1 /* 2 * Elonics E4000 silicon tuner driver 3 * 4 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program; if not, write to the Free Software Foundation, Inc., 18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 19 */ 20 21 #include "e4000_priv.h" 22 23 static int e4000_init(struct e4000_dev *dev) 24 { 25 struct i2c_client *client = dev->client; 26 int ret; 27 28 dev_dbg(&client->dev, "\n"); 29 30 /* reset */ 31 ret = regmap_write(dev->regmap, 0x00, 0x01); 32 if (ret) 33 goto err; 34 35 /* disable output clock */ 36 ret = regmap_write(dev->regmap, 0x06, 0x00); 37 if (ret) 38 goto err; 39 40 ret = regmap_write(dev->regmap, 0x7a, 0x96); 41 if (ret) 42 goto err; 43 44 /* configure gains */ 45 ret = regmap_bulk_write(dev->regmap, 0x7e, "\x01\xfe", 2); 46 if (ret) 47 goto err; 48 49 ret = regmap_write(dev->regmap, 0x82, 0x00); 50 if (ret) 51 goto err; 52 53 ret = regmap_write(dev->regmap, 0x24, 0x05); 54 if (ret) 55 goto err; 56 57 ret = regmap_bulk_write(dev->regmap, 0x87, "\x20\x01", 2); 58 if (ret) 59 goto err; 60 61 ret = regmap_bulk_write(dev->regmap, 0x9f, "\x7f\x07", 2); 62 if (ret) 63 goto err; 64 65 /* DC offset control */ 66 ret = regmap_write(dev->regmap, 0x2d, 0x1f); 67 if (ret) 68 goto err; 69 70 ret = regmap_bulk_write(dev->regmap, 0x70, "\x01\x01", 2); 71 if (ret) 72 goto err; 73 74 /* gain control */ 75 ret = regmap_write(dev->regmap, 0x1a, 0x17); 76 if (ret) 77 goto err; 78 79 ret = regmap_write(dev->regmap, 0x1f, 0x1a); 80 if (ret) 81 goto err; 82 83 dev->active = true; 84 85 return 0; 86 err: 87 dev_dbg(&client->dev, "failed=%d\n", ret); 88 return ret; 89 } 90 91 static int e4000_sleep(struct e4000_dev *dev) 92 { 93 struct i2c_client *client = dev->client; 94 int ret; 95 96 dev_dbg(&client->dev, "\n"); 97 98 dev->active = false; 99 100 ret = regmap_write(dev->regmap, 0x00, 0x00); 101 if (ret) 102 goto err; 103 104 return 0; 105 err: 106 dev_dbg(&client->dev, "failed=%d\n", ret); 107 return ret; 108 } 109 110 static int e4000_set_params(struct e4000_dev *dev) 111 { 112 struct i2c_client *client = dev->client; 113 int ret, i; 114 unsigned int div_n, k, k_cw, div_out; 115 u64 f_vco; 116 u8 buf[5], i_data[4], q_data[4]; 117 118 if (!dev->active) { 119 dev_dbg(&client->dev, "tuner is sleeping\n"); 120 return 0; 121 } 122 123 /* gain control manual */ 124 ret = regmap_write(dev->regmap, 0x1a, 0x00); 125 if (ret) 126 goto err; 127 128 /* 129 * Fractional-N synthesizer 130 * 131 * +----------------------------+ 132 * v | 133 * Fref +----+ +-------+ +------+ +---+ 134 * ------> | PD | --> | VCO | ------> | /N.F | <-- | K | 135 * +----+ +-------+ +------+ +---+ 136 * | 137 * | 138 * v 139 * +-------+ Fout 140 * | /Rout | ------> 141 * +-------+ 142 */ 143 for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) { 144 if (dev->f_frequency <= e4000_pll_lut[i].freq) 145 break; 146 } 147 if (i == ARRAY_SIZE(e4000_pll_lut)) { 148 ret = -EINVAL; 149 goto err; 150 } 151 152 #define F_REF dev->clk 153 div_out = e4000_pll_lut[i].div_out; 154 f_vco = (u64) dev->f_frequency * div_out; 155 /* calculate PLL integer and fractional control word */ 156 div_n = div_u64_rem(f_vco, F_REF, &k); 157 k_cw = div_u64((u64) k * 0x10000, F_REF); 158 159 dev_dbg(&client->dev, 160 "frequency=%u bandwidth=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n", 161 