xref: /openbmc/linux/drivers/media/tuners/e4000.c (revision 31b90347)
1 /*
2  * Elonics E4000 silicon tuner driver
3  *
4  * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; either version 2 of the License, or
9  *    (at your option) any later version.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *    GNU General Public License for more details.
15  *
16  *    You should have received a copy of the GNU General Public License along
17  *    with this program; if not, write to the Free Software Foundation, Inc.,
18  *    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 
21 #include "e4000_priv.h"
22 #include <linux/math64.h>
23 
24 /* Max transfer size done by I2C transfer functions */
25 #define MAX_XFER_SIZE  64
26 
27 /* write multiple registers */
28 static int e4000_wr_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
29 {
30 	int ret;
31 	u8 buf[MAX_XFER_SIZE];
32 	struct i2c_msg msg[1] = {
33 		{
34 			.addr = priv->cfg->i2c_addr,
35 			.flags = 0,
36 			.len = 1 + len,
37 			.buf = buf,
38 		}
39 	};
40 
41 	if (1 + len > sizeof(buf)) {
42 		dev_warn(&priv->i2c->dev,
43 			 "%s: i2c wr reg=%04x: len=%d is too big!\n",
44 			 KBUILD_MODNAME, reg, len);
45 		return -EINVAL;
46 	}
47 
48 	buf[0] = reg;
49 	memcpy(&buf[1], val, len);
50 
51 	ret = i2c_transfer(priv->i2c, msg, 1);
52 	if (ret == 1) {
53 		ret = 0;
54 	} else {
55 		dev_warn(&priv->i2c->dev,
56 				"%s: i2c wr failed=%d reg=%02x len=%d\n",
57 				KBUILD_MODNAME, ret, reg, len);
58 		ret = -EREMOTEIO;
59 	}
60 	return ret;
61 }
62 
63 /* read multiple registers */
64 static int e4000_rd_regs(struct e4000_priv *priv, u8 reg, u8 *val, int len)
65 {
66 	int ret;
67 	u8 buf[MAX_XFER_SIZE];
68 	struct i2c_msg msg[2] = {
69 		{
70 			.addr = priv->cfg->i2c_addr,
71 			.flags = 0,
72 			.len = 1,
73 			.buf = &reg,
74 		}, {
75 			.addr = priv->cfg->i2c_addr,
76 			.flags = I2C_M_RD,
77 			.len = len,
78 			.buf = buf,
79 		}
80 	};
81 
82 	if (len > sizeof(buf)) {
83 		dev_warn(&priv->i2c->dev,
84 			 "%s: i2c rd reg=%04x: len=%d is too big!\n",
85 			 KBUILD_MODNAME, reg, len);
86 		return -EINVAL;
87 	}
88 
89 	ret = i2c_transfer(priv->i2c, msg, 2);
90 	if (ret == 2) {
91 		memcpy(val, buf, len);
92 		ret = 0;
93 	} else {
94 		dev_warn(&priv->i2c->dev,
95 				"%s: i2c rd failed=%d reg=%02x len=%d\n",
96 				KBUILD_MODNAME, ret, reg, len);
97 		ret = -EREMOTEIO;
98 	}
99 
100 	return ret;
101 }
102 
103 /* write single register */
104 static int e4000_wr_reg(struct e4000_priv *priv, u8 reg, u8 val)
105 {
106 	return e4000_wr_regs(priv, reg, &val, 1);
107 }
108 
109 /* read single register */
110 static int e4000_rd_reg(struct e4000_priv *priv, u8 reg, u8 *val)
111 {
112 	return e4000_rd_regs(priv, reg, val, 1);
113 }
114 
115 static int e4000_init(struct dvb_frontend *fe)
116 {
117 	struct e4000_priv *priv = fe->tuner_priv;
118 	int ret;
119 
120 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
121 
122 	if (fe->ops.i2c_gate_ctrl)
123 		fe->ops.i2c_gate_ctrl(fe, 1);
124 
