1 /* 2 * Mirics MSi001 silicon tuner driver 3 * 4 * Copyright (C) 2013 Antti Palosaari <crope@iki.fi> 5 * Copyright (C) 2014 Antti Palosaari <crope@iki.fi> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/gcd.h> 20 #include <media/v4l2-device.h> 21 #include <media/v4l2-ctrls.h> 22 23 static const struct v4l2_frequency_band bands[] = { 24 { 25 .type = V4L2_TUNER_RF, 26 .index = 0, 27 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 28 .rangelow = 49000000, 29 .rangehigh = 263000000, 30 }, { 31 .type = V4L2_TUNER_RF, 32 .index = 1, 33 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 34 .rangelow = 390000000, 35 .rangehigh = 960000000, 36 }, 37 }; 38 39 struct msi001 { 40 struct spi_device *spi; 41 struct v4l2_subdev sd; 42 43 /* Controls */ 44 struct v4l2_ctrl_handler hdl; 45 struct v4l2_ctrl *bandwidth_auto; 46 struct v4l2_ctrl *bandwidth; 47 struct v4l2_ctrl *lna_gain; 48 struct v4l2_ctrl *mixer_gain; 49 struct v4l2_ctrl *if_gain; 50 51 unsigned int f_tuner; 52 }; 53 54 static inline struct msi001 *sd_to_msi001(struct v4l2_subdev *sd) 55 { 56 return container_of(sd, struct msi001, sd); 57 } 58 59 static int msi001_wreg(struct msi001 *s, u32 data) 60 { 61 /* Register format: 4 bits addr + 20 bits value */ 62 return spi_write(s->spi, &data, 3); 63 }; 64 65 static int msi001_set_gain(struct msi001 *s, int lna_gain, int mixer_gain, 66 int if_gain) 67 { 68 int ret; 69 u32 reg; 70 dev_dbg(&s->spi->dev, "%s: lna=%d mixer=%d if=%d\n", __func__, 71 lna_gain, mixer_gain, if_gain); 72 73 reg = 1 << 0; 74 reg |= (59 - if_gain) << 4; 75 reg |= 0 << 10; 76 reg |= (1 - mixer_gain) << 12; 77 reg |= (1 - lna_gain) << 13; 78 reg |= 4 << 14; 79 reg |= 0 << 17; 80 ret = msi001_wreg(s, reg); 81 if (ret) 82 goto err; 83 84 return 0; 85 err: 86 dev_dbg(&s->spi->dev, "%s: failed %d\n", __func__, ret); 87 return ret; 88 }; 89 90 static int msi001_set_tuner(struct msi001 *s) 91 { 92 int ret, i; 93 unsigned int n, m, thresh, frac, vco_step, tmp, f_if1; 94 u32 reg; 95 u64 f_vco, tmp64; 96 u8 mode, filter_mode, lo_div; 97 static const struct { 98 u32 rf; 99 u8 mode; 100 u8 lo_div; 101 } band_lut[] = { 102 { 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */ 103 {108000000, 0x42, 32}, /* VHF_MODE */ 104 {330000000, 0x44, 16}, /* B3_MODE */ 105 {960000000, 0x48, 4}, /* B45_MODE */ 106 { ~0U, 0x50, 2}, /* BL_MODE */ 107 }; 108 static const struct { 109 u32 freq; 110 u8 filter_mode; 111 } if_freq_lut[] = { 112 { 0, 0x03}, /* Zero IF */ 113 { 450000, 0x02}, /* 450 kHz IF */ 114 {1620000, 0x01}, /* 1.62 MHz IF */ 115 {2048000, 0x00}, /* 2.048 MHz IF */ 116 }; 117 static const struct { 118 u32 freq; 119 u8 val; 120 } bandwidth_lut[] = { 121 { 200000, 0x00}, /* 200 kHz */ 122 { 300000, 0x01}, /* 300 kHz */ 123 { 600000, 0x02}, /* 600 kHz */ 124 {1536000, 0x03}, /* 1.536 MHz */ 125 {5000000, 0x04}, /* 5 MHz */ 126 {6000000, 0x05}, /* 6 MHz */ 127 {7000000, 0x06}, /* 7 MHz */ 128 {8000000, 0x07}, /* 8 MHz */ 129 }; 130 131 unsigned int f_rf = s->f_tuner; 132 133 /* 134 * bandwidth (Hz) 135 * 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000 136 */ 137 unsigned int bandwidth; 138 139 /* 140 * intermediate frequency (Hz) 141 * 0, 450000, 1620000, 