xref: /openbmc/linux/drivers/media/tuners/e4000.c (revision f6723b56)
1 /*
2  * Elonics E4000 silicon tuner driver
3  *
4  * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; either version 2 of the License, or
9  *    (at your option) any later version.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *    GNU General Public License for more details.
15  *
16  *    You should have received a copy of the GNU General Public License along
17  *    with this program; if not, write to the Free Software Foundation, Inc.,
18  *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 
21 #include "e4000_priv.h"
22 #include <linux/math64.h>
23 
24 /* Max transfer size done by I2C transfer functions */
25 #define MAX_XFER_SIZE  64
26 
27 /* write multiple registers */
28 static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
29 {
30 	int ret;
31 	u8 buf[MAX_XFER_SIZE];
32 	struct i2c_msg msg[1] = {
33 		{
34 			.addr = priv->cfg->i2c_addr,
35 			.flags = 0,
36 			.len = 1 + len,
37 			.buf = buf,
38 		}
39 	};
40 
41 	if (1 + len > sizeof(buf)) {
42 		dev_warn(&priv->i2c->dev,
43 			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
44 			 KBUILD_MODNAME, reg, len);
45 		return -EINVAL;
46 	}
47 
48 	buf[0] = reg;
49 	memcpy(&buf[1], val, len);
50 
51 	ret = i2c_transfer(priv->i2c, msg, 1);
52 	if (ret == 1) {
53 		ret = 0;
54 	} else {
55 		dev_warn(&priv->i2c->dev,
56 				"%s: i2c wr failed=%d reg=%02x len=%d\n",
57 				KBUILD_MODNAME, ret, reg, len);
58 		ret = -EREMOTEIO;
59 	}
60 	return ret;
61 }
62 
63 /* read multiple registers */
64 static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
65 {
66 	int ret;
67 	u8 buf[MAX_XFER_SIZE];
68 	struct i2c_msg msg[2] = {
69 		{
70 			.addr = priv->cfg->i2c_addr,
71 			.flags = 0,
72 			.len = 1,
73 			.buf = &reg,
74 		}, {
75 			.addr = priv->cfg->i2c_addr,
76 			.flags = I2C_M_RD,
77 			.len = len,
78 			.buf = buf,
79 		}
80 	};
81 
82 	if (len > sizeof(buf)) {
83 		dev_warn(&priv->i2c->dev,
84 			 "%s: i2c rd reg=%04x: len=%d is too big!\n",
85 			 KBUILD_MODNAME, reg, len);
86 		return -EINVAL;
87 	}
88 
89 	ret = i2c_transfer(priv->i2c, msg, 2);
90 	if (ret == 2) {
91 		memcpy(val, buf, len);
92 		ret = 0;
93 	} else {
94 		dev_warn(&priv->i2c->dev,
95 				"%s: i2c rd failed=%d reg=%02x len=%d\n",
96 				KBUILD_MODNAME, ret, reg, len);
97 		ret = -EREMOTEIO;
98 	}
99 
100 	return ret;
101 }
102 
103 /* write single register */
104 static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
105 {
106 	return e4000_wr_regs(priv, reg, &val, 1);
107 }
108 
109 /* read single register */
110 static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
111 {
112 	return e4000_rd_regs(priv, reg, val, 1);
113 }
114 
115 static int e4000_init(struct dvb_frontend *fe)
116 {
117 	struct e4000_priv *priv = fe->tuner_priv;
118 	int ret;
119 
120 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
121 
122 	if (fe->ops.i2c_gate_ctrl)
123 		fe->ops.i2c_gate_ctrl(fe, 1);
124 
125 	/* dummy I2C to ensure I2C wakes up */
126 	ret = e4000_wr_reg(priv, 0x02, 0x40);
127 
128 	/* reset */
129 	ret = e4000_wr_reg(priv, 0x00, 0x01);
130 	if (ret < 0)
131 		goto err;
132 
133 	/* disable output clock */
134 	ret = e4000_wr_reg(priv, 0x06, 0x00);
135 	if (ret < 0)
136 		goto err;
137 
138 	ret = e4000_wr_reg(priv, 0x7a, 0x96);
139 	if (ret < 0)
140 		goto err;
141 
142 	/* configure gains */
143 	ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
144 	if (ret < 0)
145 		goto err;
146 
147 	ret = e4000_wr_reg(priv, 0x82, 0x00);
148 	if (ret < 0)
149 		goto err;
150 
151 	ret = e4000_wr_reg(priv, 0x24, 0x05);
152 	if (ret < 0)
153 		goto err;
154 
155 	ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
156 	if (ret < 0)
157 		goto err;
158 
159 	ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
160 	if (ret < 0)
161 		goto err;
162 
163 	/* DC offset control */
164 	ret = e4000_wr_reg(priv, 0x2d, 0x1f);