125 	/* dummy I2C to ensure I2C wakes up */
126 	ret = e4000_wr_reg(priv, 0x02, 0x40);
127 
128 	/* reset */
129 	ret = e4000_wr_reg(priv, 0x00, 0x01);
130 	if (ret < 0)
131 		goto err;
132 
133 	/* disable output clock */
134 	ret = e4000_wr_reg(priv, 0x06, 0x00);
135 	if (ret < 0)
136 		goto err;
137 
138 	ret = e4000_wr_reg(priv, 0x7a, 0x96);
139 	if (ret < 0)
140 		goto err;
141 
142 	/* configure gains */
143 	ret = e4000_wr_regs(priv, 0x7e, "\x01\xfe", 2);
144 	if (ret < 0)
145 		goto err;
146 
147 	ret = e4000_wr_reg(priv, 0x82, 0x00);
148 	if (ret < 0)
149 		goto err;
150 
151 	ret = e4000_wr_reg(priv, 0x24, 0x05);
152 	if (ret < 0)
153 		goto err;
154 
155 	ret = e4000_wr_regs(priv, 0x87, "\x20\x01", 2);
156 	if (ret < 0)
157 		goto err;
158 
159 	ret = e4000_wr_regs(priv, 0x9f, "\x7f\x07", 2);
160 	if (ret < 0)
161 		goto err;
162 
163 	/* DC offset control */
164 	ret = e4000_wr_reg(priv, 0x2d, 0x1f);
165 	if (ret < 0)
166 		goto err;
167 
168 	ret = e4000_wr_regs(priv, 0x70, "\x01\x01", 2);
169 	if (ret < 0)
170 		goto err;
171 
172 	/* gain control */
173 	ret = e4000_wr_reg(priv, 0x1a, 0x17);
174 	if (ret < 0)
175 		goto err;
176 
177 	ret = e4000_wr_reg(priv, 0x1f, 0x1a);
178 	if (ret < 0)
179 		goto err;
180 
181 	if (fe->ops.i2c_gate_ctrl)
182 		fe->ops.i2c_gate_ctrl(fe, 0);
183 
184 	return 0;
185 err:
186 	if (fe->ops.i2c_gate_ctrl)
187 		fe->ops.i2c_gate_ctrl(fe, 0);
188 
189 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
190 	return ret;
191 }
192 
193 static int e4000_sleep(struct dvb_frontend *fe)
194 {
195 	struct e4000_priv *priv = fe->tuner_priv;
196 	int ret;
197 
198 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
199 
200 	if (fe->ops.i2c_gate_ctrl)
201 		fe->ops.i2c_gate_ctrl(fe, 1);
202 
203 	ret = e4000_wr_reg(priv, 0x00, 0x00);
204 	if (ret < 0)
205 		goto err;
206 
207 	if (fe->ops.i2c_gate_ctrl)
208 		fe->ops.i2c_gate_ctrl(fe, 0);
209 
210 	return 0;
211 err:
212 	if (fe->ops.i2c_gate_ctrl)
213 		fe->ops.i2c_gate_ctrl(fe, 0);
214 
215 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
216 	return ret;
217 }
218 
219 static int e4000_set_params(struct dvb_frontend *fe)
220 {
221 	struct e4000_priv *priv = fe->tuner_priv;
222 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
223 	int ret, i, sigma_delta;
224 	unsigned int f_vco;
225 	u8 buf[5], i_data[4], q_data[4];
226 
227 	dev_dbg(&priv->i2c->dev,
228 			"%s: delivery_system=%d frequency=%d bandwidth_hz=%d\n",
229 			__func__, c->delivery_system, c->frequency,
230 			c->bandwidth_hz);
231 
232 	if (fe->ops.i2c_gate_ctrl)
233 		fe->ops.i2c_gate_ctrl(fe, 1);
234 
235 	/* gain control manual */
236 	ret = e4000_wr_reg(priv, 0x1a, 0x00);
237 	if (ret < 0)
238 		goto err;
239 
240 	/* PLL */
241 	for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
242 		if (c->frequency <= e4000_pll_lut[i].freq)
243 			break;
244 	}
245 
246 	if (i == ARRAY_SIZE(e4000_pll_lut))
247 		goto err;
248 
249 	/*
250 	 * Note: Currently f_vco overflows when c->frequency is 1 073 741 824 Hz
251 	 * or more.