dev->f_frequency, dev->f_bandwidth, f_vco, F_REF, div_n, k, 162 k_cw, div_out); 163 164 buf[0] = div_n; 165 buf[1] = (k_cw >> 0) & 0xff; 166 buf[2] = (k_cw >> 8) & 0xff; 167 buf[3] = 0x00; 168 buf[4] = e4000_pll_lut[i].div_out_reg; 169 ret = regmap_bulk_write(dev->regmap, 0x09, buf, 5); 170 if (ret) 171 goto err; 172 173 /* LNA filter (RF filter) */ 174 for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) { 175 if (dev->f_frequency <= e400_lna_filter_lut[i].freq) 176 break; 177 } 178 if (i == ARRAY_SIZE(e400_lna_filter_lut)) { 179 ret = -EINVAL; 180 goto err; 181 } 182 183 ret = regmap_write(dev->regmap, 0x10, e400_lna_filter_lut[i].val); 184 if (ret) 185 goto err; 186 187 /* IF filters */ 188 for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) { 189 if (dev->f_bandwidth <= e4000_if_filter_lut[i].freq) 190 break; 191 } 192 if (i == ARRAY_SIZE(e4000_if_filter_lut)) { 193 ret = -EINVAL; 194 goto err; 195 } 196 197 buf[0] = e4000_if_filter_lut[i].reg11_val; 198 buf[1] = e4000_if_filter_lut[i].reg12_val; 199 200 ret = regmap_bulk_write(dev->regmap, 0x11, buf, 2); 201 if (ret) 202 goto err; 203 204 /* frequency band */ 205 for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) { 206 if (dev->f_frequency <= e4000_band_lut[i].freq) 207 break; 208 } 209 if (i == ARRAY_SIZE(e4000_band_lut)) { 210 ret = -EINVAL; 211 goto err; 212 } 213 214 ret = regmap_write(dev->regmap, 0x07, e4000_band_lut[i].reg07_val); 215 if (ret) 216 goto err; 217 218 ret = regmap_write(dev->regmap, 0x78, e4000_band_lut[i].reg78_val); 219 if (ret) 220 goto err; 221 222 /* DC offset */ 223 for (i = 0; i < 4; i++) { 224 if (i == 0) 225 ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7e\x24", 3); 226 else if (i == 1) 227 ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7f", 2); 228 else if (i == 2) 229 ret = regmap_bulk_write(dev->regmap, 0x15, "\x01", 1); 230 else 231 ret = regmap_bulk_write(dev->regmap, 0x16, "\x7e", 1); 232 233 if (ret) 234 goto err; 235 236 ret = regmap_write(dev->regmap, 0x29, 0x01); 237 if (ret) 238 goto err; 239 240 ret = regmap_bulk_read(dev->regmap, 0x2a, buf, 3); 241 if (ret) 242 goto err; 243 244 i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f); 245 q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f); 246 } 247 248 swap(q_data[2], q_data[3]); 249 swap(i_data[2], i_data[3]); 250 251 ret = regmap_bulk_write(dev->regmap, 0x50, q_data, 4); 252 if (ret) 253 goto err; 254 255 ret = regmap_bulk_write(dev->regmap, 0x60, i_data, 4); 256 if (ret) 257 goto err; 258 259 /* gain control auto */ 260 ret = regmap_write(dev->regmap, 0x1a, 0x17); 261 if (ret) 262 goto err; 263 264 return 0; 265 err: 266 dev_dbg(&client->dev, "failed=%d\n", ret); 267 return ret; 268 } 269 270 /* 271 * V4L2 API 272 */ 273 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 274 static const struct v4l2_frequency_band bands[] = { 275 { 276 .type = V4L2_TUNER_RF, 277 .index = 0, 278 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 279 .rangelow = 59000000, 280 .rangehigh = 1105000000, 281 }, 282 { 283 .type = V4L2_TUNER_RF, 284 .index = 1, 285 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 286 .rangelow = 1249000000, 287 .rangehigh = 2208000000UL, 288 }, 289 }; 290 291 static inline struct e4000_dev *e4000_subdev_to_dev(struct v4l2_subdev *sd) 292 { 293 return container_of(sd, struct e4000_dev, sd); 294 } 295 