calibration value */ 1992 status = mt2063_read(state, MT2063_REG_FIFFC, 1993 &state->reg[MT2063_REG_FIFFC], 1); 1994 if (status < 0) 1995 return status; 1996 1997 fcu_osc = state->reg[MT2063_REG_FIFFC]; 1998 1999 state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; 2000 status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, 2001 &state->reg[MT2063_REG_CTUNE_CTRL], 1); 2002 if (status < 0) 2003 return status; 2004 2005 /* Adjust each of the values in the ClearTune filter cross-over table */ 2006 for (i = 0; i < 31; i++) 2007 state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); 2008 2009 status = MT2063_SoftwareShutdown(state, 1); 2010 if (status < 0) 2011 return status; 2012 status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); 2013 if (status < 0) 2014 return status; 2015 2016 state->init = true; 2017 2018 return 0; 2019 } 2020 2021 static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) 2022 { 2023 struct mt2063_state *state = fe->tuner_priv; 2024 int status; 2025 2026 dprintk(2, "\n"); 2027 2028 if (!state->init) 2029 return -ENODEV; 2030 2031 *tuner_status = 0; 2032 status = mt2063_lockStatus(state); 2033 if (status < 0) 2034 return status; 2035 if (status) 2036 *tuner_status = TUNER_STATUS_LOCKED; 2037 2038 dprintk(1, "Tuner status: %d", *tuner_status); 2039 2040 return 0; 2041 } 2042 2043 static int mt2063_release(struct dvb_frontend *fe) 2044 { 2045 struct mt2063_state *state = fe->tuner_priv; 2046 2047 dprintk(2, "\n"); 2048 2049 fe->tuner_priv = NULL; 2050 kfree(state); 2051 2052 return 0; 2053 } 2054 2055 static int mt2063_set_analog_params(struct dvb_frontend *fe, 2056 struct analog_parameters *params) 2057 { 2058 struct mt2063_state *state = fe->tuner_priv; 2059 s32 pict_car; 2060 s32 pict2chanb_vsb; 2061 s32 ch_bw; 2062 s32 if_mid; 2063 s32 rcvr_mode; 2064 int status; 2065 2066 dprintk(2, "\n"); 2067 2068 if (!state->init) { 2069 status = mt2063_init(fe); 2070 if (status < 0) 2071 return status; 2072 } 2073 2074 switch (params->mode) { 2075 case V4L2_TUNER_RADIO: 2076 pict_car = 38900000; 2077 ch_bw = 8000000; 2078 pict2chanb_vsb = -(ch_bw / 2); 2079 rcvr_mode = MT2063_OFFAIR_ANALOG; 2080 break; 2081 case V4L2_TUNER_ANALOG_TV: 2082 rcvr_mode = MT2063_CABLE_ANALOG; 2083 if (params->std & ~V4L2_STD_MN) { 2084 pict_car = 38900000; 2085 ch_bw = 6000000; 2086 pict2chanb_vsb = -1250000; 2087 } else if (params->std & V4L2_STD_PAL_G) { 2088 pict_car = 38900000; 2089 ch_bw = 7000000; 2090 pict2chanb_vsb = -1250000; 2091 } else { /* PAL/SECAM standards */ 2092 pict_car = 38900000; 2093 ch_bw = 8000000; 2094 pict2chanb_vsb = -1250000; 2095 } 2096 break; 2097 default: 2098 return -EINVAL; 2099 } 2100 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); 2101 2102 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ 2103 state->AS_Data.f_out = if_mid; 2104 state->AS_Data.f_out_bw = ch_bw + 750000; 2105 status = MT2063_SetReceiverMode(state, rcvr_mode); 2106 if (status < 0) 2107 return status; 2108 2109 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", 2110 params->frequency, ch_bw, pict2chanb_vsb); 2111 2112 status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); 2113 if (status < 0) 2114 return status; 2115 2116 state->frequency = params->frequency; 2117 return 0; 2118 } 2119 2120 /* 2121 * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. 2122 * So, the amount of the needed bandwith is given by: 2123 * Bw = Symbol_rate * (1 + 0.15) 2124 * As such, the maximum symbol rate supported by 6 MHz is given by: 2125 * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds 2126 */ 2127 #define MAX_SYMBOL_RATE_6MHz 5217391 2128 2129 static int mt2063_set_params(struct dvb_frontend *fe) 2130 { 2131 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 2132 struct mt2063_state *state = fe->tuner_priv; 2133 int status; 2134 s32 pict_car; 2135 s32 pict2chanb_vsb; 2136 s32 ch_bw; 2137 s32 if_mid; 2138 s32 rcvr_mode; 2139 2140 if (!state->init) { 2141 status = mt2063_init(fe); 2142 if (status < 0) 2143 return status; 2144 } 2145 