252 	 */
253 	f_vco = c->frequency * e4000_pll_lut[i].mul;
254 	sigma_delta = div_u64(0x10000ULL * (f_vco % priv->cfg->clock), priv->cfg->clock);
255 	buf[0] = f_vco / priv->cfg->clock;
256 	buf[1] = (sigma_delta >> 0) & 0xff;
257 	buf[2] = (sigma_delta >> 8) & 0xff;
258 	buf[3] = 0x00;
259 	buf[4] = e4000_pll_lut[i].div;
260 
261 	dev_dbg(&priv->i2c->dev, "%s: f_vco=%u pll div=%d sigma_delta=%04x\n",
262 			__func__, f_vco, buf[0], sigma_delta);
263 
264 	ret = e4000_wr_regs(priv, 0x09, buf, 5);
265 	if (ret < 0)
266 		goto err;
267 
268 	/* LNA filter (RF filter) */
269 	for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
270 		if (c->frequency <= e400_lna_filter_lut[i].freq)
271 			break;
272 	}
273 
274 	if (i == ARRAY_SIZE(e400_lna_filter_lut))
275 		goto err;
276 
277 	ret = e4000_wr_reg(priv, 0x10, e400_lna_filter_lut[i].val);
278 	if (ret < 0)
279 		goto err;
280 
281 	/* IF filters */
282 	for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
283 		if (c->bandwidth_hz <= e4000_if_filter_lut[i].freq)
284 			break;
285 	}
286 
287 	if (i == ARRAY_SIZE(e4000_if_filter_lut))
288 		goto err;
289 
290 	buf[0] = e4000_if_filter_lut[i].reg11_val;
291 	buf[1] = e4000_if_filter_lut[i].reg12_val;
292 
293 	ret = e4000_wr_regs(priv, 0x11, buf, 2);
294 	if (ret < 0)
295 		goto err;
296 
297 	/* frequency band */
298 	for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
299 		if (c->frequency <= e4000_band_lut[i].freq)
300 			break;
301 	}
302 
303 	if (i == ARRAY_SIZE(e4000_band_lut))
304 		goto err;
305 
306 	ret = e4000_wr_reg(priv, 0x07, e4000_band_lut[i].reg07_val);
307 	if (ret < 0)
308 		goto err;
309 
310 	ret = e4000_wr_reg(priv, 0x78, e4000_band_lut[i].reg78_val);
311 	if (ret < 0)
312 		goto err;
313 
314 	/* DC offset */
315 	for (i = 0; i < 4; i++) {
316 		if (i == 0)
317 			ret = e4000_wr_regs(priv, 0x15, "\x00\x7e\x24", 3);
318 		else if (i == 1)
319 			ret = e4000_wr_regs(priv, 0x15, "\x00\x7f", 2);
320 		else if (i == 2)
321 			ret = e4000_wr_regs(priv, 0x15, "\x01", 1);
322 		else
323 			ret = e4000_wr_regs(priv, 0x16, "\x7e", 1);
324 
325 		if (ret < 0)
326 			goto err;
327 
328 		ret = e4000_wr_reg(priv, 0x29, 0x01);
329 		if (ret < 0)
330 			goto err;
331 
332 		ret = e4000_rd_regs(priv, 0x2a, buf, 3);
333 		if (ret < 0)
334 			goto err;
335 
336 		i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
337 		q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
338 	}
339 
340 	swap(q_data[2], q_data[3]);
341 	swap(i_data[2], i_data[3]);
342 
343 	ret = e4000_wr_regs(priv, 0x50, q_data, 4);
344 	if (ret < 0)
345 		goto err;
346 
347 	ret = e4000_wr_regs(priv, 0x60, i_data, 4);
348 	if (ret < 0)
349 		goto err;
350 
351 	/* gain control auto */
352 	ret = e4000_wr_reg(priv, 0x1a, 0x17);
353 	if (ret < 0)
