1 /* 2 * Elonics E4000 silicon tuner driver 3 * 4 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License along 17 * with this program; if not, write to the Free Software Foundation, Inc., 18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 19 */ 20 21 #include "e4000_priv.h" 22 23 static int e4000_init(struct e4000_dev *dev) 24 { 25 struct i2c_client *client = dev->client; 26 int ret; 27 28 dev_dbg(&client->dev, "\n"); 29 30 /* reset */ 31 ret = regmap_write(dev->regmap, 0x00, 0x01); 32 if (ret) 33 goto err; 34 35 /* disable output clock */ 36 ret = regmap_write(dev->regmap, 0x06, 0x00); 37 if (ret) 38 goto err; 39 40 ret = regmap_write(dev->regmap, 0x7a, 0x96); 41 if (ret) 42 goto err; 43 44 /* configure gains */ 45 ret = regmap_bulk_write(dev->regmap, 0x7e, "\x01\xfe", 2); 46 if (ret) 47 goto err; 48 49 ret = regmap_write(dev->regmap, 0x82, 0x00); 50 if (ret) 51 goto err; 52 53 ret = regmap_write(dev->regmap, 0x24, 0x05); 54 if (ret) 55 goto err; 56 57 ret = regmap_bulk_write(dev->regmap, 0x87, "\x20\x01", 2); 58 if (ret) 59 goto err; 60 61 ret = regmap_bulk_write(dev->regmap, 0x9f, "\x7f\x07", 2); 62 if (ret) 63 goto err; 64 65 /* DC offset control */ 66 ret = regmap_write(dev->regmap, 0x2d, 0x1f); 67 if (ret) 68 goto err; 69 70 ret = regmap_bulk_write(dev->regmap, 0x70, "\x01\x01", 2); 71 if (ret) 72 goto err; 73 74 /* gain control */ 75 ret = regmap_write(dev->regmap, 0x1a, 0x17); 76 if (ret) 77 goto err; 78 79 ret = regmap_write(dev->regmap, 0x1f, 0x1a); 80 if (ret) 81 goto err; 82 83 dev->active = true; 84 85 return 0; 86 err: 87 dev_dbg(&client->dev, "failed=%d\n", ret); 88 return ret; 89 } 90 91 static int e4000_sleep(struct e4000_dev *dev) 92 { 93 struct i2c_client *client = dev->client; 94 int ret; 95 96 dev_dbg(&client->dev, "\n"); 97 98 dev->active = false; 99 100 ret = regmap_write(dev->regmap, 0x00, 0x00); 101 if (ret) 102 goto err; 103 104 return 0; 105 err: 106 dev_dbg(&client->dev, "failed=%d\n", ret); 107 return ret; 108 } 109 110 static int e4000_set_params(struct e4000_dev *dev) 111 { 112 struct i2c_client *client = dev->client; 113 int ret, i; 114 unsigned int div_n, k, k_cw, div_out; 115 u64 f_vco; 116 u8 buf[5], i_data[4], q_data[4]; 117 118 if (!dev->active) { 119 dev_dbg(&client->dev, "tuner is sleeping\n"); 120 return 0; 121 } 122 123 /* gain control manual */ 124 ret = regmap_write(dev->regmap, 0x1a, 0x00); 125 if (ret) 126 goto err; 127 128 /* 129 * Fractional-N synthesizer 130 * 131 * +----------------------------+ 132 * v | 133 * Fref +----+ +-------+ +------+ +---+ 134 * ------> | PD | --> | VCO | ------> | /N.F | <-- | K | 135 * +----+ +-------+ +------+ +---+ 136 * | 137 * | 138 * v 139 * +-------+ Fout 140 * | /Rout | ------> 141 * +-------+ 142 */ 143 for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) { 144 if (dev->f_frequency <= e4000_pll_lut[i].freq) 145 break; 146 } 147 if (i == ARRAY_SIZE(e4000_pll_lut)) { 148 ret = -EINVAL; 149 goto err; 150 } 151 152 #define F_REF dev->clk 153 div_out = e4000_pll_lut[i].div_out; 154 f_vco = (u64) dev->f_frequency * div_out; 155 /* calculate PLL integer and fractional control word */ 156 div_n = div_u64_rem(f_vco, F_REF, &k); 157 k_cw = div_u64((u64) k * 0x10000, F_REF); 158 159 dev_dbg(&client->dev, 160 "frequency=%u