296 static int e4000_s_power(struct v4l2_subdev *sd, int on) 297 { 298 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 299 struct i2c_client *client = dev->client; 300 int ret; 301 302 dev_dbg(&client->dev, "on=%d\n", on); 303 304 if (on) 305 ret = e4000_init(dev); 306 else 307 ret = e4000_sleep(dev); 308 if (ret) 309 return ret; 310 311 return e4000_set_params(dev); 312 } 313 314 static const struct v4l2_subdev_core_ops e4000_subdev_core_ops = { 315 .s_power = e4000_s_power, 316 }; 317 318 static int e4000_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v) 319 { 320 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 321 struct i2c_client *client = dev->client; 322 323 dev_dbg(&client->dev, "index=%d\n", v->index); 324 325 strlcpy(v->name, "Elonics E4000", sizeof(v->name)); 326 v->type = V4L2_TUNER_RF; 327 v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; 328 v->rangelow = bands[0].rangelow; 329 v->rangehigh = bands[1].rangehigh; 330 return 0; 331 } 332 333 static int e4000_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v) 334 { 335 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 336 struct i2c_client *client = dev->client; 337 338 dev_dbg(&client->dev, "index=%d\n", v->index); 339 return 0; 340 } 341 342 static int e4000_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f) 343 { 344 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 345 struct i2c_client *client = dev->client; 346 347 dev_dbg(&client->dev, "tuner=%d\n", f->tuner); 348 f->frequency = dev->f_frequency; 349 return 0; 350 } 351 352 static int e4000_s_frequency(struct v4l2_subdev *sd, 353 const struct v4l2_frequency *f) 354 { 355 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 356 struct i2c_client *client = dev->client; 357 358 dev_dbg(&client->dev, "tuner=%d type=%d frequency=%u\n", 359 f->tuner, f->type, f->frequency); 360 361 dev->f_frequency = clamp_t(unsigned int, f->frequency, 362 bands[0].rangelow, bands[1].rangehigh); 363 return e4000_set_params(dev); 364 } 365 366 static int e4000_enum_freq_bands(struct v4l2_subdev *sd, 367 struct v4l2_frequency_band *band) 368 { 369 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 370 struct i2c_client *client = dev->client; 371 372 dev_dbg(&client->dev, "tuner=%d type=%d index=%d\n", 373 band->tuner, band->type, band->index); 374 375 if (band->index >= ARRAY_SIZE(bands)) 376 return -EINVAL; 377 378 band->capability = bands[band->index].capability; 379 band->rangelow = bands[band->index].rangelow; 380 band->rangehigh = bands[band->index].rangehigh; 381 return 0; 382 } 383 384 static const struct v4l2_subdev_tuner_ops e4000_subdev_tuner_ops = { 385 .g_tuner = e4000_g_tuner, 386 .s_tuner = e4000_s_tuner, 387 .g_frequency = e4000_g_frequency, 388 .s_frequency = e4000_s_frequency, 389 .enum_freq_bands = e4000_enum_freq_bands, 390 }; 391 392 static const struct v4l2_subdev_ops e4000_subdev_ops = { 393 .core = &e4000_subdev_core_ops, 394 .tuner = &e4000_subdev_tuner_ops, 395 }; 396 397 static int e4000_set_lna_gain(struct dvb_frontend *fe) 398 { 399 struct e4000_dev *dev = fe->tuner_priv; 400 struct i2c_client *client = dev->client; 401 int ret; 402 u8 u8tmp; 403 404 dev_dbg(&client->dev, "lna auto=%d->%d val=%d->%d\n", 405 dev->lna_gain_auto->cur.val, dev->lna_gain_auto->val, 406 dev->lna_gain->cur.val, dev->lna_gain->val); 407 