165 	if (ret < 0)
166 		goto err;
167 
168 	ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2);
169 	if (ret < 0)
170 		goto err;
171 
172 	/* gain control */
173 	ret = e4000_wr_reg(priv, 0x1a, 0x17);
174 	if (ret < 0)
175 		goto err;
176 
177 	ret = e4000_wr_reg(priv, 0x1f, 0x1a);
178 	if (ret < 0)
179 		goto err;
180 
181 	if (fe->ops.i2c_gate_ctrl)
182 		fe->ops.i2c_gate_ctrl(fe, 0);
183 
184 	return 0;
185 err:
186 	if (fe->ops.i2c_gate_ctrl)
187 		fe->ops.i2c_gate_ctrl(fe, 0);
188 
189 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
190 	return ret;
191 }
192 
193 static int e4000_sleep(struct dvb_frontend *fe)
194 {
195 	struct e4000_priv *priv = fe->tuner_priv;
196 	int ret;
197 
198 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
199 
200 	if (fe->ops.i2c_gate_ctrl)
201 		fe->ops.i2c_gate_ctrl(fe, 1);
202 
203 	ret = e4000_wr_reg(priv, 0x00, 0x00);
204 	if (ret < 0)
205 		goto err;
206 
207 	if (fe->ops.i2c_gate_ctrl)
208 		fe->ops.i2c_gate_ctrl(fe, 0);
209 
210 	return 0;
211 err:
212 	if (fe->ops.i2c_gate_ctrl)
213 		fe->ops.i2c_gate_ctrl(fe, 0);
214 
215 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
216 	return ret;
217 }
218 
219 static int e4000_set_params(struct dvb_frontend *fe)
220 {
221 	struct e4000_priv *priv = fe->tuner_priv;
222 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
223 	int ret, i, sigma_delta;
224 	unsigned int f_vco;
225 	u8 buf[5], i_data[4], q_data[4];
226 
227 	dev_dbg(&priv->i2c->dev,
228 			"%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n",
229 			__func__, c->delivery_system, c->frequency,
230 			c->bandwidth_hz);
231 
232 	if (fe->ops.i2c_gate_ctrl)
233 		fe->ops.i2c_gate_ctrl(fe, 1);
234 
235 	/* gain control manual */
236 	ret = e4000_wr_reg(priv, 0x1a, 0x00);
237 	if (ret < 0)
238 		goto err;
239 
240 	/* PLL */
241 	for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
242 		if (c->frequency <= e4000_pll_lut[i].freq)
243 			break;
244 	}
245 
246 	if (i == ARRAY_SIZE(e4000_pll_lut)) {
247 		ret = -EINVAL;
248 		goto err;
249 	}
250 
251 	/*
252 	 * Note: Currently f_vco overflows when c->frequency is 1 073 741 824 Hz
253 	 * or more.
254 	 */
255 	f_vco = c->frequency * e4000_pll_lut[i].mul;
256 	sigma_delta = div_u64(0x10000ULL * (f_vco % priv->cfg->clock), priv->cfg->clock);
257 	buf[0] = f_vco / priv->cfg->clock;
258 	buf[1] = (sigma_delta >> 0) & 0xff;
259 	buf[2] = (sigma_delta >> 8) & 0xff;
260 	buf[3] = 0x00;
261 	buf[4] = e4000_pll_lut[i].div;
262 
263 	dev_dbg(&priv->i2c->dev, "%s: f_vco=%u pll div=%d sigma_delta=%04x\n",
264 			__func__, f_vco, buf[0], sigma_delta);
265 
266 	ret = e4000_wr_regs(priv, 0x09, buf, 5);
267 	if (ret < 0)
268 		goto err;
269 
270 	/* LNA filter (RF filter) */
271 	for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
272 		if (c->frequency <= e400_lna_filter_lut[i].freq)
273 			break;
274 	}
275 
276 	if (i == ARRAY_SIZE(e400_lna_filter_lut)) {
277 		ret = -EINVAL;
278 		goto err;
279 	}
280 
281 	ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
282 	if (ret < 0)
283 		goto err;
284 
285 	/* IF filters */
286 	for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
287 		if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
288 			break;
289 	}
290 
291 	if (i == ARRAY_SIZE(e4000_if_filter_lut)) {
292 		ret = -EINVAL;
293 		goto err;
294 	}
295 
296 	buf[0] = e4000_if_filter_lut[i].reg11_val;
297 	buf[1] = e4000_if_filter_lut[i].reg12_val;
298 
299 	ret = e4000_wr_regs(priv, 0x11, buf, 2);
300 	if (ret < 0)
301 		goto err;
302 
303 	/* frequency band */
304 	for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
305 		if (c->frequency <= e4000_band_lut[i].freq)
306 			break;
307 	}
308 
309 	if (i == ARRAY_SIZE(e4000_band_lut)) {
310 		ret = -EINVAL;
311 		goto err;
312 	}
313 
314 	ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
315 	if (ret < 0)
316 		goto err;
