xref: /openbmc/linux/drivers/media/rc/st_rc.c (revision e5c86679)
1 /*
2  * Copyright (C) 2013 STMicroelectronics Limited
3  * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  */
10 #include <linux/kernel.h>
11 #include <linux/clk.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <media/rc-core.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_wakeirq.h>
20 
21 struct st_rc_device {
22 	struct device			*dev;
23 	int				irq;
24 	int				irq_wake;
25 	struct clk			*sys_clock;
26 	void __iomem			*base;	/* Register base address */
27 	void __iomem			*rx_base;/* RX Register base address */
28 	struct rc_dev			*rdev;
29 	bool				overclocking;
30 	int				sample_mult;
31 	int				sample_div;
32 	bool				rxuhfmode;
33 	struct	reset_control		*rstc;
34 };
35 
36 /* Registers */
37 #define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
38 #define IRB_CLOCK_SEL		0x70	/* clock select       */
39 #define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
40 /* IRB IR/UHF receiver registers */
41 #define IRB_RX_ON               0x40	/* pulse time capture */
42 #define IRB_RX_SYS              0X44	/* sym period capture */
43 #define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
44 #define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
45 #define IRB_RX_EN               0x50	/* Receive enable     */
46 #define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
47 #define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
48 #define IRB_RX_STATUS           0x6c	/* receive status     */
49 #define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
50 #define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */
51 
52 /**
53  * IRQ set: Enable full FIFO                 1  -> bit  3;
54  *          Enable overrun IRQ               1  -> bit  2;
55  *          Enable last symbol IRQ           1  -> bit  1:
56  *          Enable RX interrupt              1  -> bit  0;
57  */
58 #define IRB_RX_INTS		0x0f
59 #define IRB_RX_OVERRUN_INT	0x04
60  /* maximum symbol period (microsecs),timeout to detect end of symbol train */
61 #define MAX_SYMB_TIME		0x5000
62 #define IRB_SAMPLE_FREQ		10000000
63 #define	IRB_FIFO_NOT_EMPTY	0xff00
64 #define IRB_OVERFLOW		0x4
65 #define IRB_TIMEOUT		0xffff
66 #define IR_ST_NAME "st-rc"
67 
68 static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
69 {
70 	DEFINE_IR_RAW_EVENT(ev);
71 	ev.timeout = true;
72 	ir_raw_event_store(rdev, &ev);
73 }
74 
75 /**
76  * RX graphical example to better understand the difference between ST IR block
77  * output and standard definition used by LIRC (and most of the world!)
78  *
79  *           mark                                     mark
80  *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
81  *      ___  ___  ___                            ___  ___  ___             _
82  *      | |  | |  | |                            | |  | |  | |             |
83  *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
84  * _____| |__| |__| |____________________________| |__| |__| |_____________|
85  *
86  *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
87  *
88  *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
89  *
90  * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
91  * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
92  * The mark time represents the amount of time the carrier (usually 36-40kHz)
93  * is detected.The above examples shows Pulse Width Modulation encoding where
94  * bit 0 is represented by space>mark.