bandwidth=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n", 161 dev->f_frequency, dev->f_bandwidth, f_vco, F_REF, div_n, k, 162 k_cw, div_out); 163 164 buf[0] = div_n; 165 buf[1] = (k_cw >> 0) & 0xff; 166 buf[2] = (k_cw >> 8) & 0xff; 167 buf[3] = 0x00; 168 buf[4] = e4000_pll_lut[i].div_out_reg; 169 ret = regmap_bulk_write(dev->regmap, 0x09, buf, 5); 170 if (ret) 171 goto err; 172 173 /* LNA filter (RF filter) */ 174 for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) { 175 if (dev->f_frequency <= e400_lna_filter_lut[i].freq) 176 break; 177 } 178 if (i == ARRAY_SIZE(e400_lna_filter_lut)) { 179 ret = -EINVAL; 180 goto err; 181 } 182 183 ret = regmap_write(dev->regmap, 0x10, e400_lna_filter_lut[i].val); 184 if (ret) 185 goto err; 186 187 /* IF filters */ 188 for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) { 189 if (dev->f_bandwidth <= e4000_if_filter_lut[i].freq) 190 break; 191 } 192 if (i == ARRAY_SIZE(e4000_if_filter_lut)) { 193 ret = -EINVAL; 194 goto err; 195 } 196 197 buf[0] = e4000_if_filter_lut[i].reg11_val; 198 buf[1] = e4000_if_filter_lut[i].reg12_val; 199 200 ret = regmap_bulk_write(dev->regmap, 0x11, buf, 2); 201 if (ret) 202 goto err; 203 204 /* frequency band */ 205 for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) { 206 if (dev->f_frequency <= e4000_band_lut[i].freq) 207 break; 208 } 209 if (i == ARRAY_SIZE(e4000_band_lut)) { 210 ret = -EINVAL; 211 goto err; 212 } 213 214 ret = regmap_write(dev->regmap, 0x07, e4000_band_lut[i].reg07_val); 215 if (ret) 216 goto err; 217 218 ret = regmap_write(dev->regmap, 0x78, e4000_band_lut[i].reg78_val); 219 if (ret) 220 goto err; 221 222 /* DC offset */ 223 for (i = 0; i < 4; i++) { 224 if (i == 0) 225 ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7e\x24", 3); 226 else if (i == 1) 227 ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7f", 2); 228 else if (i == 2) 229 ret = regmap_bulk_write(dev->regmap, 0x15, "\x01", 1); 230 else 231 ret = regmap_bulk_write(dev->regmap, 0x16, "\x7e", 1); 232 233 if (ret) 234 goto err; 235 236 ret = regmap_write(dev->regmap, 0x29, 0x01); 237 if (ret) 238 goto err; 239 240 ret = regmap_bulk_read(dev->regmap, 0x2a, buf, 3); 241 if (ret) 242 goto err; 243 244 i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f); 245 q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f); 246 } 247 248 swap(q_data[2], q_data[3]); 249 swap(i_data[2], i_data[3]); 250 251 ret = regmap_bulk_write(dev->regmap, 0x50, q_data, 4); 252 if (ret) 253 goto err; 254 255 ret = regmap_bulk_write(dev->regmap, 0x60, i_data, 4); 256 if (ret) 257 goto err; 258 259 /* gain control auto */ 260 ret = regmap_write(dev->regmap, 0x1a, 0x17); 261 if (ret) 262 goto err; 263 264 return 0; 265 err: 266 dev_dbg(&client->dev, "failed=%d\n", ret); 267 return ret; 268 } 269 270 /* 271 * V4L2 API 272 */ 273 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 274 static const struct v4l2_frequency_band bands[] = { 275 { 276 .type = V4L2_TUNER_RF, 277 .index = 0, 278 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 279 .rangelow = 59000000, 280 .rangehigh = 1105000000, 281 }, 282 { 283 .type = V4L2_TUNER_RF, 284 .index = 1, 285 .