408 if (dev->lna_gain_auto->val && dev->if_gain_auto->cur.val) 409 u8tmp = 0x17; 410 else if (dev->lna_gain_auto->val) 411 u8tmp = 0x19; 412 else if (dev->if_gain_auto->cur.val) 413 u8tmp = 0x16; 414 else 415 u8tmp = 0x10; 416 417 ret = regmap_write(dev->regmap, 0x1a, u8tmp); 418 if (ret) 419 goto err; 420 421 if (dev->lna_gain_auto->val == false) { 422 ret = regmap_write(dev->regmap, 0x14, dev->lna_gain->val); 423 if (ret) 424 goto err; 425 } 426 427 return 0; 428 err: 429 dev_dbg(&client->dev, "failed=%d\n", ret); 430 return ret; 431 } 432 433 static int e4000_set_mixer_gain(struct dvb_frontend *fe) 434 { 435 struct e4000_dev *dev = fe->tuner_priv; 436 struct i2c_client *client = dev->client; 437 int ret; 438 u8 u8tmp; 439 440 dev_dbg(&client->dev, "mixer auto=%d->%d val=%d->%d\n", 441 dev->mixer_gain_auto->cur.val, dev->mixer_gain_auto->val, 442 dev->mixer_gain->cur.val, dev->mixer_gain->val); 443 444 if (dev->mixer_gain_auto->val) 445 u8tmp = 0x15; 446 else 447 u8tmp = 0x14; 448 449 ret = regmap_write(dev->regmap, 0x20, u8tmp); 450 if (ret) 451 goto err; 452 453 if (dev->mixer_gain_auto->val == false) { 454 ret = regmap_write(dev->regmap, 0x15, dev->mixer_gain->val); 455 if (ret) 456 goto err; 457 } 458 459 return 0; 460 err: 461 dev_dbg(&client->dev, "failed=%d\n", ret); 462 return ret; 463 } 464 465 static int e4000_set_if_gain(struct dvb_frontend *fe) 466 { 467 struct e4000_dev *dev = fe->tuner_priv; 468 struct i2c_client *client = dev->client; 469 int ret; 470 u8 buf[2]; 471 u8 u8tmp; 472 473 dev_dbg(&client->dev, "if auto=%d->%d val=%d->%d\n", 474 dev->if_gain_auto->cur.val, dev->if_gain_auto->val, 475 dev->if_gain->cur.val, dev->if_gain->val); 476 477 if (dev->if_gain_auto->val && dev->lna_gain_auto->cur.val) 478 u8tmp = 0x17; 479 else if (dev->lna_gain_auto->cur.val) 480 u8tmp = 0x19; 481 else if (dev->if_gain_auto->val) 482 u8tmp = 0x16; 483 else 484 u8tmp = 0x10; 485 486 ret = regmap_write(dev->regmap, 0x1a, u8tmp); 487 if (ret) 488 goto err; 489 490 if (dev->if_gain_auto->val == false) { 491 buf[0] = e4000_if_gain_lut[dev->if_gain->val].reg16_val; 492 buf[1] = e4000_if_gain_lut[dev->if_gain->val].reg17_val; 493 ret = regmap_bulk_write(dev->regmap, 0x16, buf, 2); 494 if (ret) 495 goto err; 496 } 497 498 return 0; 499 err: 500 dev_dbg(&client->dev, "failed=%d\n", ret); 501 return ret; 502 } 503 504 static int e4000_pll_lock(struct dvb_frontend *fe) 505 { 506 struct e4000_dev *dev = fe->tuner_priv; 507 struct i2c_client *client = dev->client; 508 int ret; 509 unsigned int uitmp; 510 511 ret = regmap_read(dev->regmap, 0x07, &uitmp); 512 if (ret) 513 goto err; 514 515 dev->pll_lock->val = (uitmp & 0x01); 516 517 return 0; 518 err: 519 dev_dbg(&client->dev, "failed=%d\n", ret); 520 return ret; 521 } 522 523 static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 524 { 525 struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); 526 struct i2c_client *client = dev->client; 527 int ret; 528 529 if (!dev->active) 530 return 0; 531 532 switch (ctrl->id) { 533 case V4L2_CID_RF_TUNER_PLL_LOCK: 534 ret = e4000_pll_lock(dev->fe); 535 break; 536 default: 537 dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", 538 ctrl->id, ctrl->name); 539 ret = -EINVAL; 540 } 541 542 return ret; 543 } 544 545 static int e4000_s_ctrl(struct v4l2_ctrl *ctrl) 546 { 547 struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); 548 struct i2c_client *client = dev->client; 549 int ret; 550 551 if (!dev->active) 552 return 0; 553 554 switch (ctrl->id) { 555 case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: 556 case V4L2_CID_RF_TUNER_BANDWIDTH: 557 /* 558 * TODO: Auto logic does not work 100% correctly as tuner driver 559 * do not have information to calculate maximum suitable 560 * bandwidth. Calculating it is responsible of master driver. 