317 
318 	ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
319 	if (ret < 0)
320 		goto err;
321 
322 	/* DC offset */
323 	for (i = 0; i < 4; i++) {
324 		if (i == 0)
325 			ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3);
326 		else if (i == 1)
327 			ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2);
328 		else if (i == 2)
329 			ret = e4000_wr_regs(priv, 0x15, "\x01", 1);
330 		else
331 			ret = e4000_wr_regs(priv, 0x16, "\x7e", 1);
332 
333 		if (ret < 0)
334 			goto err;
335 
336 		ret = e4000_wr_reg(priv, 0x29, 0x01);
337 		if (ret < 0)
338 			goto err;
339 
340 		ret = e4000_rd_regs(priv, 0x2a, buf, 3);
341 		if (ret < 0)
342 			goto err;
343 
344 		i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
345 		q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
346 	}
347 
348 	swap(q_data[2], q_data[3]);
349 	swap(i_data[2], i_data[3]);
350 
351 	ret = e4000_wr_regs(priv, 0x50, q_data, 4);
352 	if (ret < 0)
353 		goto err;
354 
355 	ret = e4000_wr_regs(priv, 0x60, i_data, 4);
356 	if (ret < 0)
357 		goto err;
358 
359 	/* gain control auto */
360 	ret = e4000_wr_reg(priv, 0x1a, 0x17);
361 	if (ret < 0)
362 		goto err;
363 
364 	if (fe->ops.i2c_gate_ctrl)
365 		fe->ops.i2c_gate_ctrl(fe, 0);
366 
367 	return 0;
368 err:
369 	if (fe->ops.i2c_gate_ctrl)
370 		fe->ops.i2c_gate_ctrl(fe, 0);
371 
372 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
373 	return ret;
374 }
375 
376 static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
377 {
378 	struct e4000_priv *priv = fe->tuner_priv;
379 
380 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
381 
382 	*frequency = 0; /* Zero-IF */
383 
384 	return 0;
385 }
386 
387 static int e4000_release(struct dvb_frontend *fe)
388 {
389 	struct e4000_priv *priv = fe->tuner_priv;
390 
391 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
392 
393 	kfree(fe->tuner_priv);
394 
395 	return 0;
396 }
397 
398 static const struct dvb_tuner_ops e4000_tuner_ops = {
399 	.info = {
400 		.name           = "Elonics E4000",
401 		.frequency_min  = 174000000,
402 		.frequency_max  = 862000000,
403 	},
404 
405 	.release = e4000_release,
406 
407 	.init = e4000_init,
408 	.sleep = e4000_sleep,
409 	.set_params = e4000_set_params,
410 
411 	.get_if_frequency = e4000_get_if_frequency,
412 };
413 
414 struct dvb_frontend *e4000_attach(struct dvb_frontend *fe,
415 		struct i2c_adapter *i2c, const struct e4000_config *cfg)
416 {
417 	struct e4000_priv *priv;
418 	int ret;
419 	u8 chip_id;
420 
421 	if (fe->ops.i2c_gate_ctrl)
422 		fe->ops.i2c_gate_ctrl(fe, 1);
423 
424 	priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
425 	if (!priv) {
426 		ret = -ENOMEM;
427 		dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
428 		goto err;
429 	}
430 
431 	priv->cfg = cfg;
432 	priv->i2c = i2c;
433 
434 	/* check if the tuner is there */
435 	ret = e4000_rd_reg(priv, 0x02, &chip_id);
436 	if (ret < 0)
437 		goto err;
438 
439 	dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
440 
441 	if (chip_id != 0x40)
442 		goto err;
443 
444 	/* put sleep as chip seems to be in normal mode by default */
445 	ret = e4000_wr_reg(priv, 0x00, 0x00);
446 	if (ret < 0)
447 		goto err;
448 
449 	dev_info(&priv->i2c->dev,
450 			"%s: Elonics E4000 successfully identified\n",
451 			KBUILD_MODNAME);
452 
453 	fe->tuner_priv = priv;
454 	memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
455 			sizeof(struct dvb_tuner_ops));
456 
457 	if (fe->ops.i2c_gate_ctrl)
458 		fe->ops.i2c_gate_ctrl(fe, 0);
459 
460 	return fe;
461 err:
462 	if (fe->ops.i2c_gate_ctrl)
463 		fe->ops.i2c_gate_ctrl(fe, 0);
464 
465 	dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
466 	kfree(priv);
467 	return NULL;
468 }
469 EXPORT_SYMBOL(e4000_attach);
470 
471 MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
472 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
473 MODULE_LICENSE("GPL");
474