2048000 142 */ 143 unsigned int f_if = 0; 144 #define F_REF 24000000 145 #define R_REF 4 146 #define F_OUT_STEP 1 147 148 dev_dbg(&s->spi->dev, 149 "%s: f_rf=%d f_if=%d\n", 150 __func__, f_rf, f_if); 151 152 for (i = 0; i < ARRAY_SIZE(band_lut); i++) { 153 if (f_rf <= band_lut[i].rf) { 154 mode = band_lut[i].mode; 155 lo_div = band_lut[i].lo_div; 156 break; 157 } 158 } 159 160 if (i == ARRAY_SIZE(band_lut)) { 161 ret = -EINVAL; 162 goto err; 163 } 164 165 /* AM_MODE is upconverted */ 166 if ((mode >> 0) & 0x1) 167 f_if1 = 5 * F_REF; 168 else 169 f_if1 = 0; 170 171 for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) { 172 if (f_if == if_freq_lut[i].freq) { 173 filter_mode = if_freq_lut[i].filter_mode; 174 break; 175 } 176 } 177 178 if (i == ARRAY_SIZE(if_freq_lut)) { 179 ret = -EINVAL; 180 goto err; 181 } 182 183 /* filters */ 184 bandwidth = s->bandwidth->val; 185 bandwidth = clamp(bandwidth, 200000U, 8000000U); 186 187 for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) { 188 if (bandwidth <= bandwidth_lut[i].freq) { 189 bandwidth = bandwidth_lut[i].val; 190 break; 191 } 192 } 193 194 if (i == ARRAY_SIZE(bandwidth_lut)) { 195 ret = -EINVAL; 196 goto err; 197 } 198 199 s->bandwidth->val = bandwidth_lut[i].freq; 200 201 dev_dbg(&s->spi->dev, "%s: bandwidth selected=%d\n", 202 __func__, bandwidth_lut[i].freq); 203 204 f_vco = (u64) (f_rf + f_if + f_if1) * lo_div; 205 tmp64 = f_vco; 206 m = do_div(tmp64, F_REF * R_REF); 207 n = (unsigned int) tmp64; 208 209 vco_step = F_OUT_STEP * lo_div; 210 thresh = (F_REF * R_REF) / vco_step; 211 frac = 1ul * thresh * m / (F_REF * R_REF); 212 213 /* Find out greatest common divisor and divide to smaller. */ 214 tmp = gcd(thresh, frac); 215 thresh /= tmp; 216 frac /= tmp; 217 218 /* Force divide to reg max. Resolution will be reduced. */ 219 tmp = DIV_ROUND_UP(thresh, 4095); 220 thresh = DIV_ROUND_CLOSEST(thresh, tmp); 221 frac = DIV_ROUND_CLOSEST(frac, tmp); 222 223 /* calc real RF set */ 224 tmp = 1ul * F_REF * R_REF * n; 225 tmp += 1ul * F_REF * R_REF * frac / thresh; 226 tmp /= lo_div; 227 228 dev_dbg(&s->spi->dev, 229 "%s: rf=%u:%u n=%d thresh=%d frac=%d\n", 230 __func__, f_rf, tmp, n, thresh, frac); 231 232 ret = msi001_wreg(s, 0x00000e); 233 if (ret) 234 goto err; 235 236 ret = msi001_wreg(s, 0x000003); 237 if (ret) 238 goto err; 239 240 reg = 0 << 0; 241 reg |= mode << 4; 242 reg |= filter_mode << 12; 243 reg |= bandwidth << 14; 244 reg |= 0x02 << 17; 245 reg |= 0x00 << 20; 246 ret = msi001_wreg(s, reg); 247 if (ret) 248 goto err; 249 250 reg = 5 << 0; 251 reg |= thresh << 4; 252 reg |= 1 << 19; 253 reg |= 1 << 21; 254 ret = msi001_wreg(s, reg); 255 if (ret) 256 goto err; 257 258 reg = 2 << 0; 259 reg |= frac << 4; 260 reg |= n << 16; 261 ret = msi001_wreg(s, reg); 262 if (ret) 263 goto err; 264 265 ret = msi001_set_gain(s, s->lna_gain->cur.val, s->mixer_gain->cur.val, 266 s->if_gain->cur.val); 267 if (ret) 268 goto err; 269 270 reg = 6 << 0; 271 reg |= 63 << 4; 272 reg |= 4095 << 10; 273 ret = msi001_wreg(s, reg); 274 if (ret) 275 goto err; 276 277 return 0; 278 err: 279 dev_dbg(&s->spi->dev, "%s: failed %d\n", __func__, ret); 280 return ret; 281 }; 282 283 static int msi001_s_power(struct