354 		goto err;
355 
356 	if (fe->ops.i2c_gate_ctrl)
357 		fe->ops.i2c_gate_ctrl(fe, 0);
358 
359 	return 0;
360 err:
361 	if (fe->ops.i2c_gate_ctrl)
362 		fe->ops.i2c_gate_ctrl(fe, 0);
363 
364 	dev_dbg(&priv->i2c->dev, "%s: failed=%d\n", __func__, ret);
365 	return ret;
366 }
367 
368 static int e4000_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
369 {
370 	struct e4000_priv *priv = fe->tuner_priv;
371 
372 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
373 
374 	*frequency = 0; /* Zero-IF */
375 
376 	return 0;
377 }
378 
379 static int e4000_release(struct dvb_frontend *fe)
380 {
381 	struct e4000_priv *priv = fe->tuner_priv;
382 
383 	dev_dbg(&priv->i2c->dev, "%s:\n", __func__);
384 
385 	kfree(fe->tuner_priv);
386 
387 	return 0;
388 }
389 
390 static const struct dvb_tuner_ops e4000_tuner_ops = {
391 	.info = {
392 		.name           = "Elonics E4000",
393 		.frequency_min  = 174000000,
394 		.frequency_max  = 862000000,
395 	},
396 
397 	.release = e4000_release,
398 
399 	.init = e4000_init,
400 	.sleep = e4000_sleep,
401 	.set_params = e4000_set_params,
402 
403 	.get_if_frequency = e4000_get_if_frequency,
404 };
405 
406 struct dvb_frontend *e4000_attach(struct dvb_frontend *fe,
407 		struct i2c_adapter *i2c, const struct e4000_config *cfg)
408 {
409 	struct e4000_priv *priv;
410 	int ret;
411 	u8 chip_id;
412 
413 	if (fe->ops.i2c_gate_ctrl)
414 		fe->ops.i2c_gate_ctrl(fe, 1);
415 
416 	priv = kzalloc(sizeof(struct e4000_priv), GFP_KERNEL);
417 	if (!priv) {
418 		ret = -ENOMEM;
419 		dev_err(&i2c->dev, "%s: kzalloc() failed\n", KBUILD_MODNAME);
420 		goto err;
421 	}
422 
423 	priv->cfg = cfg;
424 	priv->i2c = i2c;
425 
426 	/* check if the tuner is there */
427 	ret = e4000_rd_reg(priv, 0x02, &chip_id);
428 	if (ret < 0)
429 		goto err;
430 
431 	dev_dbg(&priv->i2c->dev, "%s: chip_id=%02x\n", __func__, chip_id);
432 
433 	if (chip_id != 0x40)
434 		goto err;
435 
436 	/* put sleep as chip seems to be in normal mode by default */
437 	ret = e4000_wr_reg(priv, 0x00, 0x00);
438 	if (ret < 0)
439 		goto err;
440 
441 	dev_info(&priv->i2c->dev,
442 			"%s: Elonics E4000 successfully identified\n",
443 			KBUILD_MODNAME);
444 
445 	fe->tuner_priv = priv;
446 	memcpy(&fe->ops.tuner_ops, &e4000_tuner_ops,
447 			sizeof(struct dvb_tuner_ops));
448 
449 	if (fe->ops.i2c_gate_ctrl)
450 		fe->ops.i2c_gate_ctrl(fe, 0);
451 
452 	return fe;
453 err:
454 	if (fe->ops.i2c_gate_ctrl)
455 		fe->ops.i2c_gate_ctrl(fe, 0);
456 
457 	dev_dbg(&i2c->dev, "%s: failed=%d\n", __func__, ret);
458 	kfree(priv);
459 	return NULL;
460 }
461 EXPORT_SYMBOL(e4000_attach);
462 
463 MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
464 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
465 MODULE_LICENSE("GPL");
466