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, 286 .rangelow = 1249000000, 287 .rangehigh = 2208000000UL, 288 }, 289 }; 290 291 static inline struct e4000_dev *e4000_subdev_to_dev(struct v4l2_subdev *sd) 292 { 293 return container_of(sd, struct e4000_dev, sd); 294 } 295 296 static int e4000_standby(struct v4l2_subdev *sd) 297 { 298 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 299 int ret; 300 301 ret = e4000_sleep(dev); 302 if (ret) 303 return ret; 304 305 return e4000_set_params(dev); 306 } 307 308 static int e4000_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v) 309 { 310 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 311 struct i2c_client *client = dev->client; 312 313 dev_dbg(&client->dev, "index=%d\n", v->index); 314 315 strlcpy(v->name, "Elonics E4000", sizeof(v->name)); 316 v->type = V4L2_TUNER_RF; 317 v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; 318 v->rangelow = bands[0].rangelow; 319 v->rangehigh = bands[1].rangehigh; 320 return 0; 321 } 322 323 static int e4000_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v) 324 { 325 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 326 struct i2c_client *client = dev->client; 327 328 dev_dbg(&client->dev, "index=%d\n", v->index); 329 return 0; 330 } 331 332 static int e4000_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f) 333 { 334 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 335 struct i2c_client *client = dev->client; 336 337 dev_dbg(&client->dev, "tuner=%d\n", f->tuner); 338 f->frequency = dev->f_frequency; 339 return 0; 340 } 341 342 static int e4000_s_frequency(struct v4l2_subdev *sd, 343 const struct v4l2_frequency *f) 344 { 345 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 346 struct i2c_client *client = dev->client; 347 348 dev_dbg(&client->dev, "tuner=%d type=%d frequency=%u\n", 349 f->tuner, f->type, f->frequency); 350 351 dev->f_frequency = clamp_t(unsigned int, f->frequency, 352 bands[0].rangelow, bands[1].rangehigh); 353 return e4000_set_params(dev); 354 } 355 356 static int e4000_enum_freq_bands(struct v4l2_subdev *sd, 357 struct v4l2_frequency_band *band) 358 { 359 struct e4000_dev *dev = e4000_subdev_to_dev(sd); 360 struct i2c_client *client = dev->client; 361 362 dev_dbg(&client->dev, "tuner=%d type=%d index=%d\n", 363 band->tuner, band->type, band->index); 364 365 if (band->index >= ARRAY_SIZE(bands)) 366 return -EINVAL; 367 368 band->capability = bands[band->index].capability; 369 band->rangelow = bands[band->index].rangelow; 370 band->rangehigh = bands[band->index].rangehigh; 371 return 0; 372 } 373 374 static const struct v4l2_subdev_tuner_ops e4000_subdev_tuner_ops = { 375 .standby = e4000_standby, 376 .g_tuner = e4000_g_tuner, 377 .s_tuner = e4000_s_tuner, 378 .g_frequency = e4000_g_frequency, 379 .s_frequency = e4000_s_frequency, 380 .enum_freq_bands = e4000_enum_freq_bands, 381 }; 382 383 static const struct v4l2_subdev_ops e4000_subdev_ops = { 384 .tuner = &e4000_subdev_tuner_ops, 385 }; 386 387 static int e4000_set_lna_gain(struct dvb_frontend *fe) 388 { 389 struct e4000_dev *dev = fe->tuner_priv; 390 struct i2c_client *client = dev->client; 391 int ret; 392 u8 u8tmp; 393 394 dev_dbg(&client->dev, "lna auto=%d->%d val=%d->%d\n", 395 dev->lna_gain_auto->cur.val, dev->lna_gain_auto->val, 396 dev->lna_gain->cur.val, dev->lna_gain->val); 397 398 if (dev->lna_gain_auto->val && dev->if_gain_auto->cur.val) 399 u8tmp = 0x17; 400 else if (dev->lna_gain_auto->val) 