v4l2_subdev *sd, int on) 284 { 285 struct msi001 *s = sd_to_msi001(sd); 286 int ret; 287 dev_dbg(&s->spi->dev, "%s: on=%d\n", __func__, on); 288 289 if (on) 290 ret = 0; 291 else 292 ret = msi001_wreg(s, 0x000000); 293 294 return ret; 295 } 296 297 static const struct v4l2_subdev_core_ops msi001_core_ops = { 298 .s_power = msi001_s_power, 299 }; 300 301 static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v) 302 { 303 struct msi001 *s = sd_to_msi001(sd); 304 dev_dbg(&s->spi->dev, "%s: index=%d\n", __func__, v->index); 305 306 strlcpy(v->name, "Mirics MSi001", sizeof(v->name)); 307 v->type = V4L2_TUNER_RF; 308 v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; 309 v->rangelow = 49000000; 310 v->rangehigh = 960000000; 311 312 return 0; 313 } 314 315 static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v) 316 { 317 struct msi001 *s = sd_to_msi001(sd); 318 dev_dbg(&s->spi->dev, "%s: index=%d\n", __func__, v->index); 319 return 0; 320 } 321 322 static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f) 323 { 324 struct msi001 *s = sd_to_msi001(sd); 325 dev_dbg(&s->spi->dev, "%s: tuner=%d\n", __func__, f->tuner); 326 f->frequency = s->f_tuner; 327 return 0; 328 } 329 330 static int msi001_s_frequency(struct v4l2_subdev *sd, 331 const struct v4l2_frequency *f) 332 { 333 struct msi001 *s = sd_to_msi001(sd); 334 unsigned int band; 335 dev_dbg(&s->spi->dev, "%s: tuner=%d type=%d frequency=%u\n", 336 __func__, f->tuner, f->type, f->frequency); 337 338 if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2)) 339 band = 0; 340 else 341 band = 1; 342 s->f_tuner = clamp_t(unsigned int, f->frequency, 343 bands[band].rangelow, bands[band].rangehigh); 344 345 return msi001_set_tuner(s); 346 } 347 348 static int msi001_enum_freq_bands(struct v4l2_subdev *sd, 349 struct v4l2_frequency_band *band) 350 { 351 struct msi001 *s = sd_to_msi001(sd); 352 dev_dbg(&s->spi->dev, "%s: tuner=%d type=%d index=%d\n", 353 __func__, band->tuner, band->type, band->index); 354 355 if (band->index >= ARRAY_SIZE(bands)) 356 return -EINVAL; 357 358 band->capability = bands[band->index].capability; 359 band->rangelow = bands[band->index].rangelow; 360 band->rangehigh = bands[band->index].rangehigh; 361 362 return 0; 363 } 364 365 static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = { 366 .g_tuner = msi001_g_tuner, 367 .s_tuner = msi001_s_tuner, 368 .g_frequency = msi001_g_frequency, 369 .s_frequency = msi001_s_frequency, 370 .enum_freq_bands = msi001_enum_freq_bands, 371 }; 372 373 static const struct v4l2_subdev_ops msi001_ops = { 374 .core = &msi001_core_ops, 375 .tuner = &msi001_tuner_ops, 376 }; 377 378 static int msi001_s_ctrl(struct v4l2_ctrl *ctrl) 379 { 380 struct msi001 *s = container_of(ctrl->handler, struct msi001, hdl); 381 382 int ret; 383 dev_dbg(&s->spi->dev, 384 "%s: id=%d name=%s val=%d min=%lld max=%lld step=%lld\n", 385 __func__, ctrl->id, ctrl->name, ctrl->val, 386 ctrl->minimum, ctrl->maximum, ctrl->step); 387 388 switch (ctrl->id) { 389 case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: 390 case V4L2_CID_RF_TUNER_BANDWIDTH: 391 ret = msi001_set_tuner(s); 392 break; 393 case V4L2_CID_RF_TUNER_LNA_GAIN: 394 ret = msi001_set_gain(s, s->lna_gain->val, 395 s->mixer_gain->cur.val, s->if_gain->cur.val); 396 break; 397 case V4L2_CID_RF_TUNER_MIXER_GAIN: 398 ret = msi001_set_gain(s, s->lna_gain->cur.val, 399 s->mixer_gain->val, s->if_gain->cur.val); 400 break; 401 case V4L2_CID_RF_TUNER_IF_GAIN: 402 ret = msi001_set_gain(s, s->lna_gain->cur.val, 403 s->mixer_gain->cur.val, s->if_gain->val); 404 break; 405 default: 406 dev_dbg(&s->spi->dev, "%s: unkown control %d\n", 407 __func__, ctrl->id); 408 ret = -EINVAL; 409 } 410 411 return ret; 412 } 413 414 static const struct v4l2_ctrl_ops msi001_ctrl_ops = { 415 .s_ctrl = msi001_s_ctrl, 416 }; 417 418 static int msi001_probe(struct spi_device *spi) 419 { 420 struct msi001 *s; 421 int ret; 422 dev_dbg(&spi->dev, "%s:\n", __func__); 423 424 s = kzalloc(sizeof(struct msi001), GFP_KERNEL); 425 if (s == NULL) { 426 ret = -ENOMEM; 427 dev_dbg(&spi->dev, "Could not allocate memory for msi001\n"); 428 goto err_kfree; 429 } 430 431 s->spi = spi; 432 s->f_tuner = bands[0].rangelow; 433 v4l2_spi_subdev_init(&s->sd, spi, &msi001_ops); 434 435 /* Register controls */ 436 v4l2_ctrl_handler_init(&s->hdl, 5); 437 s->bandwidth_auto = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops, 438 V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); 439 s->bandwidth = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops, 440 V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000); 441 v4l2_ctrl_auto_cluster(2, &s->bandwidth_auto, 0, false); 442 s->lna_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops, 443 V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1); 444 s->mixer_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops, 445 V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); 446 s->if_gain = v4l2_ctrl_new_std(&s->hdl, &msi001_ctrl_ops, 447 V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0); 448 if (s->hdl.error) { 449 ret = s->hdl.error; 450 dev_err(&s->spi->dev, "Could not initialize controls\n"); 451 /* control init failed, free handler */ 452 goto err_ctrl_handler_free; 453 } 454 455 s->sd.ctrl_handler = &s->hdl; 456 return 0; 457 458 err_ctrl_handler_free: 459 v4l2_ctrl_handler_free(&s->hdl); 460 err_kfree: 461 kfree(s); 462 return ret; 463 } 464 465 static int msi001_remove(struct spi_device *spi) 466 { 467 struct v4l2_subdev *sd = spi_get_drvdata(spi); 468 struct msi001 *s = sd_to_msi001(sd); 469 dev_dbg(&spi->dev, "%s:\n", __func__); 470 471 /* 472 * Registered by v4l2_spi_new_subdev() from master driver, but we must 473 * unregister it from here. Weird. 474 */ 475 v4l2_device_unregister_subdev(&s->sd); 476 v4l2_ctrl_handler_free(&s->hdl); 477 kfree(s); 478 return 0; 479 } 480 481 static const struct spi_device_id msi001_id[] = { 482 {"msi001", 0}, 483 {} 484 }; 485 MODULE_DEVICE_TABLE(spi, msi001_id); 486 487 static struct spi_driver msi001_driver = { 488 .driver = { 489 .name = "msi001", 490 .owner = THIS_MODULE, 491 }, 492 .probe = msi001_probe, 493 .remove = msi001_remove, 494 .id_table = msi001_id, 495 }; 496 module_spi_driver(msi001_driver); 497 498 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); 499 MODULE_DESCRIPTION("Mirics MSi001"); 500 MODULE_LICENSE("GPL"); 501