95  */
96 
97 static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
98 {
99 	unsigned int symbol, mark = 0;
100 	struct st_rc_device *dev = data;
101 	int last_symbol = 0;
102 	u32 status;
103 	DEFINE_IR_RAW_EVENT(ev);
104 
105 	if (dev->irq_wake)
106 		pm_wakeup_event(dev->dev, 0);
107 
108 	status  = readl(dev->rx_base + IRB_RX_STATUS);
109 
110 	while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) {
111 		u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
112 		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
113 			/* discard the entire collection in case of errors!  */
114 			ir_raw_event_reset(dev->rdev);
115 			dev_info(dev->dev, "IR RX overrun\n");
116 			writel(IRB_RX_OVERRUN_INT,
117 					dev->rx_base + IRB_RX_INT_CLEAR);
118 			continue;
119 		}
120 
121 		symbol = readl(dev->rx_base + IRB_RX_SYS);
122 		mark = readl(dev->rx_base + IRB_RX_ON);
123 
124 		if (symbol == IRB_TIMEOUT)
125 			last_symbol = 1;
126 
127 		 /* Ignore any noise */
128 		if ((mark > 2) && (symbol > 1)) {
129 			symbol -= mark;
130 			if (dev->overclocking) { /* adjustments to timings */
131 				symbol *= dev->sample_mult;
132 				symbol /= dev->sample_div;
133 				mark *= dev->sample_mult;
134 				mark /= dev->sample_div;
135 			}
136 
137 			ev.duration = US_TO_NS(mark);
138 			ev.pulse = true;
139 			ir_raw_event_store(dev->rdev, &ev);
140 
141 			if (!last_symbol) {
142 				ev.duration = US_TO_NS(symbol);
143 				ev.pulse = false;
144 				ir_raw_event_store(dev->rdev, &ev);
145 			} else  {
146 				st_rc_send_lirc_timeout(dev->rdev);
147 			}
148 
149 		}
150 		last_symbol = 0;
151 		status  = readl(dev->rx_base + IRB_RX_STATUS);
152 	}
153 
154 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);
155 
156 	/* Empty software fifo */
157 	ir_raw_event_handle(dev->rdev);
158 	return IRQ_HANDLED;
159 }
160 
161 static void st_rc_hardware_init(struct st_rc_device *dev)
162 {
163 	int baseclock, freqdiff;
164 	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
165 	unsigned int rx_sampling_freq_div;
166 
167 	/* Enable the IP */
168 	if (dev->rstc)
169 		reset_control_deassert(dev->rstc);
170 
171 	clk_prepare_enable(dev->sys_clock);
172 	baseclock = clk_get_rate(dev->sys_clock);
173 
174 	/* IRB input pins are inverted internally from high to low. */
175 	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);
176 
177 	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
178 	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);
179 
180 	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
181 	if (freqdiff) { /* over clocking, workout the adjustment factors */
182 		dev->overclocking = true;
183 		dev->sample_mult = 1000;
184 		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
185 		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
186 	}
187 
188 	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
189 }
190 
191 static int st_rc_remove(struct platform_device *pdev)
192 {
193 	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
194 
195 	dev_pm_clear_wake_irq(&pdev->dev);
196 	device_init_wakeup(&pdev->dev, false);
197 	clk_disable_unprepare(rc_dev->sys_clock);
198 	rc_unregister_device(rc_dev->rdev);
199 	return 0;
200 }
201 
202 static int st_rc_open(struct rc_dev *rdev)
203 {
204 	struct st_rc_device *dev = rdev->priv;
205 	unsigned long flags;
206 	local_irq_save(flags);
207 	/* enable interrupts and receiver */
208 	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
209 	writel(0x01, dev->rx_base + IRB_RX_EN);
210 	local_irq_restore(flags);
211 
212 	return 0;
213 }
214 
215 static void st_rc_close(struct rc_dev *rdev)
216 {
217 	struct st_rc_device *dev = rdev->priv;
218 	/* disable interrupts and receiver */
219 	writel(0x00, dev->rx_base + IRB_RX_EN);
220 	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
221 }
222 
223 static int st_rc_probe(struct platform_device *pdev)
224 {
225 	int ret = -EINVAL;
226 	struct rc_dev *rdev;
227 	struct device *dev = &pdev->dev;
228 	struct resource *res;
229 	struct st_rc_device *rc_dev;
230 	struct device_node *np = pdev->dev.of_node;
231 	const char *rx_mode;
232 
233 	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);
234 
235 	if (!rc_dev)
236 		return -ENOMEM;
237 
238 	rdev = rc_allocate_device(RC_DRIVER_IR_RAW);
239 
240 	if (!rdev)
241 		return -ENOMEM;
242 
243 	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {
244 
245 		if (!strcmp(rx_mode, "uhf")) {