401 u8tmp = 0x19; 402 else if (dev->if_gain_auto->cur.val) 403 u8tmp = 0x16; 404 else 405 u8tmp = 0x10; 406 407 ret = regmap_write(dev->regmap, 0x1a, u8tmp); 408 if (ret) 409 goto err; 410 411 if (dev->lna_gain_auto->val == false) { 412 ret = regmap_write(dev->regmap, 0x14, dev->lna_gain->val); 413 if (ret) 414 goto err; 415 } 416 417 return 0; 418 err: 419 dev_dbg(&client->dev, "failed=%d\n", ret); 420 return ret; 421 } 422 423 static int e4000_set_mixer_gain(struct dvb_frontend *fe) 424 { 425 struct e4000_dev *dev = fe->tuner_priv; 426 struct i2c_client *client = dev->client; 427 int ret; 428 u8 u8tmp; 429 430 dev_dbg(&client->dev, "mixer auto=%d->%d val=%d->%d\n", 431 dev->mixer_gain_auto->cur.val, dev->mixer_gain_auto->val, 432 dev->mixer_gain->cur.val, dev->mixer_gain->val); 433 434 if (dev->mixer_gain_auto->val) 435 u8tmp = 0x15; 436 else 437 u8tmp = 0x14; 438 439 ret = regmap_write(dev->regmap, 0x20, u8tmp); 440 if (ret) 441 goto err; 442 443 if (dev->mixer_gain_auto->val == false) { 444 ret = regmap_write(dev->regmap, 0x15, dev->mixer_gain->val); 445 if (ret) 446 goto err; 447 } 448 449 return 0; 450 err: 451 dev_dbg(&client->dev, "failed=%d\n", ret); 452 return ret; 453 } 454 455 static int e4000_set_if_gain(struct dvb_frontend *fe) 456 { 457 struct e4000_dev *dev = fe->tuner_priv; 458 struct i2c_client *client = dev->client; 459 int ret; 460 u8 buf[2]; 461 u8 u8tmp; 462 463 dev_dbg(&client->dev, "if auto=%d->%d val=%d->%d\n", 464 dev->if_gain_auto->cur.val, dev->if_gain_auto->val, 465 dev->if_gain->cur.val, dev->if_gain->val); 466 467 if (dev->if_gain_auto->val && dev->lna_gain_auto->cur.val) 468 u8tmp = 0x17; 469 else if (dev->lna_gain_auto->cur.val) 470 u8tmp = 0x19; 471 else if (dev->if_gain_auto->val) 472 u8tmp = 0x16; 473 else 474 u8tmp = 0x10; 475 476 ret = regmap_write(dev->regmap, 0x1a, u8tmp); 477 if (ret) 478 goto err; 479 480 if (dev->if_gain_auto->val == false) { 481 buf[0] = e4000_if_gain_lut[dev->if_gain->val].reg16_val; 482 buf[1] = e4000_if_gain_lut[dev->if_gain->val].reg17_val; 483 ret = regmap_bulk_write(dev->regmap, 0x16, buf, 2); 484 if (ret) 485 goto err; 486 } 487 488 return 0; 489 err: 490 dev_dbg(&client->dev, "failed=%d\n", ret); 491 return ret; 492 } 493 494 static int e4000_pll_lock(struct dvb_frontend *fe) 495 { 496 struct e4000_dev *dev = fe->tuner_priv; 497 struct i2c_client *client = dev->client; 498 int ret; 499 unsigned int uitmp; 500 501 ret = regmap_read(dev->regmap, 0x07, &uitmp); 502 if (ret) 503 goto err; 504 505 dev->pll_lock->val = (uitmp & 0x01); 506 507 return 0; 508 err: 509 dev_dbg(&client->dev, "failed=%d\n", ret); 510 return ret; 511 } 512 513 static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 514 { 515 struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); 516 struct i2c_client *client = dev->client; 517 int ret; 518 519 if (!dev->active) 520 return 0; 521 522 switch (ctrl->id) { 523 case V4L2_CID_RF_TUNER_PLL_LOCK: 524 ret = e4000_pll_lock(dev->fe); 525 break; 526 default: 527 dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", 528 ctrl->id, ctrl->name); 529 ret = -EINVAL; 530 } 531 532 return ret; 533 } 534 535 static int e4000_s_ctrl(struct v4l2_ctrl *ctrl) 536 { 537 struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl); 538 struct i2c_client *client = dev->client; 539 int ret; 540 541 if (!dev->active) 542 return 0; 543 544 switch (ctrl->id) { 545 case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO: 546 case V4L2_CID_RF_TUNER_BANDWIDTH: 547 /* 548 * TODO: Auto logic does not work 100% correctly as tuner driver 549 * do not have information to calculate maximum suitable 550 * bandwidth. Calculating it is responsible of master driver. 