2146 dprintk(2, "\n"); 2147 2148 if (c->bandwidth_hz == 0) 2149 return -EINVAL; 2150 if (c->bandwidth_hz <= 6000000) 2151 ch_bw = 6000000; 2152 else if (c->bandwidth_hz <= 7000000) 2153 ch_bw = 7000000; 2154 else 2155 ch_bw = 8000000; 2156 2157 switch (c->delivery_system) { 2158 case SYS_DVBT: 2159 rcvr_mode = MT2063_OFFAIR_COFDM; 2160 pict_car = 36125000; 2161 pict2chanb_vsb = -(ch_bw / 2); 2162 break; 2163 case SYS_DVBC_ANNEX_A: 2164 case SYS_DVBC_ANNEX_C: 2165 rcvr_mode = MT2063_CABLE_QAM; 2166 pict_car = 36125000; 2167 pict2chanb_vsb = -(ch_bw / 2); 2168 break; 2169 default: 2170 return -EINVAL; 2171 } 2172 if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); 2173 2174 state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ 2175 state->AS_Data.f_out = if_mid; 2176 state->AS_Data.f_out_bw = ch_bw + 750000; 2177 status = MT2063_SetReceiverMode(state, rcvr_mode); 2178 if (status < 0) 2179 return status; 2180 2181 dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", 2182 c->frequency, ch_bw, pict2chanb_vsb); 2183 2184 status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); 2185 2186 if (status < 0) 2187 return status; 2188 2189 state->frequency = c->frequency; 2190 return 0; 2191 } 2192 2193 static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) 2194 { 2195 struct mt2063_state *state = fe->tuner_priv; 2196 2197 dprintk(2, "\n"); 2198 2199 if (!state->init) 2200 return -ENODEV; 2201 2202 *freq = state->AS_Data.f_out; 2203 2204 dprintk(1, "IF frequency: %d\n", *freq); 2205 2206 return 0; 2207 } 2208 2209 static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) 2210 { 2211 struct mt2063_state *state = fe->tuner_priv; 2212 2213 dprintk(2, "\n"); 2214 2215 if (!state->init) 2216 return -ENODEV; 2217 2218 *bw = state->AS_Data.f_out_bw - 750000; 2219 2220 dprintk(1, "bandwidth: %d\n", *bw); 2221 2222 return 0; 2223 } 2224 2225 static struct dvb_tuner_ops mt2063_ops = { 2226 .info = { 2227 .name = "MT2063 Silicon Tuner", 2228 .frequency_min = 45000000, 2229 .frequency_max = 865000000, 2230 .frequency_step = 0, 2231 }, 2232 2233 .init = mt2063_init, 2234 .sleep = MT2063_Sleep, 2235 .get_status = mt2063_get_status, 2236 .set_analog_params = mt2063_set_analog_params, 2237 .set_params = mt2063_set_params, 2238 .get_if_frequency = mt2063_get_if_frequency, 2239 .get_bandwidth = mt2063_get_bandwidth, 2240 .release = mt2063_release, 2241 }; 2242 2243 struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, 2244 struct mt2063_config *config, 2245 struct i2c_adapter *i2c) 2246 { 2247 struct mt2063_state *state = NULL; 2248 2249 dprintk(2, "\n"); 2250 2251 state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); 2252 if (!state) 2253 return NULL; 2254 2255 state->config = config; 2256 state->i2c = i2c; 2257 state->frontend = fe; 2258 state->reference = config->refclock / 1000; /* kHz */ 2259 fe->tuner_priv = state; 2260 fe->ops.tuner_ops = mt2063_ops; 2261 2262 printk(KERN_INFO "%s: Attaching MT2063\n", __func__); 2263 return fe; 2264 } 2265 EXPORT_SYMBOL_GPL(mt2063_attach); 2266 2267 #if 0 2268 /* 2269 * Ancillary routines visible outside mt2063 2270 * FIXME: Remove them in favor of using standard tuner callbacks 2271 */ 2272 static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) 2273 { 2274 struct mt2063_state *state = fe->tuner_priv; 2275 int err = 0; 2276 2277 dprintk(2, "\n"); 2278 2279 err = MT2063_SoftwareShutdown(state, 1); 2280 if (err < 0) 2281 printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); 2282 2283 return err; 2284 } 2285 2286 static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) 2287 { 2288 struct mt2063_state *state = fe->tuner_priv; 2289 int err = 0; 2290 2291 dprintk(2, "\n"); 2292 2293 err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); 2294 if (err < 0) 2295 printk(KERN_ERR "%s: Invalid parameter\n", __func__); 2296 2297 return err; 2298 } 2299 #endif 2300 2301 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); 2302 MODULE_DESCRIPTION("MT2063 Silicon tuner"); 2303 MODULE_LICENSE("GPL"); 2304