1 /* 2 * Copyright (C) 2013 STMicroelectronics Limited 3 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/clk.h> 12 #include <linux/interrupt.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/reset.h> 17 #include <media/rc-core.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/pm_wakeirq.h> 20 21 struct st_rc_device { 22 struct device *dev; 23 int irq; 24 int irq_wake; 25 struct clk *sys_clock; 26 void __iomem *base; /* Register base address */ 27 void __iomem *rx_base;/* RX Register base address */ 28 struct rc_dev *rdev; 29 bool overclocking; 30 int sample_mult; 31 int sample_div; 32 bool rxuhfmode; 33 struct reset_control *rstc; 34 }; 35 36 /* Registers */ 37 #define IRB_SAMPLE_RATE_COMM 0x64 /* sample freq divisor*/ 38 #define IRB_CLOCK_SEL 0x70 /* clock select */ 39 #define IRB_CLOCK_SEL_STATUS 0x74 /* clock status */ 40 /* IRB IR/UHF receiver registers */ 41 #define IRB_RX_ON 0x40 /* pulse time capture */ 42 #define IRB_RX_SYS 0X44 /* sym period capture */ 43 #define IRB_RX_INT_EN 0x48 /* IRQ enable (R/W) */ 44 #define IRB_RX_INT_STATUS 0x4c /* IRQ status (R/W) */ 45 #define IRB_RX_EN 0x50 /* Receive enable */ 46 #define IRB_MAX_SYM_PERIOD 0x54 /* max sym value */ 47 #define IRB_RX_INT_CLEAR 0x58 /* overrun status */ 48 #define IRB_RX_STATUS 0x6c /* receive status */ 49 #define IRB_RX_NOISE_SUPPR 0x5c /* noise suppression */ 50 #define IRB_RX_POLARITY_INV 0x68 /* polarity inverter */ 51 52 /** 53 * IRQ set: Enable full FIFO 1 -> bit 3; 54 * Enable overrun IRQ 1 -> bit 2; 55 * Enable last symbol IRQ 1 -> bit 1: 56 * Enable RX interrupt 1 -> bit 0; 57 */ 58 #define IRB_RX_INTS 0x0f 59 #define IRB_RX_OVERRUN_INT 0x04 60 /* maximum symbol period (microsecs),timeout to detect end of symbol train */ 61 #define MAX_SYMB_TIME 0x5000 62 #define IRB_SAMPLE_FREQ 10000000 63 #define IRB_FIFO_NOT_EMPTY 0xff00 64 #define IRB_OVERFLOW 0x4 65 #define IRB_TIMEOUT 0xffff 66 #define IR_ST_NAME "st-rc" 67 68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev) 69 { 70 DEFINE_IR_RAW_EVENT(ev); 71 ev.timeout = true; 72 ir_raw_event_store(rdev, &ev); 73 } 74 75 /** 76 * RX graphical example to better understand the difference between ST IR block 77 * output and standard definition used by LIRC (and most of the world!) 78 * 79 * mark mark 80 * |-IRB_RX_ON-| |-IRB_RX_ON-| 81 * ___ ___ ___ ___ ___ ___ _ 82 * | | | | | | | | | | | | | 83 * | | | | | | space 0 | | | | | | space 1 | 84 * _____| |__| |__| |____________________________| |__| |__| |_____________| 85 * 86 * |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------| 87 * 88 * |------------- encoding bit 0 -----------|---- encoding bit 1 -----| 89 * 90 * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so 91 * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark) 92 * The mark time represents the amount of time the carrier (usually 36-40kHz) 93 * is detected.The above examples shows Pulse Width Modulation encoding where 94 * bit 0 is represented by space>mark. 95 */ 96 97 static irqreturn_t st_rc_rx_interrupt(int irq, void *data) 98 { 99 unsigned int symbol, mark = 0; 100 struct st_rc_device *dev = data; 101 int last_symbol = 0; 102 u32 status; 103 DEFINE_IR_RAW_EVENT(ev); 104 105 if (dev->irq_wake) 106 pm_wakeup_event(dev->dev, 0); 107 108 status = readl(dev->rx_base + IRB_RX_STATUS); 109 110 while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) { 111 u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS); 112 if (unlikely(int_status & IRB_RX_OVERRUN_INT)) { 113 /* discard the entire collection in case of errors! */ 114 ir_raw_event_reset(dev->rdev); 115 dev_info(dev->dev, "IR RX overrun\n"); 116 writel(IRB_RX_OVERRUN_INT, 117 dev->rx_base + IRB_RX_INT_CLEAR); 118 continue; 119 } 120 121 symbol = readl(dev->rx_base + IRB_RX_SYS); 122 mark = readl(dev->rx_base + IRB_RX_ON); 123 124 if (symbol == IRB_TIMEOUT) 125 last_symbol = 1; 126 127 /* Ignore any noise */ 128 if ((mark > 2) && (symbol > 1)) { 129 symbol -= mark; 130 if (dev->overclocking) { /* adjustments to timings */ 131 symbol *= dev->sample_mult; 132 symbol /= dev->sample_div; 133 mark *= dev->sample_mult; 134 mark /= dev->sample_div; 135 } 136 137 ev.duration = US_TO_NS(mark); 138 ev.pulse = true; 139 ir_raw_event_store(dev->rdev, &ev); 140 141 if (!last_symbol) { 142 ev.duration = US_TO_NS(symbol); 143 ev.pulse = false; 144 ir_raw_event_store(dev->rdev, &ev); 145 } else { 146 st_rc_send_lirc_timeout(dev->rdev); 147 } 148 149 } 150 last_symbol = 0; 151 status = readl(dev->rx_base + IRB_RX_STATUS); 152 } 153 154 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR); 155 156 /* Empty software fifo */ 157 ir_raw_event_handle(dev->rdev); 158 return IRQ_HANDLED; 159 } 160 161 static void st_rc_hardware_init(struct st_rc_device *dev) 162 { 163 int baseclock, freqdiff; 164 unsigned int rx_max_symbol_per = MAX_SYMB_TIME; 165 unsigned int rx_sampling_freq_div; 166 167 /* Enable the IP */ 168 reset_control_deassert(dev->rstc); 169 170 clk_prepare_enable(dev->sys_clock); 171 baseclock = clk_get_rate(dev->sys_clock); 172 173 /* IRB input pins are inverted internally from high to low. */ 174 writel(1, dev->rx_base + IRB_RX_POLARITY_INV); 175 176 rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ; 177 writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM); 178 179 freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ); 180 if (freqdiff) { /* over clocking, workout the adjustment factors */ 181 dev->overclocking = true; 182 dev->sample_mult = 1000; 183 dev->sample_div = baseclock / (10000 * rx_sampling_freq_div); 184 rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div; 185 } 186 187 writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD); 188 } 189 190 static int st_rc_remove(struct platform_device *pdev) 191 { 192 struct st_rc_device *rc_dev = platform_get_drvdata(pdev); 193 194 dev_pm_clear_wake_irq(&pdev->dev); 195 device_init_wakeup(&pdev->dev, false); 196 clk_disable_unprepare(rc_dev->sys_clock); 197 rc_unregister_device(rc_dev->rdev); 198 return 0; 199 } 200 201 static int st_rc_open(struct rc_dev *rdev) 202 { 203 struct st_rc_device *dev = rdev->priv; 204 unsigned long flags; 205 local_irq_save(flags); 206 /* enable interrupts and receiver */ 207 writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN); 208 writel(0x01, dev->rx_base + IRB_RX_EN); 209 local_irq_restore(flags); 210 211 return 0; 212 } 213 214 static void st_rc_close(struct rc_dev *rdev) 215 { 216 struct st_rc_device *dev = rdev->priv; 217 /* disable interrupts and receiver */ 218 writel(0x00, dev->rx_base + IRB_RX_EN); 219 writel(0x00, dev->rx_base + IRB_RX_INT_EN); 220 } 221 222 static int st_rc_probe(struct platform_device *pdev) 223 { 224 int ret = -EINVAL; 225 struct rc_dev *rdev; 226 struct device *dev = &pdev->dev; 227 struct resource *res; 228 struct st_rc_device *rc_dev; 229 struct device_node *np = pdev->dev.of_node; 230 const char *rx_mode; 231 232 rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL); 233 234 if (!rc_dev) 235 return -ENOMEM; 236 237 rdev = rc_allocate_device(RC_DRIVER_IR_RAW); 238 239 if (!rdev) 240 return -ENOMEM; 241 242 if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) { 243 244 if (!strcmp(rx_mode, "uhf")) { 245 rc_dev->rxuhfmode = true; 246 } else if (!strcmp(rx_mode, "infrared")) { 247 rc_dev->rxuhfmode = false; 248 } else { 249 dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode); 250 goto err; 251 } 252 253 } else { 254 goto err; 255 } 256 257 rc_dev->sys_clock = devm_clk_get(dev, NULL); 258 if (IS_ERR(rc_dev->sys_clock)) { 259 dev_err(dev, "System clock not found\n"); 260 ret = PTR_ERR(rc_dev->sys_clock); 261 goto err; 262 } 263 264 rc_dev->irq = platform_get_irq(pdev, 0); 265 if (rc_dev->irq < 0) { 266 ret = rc_dev->irq; 267 goto err; 268 } 269 270 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 271 272 rc_dev->base = devm_ioremap_resource(dev, res); 273 if (IS_ERR(rc_dev->base)) { 274 ret = PTR_ERR(rc_dev->base); 275 goto err; 276 } 277 278 if (rc_dev->rxuhfmode) 279 rc_dev->rx_base = rc_dev->base + 0x40; 280 else 281 rc_dev->rx_base = rc_dev->base; 282 283 rc_dev->rstc = reset_control_get_optional(dev, NULL); 284 if (IS_ERR(rc_dev->rstc)) { 285 ret = PTR_ERR(rc_dev->rstc); 286 goto err; 287 } 288 289 rc_dev->dev = dev; 290 platform_set_drvdata(pdev, rc_dev); 291 st_rc_hardware_init(rc_dev); 292 293 rdev->allowed_protocols = RC_BIT_ALL_IR_DECODER; 294 /* rx sampling rate is 10Mhz */ 295 rdev->rx_resolution = 100; 296 rdev->timeout = US_TO_NS(MAX_SYMB_TIME); 297 rdev->priv = rc_dev; 298 rdev->open = st_rc_open; 299 rdev->close = st_rc_close; 300 rdev->driver_name = IR_ST_NAME; 301 rdev->map_name = RC_MAP_EMPTY; 302 rdev->input_name = "ST Remote Control Receiver"; 303 304 ret = rc_register_device(rdev); 305 if (ret < 0) 306 goto clkerr; 307 308 rc_dev->rdev = rdev; 309 if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt, 310 0, IR_ST_NAME, rc_dev) < 0) { 311 dev_err(dev, "IRQ %d register failed\n", rc_dev->irq); 312 ret = -EINVAL; 313 goto rcerr; 314 } 315 316 /* enable wake via this device */ 317 device_init_wakeup(dev, true); 318 dev_pm_set_wake_irq(dev, rc_dev->irq); 319 320 /** 321 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW 322 * lircd expects a long space first before a signal train to sync. 323 */ 324 st_rc_send_lirc_timeout(rdev); 325 326 dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR"); 327 328 return ret; 329 rcerr: 330 rc_unregister_device(rdev); 331 rdev = NULL; 332 clkerr: 333 clk_disable_unprepare(rc_dev->sys_clock); 334 err: 335 rc_free_device(rdev); 336 dev_err(dev, "Unable to register device (%d)\n", ret); 337 return ret; 338 } 339 340 #ifdef CONFIG_PM_SLEEP 341 static int st_rc_suspend(struct device *dev) 342 { 343 struct st_rc_device *rc_dev = dev_get_drvdata(dev); 344 345 if (device_may_wakeup(dev)) { 346 if (!enable_irq_wake(rc_dev->irq)) 347 rc_dev->irq_wake = 1; 348 else 349 return -EINVAL; 350 } else { 351 pinctrl_pm_select_sleep_state(dev); 352 writel(0x00, rc_dev->rx_base + IRB_RX_EN); 353 writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN); 354 clk_disable_unprepare(rc_dev->sys_clock); 355 reset_control_assert(rc_dev->rstc); 356 } 357 358 return 0; 359 } 360 361 static int st_rc_resume(struct device *dev) 362 { 363 struct st_rc_device *rc_dev = dev_get_drvdata(dev); 364 struct rc_dev *rdev = rc_dev->rdev; 365 366 if (rc_dev->irq_wake) { 367 disable_irq_wake(rc_dev->irq); 368 rc_dev->irq_wake = 0; 369 } else { 370 pinctrl_pm_select_default_state(dev); 371 st_rc_hardware_init(rc_dev); 372 if (rdev->users) { 373 writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN); 374 writel(0x01, rc_dev->rx_base + IRB_RX_EN); 375 } 376 } 377 378 return 0; 379 } 380 381 #endif 382 383 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume); 384 385 #ifdef CONFIG_OF 386 static const struct of_device_id st_rc_match[] = { 387 { .compatible = "st,comms-irb", }, 388 {}, 389 }; 390 391 MODULE_DEVICE_TABLE(of, st_rc_match); 392 #endif 393 394 static struct platform_driver st_rc_driver = { 395 .driver = { 396 .name = IR_ST_NAME, 397 .of_match_table = of_match_ptr(st_rc_match), 398 .pm = &st_rc_pm_ops, 399 }, 400 .probe = st_rc_probe, 401 .remove = st_rc_remove, 402 }; 403 404 module_platform_driver(st_rc_driver); 405 406 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms"); 407 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd"); 408 MODULE_LICENSE("GPL"); 409