551 */ 552 dev->f_bandwidth = dev->bandwidth->val; 553 ret = e4000_set_params(dev); 554 break; 555 case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO: 556 case V4L2_CID_RF_TUNER_LNA_GAIN: 557 ret = e4000_set_lna_gain(dev->fe); 558 break; 559 case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO: 560 case V4L2_CID_RF_TUNER_MIXER_GAIN: 561 ret = e4000_set_mixer_gain(dev->fe); 562 break; 563 case V4L2_CID_RF_TUNER_IF_GAIN_AUTO: 564 case V4L2_CID_RF_TUNER_IF_GAIN: 565 ret = e4000_set_if_gain(dev->fe); 566 break; 567 default: 568 dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n", 569 ctrl->id, ctrl->name); 570 ret = -EINVAL; 571 } 572 573 return ret; 574 } 575 576 static const struct v4l2_ctrl_ops e4000_ctrl_ops = { 577 .g_volatile_ctrl = e4000_g_volatile_ctrl, 578 .s_ctrl = e4000_s_ctrl, 579 }; 580 #endif 581 582 /* 583 * DVB API 584 */ 585 static int e4000_dvb_set_params(struct dvb_frontend *fe) 586 { 587 struct e4000_dev *dev = fe->tuner_priv; 588 struct dtv_frontend_properties *c = &fe->dtv_property_cache; 589 590 dev->f_frequency = c->frequency; 591 dev->f_bandwidth = c->bandwidth_hz; 592 return e4000_set_params(dev); 593 } 594 595 static int e4000_dvb_init(struct dvb_frontend *fe) 596 { 597 return e4000_init(fe->tuner_priv); 598 } 599 600 static int e4000_dvb_sleep(struct dvb_frontend *fe) 601 { 602 return e4000_sleep(fe->tuner_priv); 603 } 604 605 static int e4000_dvb_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) 606 { 607 *frequency = 0; /* Zero-IF */ 608 return 0; 609 } 610 611 static const struct dvb_tuner_ops e4000_dvb_tuner_ops = { 612 .info = { 613 .name = "Elonics E4000", 614 .frequency_min = 174000000, 615 .frequency_max = 862000000, 616 }, 617 618 .init = e4000_dvb_init, 619 .sleep = e4000_dvb_sleep, 620 .set_params = e4000_dvb_set_params, 621 622 .get_if_frequency = e4000_dvb_get_if_frequency, 623 }; 624 625 static int e4000_probe(struct i2c_client *client, 626 const struct i2c_device_id *id) 627 { 628 struct e4000_dev *dev; 629 struct e4000_config *cfg = client->dev.platform_data; 630 struct dvb_frontend *fe = cfg->fe; 631 int ret; 632 unsigned int uitmp; 633 static const struct regmap_config regmap_config = { 634 .reg_bits = 8, 635 .val_bits = 8, 636 }; 637 638 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 639 if (!dev) { 640 ret = -ENOMEM; 641 goto err; 642 } 643 644 dev->clk = cfg->clock; 645 dev->client = client; 646 dev->fe = cfg->fe; 647 dev->regmap = devm_regmap_init_i2c(client, ®map_config); 648 if (IS_ERR(dev->regmap)) { 649 ret = PTR_ERR(dev->regmap); 650 goto err_kfree; 651 } 652 653 /* check if the tuner is there */ 654 ret = regmap_read(dev->regmap, 0x02, &uitmp); 655 if (ret) 656 goto err_kfree; 657 658 dev_dbg(&client->dev, "chip id=%02x\n", uitmp); 659 660 if (uitmp != 0x40) { 661 ret = -ENODEV; 662 goto err_kfree; 663 } 664 665 /* put sleep as chip seems to be in normal mode by default */ 666 ret = regmap_write(dev->regmap, 0x00, 0x00); 667 if (ret) 668 goto err_kfree; 669 670 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 671 /* Register controls */ 672 v4l2_ctrl_handler_init(&dev->hdl, 9); 673 dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 674 V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1); 675 dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 676 V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000); 677 v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false); 678 dev->lna_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 679 V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1); 680 dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 681 V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10); 682 v4l2_ctrl_auto_cluster(2, &dev->lna_gain_auto, 0, false); 683 dev->mixer_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 684 V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1); 685 dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 686 V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1); 687 v4l2_ctrl_auto_cluster(2, &dev->mixer_gain_auto, 0, false); 688 dev->if_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 689 V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1); 690 dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 691 V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0); 692 v4l2_ctrl_auto_cluster(2, &dev->if_gain_auto, 0, false); 693 dev->pll_lock = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops, 694 V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0); 695 if (dev->hdl.error) { 696 ret = dev->hdl.error; 697 dev_err(&client->dev, "Could not initialize controls\n"); 698 v4l2_ctrl_handler_free(&dev->hdl); 699 goto err_kfree; 700 } 701 702 dev->sd.ctrl_handler = &dev->hdl; 703 dev->f_frequency = bands[0].rangelow; 704 dev->f_bandwidth = dev->bandwidth->val; 705 v4l2_i2c_subdev_init(&dev->sd, client, &e4000_subdev_ops); 706 #endif 707 fe->tuner_priv = dev; 708 memcpy(&fe->ops.tuner_ops, &e4000_dvb_tuner_ops, 709 sizeof(fe->ops.tuner_ops)); 710 v4l2_set_subdevdata(&dev->sd, client); 711 i2c_set_clientdata(client, &dev->sd); 712 713 dev_info(&client->dev, "Elonics E4000 successfully identified\n"); 714 return 0; 715 err_kfree: 716 kfree(dev); 717 err: 718 dev_dbg(&client->dev, "failed=%d\n", ret); 719 return ret; 720 } 721 722 static int e4000_remove(struct i2c_client *client) 723 { 724 struct v4l2_subdev *sd = i2c_get_clientdata(client); 725 struct e4000_dev *dev = container_of(sd, struct e4000_dev, sd); 726 727 dev_dbg(&client->dev, "\n"); 728 729 #if IS_ENABLED(CONFIG_VIDEO_V4L2) 730 v4l2_ctrl_handler_free(&dev->hdl); 731 #endif 732 kfree(dev); 733 734 return 0; 735 } 736 737 static const struct i2c_device_id e4000_id_table[] = { 738 {"e4000", 0}, 739 {} 740 }; 741 MODULE_DEVICE_TABLE(i2c, e4000_id_table); 742 743 static struct i2c_driver e4000_driver = { 744 .driver = { 745 .name = "e4000", 746 .suppress_bind_attrs = true, 747 }, 748 .probe = e4000_probe, 749 .remove = e4000_remove, 750 .id_table = e4000_id_table, 751 }; 752 753 module_i2c_driver(e4000_driver); 754 755 MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver"); 756 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); 757 MODULE_LICENSE("GPL"); 758