561 */ 562 dev->f_bandwidth = dev->bandwidth->val; 563 ret = e4000_set_params(dev); 564 break; 565 case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO: 566 case V4L2_CID_RF_TUNER_LNA_GAIN: 567 ret = e4000_set_lna_gain(dev->fe); 568 break; 569 case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO: 570 case V4L2_CID_RF_TUNER_MIXER_GAIN: 571 ret = e4000_set_mixer_gain(dev->fe); 572 break; 573 case V4L2_CID_RF_TUNER_IF_GAIN_AUTO: 574 case V4L2_CID_RF_TUNER_IF_GAIN: 575 ret = e4000_set_if_gain(dev->fe); 576 break; 577 default: 578 dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", 579 ctrl->id, ctrl->name); 580 ret = -EINVAL; 581 } 582 583 return ret; 584 } 585 586 static const struct v4l2_ctrl_ops e4000_ctrl_ops = { 587 .g_volatile_ctrl = e4000_g_volatile_ctrl, 588 .s_ctrl = e4000_s_ctrl, 589 }; 590 #endif 591 592 /* 593 * DVB API 594 */ 595 static int e4000_dvb_set_params(struct dvb_frontend *fe) 596 { 597 struct e4000_dev *dev = fe->tuner_priv; 598 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 599 600 dev->f_frequency = c->frequency; 601 dev->f_bandwidth = c->bandwidth_hz; 602 return e4000_set_params(dev); 603 } 604 605 static int e4000_dvb_init(struct dvb_frontend *fe) 606 { 607 return e4000_init(fe->tuner_priv); 608 } 609 610 static int e4000_dvb_sleep(struct dvb_frontend *fe) 611 { 612 return e4000_sleep(fe->tuner_priv); 613 } 614 615 static int e4000_dvb_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) 616 { 617 *frequency = 0; /* Zero-IF */ 618 return 0; 619 } 620 621 static const struct dvb_tuner_ops e4000_dvb_tuner_ops = { 622 .info = { 623 .name = "Elonics E4000", 624 .frequency_min = 174000000, 625 .frequency_max = 862000000, 626 }, 627 628 .init = e4000_dvb_init, 629 .sleep = e4000_dvb_sleep, 630 .set_params = e4000_dvb_set_params, 631 632 .get_if_frequency = e4000_dvb_get_if_frequency, 633 }; 634 635 static int e4000_probe(struct i2c_client *client, 636 const struct i2c_device_id *id) 637 { 638 struct e4000_dev *dev; 639 struct e4000_config *cfg = client->dev.platform_data; 640 struct dvb_frontend *fe = cfg->fe; 641 int ret; 642 unsigned int uitmp; 643 static const struct regmap_config regmap_config = { 644 .reg_bits = 8, 645 .val_bits = 8, 646 }; 647 648 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 649 if (!dev) { 650 ret = -ENOMEM; 651 goto err; 652 } 653 654 dev->clk = cfg->clock; 655 dev->client = client; 656 dev->fe = cfg->fe; 657 dev->regmap = devm_regmap_init_i2c(client, ®map_config); 658 if (IS_ERR(dev->regmap)) { 659 ret = PTR_ERR(dev->regmap); 660 goto err_kfree; 661 } 662 663 /* check if the tuner is there */ 664 ret = regmap_read(dev->regmap, 0x02, &uitmp); 665 if (ret) 666 goto err_kfree; 667 668 dev_dbg(&client->dev, "chip id=%02x\n", uitmp); 669 670 if (uitmp != 0x40) { 671 ret = -ENODEV; 672 goto err_kfree; 673 } 674 675 /* put sleep as chip seems to be