246 			rc_dev->rxuhfmode = true;
247 		} else if (!strcmp(rx_mode, "infrared")) {
248 			rc_dev->rxuhfmode = false;
249 		} else {
250 			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
251 			goto err;
252 		}
253 
254 	} else {
255 		goto err;
256 	}
257 
258 	rc_dev->sys_clock = devm_clk_get(dev, NULL);
259 	if (IS_ERR(rc_dev->sys_clock)) {
260 		dev_err(dev, "System clock not found\n");
261 		ret = PTR_ERR(rc_dev->sys_clock);
262 		goto err;
263 	}
264 
265 	rc_dev->irq = platform_get_irq(pdev, 0);
266 	if (rc_dev->irq < 0) {
267 		ret = rc_dev->irq;
268 		goto err;
269 	}
270 
271 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
272 
273 	rc_dev->base = devm_ioremap_resource(dev, res);
274 	if (IS_ERR(rc_dev->base)) {
275 		ret = PTR_ERR(rc_dev->base);
276 		goto err;
277 	}
278 
279 	if (rc_dev->rxuhfmode)
280 		rc_dev->rx_base = rc_dev->base + 0x40;
281 	else
282 		rc_dev->rx_base = rc_dev->base;
283 
284 
285 	rc_dev->rstc = reset_control_get_optional(dev, NULL);
286 	if (IS_ERR(rc_dev->rstc))
287 		rc_dev->rstc = NULL;
288 
289 	rc_dev->dev = dev;
290 	platform_set_drvdata(pdev, rc_dev);
291 	st_rc_hardware_init(rc_dev);
292 
293 	rdev->allowed_protocols = RC_BIT_ALL_IR_DECODER;
294 	/* rx sampling rate is 10Mhz */
295 	rdev->rx_resolution = 100;
296 	rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
297 	rdev->priv = rc_dev;
298 	rdev->open = st_rc_open;
299 	rdev->close = st_rc_close;
300 	rdev->driver_name = IR_ST_NAME;
301 	rdev->map_name = RC_MAP_LIRC;
302 	rdev->input_name = "ST Remote Control Receiver";
303 
304 	ret = rc_register_device(rdev);
305 	if (ret < 0)
306 		goto clkerr;
307 
308 	rc_dev->rdev = rdev;
309 	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
310 			     0, IR_ST_NAME, rc_dev) < 0) {
311 		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
312 		ret = -EINVAL;
313 		goto rcerr;
314 	}
315 
316 	/* enable wake via this device */
317 	device_init_wakeup(dev, true);
318 	dev_pm_set_wake_irq(dev, rc_dev->irq);
319 
320 	/**
321 	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
322 	 * lircd expects a long space first before a signal train to sync.
323 	 */
324 	st_rc_send_lirc_timeout(rdev);
325 
326 	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");
327 
328 	return ret;
329 rcerr:
330 	rc_unregister_device(rdev);
331 	rdev = NULL;
332 clkerr:
333 	clk_disable_unprepare(rc_dev->sys_clock);
334 err:
335 	rc_free_device(rdev);
336 	dev_err(dev, "Unable to register device (%d)\n", ret);
337 	return ret;
338 }
339 
340 #ifdef CONFIG_PM_SLEEP
341 static int st_rc_suspend(struct device *dev)
342 {
343 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
344 
345 	if (device_may_wakeup(dev)) {
346 		if (!enable_irq_wake(rc_dev->irq))
347 			rc_dev->irq_wake = 1;
348 		else
349 			return -EINVAL;
350 	} else {
351 		pinctrl_pm_select_sleep_state(dev);
352 		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
353 		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
354 		clk_disable_unprepare(rc_dev->sys_clock);
355 		if (rc_dev->rstc)
356 			reset_control_assert(rc_dev->rstc);
357 	}
358 
359 	return 0;
360 }
361 
362 static int st_rc_resume(struct device *dev)
363 {
364 	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
365 	struct rc_dev	*rdev = rc_dev->rdev;
366 
367 	if (rc_dev->irq_wake) {
368 		disable_irq_wake(rc_dev->irq);
369 		rc_dev->irq_wake = 0;
370 	} else {
371 		pinctrl_pm_select_default_state(dev);
372 		st_rc_hardware_init(rc_dev);
373 		if (rdev->users) {
374 			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
375 			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
376 		}
377 	}
378 
379 	return 0;
380 }
381 
382 #endif
383 
384 static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
385 
386 #ifdef CONFIG_OF
387 static const struct of_device_id st_rc_match[] = {
388 	{ .compatible = "st,comms-irb", },
389 	{},
390 };
391 
392 MODULE_DEVICE_TABLE(of, st_rc_match);
393 #endif
394 
395 static struct platform_driver st_rc_driver = {
396 	.driver = {
397 		.name = IR_ST_NAME,
398 		.of_match_table = of_match_ptr(st_rc_match),
399 		.pm     = &st_rc_pm_ops,
400 	},
401 	.probe = st_rc_probe,
402 	.remove = st_rc_remove,
403 };
404 
405 module_platform_driver(st_rc_driver);
406 
407 MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
408 MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
409 MODULE_LICENSE("GPL");
410