in normal mode by default */ 676 ret = regmap_write(dev->regmap, 0x00, 0x00); 677 if (ret) 678 goto err_kfree; 679 680 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 681 /* Register controls */ 682 v4l2_ctrl_handler_init(&dev->hdl, 9); 683 dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 684 V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); 685 dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 686 V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000); 687 v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false); 688 dev->lna_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 689 V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1); 690 dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 691 V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10); 692 v4l2_ctrl_auto_cluster(2, &dev->lna_gain_auto, 0, false); 693 dev->mixer_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 694 V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1); 695 dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 696 V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); 697 v4l2_ctrl_auto_cluster(2, &dev->mixer_gain_auto, 0, false); 698 dev->if_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 699 V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1); 700 dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 701 V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0); 702 v4l2_ctrl_auto_cluster(2, &dev->if_gain_auto, 0, false); 703 dev->pll_lock = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 704 V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0); 705 if (dev->hdl.error) { 706 ret = dev->hdl.error; 707 dev_err(&client->dev, "Could not initialize controls\n"); 708 v4l2_ctrl_handler_free(&dev->hdl); 709 goto err_kfree; 710 } 711 712 dev->sd.ctrl_handler = &dev->hdl; 713 dev->f_frequency = bands[0].rangelow; 714 dev->f_bandwidth = dev->bandwidth->val; 715 v4l2_i2c_subdev_init(&dev->sd, client, &e4000_subdev_ops); 716 #endif 717 fe->tuner_priv = dev; 718 memcpy(&fe->ops.tuner_ops, &e4000_dvb_tuner_ops, 719 sizeof(fe->ops.tuner_ops)); 720 v4l2_set_subdevdata(&dev->sd, client); 721 i2c_set_clientdata(client, &dev->sd); 722 723 dev_info(&client->dev, "Elonics E4000 successfully identified\n"); 724 return 0; 725 err_kfree: 726 kfree(dev); 727 err: 728 dev_dbg(&client->dev, "failed=%d\n", ret); 729 return ret; 730 } 731 732 static int e4000_remove(struct i2c_client *client) 733 { 734 struct v4l2_subdev *sd = i2c_get_clientdata(client); 735 struct e4000_dev *dev = container_of(sd, struct e4000_dev, sd); 736 737 dev_dbg(&client->dev, "\n"); 738 739 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 740 v4l2_ctrl_handler_free(&dev->hdl); 741 #endif 742 kfree(dev); 743 744 return 0; 745 } 746 747 static const struct i2c_device_id e4000_id_table[] = { 748 {"e4000", 0}, 749 {} 750 }; 751 MODULE_DEVICE_TABLE(i2c, e4000_id_table); 752 753 static struct i2c_driver e4000_driver = { 754 .driver = { 755 .name = "e4000", 756 .suppress_bind_attrs = true, 757 }, 758 .probe = e4000_probe, 759 .remove = e4000_remove, 760 .id_table = e4000_id_table, 761 }; 762 763 module_i2c_driver(e4000_driver); 764 765 MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver"); 766 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); 767 MODULE_LICENSE("GPL"); 768